//===-- ARMSubtarget.h - Define Subtarget for the ARM ----------*- C++ -*--===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file declares the ARM specific subclass of TargetSubtargetInfo. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H #define LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H #include "ARMBaseInstrInfo.h" #include "ARMBaseRegisterInfo.h" #include "ARMConstantPoolValue.h" #include "ARMFrameLowering.h" #include "ARMISelLowering.h" #include "ARMMachineFunctionInfo.h" #include "ARMSelectionDAGInfo.h" #include "llvm/ADT/Triple.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/GlobalISel/CallLowering.h" #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/MC/MCSchedule.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include #include #define GET_SUBTARGETINFO_HEADER #include "ARMGenSubtargetInfo.inc" namespace llvm { class ARMBaseTargetMachine; class GlobalValue; class StringRef; class ARMSubtarget : public ARMGenSubtargetInfo { protected: enum ARMProcFamilyEnum { Others, CortexA12, CortexA15, CortexA17, CortexA32, CortexA35, CortexA5, CortexA53, CortexA55, CortexA57, CortexA7, CortexA72, CortexA73, CortexA75, CortexA76, CortexA77, CortexA78, CortexA78C, CortexA710, CortexA8, CortexA9, CortexM3, CortexM7, CortexR4, CortexR4F, CortexR5, CortexR52, CortexR7, CortexX1, Exynos, Krait, Kryo, NeoverseN1, NeoverseN2, NeoverseV1, Swift }; enum ARMProcClassEnum { None, AClass, MClass, RClass }; enum ARMArchEnum { ARMv2, ARMv2a, ARMv3, ARMv3m, ARMv4, ARMv4t, ARMv5, ARMv5t, ARMv5te, ARMv5tej, ARMv6, ARMv6k, ARMv6kz, ARMv6m, ARMv6sm, ARMv6t2, ARMv7a, ARMv7em, ARMv7m, ARMv7r, ARMv7ve, ARMv81a, ARMv82a, ARMv83a, ARMv84a, ARMv85a, ARMv86a, ARMv87a, ARMv8a, ARMv8mBaseline, ARMv8mMainline, ARMv8r, ARMv81mMainline, ARMv9a, ARMv91a, ARMv92a, }; public: /// What kind of timing do load multiple/store multiple instructions have. enum ARMLdStMultipleTiming { /// Can load/store 2 registers/cycle. DoubleIssue, /// Can load/store 2 registers/cycle, but needs an extra cycle if the access /// is not 64-bit aligned. DoubleIssueCheckUnalignedAccess, /// Can load/store 1 register/cycle. SingleIssue, /// Can load/store 1 register/cycle, but needs an extra cycle for address /// computation and potentially also for register writeback. SingleIssuePlusExtras, }; protected: /// ARMProcFamily - ARM processor family: Cortex-A8, Cortex-A9, and others. ARMProcFamilyEnum ARMProcFamily = Others; /// ARMProcClass - ARM processor class: None, AClass, RClass or MClass. ARMProcClassEnum ARMProcClass = None; /// ARMArch - ARM architecture ARMArchEnum ARMArch = ARMv4t; /// HasV4TOps, HasV5TOps, HasV5TEOps, /// HasV6Ops, HasV6MOps, HasV6KOps, HasV6T2Ops, HasV7Ops, HasV8Ops - /// Specify whether target support specific ARM ISA variants. bool HasV4TOps = false; bool HasV5TOps = false; bool HasV5TEOps = false; bool HasV6Ops = false; bool HasV6MOps = false; bool HasV6KOps = false; bool HasV6T2Ops = false; bool HasV7Ops = false; bool HasV8Ops = false; bool HasV8_1aOps = false; bool HasV8_2aOps = false; bool HasV8_3aOps = false; bool HasV8_4aOps = false; bool HasV8_5aOps = false; bool HasV8_6aOps = false; bool HasV8_7aOps = false; bool HasV9_0aOps = false; bool HasV9_1aOps = false; bool HasV9_2aOps = false; bool HasV8MBaselineOps = false; bool HasV8MMainlineOps = false; bool HasV8_1MMainlineOps = false; bool HasMVEIntegerOps = false; bool HasMVEFloatOps = false; bool HasCDEOps = false; /// HasVFPv2, HasVFPv3, HasVFPv4, HasFPARMv8, HasNEON - Specify what /// floating point ISAs are supported. bool HasVFPv2 = false; bool HasVFPv3 = false; bool HasVFPv4 = false; bool HasFPARMv8 = false; bool HasNEON = false; bool HasFPRegs = false; bool HasFPRegs16 = false; bool HasFPRegs64 = false; /// Versions of the VFP flags restricted to single precision, or to /// 16 d-registers, or both. bool HasVFPv2SP = false; bool HasVFPv3SP = false; bool HasVFPv4SP = false; bool HasFPARMv8SP = false; bool HasVFPv3D16 = false; bool HasVFPv4D16 = false; bool HasFPARMv8D16 = false; bool HasVFPv3D16SP = false; bool HasVFPv4D16SP = false; bool HasFPARMv8D16SP = false; /// HasDotProd - True if the ARMv8.2A dot product instructions are supported. bool HasDotProd = false; /// UseNEONForSinglePrecisionFP - if the NEONFP attribute has been /// specified. Use the method useNEONForSinglePrecisionFP() to /// determine if NEON should actually be used. bool UseNEONForSinglePrecisionFP = false; /// UseMulOps - True if non-microcoded fused integer multiply-add and /// multiply-subtract instructions should be used. bool UseMulOps = false; /// SlowFPVMLx - If the VFP2 / NEON instructions are available, indicates /// whether the FP VML[AS] instructions are slow (if so, don't use them). bool SlowFPVMLx = false; /// SlowFPVFMx - If the VFP4 / NEON instructions are available, indicates /// whether the FP VFM[AS] instructions are slow (if so, don't use them). bool SlowFPVFMx = false; /// HasVMLxForwarding - If true, NEON has special multiplier accumulator /// forwarding to allow mul + mla being issued back to back. bool HasVMLxForwarding = false; /// SlowFPBrcc - True if floating point compare + branch is slow. bool SlowFPBrcc = false; /// InThumbMode - True if compiling for Thumb, false for ARM. bool InThumbMode = false; /// UseSoftFloat - True if we're using software floating point features. bool UseSoftFloat = false; /// UseMISched - True if MachineScheduler should be used for this subtarget. bool UseMISched = false; /// DisablePostRAScheduler - False if scheduling should happen again after /// register allocation. bool DisablePostRAScheduler = false; /// HasThumb2 - True if Thumb2 instructions are supported. bool HasThumb2 = false; /// NoARM - True if subtarget does not support ARM mode execution. bool NoARM = false; /// ReserveR9 - True if R9 is not available as a general purpose register. bool ReserveR9 = false; /// NoMovt - True if MOVT / MOVW pairs are not used for materialization of /// 32-bit imms (including global addresses). bool NoMovt = false; /// SupportsTailCall - True if the OS supports tail call. The dynamic linker /// must be able to synthesize call stubs for interworking between ARM and /// Thumb. bool SupportsTailCall = false; /// HasFP16 - True if subtarget supports half-precision FP conversions bool HasFP16 = false; /// HasFullFP16 - True if subtarget supports half-precision FP operations bool HasFullFP16 = false; /// HasFP16FML - True if subtarget supports half-precision FP fml operations bool HasFP16FML = false; /// HasBF16 - True if subtarget supports BFloat16 floating point operations bool HasBF16 = false; /// HasMatMulInt8 - True if subtarget supports 8-bit integer matrix multiply bool HasMatMulInt8 = false; /// HasD32 - True if subtarget has the full 32 double precision /// FP registers for VFPv3. bool HasD32 = false; /// HasHardwareDivide - True if subtarget supports [su]div in Thumb mode bool HasHardwareDivideInThumb = false; /// HasHardwareDivideInARM - True if subtarget supports [su]div in ARM mode bool HasHardwareDivideInARM = false; /// HasDataBarrier - True if the subtarget supports DMB / DSB data barrier /// instructions. bool HasDataBarrier = false; /// HasFullDataBarrier - True if the subtarget supports DFB data barrier /// instruction. bool HasFullDataBarrier = false; /// HasV7Clrex - True if the subtarget supports CLREX instructions bool HasV7Clrex = false; /// HasAcquireRelease - True if the subtarget supports v8 atomics (LDA/LDAEX etc) /// instructions bool HasAcquireRelease = false; /// Pref32BitThumb - If true, codegen would prefer 32-bit Thumb instructions /// over 16-bit ones. bool Pref32BitThumb = false; /// AvoidCPSRPartialUpdate - If true, codegen would avoid using instructions /// that partially update CPSR and add false dependency on the previous /// CPSR