//===-- LanaiMemAluCombiner.cpp - Pass to combine memory & ALU operations -===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // Simple pass to combine memory and ALU operations // // The Lanai ISA supports instructions where a load/store modifies the base // register used in the load/store operation. This pass finds suitable // load/store and ALU instructions and combines them into one instruction. // // For example, // ld [ %r6 -- ], %r12 // is a supported instruction that is not currently generated by the instruction // selection pass of this backend. This pass generates these instructions by // merging // add %r6, -4, %r6 // followed by // ld [ %r6 ], %r12 // in the same machine basic block into one machine instruction. //===----------------------------------------------------------------------===// #include "LanaiAluCode.h" #include "LanaiTargetMachine.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/Support/CommandLine.h" using namespace llvm; #define GET_INSTRMAP_INFO #include "LanaiGenInstrInfo.inc" #define DEBUG_TYPE "lanai-mem-alu-combiner" STATISTIC(NumLdStAluCombined, "Number of memory and ALU instructions combined"); static llvm::cl::opt DisableMemAluCombiner( "disable-lanai-mem-alu-combiner", llvm::cl::init(false), llvm::cl::desc("Do not combine ALU and memory operators"), llvm::cl::Hidden); namespace llvm { void initializeLanaiMemAluCombinerPass(PassRegistry &); } // namespace llvm namespace { typedef MachineBasicBlock::iterator MbbIterator; typedef MachineFunction::iterator MfIterator; class LanaiMemAluCombiner : public MachineFunctionPass { public: static char ID; explicit LanaiMemAluCombiner() : MachineFunctionPass(ID) { initializeLanaiMemAluCombinerPass(*PassRegistry::getPassRegistry()); } StringRef getPassName() const override { return "Lanai load / store optimization pass"; } bool runOnMachineFunction(MachineFunction &F) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } private: MbbIterator findClosestSuitableAluInstr(MachineBasicBlock *BB, const MbbIterator &MemInstr, bool Decrement); void insertMergedInstruction(MachineBasicBlock *BB, const MbbIterator &MemInstr, const MbbIterator &AluInstr, bool Before); bool combineMemAluInBasicBlock(MachineBasicBlock *BB); // Target machine description which we query for register names, data // layout, etc. const TargetInstrInfo *TII; }; } // namespace char LanaiMemAluCombiner::ID = 0; INITIALIZE_PASS(LanaiMemAluCombiner, DEBUG_TYPE, "Lanai memory ALU combiner pass", false, false) namespace { bool isSpls(uint16_t Opcode) { return Lanai::splsIdempotent(Opcode) == Opcode; } // Determine the opcode for the merged instruction created by considering the // old memory operation's opcode and whether the merged opcode will have an // immediate offset. unsigned mergedOpcode(unsigned OldOpcode, bool ImmediateOffset) { switch (OldOpcode) { case Lanai::LDW_RI: case Lanai::LDW_RR: if (ImmediateOffset) return Lanai::LDW_RI; return Lanai::LDW_RR; case Lanai::LDHs_RI: case Lanai::LDHs_RR: if (ImmediateOffset) return Lanai::LDHs_RI; return Lanai::LDHs_RR; case Lanai::LDHz_RI: case Lanai::LDHz_RR: if (ImmediateOffset) return Lanai::LDHz_RI; return Lanai::LDHz_RR; case Lanai::LDBs_RI: case Lanai::LDBs_RR: if (ImmediateOffset) return Lanai::LDBs_RI; return Lanai::LDBs_RR; case Lanai::LDBz_RI: case Lanai::LDBz_RR: if (ImmediateOffset) return Lanai::LDBz_RI; return Lanai::LDBz_RR; case Lanai::SW_RI: case Lanai::SW_RR: if (ImmediateOffset) return Lanai::SW_RI; return Lanai::SW_RR; case Lanai::STB_RI: case Lanai::STB_RR: if (ImmediateOffset) return Lanai::STB_RI; return Lanai::STB_RR; case Lanai::STH_RI: case Lanai::STH_RR: if (ImmediateOffset) return Lanai::STH_RI; return Lanai::STH_RR; default: return 0; } } // Check if the machine instruction has non-volatile memory operands of the type // supported for combining with ALU instructions. bool isNonVolatileMemoryOp(const MachineInstr &MI) { if (!MI.hasOneMemOperand()) return