//===- GVN.cpp - Eliminate redundant values and loads ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass performs global value numbering to eliminate fully redundant // instructions. It also performs simple dead load elimination. // // Note that this pass does the value numbering itself; it does not use the // ValueNumbering analysis passes. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/GVN.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumeBundleQueries.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/MemoryDependenceAnalysis.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/Analysis/MemorySSAUpdater.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/PHITransAddr.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils.h" #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/SSAUpdater.h" #include "llvm/Transforms/Utils/VNCoercion.h" #include #include #include #include using namespace llvm; using namespace llvm::gvn; using namespace llvm::VNCoercion; using namespace PatternMatch; #define DEBUG_TYPE "gvn" STATISTIC(NumGVNInstr, "Number of instructions deleted"); STATISTIC(NumGVNLoad, "Number of loads deleted"); STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); STATISTIC(NumGVNBlocks, "Number of blocks merged"); STATISTIC(NumGVNSimpl, "Number of instructions simplified"); STATISTIC(NumGVNEqProp, "Number of equalities propagated"); STATISTIC(NumPRELoad, "Number of loads PRE'd"); STATISTIC(NumPRELoopLoad, "Number of loop loads PRE'd"); STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax, "Number of blocks speculated as available in " "IsValueFullyAvailableInBlock(), max"); STATISTIC(MaxBBSpeculationCutoffReachedTimes, "Number of times we we reached gvn-max-block-speculations cut-off " "preventing further exploration"); static cl::opt GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden); static cl::opt GVNEnableLoadPRE("enable-load-pre", cl::init(true)); static cl::opt GVNEnableLoadInLoopPRE("enable-load-in-loop-pre", cl::init(true)); static cl::opt GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre", cl::init(true)); static cl::opt GVNEnableMemDep("enable-gvn-memdep", cl::init(true)); static cl::opt MaxNumDeps( "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore, cl::desc("Max number of dependences to attempt Load PRE (default = 100)")); // This is based on IsValueFullyAvailableInBlockNumSpeculationsMax stat. static cl::opt MaxBBSpeculations( "gvn-max-block-speculations", cl::Hidden, cl::init(600), cl::ZeroOrMore, cl::desc("Max number of blocks we're willing to speculate on (and recurse " "into) when deducing if a value is fully available or not in GVN " "(default = 600)")); struct llvm::GVN::Expression { uint32_t opcode; bool commutative = false; Type *type = nullptr; SmallVector varargs; Expression(uint32_t o = ~2U) : opcode(o) {} bool operator==(const Expression &other) const { if (opcode != other.opcode) return false; if (opcode == ~0U || opcode == ~1U) return true; if (type != other.type) return false; if (varargs != other.varargs) return false; return true; } friend hash_code hash_value(const Expression &Value) { return hash_combine( Value.opcode, Value.type, hash_combine_range(Value.varargs.begin(), Value.varargs.end())); } }; namespace llvm { template <> struct DenseMapInfo { static inline GVN::Expression getEmptyKey() { return ~0U; } static inline GVN::Expression getTombstoneKey() { return ~1U; } static unsigned getHashValue(const GVN::Expression &e) { using llvm::hash_value; return static_cast(hash_value(e)); } static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) { return LHS == RHS; } }; } // end namespace llvm /// Represents a particular available value that we know how to materialize. /// Materialization of an AvailableValue never fails. An AvailableValue is /// implicitly associated with a rematerialization point which is the /// location of the instruction from which it was formed. struct llvm::gvn::AvailableValue { enum ValType { SimpleVal, // A simple offsetted value that is