setting instruction. bool AvoidCPSRPartialUpdate = false; /// CheapPredicableCPSRDef - If true, disable +1 predication cost /// for instructions updating CPSR. Enabled for Cortex-A57. bool CheapPredicableCPSRDef = false; /// AvoidMOVsShifterOperand - If true, codegen should avoid using flag setting /// movs with shifter operand (i.e. asr, lsl, lsr). bool AvoidMOVsShifterOperand = false; /// HasRetAddrStack - Some processors perform return stack prediction. CodeGen should /// avoid issue "normal" call instructions to callees which do not return. bool HasRetAddrStack = false; /// HasBranchPredictor - True if the subtarget has a branch predictor. Having /// a branch predictor or not changes the expected cost of taking a branch /// which affects the choice of whether to use predicated instructions. bool HasBranchPredictor = true; /// HasMPExtension - True if the subtarget supports Multiprocessing /// extension (ARMv7 only). bool HasMPExtension = false; /// HasVirtualization - True if the subtarget supports the Virtualization /// extension. bool HasVirtualization = false; /// HasFP64 - If true, the floating point unit supports double /// precision. bool HasFP64 = false; /// If true, the processor supports the Performance Monitor Extensions. These /// include a generic cycle-counter as well as more fine-grained (often /// implementation-specific) events. bool HasPerfMon = false; /// HasTrustZone - if true, processor supports TrustZone security extensions bool HasTrustZone = false; /// Has8MSecExt - if true, processor supports ARMv8-M Security Extensions bool Has8MSecExt = false; /// HasSHA2 - if true, processor supports SHA1 and SHA256 bool HasSHA2 = false; /// HasAES - if true, processor supports AES bool HasAES = false; /// HasCrypto - if true, processor supports Cryptography extensions bool HasCrypto = false; /// HasCRC - if true, processor supports CRC instructions bool HasCRC = false; /// HasRAS - if true, the processor supports RAS extensions bool HasRAS = false; /// HasLOB - if true, the processor supports the Low Overhead Branch extension bool HasLOB = false; bool HasPACBTI = false; /// If true, the instructions "vmov.i32 d0, #0" and "vmov.i32 q0, #0" are /// particularly effective at zeroing a VFP register. bool HasZeroCycleZeroing = false; /// HasFPAO - if true, processor does positive address offset computation faster bool HasFPAO = false; /// HasFuseAES - if true, processor executes back to back AES instruction /// pairs faster. bool HasFuseAES = false; /// HasFuseLiterals - if true, processor executes back to back /// bottom and top halves of literal generation faster. bool HasFuseLiterals = false; /// If true, if conversion may decide to leave some instructions unpredicated. bool IsProfitableToUnpredicate = false; /// If true, VMOV will be favored over VGETLNi32. bool HasSlowVGETLNi32 = false; /// If true, VMOV will be favored over VDUP. bool HasSlowVDUP32 = false; /// If true, VMOVSR will be favored over VMOVDRR. bool PreferVMOVSR = false; /// If true, ISHST barriers will be used for Release semantics. bool PreferISHST = false; /// If true, a VLDM/VSTM starting with an odd register number is considered to /// take more microops than single VLDRS/VSTRS. bool SlowOddRegister = false; /// If true, loading into a D subregister will be penalized. bool SlowLoadDSubregister = false; /// If true, use a wider stride when allocating VFP registers. bool UseWideStrideVFP = false; /// If true, the AGU and NEON/FPU units are multiplexed. bool HasMuxedUnits = false; /// If true, VMOVS will never be widened to VMOVD. bool DontWidenVMOVS = false; /// If true, splat a register between VFP and NEON instructions. bool SplatVFPToNeon = false; /// If true, run the MLx expansion pass. bool ExpandMLx = false; /// If true, VFP/NEON VMLA/VMLS have special RAW hazards. bool HasVMLxHazards = false; // If true, read thread pointer from coprocessor