false; // Determine if the machine instruction is a supported memory operation by // testing if the computed merge opcode is a valid memory operation opcode. if (mergedOpcode(MI.getOpcode(), false) == 0) return false; const MachineMemOperand *MemOperand = *MI.memoperands_begin(); // Don't move volatile memory accesses // TODO: unclear if we need to be as conservative about atomics if (MemOperand->isVolatile() || MemOperand->isAtomic()) return false; return true; } // Test to see if two machine operands are of the same type. This test is less // strict than the MachineOperand::isIdenticalTo function. bool isSameOperand(const MachineOperand &Op1, const MachineOperand &Op2) { if (Op1.getType() != Op2.getType()) return false; switch (Op1.getType()) { case MachineOperand::MO_Register: return Op1.getReg() == Op2.getReg(); case MachineOperand::MO_Immediate: return Op1.getImm() == Op2.getImm(); default: return false; } } bool isZeroOperand(const MachineOperand &Op) { return ((Op.isReg() && Op.getReg() == Lanai::R0) || (Op.isImm() && Op.getImm() == 0)); } // Determines whether a register is used by an instruction. bool InstrUsesReg(const MbbIterator &Instr, const MachineOperand *Reg) { for (MachineInstr::const_mop_iterator Mop = Instr->operands_begin(); Mop != Instr->operands_end(); ++Mop) { if (isSameOperand(*Mop, *Reg)) return true; } return false; } // Converts between machine opcode and AluCode. // Flag using/modifying ALU operations should not be considered for merging and // are omitted from this list. LPAC::AluCode mergedAluCode(unsigned AluOpcode) { switch (AluOpcode) { case Lanai::ADD_I_LO: case Lanai::ADD_R: return LPAC::ADD; case Lanai::SUB_I_LO: case Lanai::SUB_R: return LPAC::SUB; case Lanai::AND_I_LO: case Lanai::AND_R: return LPAC::AND; case Lanai::OR_I_LO: case Lanai::OR_R: return LPAC::OR; case Lanai::XOR_I_LO: case Lanai::XOR_R: return LPAC::XOR; case Lanai::SHL_R: return LPAC::SHL; case Lanai::SRL_R: return LPAC::SRL; case Lanai::SRA_R: return LPAC::SRA; case Lanai::SA_I: case Lanai::SL_I: default: return LPAC::UNKNOWN; } } // Insert a new combined memory and ALU operation instruction. // // This function builds a new machine instruction using the MachineInstrBuilder // class and inserts it before the memory instruction. void LanaiMemAluCombiner::insertMergedInstruction(MachineBasicBlock *BB, const MbbIterator &MemInstr, const MbbIterator &AluInstr, bool Before) { // Insert new combined load/store + alu operation MachineOperand Dest = MemInstr->getOperand(0); MachineOperand Base = MemInstr->getOperand(1); MachineOperand MemOffset = MemInstr->getOperand(2); MachineOperand AluOffset = AluInstr->getOperand(2); // Abort if ALU offset is not a register or immediate assert((AluOffset.isReg() || AluOffset.isImm()) && "Unsupported operand type in merge"); // Determined merged instructions opcode and ALU code LPAC::AluCode AluOpcode = mergedAluCode(AluInstr->getOpcode()); unsigned NewOpc = mergedOpcode(MemInstr->getOpcode(), AluOffset.isImm()); assert(AluOpcode != LPAC::UNKNOWN && "Unknown ALU code in merging"); assert(NewOpc != 0 && "Unknown merged node opcode"); // Build and insert new machine instruction MachineInstrBuilder InstrBuilder = BuildMI(*BB, MemInstr, MemInstr->getDebugLoc(), TII->get(NewOpc)); InstrBuilder.addReg(Dest.getReg(), getDefRegState(true)); InstrBuilder.addReg(Base.getReg(), getKillRegState(true)); // Add offset to machine instruction if (AluOffset.isReg()) InstrBuilder.addReg(AluOffset.getReg()); else if (AluOffset.isImm()) InstrBuilder.addImm(AluOffset.getImm()); else llvm_unreachable("Unsupported ld/st ALU merge."); // Create a pre-op if the ALU operation preceded the memory operation or the // MemOffset is non-zero (i.e. the memory value should be adjusted before // accessing it), else create a post-op. if (Before || !isZeroOperand(MemOffset)) InstrBuilder.addImm(LPAC::makePreOp(AluOpcode)); else InstrBuilder.addImm(LPAC::makePostOp(AluOpcode)); // Transfer