accessed. LoadVal, // A value produced by a load. MemIntrin, // A memory intrinsic which is loaded from. UndefVal // A UndefValue representing a value from dead block (which // is not yet physically removed from the CFG). }; /// V - The value that is live out of the block. PointerIntPair Val; /// Offset - The byte offset in Val that is interesting for the load query. unsigned Offset = 0; static AvailableValue get(Value *V, unsigned Offset = 0) { AvailableValue Res; Res.Val.setPointer(V); Res.Val.setInt(SimpleVal); Res.Offset = Offset; return Res; } static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) { AvailableValue Res; Res.Val.setPointer(MI); Res.Val.setInt(MemIntrin); Res.Offset = Offset; return Res; } static AvailableValue getLoad(LoadInst *Load, unsigned Offset = 0) { AvailableValue Res; Res.Val.setPointer(Load); Res.Val.setInt(LoadVal); Res.Offset = Offset; return Res; } static AvailableValue getUndef() { AvailableValue Res; Res.Val.setPointer(nullptr); Res.Val.setInt(UndefVal); Res.Offset = 0; return Res; } bool isSimpleValue() const { return Val.getInt() == SimpleVal; } bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; } bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; } bool isUndefValue() const { return Val.getInt() == UndefVal; } Value *getSimpleValue() const { assert(isSimpleValue() && "Wrong accessor"); return Val.getPointer(); } LoadInst *getCoercedLoadValue() const { assert(isCoercedLoadValue() && "Wrong accessor"); return cast(Val.getPointer()); } MemIntrinsic *getMemIntrinValue() const { assert(isMemIntrinValue() && "Wrong accessor"); return cast(Val.getPointer()); } /// Emit code at the specified insertion point to adjust the value defined /// here to the specified type. This handles various coercion cases. Value *MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt, GVN &gvn) const; }; /// Represents an AvailableValue which can be rematerialized at the end of /// the associated BasicBlock. struct llvm::gvn::AvailableValueInBlock { /// BB - The basic block in question. BasicBlock *BB = nullptr; /// AV - The actual available value AvailableValue AV; static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) { AvailableValueInBlock Res; Res.BB = BB; Res.AV = std::move(AV); return Res; } static AvailableValueInBlock get(BasicBlock *BB, Value *V, unsigned Offset = 0) { return get(BB, AvailableValue::get(V, Offset)); } static AvailableValueInBlock getUndef(BasicBlock *BB) { return get(BB, AvailableValue::getUndef()); } /// Emit code at the end of this block to adjust the value defined here to /// the specified type. This handles various coercion cases. Value *MaterializeAdjustedValue(LoadInst *Load, GVN &gvn) const { return AV.MaterializeAdjustedValue(Load, BB->getTerminator(), gvn); } }; //===----------------------------------------------------------------------===// // ValueTable Internal Functions //===----------------------------------------------------------------------===// GVN::Expression GVN::ValueTable::createExpr(Instruction *I) { Expression e; e.type = I->getType(); e.opcode = I->getOpcode(); if (const GCRelocateInst *GCR = dyn_cast(I)) { // gc.relocate is 'special' call: its second and third operands are // not real values, but indices into statepoint's argument list. // Use the refered to values for purposes of identity. e.varargs.push_back(lookupOrAdd(GCR->getOperand(0))); e.varargs.push_back(lookupOrAdd(GCR->getBasePtr())); e.varargs.push_back(lookupOrAdd(GCR->getDerivedPtr())); } else { for (Use &Op : I->operands()) e.varargs.push_back(lookupOrAdd(Op)); } if (I->isCommutative()) { // Ensure that commutative instructions that only differ by a permutation // of their operands get the same value number by sorting the operand value // numbers. Since commutative operands are the 1st two operands it is more // efficient to sort by hand rather than using, say, std::sort. assert(I->getNumOperands() >= 2 && "Unsupported commutative instruction!"); if (e.varargs[0] > e.varargs[1]) std::swap(e.varargs[0], e.varargs[1]); e.commutative = true; } if (auto *C = dyn_cast(I)) { // Sort the operand value numbers so xx get the same value number. CmpInst::Predicate Predicate = C->getPredicate(); if (e.varargs[0] > e.varargs[1]) { std::swap(e.varargs[0], e.varargs[1]); Predicate = CmpInst::getSwappedPredicate(Predicate); } e.opcode = (C->getOpcode() << 8) | Predicate; e.commutative = true; } else if (auto *E = dyn_cast(I)) { e.varargs.append(E->idx_begin(), E->idx_end()); } else if (auto *SVI = dyn_cast(I)) { ArrayRef ShuffleMask = SVI->getShuffleMask(); e.varargs.append(ShuffleMask.begin(), ShuffleMask.end()); } return e; } GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode, CmpInst::Predicate Predicate, Value *LHS, Value *RHS) { assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && "Not a comparison!"); Expression e; e.type = CmpInst::makeCmpResultType(LHS->getType()); e.varargs.push_back(lookupOrAdd(LHS)); e.varargs.push_back(lookupOrAdd(RHS)); // Sort the operand value numbers so xx get the same value number. if (e.varargs[0] > e.varargs[1]) { std::swap(e.varargs[0], e.varargs[1]); Predicate = CmpInst::getSwappedPredicate(Predicate); } e.opcode = (Opcode << 8) | Predicate; e.commutative = true; return e; } GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) { assert(EI && "Not an ExtractValueInst?"); Expression e; e.type = EI->getType(); e.opcode = 0; WithOverflowInst *WO = dyn_cast(EI->getAggregateOperand()); if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) { // EI is an extract from one of our with.overflow intrinsics. Synthesize // a semantically equivalent expression instead of an extract value // expression. e.opcode = WO->getBinaryOp(); e.varargs.push_back(lookupOrAdd(WO->getLHS())); e.varargs.push_back(lookupOrAdd(WO->getRHS())); return e; } // Not a recognised intrinsic. Fall back to producing an extract value // expression. e.opcode = EI->getOpcode(); for (Use &Op : EI->operands()) e.varargs.push_back(lookupOrAdd(Op)); append_range(e.varargs, EI->indices()); return e; } //===----------------------------------------------------------------------===// // ValueTable External Functions //===----------------------------------------------------------------------===// GVN::ValueTable::ValueTable() = default; GVN::ValueTable::ValueTable(const ValueTable &) = default; GVN::ValueTable::ValueTable(ValueTable &&) = default; GVN::ValueTable::~ValueTable() = default; GVN::ValueTable &GVN::ValueTable::operator=(const GVN::ValueTable &Arg) = default; /// add - Insert a value into the table with a specified value number. void GVN::ValueTable::add(Value *V, uint32_t num) { valueNumbering.insert(std::make_pair(V, num)); if (PHINode *PN = dyn_cast(V)) NumberingPhi[num] = PN; } uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) { if (AA->doesNotAccessMemory(C)) { Expression exp = createExpr(C); uint32_t e = assignExpNewValueNum(exp).first; valueNumbering[C] = e; return e; } else if (MD && AA->onlyReadsMemory(C)) { Expression exp = createExpr(C); auto ValNum = assignExpNewValueNum(exp); if (ValNum.second) { valueNumbering[C] = ValNum.first; return ValNum.first; } MemDepResult local_dep = MD->getDependency(C); if (!local_dep.isDef() && !local_dep.isNonLocal()) { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } if (local_dep.isDef()) { // For masked load/store intrinsics, the local_dep may actully be // a normal load or store instruction. CallInst *local_cdep = dyn_cast(local_dep.getInst()); if (!local_cdep || local_cdep->getNumArgOperands() != C->getNumArgOperands()) { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i)); if (c_vn != cd_vn) { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } } uint32_t v = lookupOrAdd(local_cdep); valueNumbering[C] = v; return v; } // Non-local case. const MemoryDependenceResults::NonLocalDepInfo &deps = MD->getNonLocalCallDependency(C); // FIXME: Move the checking logic to MemDep! CallInst* cdep = nullptr; // Check to see if we have a single dominating call instruction that is // identical to C. for (unsigned i = 0, e = deps.size(); i != e; ++i) { const NonLocalDepEntry *I = &deps[i]; if (I->getResult().isNonLocal()) continue; // We don't handle non-definitions. If we already have a call, reject // instruction dependencies. if (!I->getResult().isDef() || cdep != nullptr) { cdep = nullptr; break; } CallInst *NonLocalDepCall = dyn_cast(I->getResult().getInst()); // FIXME: All duplicated with non-local case. if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){ cdep = NonLocalDepCall; continue; } cdep = nullptr; break; } if (!cdep) { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } if (cdep->getNumArgOperands() != C->getNumArgOperands()) { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i)); if (c_vn != cd_vn) { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } } uint32_t v = lookupOrAdd(cdep); valueNumbering[C] = v; return v; } else { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } } /// Returns true if a value number exists for the specified value. bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; } /// lookup_or_add - Returns the value number for the specified value, assigning /// it a new number if it did not have one before. uint32_t GVN::ValueTable::lookupOrAdd(Value *V) { DenseMap::iterator VI = valueNumbering.find(V); if (VI != valueNumbering.end()) return VI->second; if (!isa(V)) { valueNumbering[V] = nextValueNumber; return nextValueNumber++; } Instruction* I = cast(V); Expression exp; switch (I->getOpcode()) { case Instruction::Call: return lookupOrAddCall(cast(I)); case Instruction::FNeg: case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::ICmp: case Instruction::FCmp: case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::AddrSpaceCast: case Instruction::BitCast: case Instruction::Select: case Instruction::Freeze: case Instruction::ExtractElement: case Instruction::InsertElement: case Instruction::ShuffleVector: case Instruction::InsertValue: case Instruction::GetElementPtr: exp = createExpr(I); break; case Instruction::ExtractValue: exp = createExtractvalueExpr(cast(I)); break; case Instruction::PHI: valueNumbering[V] = nextValueNumber; NumberingPhi[nextValueNumber] = cast(V); return nextValueNumber++; default: valueNumbering[V] = nextValueNumber; return nextValueNumber++; } uint32_t e = assignExpNewValueNum(exp).first; valueNumbering[V] = e; return e; } /// Returns the value number of the specified value. Fails if /// the value has not yet been numbered. uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const { DenseMap::const_iterator VI = valueNumbering.find(V); if (Verify) { assert(VI != valueNumbering.end() && "Value not numbered?"); return VI->second; } return (VI != valueNumbering.end()) ? VI->second : 0; } /// Returns the value number of the given comparison, /// assigning it a new number if it did not have one before. Useful when /// we deduced the result of a comparison, but don't immediately have an /// instruction realizing that comparison to hand. uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode, CmpInst::Predicate Predicate, Value *LHS, Value *RHS) { Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS); return assignExpNewValueNum(exp).first; } /// Remove all entries from the ValueTable. void GVN::ValueTable::clear() { valueNumbering.clear(); expressionNumbering.clear(); NumberingPhi.clear(); PhiTranslateTable.clear(); nextValueNumber = 1; Expressions.clear(); ExprIdx.clear(); nextExprNumber = 0; } /// Remove a value from the value numbering. void GVN::ValueTable::erase(Value *V) { uint32_t Num = valueNumbering.lookup(V); valueNumbering.erase(V); // If V is PHINode, V <--> value number is an one-to-one mapping. if (isa(V)) NumberingPhi.erase(Num); } /// verifyRemoved - Verify that the value is removed from all internal data /// structures. void GVN::ValueTable::verifyRemoved(const Value *V) const { for (DenseMap::const_iterator I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { assert(I->first != V && "Inst still occurs in value numbering map!"); } } //===----------------------------------------------------------------------===// // GVN