register. bool ReadTPHard = false; /// If true, VMOVRS, VMOVSR and VMOVS will be converted from VFP to NEON. bool UseNEONForFPMovs = false; /// If true, VLDn instructions take an extra cycle for unaligned accesses. bool CheckVLDnAlign = false; /// If true, VFP instructions are not pipelined. bool NonpipelinedVFP = false; /// StrictAlign - If true, the subtarget disallows unaligned memory /// accesses for some types. For details, see /// ARMTargetLowering::allowsMisalignedMemoryAccesses(). bool StrictAlign = false; /// RestrictIT - If true, the subtarget disallows generation of deprecated IT /// blocks to conform to ARMv8 rule. bool RestrictIT = false; /// HasDSP - If true, the subtarget supports the DSP (saturating arith /// and such) instructions. bool HasDSP = false; /// NaCl TRAP instruction is generated instead of the regular TRAP. bool UseNaClTrap = false; /// Generate calls via indirect call instructions. bool GenLongCalls = false; /// Generate code that does not contain data access to code sections. bool GenExecuteOnly = false; /// Target machine allowed unsafe FP math (such as use of NEON fp) bool UnsafeFPMath = false; /// UseSjLjEH - If true, the target uses SjLj exception handling (e.g. iOS). bool UseSjLjEH = false; /// Has speculation barrier bool HasSB = false; /// Implicitly convert an instruction to a different one if its immediates /// cannot be encoded. For example, ADD r0, r1, #FFFFFFFF -> SUB r0, r1, #1. bool NegativeImmediates = true; /// Mitigate against the cve-2021-35465 security vulnurability. bool FixCMSE_CVE_2021_35465 = false; /// Harden against Straight Line Speculation for Returns and Indirect /// Branches. bool HardenSlsRetBr = false; /// Harden against Straight Line Speculation for indirect calls. bool HardenSlsBlr = false; /// Generate thunk code for SLS mitigation in the normal text section. bool HardenSlsNoComdat = false; /// stackAlignment - The minimum alignment known to hold of the stack frame on /// entry to the function and which must be maintained by every function. Align stackAlignment = Align(4); /// CPUString - String name of used CPU. std::string CPUString; unsigned MaxInterleaveFactor = 1; /// Clearance before partial register updates (in number of instructions) unsigned PartialUpdateClearance = 0; /// What kind of timing do load multiple/store multiple have (double issue, /// single issue etc). ARMLdStMultipleTiming LdStMultipleTiming = SingleIssue; /// The adjustment that we need to apply to get the operand latency from the /// operand cycle returned by the itinerary data for pre-ISel operands. int PreISelOperandLatencyAdjustment = 2; /// What alignment is preferred for loop bodies, in log2(bytes). unsigned PrefLoopLogAlignment = 0; /// The cost factor for MVE instructions, representing the multiple beats an // instruction can take. The default is 2, (set in initSubtargetFeatures so // that we can use subtarget features less than 2). unsigned MVEVectorCostFactor = 0; /// OptMinSize - True if we're optimising for minimum code size, equal to /// the function attribute. bool OptMinSize = false; /// IsLittle - The target is Little Endian bool IsLittle; /// TargetTriple - What processor and OS we're targeting. Triple TargetTriple; /// SchedModel - Processor specific instruction costs. MCSchedModel SchedModel; /// Selected instruction itineraries (one entry per itinerary class.) InstrItineraryData InstrItins; /// NoBTIAtReturnTwice - Don't place a BTI instruction after /// return-twice constructs (setjmp) bool NoBTIAtReturnTwice = false; /// Options passed via command line that could influence the target const TargetOptions &Options; const ARMBaseTargetMachine &TM; public: /// This constructor initializes the data members to match that /// of the specified triple. /// ARMSubtarget(const Triple &TT, const std::string &CPU, const std::string &FS, const ARMBaseTargetMachine &TM, bool