memory operands. InstrBuilder.setMemRefs(MemInstr->memoperands()); } // Function determines if ALU operation (in alu_iter) can be combined with // a load/store with base and offset. bool isSuitableAluInstr(bool IsSpls, const MbbIterator &AluIter, const MachineOperand &Base, const MachineOperand &Offset) { // ALU operations have 3 operands if (AluIter->getNumOperands() != 3) return false; MachineOperand &Dest = AluIter->getOperand(0); MachineOperand &Op1 = AluIter->getOperand(1); MachineOperand &Op2 = AluIter->getOperand(2); // Only match instructions using the base register as destination and with the // base and first operand equal if (!isSameOperand(Dest, Base) || !isSameOperand(Dest, Op1)) return false; if (Op2.isImm()) { // It is not a match if the 2nd operand in the ALU operation is an // immediate but the ALU operation is not an addition. if (AluIter->getOpcode() != Lanai::ADD_I_LO) return false; if (Offset.isReg() && Offset.getReg() == Lanai::R0) return true; if (Offset.isImm() && ((Offset.getImm() == 0 && // Check that the Op2 would fit in the immediate field of the // memory operation. ((IsSpls && isInt<10>(Op2.getImm())) || (!IsSpls && isInt<16>(Op2.getImm())))) || Offset.getImm() == Op2.getImm())) return true; } else if (Op2.isReg()) { // The Offset and 2nd operand are both registers and equal if (Offset.isReg() && Op2.getReg() == Offset.getReg()) return true; } else // Only consider operations with register or immediate values return false; return false; } MbbIterator LanaiMemAluCombiner::findClosestSuitableAluInstr( MachineBasicBlock *BB, const MbbIterator &MemInstr, const bool Decrement) { MachineOperand *Base = &MemInstr->getOperand(1); MachineOperand *Offset = &MemInstr->getOperand(2); bool IsSpls = isSpls(MemInstr->getOpcode()); MbbIterator First = MemInstr; MbbIterator Last = Decrement ? BB->begin() : BB->end(); while (First != Last) { Decrement ? --First : ++First; if (First == Last) break; // Skip over debug instructions if (First->isDebugInstr()) continue; if (isSuitableAluInstr(IsSpls, First, *Base, *Offset)) { return First; } // Usage of the base or offset register is not a form suitable for merging. if (First != Last) { if (InstrUsesReg(First, Base)) break; if (Offset->isReg() && InstrUsesReg(First, Offset)) break; } } return MemInstr; } bool LanaiMemAluCombiner::combineMemAluInBasicBlock(MachineBasicBlock *BB) { bool Modified = false; MbbIterator MBBIter = BB->begin(), End = BB->end(); while (MBBIter != End) { bool IsMemOp = isNonVolatileMemoryOp(*MBBIter); if (IsMemOp) { MachineOperand AluOperand = MBBIter->getOperand(3); unsigned int DestReg = MBBIter->getOperand(0).getReg(), BaseReg = MBBIter->getOperand(1).getReg(); assert(AluOperand.isImm() && "Unexpected memory operator type"); LPAC::AluCode AluOpcode = static_cast(AluOperand.getImm()); // Skip memory operations that already modify the base register or if // the destination and base register are the same if (!LPAC::modifiesOp(AluOpcode) && DestReg != BaseReg) { for (int Inc = 0; Inc <= 1; ++Inc) { MbbIterator AluIter = findClosestSuitableAluInstr(BB, MBBIter, Inc == 0); if (AluIter != MBBIter) { insertMergedInstruction(BB, MBBIter, AluIter, Inc == 0); ++NumLdStAluCombined; Modified = true; // Erase the matching ALU instruction BB->erase(AluIter); // Erase old load/store instruction BB->erase(MBBIter++); break; } } } } if (MBBIter == End) break; ++MBBIter; } return Modified; } // Driver function that iterates over the machine basic building blocks of a // machine function bool LanaiMemAluCombiner::runOnMachineFunction(MachineFunction &MF) { if (DisableMemAluCombiner) return false; TII = MF.getSubtarget().getInstrInfo(); bool Modified = false; for (MfIterator MFI = MF.begin(); MFI != MF.end(); ++MFI) { Modified |= combineMemAluInBasicBlock(&*MFI); } return Modified; } } // namespace FunctionPass *llvm::createLanaiMemAluCombinerPass() { return new LanaiMemAluCombiner(); }