Pass //===----------------------------------------------------------------------===// bool GVN::isPREEnabled() const { return Options.AllowPRE.getValueOr(GVNEnablePRE); } bool GVN::isLoadPREEnabled() const { return Options.AllowLoadPRE.getValueOr(GVNEnableLoadPRE); } bool GVN::isLoadInLoopPREEnabled() const { return Options.AllowLoadInLoopPRE.getValueOr(GVNEnableLoadInLoopPRE); } bool GVN::isLoadPRESplitBackedgeEnabled() const { return Options.AllowLoadPRESplitBackedge.getValueOr( GVNEnableSplitBackedgeInLoadPRE); } bool GVN::isMemDepEnabled() const { return Options.AllowMemDep.getValueOr(GVNEnableMemDep); } PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) { // FIXME: The order of evaluation of these 'getResult' calls is very // significant! Re-ordering these variables will cause GVN when run alone to // be less effective! We should fix memdep and basic-aa to not exhibit this // behavior, but until then don't change the order here. auto &AC = AM.getResult(F); auto &DT = AM.getResult(F); auto &TLI = AM.getResult(F); auto &AA = AM.getResult(F); auto *MemDep = isMemDepEnabled() ? &AM.getResult(F) : nullptr; auto *LI = AM.getCachedResult(F); auto *MSSA = AM.getCachedResult(F); auto &ORE = AM.getResult(F); bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE, MSSA ? &MSSA->getMSSA() : nullptr); if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); PA.preserve(); if (MSSA) PA.preserve(); if (LI) PA.preserve(); return PA; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void GVN::dump(DenseMap& d) const { errs() << "{\n"; for (auto &I : d) { errs() << I.first << "\n"; I.second->dump(); } errs() << "}\n"; } #endif enum class AvailabilityState : char { /// We know the block *is not* fully available. This is a fixpoint. Unavailable = 0, /// We know the block *is* fully available. This is a fixpoint. Available = 1, /// We do not know whether the block is fully available or not, /// but we are currently speculating that it will be. /// If it would have turned out that the block was, in fact, not fully /// available, this would have been cleaned up into an Unavailable. SpeculativelyAvailable = 2, }; /// Return true if we can prove that the value /// we're analyzing is fully available in the specified block. As we go, keep /// track of which blocks we know are fully alive in FullyAvailableBlocks. This /// map is actually a tri-state map with the following values: /// 0) we know the block *is not* fully available. /// 1) we know the block *is* fully available. /// 2) we do not know whether the block is fully available or not, but we are /// currently speculating that it will be. static bool IsValueFullyAvailableInBlock( BasicBlock *BB, DenseMap &FullyAvailableBlocks) { SmallVector Worklist; Optional UnavailableBB; // The number of times we didn't find an entry for a block in a map and // optimistically inserted an entry marking block as speculatively available. unsigned NumNewNewSpeculativelyAvailableBBs = 0; #ifndef NDEBUG SmallSet NewSpeculativelyAvailableBBs; SmallVector AvailableBBs; #endif Worklist.emplace_back(BB); while (!Worklist.empty()) { BasicBlock *CurrBB = Worklist.pop_back_val(); // LoadFO - depth-first! // Optimistically assume that the block is Speculatively Available and check // to see if we already know about this block in one lookup. std::pair::iterator, bool> IV = FullyAvailableBlocks.try_emplace( CurrBB, AvailabilityState::SpeculativelyAvailable); AvailabilityState &State = IV.first->second; // Did the entry already exist for this block? if (!IV.second) { if (State == AvailabilityState::Unavailable) { UnavailableBB = CurrBB; break; // Backpropagate unavailability info. } #ifndef NDEBUG AvailableBBs.emplace_back(CurrBB); #endif continue; // Don't recurse further, but continue processing worklist. } // No entry found for block. ++NumNewNewSpeculativelyAvailableBBs; bool OutOfBudget = NumNewNewSpeculativelyAvailableBBs > MaxBBSpeculations; // If we have exhausted our budget, mark this block as