IsLittle, bool MinSize = false); /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size /// that still makes it profitable to inline the call. unsigned getMaxInlineSizeThreshold() const { return 64; } /// getMaxMemcpyTPInlineSizeThreshold - Returns the maximum size /// that still makes it profitable to inline a llvm.memcpy as a Tail /// Predicated loop. /// This threshold should only be used for constant size inputs. unsigned getMaxMemcpyTPInlineSizeThreshold() const { return 128; } /// ParseSubtargetFeatures - Parses features string setting specified /// subtarget options. Definition of function is auto generated by tblgen. void ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS); /// initializeSubtargetDependencies - Initializes using a CPU and feature string /// so that we can use initializer lists for subtarget initialization. ARMSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS); const ARMSelectionDAGInfo *getSelectionDAGInfo() const override { return &TSInfo; } const ARMBaseInstrInfo *getInstrInfo() const override { return InstrInfo.get(); } const ARMTargetLowering *getTargetLowering() const override { return &TLInfo; } const ARMFrameLowering *getFrameLowering() const override { return FrameLowering.get(); } const ARMBaseRegisterInfo *getRegisterInfo() const override { return &InstrInfo->getRegisterInfo(); } const CallLowering *getCallLowering() const override; InstructionSelector *getInstructionSelector() const override; const LegalizerInfo *getLegalizerInfo() const override; const RegisterBankInfo *getRegBankInfo() const override; private: ARMSelectionDAGInfo TSInfo; // Either Thumb1FrameLowering or ARMFrameLowering. std::unique_ptr FrameLowering; // Either Thumb1InstrInfo or Thumb2InstrInfo. std::unique_ptr InstrInfo; ARMTargetLowering TLInfo; /// GlobalISel related APIs. std::unique_ptr CallLoweringInfo; std::unique_ptr InstSelector; std::unique_ptr Legalizer; std::unique_ptr RegBankInfo; void initializeEnvironment(); void initSubtargetFeatures(StringRef CPU, StringRef FS); ARMFrameLowering *initializeFrameLowering(StringRef CPU, StringRef FS); std::bitset<8> CoprocCDE = {}; public: void computeIssueWidth(); bool hasV4TOps() const { return HasV4TOps; } bool hasV5TOps() const { return HasV5TOps; } bool hasV5TEOps() const { return HasV5TEOps; } bool hasV6Ops() const { return HasV6Ops; } bool hasV6MOps() const { return HasV6MOps; } bool hasV6KOps() const { return HasV6KOps; } bool hasV6T2Ops() const { return HasV6T2Ops; } bool hasV7Ops() const { return HasV7Ops; } bool hasV8Ops() const { return HasV8Ops; } bool hasV8_1aOps() const { return HasV8_1aOps; } bool hasV8_2aOps() const { return HasV8_2aOps; } bool hasV8_3aOps() const { return HasV8_3aOps; } bool hasV8_4aOps() const { return HasV8_4aOps; } bool hasV8_5aOps() const { return HasV8_5aOps; } bool hasV8_6aOps() const { return HasV8_6aOps; } bool hasV8_7aOps() const { return HasV8_7aOps; } bool hasV9_0aOps() const { return HasV9_0aOps; } bool hasV9_1aOps() const { return HasV9_1aOps; } bool hasV9_2aOps() const { return HasV9_2aOps; } bool hasV8MBaselineOps() const { return HasV8MBaselineOps; } bool hasV8MMainlineOps() const { return HasV8MMainlineOps; } bool hasV8_1MMainlineOps() const { return HasV8_1MMainlineOps; } bool hasMVEIntegerOps() const { return HasMVEIntegerOps; } bool hasMVEFloatOps() const { return HasMVEFloatOps; } bool hasCDEOps() const { return HasCDEOps; } bool hasFPRegs() const { return HasFPRegs; } bool hasFPRegs16() const { return HasFPRegs16; } bool hasFPRegs64() const { return HasFPRegs64; } /// @{ /// These functions are obsolete, please consider adding subtarget features /// or properties instead of calling them. bool isCortexA5() const { return ARMProcFamily == CortexA5; } bool isCortexA7() const { return ARMProcFamily == CortexA7; } bool isCortexA8() const { return ARMProcFamily == CortexA8; } bool isCortexA9() const { return ARMProcFamily == CortexA9; } bool isCortexA15() const { return ARMProcFamily == CortexA15; } bool isSwift() const { return ARMProcFamily == Swift; } bool isCortexM3() const { return ARMProcFamily == CortexM3; } bool isCortexM7() const { return ARMProcFamily == CortexM7; } bool isLikeA9() const { return isCortexA9() || isCortexA15() || isKrait(); } bool isCortexR5() const { return ARMProcFamily == CortexR5; } bool isKrait() const { return ARMProcFamily == Krait; } /// @} bool hasARMOps() const { return !NoARM; } bool hasVFP2Base() const { return HasVFPv2SP; } bool hasVFP3Base() const { return HasVFPv3D16SP; } bool hasVFP4Base() const { return HasVFPv4D16SP; } bool hasFPARMv8Base() const { return HasFPARMv8D16SP; } bool hasNEON() const { return HasNEON; } bool hasSHA2() const { return HasSHA2; } bool hasAES() const { return HasAES; } bool hasCrypto() const { return HasCrypto; } bool hasDotProd() const { return HasDotProd; } bool hasCRC() const { return HasCRC; } bool hasRAS() const { return HasRAS; } bool hasLOB() const { return HasLOB; } bool hasPACBTI() const { return HasPACBTI; } bool hasVirtualization() const { return HasVirtualization; } bool useNEONForSinglePrecisionFP() const { return hasNEON() && UseNEONForSinglePrecisionFP; } bool hasDivideInThumbMode() const { return HasHardwareDivideInThumb; } bool hasDivideInARMMode() const { return HasHardwareDivideInARM; } bool hasDataBarrier() const { return HasDataBarrier; } bool hasFullDataBarrier() const { return HasFullDataBarrier; } bool hasV7Clrex() const { return HasV7Clrex; } bool hasAcquireRelease() const { return HasAcquireRelease; } bool hasAnyDataBarrier() const { return HasDataBarrier || (hasV6Ops() && !isThumb()); } bool useMulOps() const { return UseMulOps; } bool useFPVMLx() const { return !SlowFPVMLx; } bool useFPVFMx() const { return !isTargetDarwin() && hasVFP4Base() && !SlowFPVFMx; } bool useFPVFMx16() const { return useFPVFMx() && hasFullFP16(); } bool useFPVFMx64() const { return useFPVFMx() && hasFP64(); } bool hasVMLxForwarding() const { return HasVMLxForwarding; } bool isFPBrccSlow() const { return SlowFPBrcc; } bool hasFP64() const { return HasFP64; } bool hasPerfMon() const { return HasPerfMon; } bool hasTrustZone() const { return HasTrustZone; } bool has8MSecExt() const { return Has8MSecExt; } bool hasZeroCycleZeroing() const { return HasZeroCycleZeroing; } bool hasFPAO() const { return HasFPAO; } bool isProfitableToUnpredicate() const { return IsProfitableToUnpredicate; } bool hasSlowVGETLNi32() const { return HasSlowVGETLNi32; } bool hasSlowVDUP32() const { return HasSlowVDUP32; } bool preferVMOVSR() const { return PreferVMOVSR; } bool preferISHSTBarriers() const { return PreferISHST; } bool expandMLx() const { return ExpandMLx; } bool hasVMLxHazards() const { return HasVMLxHazards; } bool hasSlowOddRegister() const { return SlowOddRegister; } bool hasSlowLoadDSubregister() const { return SlowLoadDSubregister; } bool useWideStrideVFP() const { return UseWideStrideVFP; } bool hasMuxedUnits() const { return HasMuxedUnits; } bool dontWidenVMOVS() const { return DontWidenVMOVS; } bool useSplatVFPToNeon() const { return SplatVFPToNeon; } bool useNEONForFPMovs() const { return UseNEONForFPMovs; } bool checkVLDnAccessAlignment() const { return CheckVLDnAlign; } bool nonpipelinedVFP() const { return NonpipelinedVFP; } bool prefers32BitThumb() const { return Pref32BitThumb; } bool avoidCPSRPartialUpdate() const { return AvoidCPSRPartialUpdate; } bool cheapPredicableCPSRDef() const { return CheapPredicableCPSRDef; } bool avoidMOVsShifterOperand() const { return AvoidMOVsShifterOperand; } bool hasRetAddrStack() const { return HasRetAddrStack; } bool hasBranchPredictor() const { return HasBranchPredictor; } bool hasMPExtension() const { return HasMPExtension; } bool hasDSP() const { return HasDSP; } bool useNaClTrap() const { return UseNaClTrap; } bool useSjLjEH() const { return UseSjLjEH; } bool hasSB() const { return HasSB; } bool genLongCalls() const { return GenLongCalls; } bool genExecuteOnly() const { return GenExecuteOnly; } bool hasBaseDSP() const { if (isThumb()) return hasDSP(); else return hasV5TEOps(); } bool hasFP16() const { return HasFP16; } bool hasD32() const { return HasD32; } bool hasFullFP16() const { return HasFullFP16; } bool hasFP16FML() const { return HasFP16FML; } bool hasBF16() const { return HasBF16; } bool hasFuseAES() const { return HasFuseAES; } bool hasFuseLiterals() const { return HasFuseLiterals; } /// Return true if the CPU supports any kind of instruction fusion. bool hasFusion() const { return hasFuseAES() || hasFuseLiterals(); } bool hasMatMulInt8() const { return HasMatMulInt8; } const Triple &getTargetTriple() const { return TargetTriple; } bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); } bool isTargetIOS() const { return TargetTriple.isiOS(); } bool isTargetWatchOS() const { return TargetTriple.isWatchOS(); } bool isTargetWatchABI() const { return TargetTriple.isWatchABI(); } bool isTargetLinux() const { return TargetTriple.isOSLinux(); } bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); } bool isTargetNetBSD() const { return TargetTriple.isOSNetBSD(); } bool isTargetWindows() const { return TargetTriple.isOSWindows(); } bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); } bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); } bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); } // ARM EABI is the bare-metal EABI described in ARM ABI documents and // can be accessed via -target arm-none-eabi. This is NOT GNUEABI. // FIXME: Add a flag for bare-metal for that target and set Triple::EABI // even for GNUEABI, so we can make a distinction here and still conform to // the EABI on GNU (and Android) mode. This requires change in Clang, too. // FIXME: The Darwin exception is temporary, while we move users to // "*-*-*-macho" triples as quickly as possible. bool isTargetAEABI() const { return (TargetTriple.getEnvironment() == Triple::EABI || TargetTriple.getEnvironment() == Triple::EABIHF) && !isTargetDarwin() && !isTargetWindows(); } bool isTargetGNUAEABI() const { return (TargetTriple.getEnvironment() == Triple::GNUEABI || TargetTriple.getEnvironment() == Triple::GNUEABIHF) && !isTargetDarwin() && !isTargetWindows(); } bool isTargetMuslAEABI() const { return (TargetTriple.getEnvironment() == Triple::MuslEABI || TargetTriple.getEnvironment() == Triple::MuslEABIHF) && !isTargetDarwin() && !isTargetWindows(); } // ARM Targets that support EHABI exception handling standard // Darwin uses SjLj. Other targets might need more checks. bool isTargetEHABICompatible() const { return TargetTriple.isTargetEHABICompatible(); } bool isTargetHardFloat() const; bool isTargetAndroid() const { return TargetTriple.isAndroid(); } bool isXRaySupported() const override; bool isAPCS_ABI() const; bool isAAPCS_ABI() const; bool isAAPCS16_ABI() const; bool isROPI() const; bool isRWPI() const; bool useMachineScheduler() const { return UseMISched; } bool disablePostRAScheduler() const { return DisablePostRAScheduler; } bool useSoftFloat() const { return UseSoftFloat; } bool isThumb() const { return InThumbMode; } bool hasMinSize() const { return OptMinSize; } bool isThumb1Only() const { return InThumbMode && !HasThumb2; } bool isThumb2() const { return InThumbMode && HasThumb2; } bool hasThumb2() const { return HasThumb2; } bool isMClass() const { return ARMProcClass == MClass; } bool isRClass() const { return ARMProcClass == RClass; } bool isAClass() const { return ARMProcClass == AClass; } bool isReadTPHard() const { return ReadTPHard; } bool isR9Reserved() const { return isTargetMachO() ? (ReserveR9 || !HasV6Ops) : ReserveR9; } MCPhysReg getFramePointerReg() const { if (isTargetDarwin() || (!isTargetWindows() && isThumb())) return ARM::R7; return ARM::R11; } /// Returns true if the frame setup is split into two separate pushes (first /// r0-r7,lr then r8-r11), principally so that the frame pointer is adjacent /// to lr. This is always required on Thumb1-only targets, as the push and /// pop instructions can't access the high registers. bool splitFramePushPop(const MachineFunction &MF) const { if (MF.getInfo()->shouldSignReturnAddress()) return true; return (getFramePointerReg() == ARM::R7 && MF.getTarget().Options.DisableFramePointerElim(MF)) || isThumb1Only(); } bool useStride4VFPs() const; bool useMovt() const; bool supportsTailCall() const { return SupportsTailCall; } bool allowsUnalignedMem() const { return !StrictAlign; } bool restrictIT() const { return RestrictIT; } const std::string & getCPUString() const { return CPUString; } bool isLittle() const { return IsLittle; } unsigned getMispredictionPenalty() const; /// Returns true if machine scheduler should be enabled. bool enableMachineScheduler() const override; /// True for some subtargets at > -O0. bool enablePostRAScheduler() const override; /// True for some subtargets at > -O0. bool enablePostRAMachineScheduler() const override; /// Check whether this subtarget wants to use subregister liveness. bool enableSubRegLiveness() const override; /// Enable use of alias analysis during code generation (during MI /// scheduling, DAGCombine, etc.). bool useAA() const override { return true; } // enableAtomicExpand- True if we need to expand our atomics. bool enableAtomicExpand() const override; /// getInstrItins - Return the instruction itineraries based on subtarget /// selection. const InstrItineraryData *getInstrItineraryData() const override { return &InstrItins; } /// getStackAlignment - Returns the minimum alignment known to hold of the /// stack frame on entry to the function and which must be maintained by every /// function for this subtarget. Align getStackAlignment() const { return stackAlignment; } unsigned getMaxInterleaveFactor() const { return MaxInterleaveFactor; } unsigned getPartialUpdateClearance() const { return PartialUpdateClearance; } ARMLdStMultipleTiming getLdStMultipleTiming() const { return LdStMultipleTiming; } int getPreISelOperandLatencyAdjustment() const { return PreISelOperandLatencyAdjustment; } /// True if the GV will be accessed via an indirect symbol. bool isGVIndirectSymbol(const GlobalValue *GV) const; /// Returns the constant pool modifier needed to access the GV. bool isGVInGOT(const GlobalValue *GV) const; /// True if fast-isel is used. bool useFastISel() const; /// Returns the correct return opcode for the current feature set. /// Use BX if available to allow mixing thumb/arm code, but fall back /// to plain mov pc,lr on ARMv4. unsigned getReturnOpcode() const { if (isThumb()) return ARM::tBX_RET; if (hasV4TOps()) return ARM::BX_RET; return ARM::MOVPCLR; } /// Allow movt+movw for PIC global address calculation. /// ELF does not have GOT relocations for movt+movw. /// ROPI does not use GOT. bool allowPositionIndependentMovt() const { return isROPI() || !isTargetELF(); } unsigned getPrefLoopLogAlignment() const { return PrefLoopLogAlignment; } unsigned getMVEVectorCostFactor(TargetTransformInfo::TargetCostKind CostKind) const { if (CostKind == TargetTransformInfo::TCK_CodeSize) return 1; return MVEVectorCostFactor; } bool ignoreCSRForAllocationOrder(const MachineFunction &MF, unsigned PhysReg) const override; unsigned getGPRAllocationOrder(const MachineFunction &MF) const; bool fixCMSE_CVE_2021_35465() const { return FixCMSE_CVE_2021_35465; } bool hardenSlsRetBr() const { return HardenSlsRetBr; } bool hardenSlsBlr() const { return HardenSlsBlr; } bool hardenSlsNoComdat() const { return HardenSlsNoComdat; } bool getNoBTIAtReturnTwice() const { return NoBTIAtReturnTwice; } }; } // end namespace llvm #endif // LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H