unavailable. // Also, if this block has no predecessors, the value isn't live-in here. if (OutOfBudget || pred_empty(CurrBB)) { MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget; State = AvailabilityState::Unavailable; UnavailableBB = CurrBB; break; // Backpropagate unavailability info. } // Tentatively consider this block as speculatively available. #ifndef NDEBUG NewSpeculativelyAvailableBBs.insert(CurrBB); #endif // And further recurse into block's predecessors, in depth-first order! Worklist.append(pred_begin(CurrBB), pred_end(CurrBB)); } #if LLVM_ENABLE_STATS IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax( NumNewNewSpeculativelyAvailableBBs); #endif // If the block isn't marked as fixpoint yet // (the Unavailable and Available states are fixpoints) auto MarkAsFixpointAndEnqueueSuccessors = [&](BasicBlock *BB, AvailabilityState FixpointState) { auto It = FullyAvailableBlocks.find(BB); if (It == FullyAvailableBlocks.end()) return; // Never queried this block, leave as-is. switch (AvailabilityState &State = It->second) { case AvailabilityState::Unavailable: case AvailabilityState::Available: return; // Don't backpropagate further, continue processing worklist. case AvailabilityState::SpeculativelyAvailable: // Fix it! State = FixpointState; #ifndef NDEBUG assert(NewSpeculativelyAvailableBBs.erase(BB) && "Found a speculatively available successor leftover?"); #endif // Queue successors for further processing. Worklist.append(succ_begin(BB), succ_end(BB)); return; } }; if (UnavailableBB) { // Okay, we have encountered an unavailable block. // Mark speculatively available blocks reachable from UnavailableBB as // unavailable as well. Paths are terminated when they reach blocks not in // FullyAvailableBlocks or they are not marked as speculatively available. Worklist.clear(); Worklist.append(succ_begin(*UnavailableBB), succ_end(*UnavailableBB)); while (!Worklist.empty()) MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), AvailabilityState::Unavailable); } #ifndef NDEBUG Worklist.clear(); for (BasicBlock *AvailableBB : AvailableBBs) Worklist.append(succ_begin(AvailableBB), succ_end(AvailableBB)); while (!Worklist.empty()) MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), AvailabilityState::Available); assert(NewSpeculativelyAvailableBBs.empty() && "Must have fixed all the new speculatively available blocks."); #endif return !UnavailableBB; } /// Given a set of loads specified by ValuesPerBlock, /// construct SSA form, allowing us to eliminate Load. This returns the value /// that should be used at Load's definition site. static Value * ConstructSSAForLoadSet(LoadInst *Load, SmallVectorImpl &ValuesPerBlock, GVN &gvn) { // Check for the fully redundant, dominating load case. In this case, we can // just use the dominating value directly. if (ValuesPerBlock.size() == 1 && gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, Load->getParent())) { assert(!ValuesPerBlock[0].AV.isUndefValue() && "Dead BB dominate this block"); return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn); } // Otherwise, we have to construct SSA form. SmallVector NewPHIs; SSAUpdater SSAUpdate(&NewPHIs); SSAUpdate.Initialize(Load->getType(), Load->getName()); for (const AvailableValueInBlock &AV : ValuesPerBlock) { BasicBlock *BB = AV.BB; if (AV.AV.isUndefValue()) continue; if (SSAUpdate.HasValueForBlock(BB)) continue; // If the value is the load that we will be eliminating, and the block it's // available in is the block that the load is in, then don't add it as // SSAUpdater will resolve the value to the relevant phi which may let it // avoid phi construction entirely if there's actually only one value. if (BB == Load->getParent() && ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) || (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load))) continue; SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(Load, gvn)); } // Perform PHI construction. return SSAUpdate.GetValueInMiddleOfBlock(Load->getParent()); } Value *AvailableValue::MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt, GVN &gvn) const { Value *Res; Type *LoadTy = Load->getType(); const DataLayout &DL = Load->getModule()->getDataLayout(); if (isSimpleValue()) { Res = getSimpleValue(); if (Res->getType() != LoadTy) { Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL); LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " " << *getSimpleValue() << '\n' << *Res << '\n' << "\n\n\n"); } } else if (isCoercedLoadValue()) { LoadInst *CoercedLoad = getCoercedLoadValue(); if (CoercedLoad->getType() == LoadTy && Offset == 0) { Res = CoercedLoad; } else { Res = getLoadValueForLoad(CoercedLoad, Offset, LoadTy, InsertPt, DL); // We would like to use gvn.markInstructionForDeletion here, but we can't // because the load is already memoized into the leader map table that GVN // tracks. It is potentially possible to remove the load from the table, // but then there all of the operations based on it would need to be // rehashed. Just leave the dead load around. gvn.getMemDep().removeInstruction(CoercedLoad); LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << " " << *getCoercedLoadValue() << '\n' << *Res << '\n' << "\n\n\n"); } } else if (isMemIntrinValue()) { Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, InsertPt, DL); LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset << " " << *getMemIntrinValue() << '\n' << *Res << '\n' << "\n\n\n"); } else { llvm_unreachable("Should not materialize value from dead block"); } assert(Res && "failed to materialize?"); return Res; } static bool isLifetimeStart(const Instruction *Inst) { if (const IntrinsicInst* II = dyn_cast(Inst)) return II->getIntrinsicID() == Intrinsic::lifetime_start; return false; } /// Assuming To can be reached from both From and Between, does Between lie on /// every path from From to To? static bool liesBetween(const Instruction *From, Instruction *Between, const Instruction *To, DominatorTree *DT) { if (From->getParent() == Between->getParent()) return DT->dominates(From, Between); SmallSet Exclusion; Exclusion.insert(Between->getParent()); return !isPotentiallyReachable(From, To, &Exclusion, DT); } /// Try to locate the three instruction involved in a missed /// load-elimination case that is due to an intervening store. static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo, DominatorTree *DT, OptimizationRemarkEmitter *ORE) { using namespace ore; User *OtherAccess = nullptr; OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", Load); R << "load of type " << NV("Type", Load->getType()) << " not eliminated" << setExtraArgs(); for (auto *U : Load->getPointerOperand()->users()) { if (U != Load && (isa(U) || isa(U)) && cast(U)->getFunction() == Load->getFunction() && DT->dominates(cast(U), Load)) { // Use the most immediately dominating value if (OtherAccess) { if (DT->dominates(cast(OtherAccess), cast(U))) OtherAccess = U; else assert(DT->dominates(cast(U), cast(OtherAccess))); } else OtherAccess = U; } } if (!OtherAccess) { // There is no dominating use, check if we can find a closest non-dominating // use that lies between any other potentially available use and Load. for (auto *U : Load->getPointerOperand()->users()) { if (U != Load && (isa(U) || isa(U)) && cast(U)->getFunction() == Load->getFunction() && isPotentiallyReachable(cast(U), Load, nullptr, DT)) { if (OtherAccess) { if (liesBetween(cast(OtherAccess), cast(U), Load, DT)) { OtherAccess = U; } else if (!liesBetween(cast(U), cast(OtherAccess), Load, DT)) { // These uses are both partially available at Load were it not for // the clobber, but neither lies strictly after the other. OtherAccess = nullptr; break; } // else: keep current OtherAccess since it lies between U and Load } else { OtherAccess = U; } } } } if (OtherAccess) R << " in favor of " << NV("OtherAccess", OtherAccess); R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst()); ORE->emit(R); } bool GVN::AnalyzeLoadAvailability(LoadInst *Load, MemDepResult DepInfo, Value *Address, AvailableValue &Res) { assert((DepInfo.isDef() || DepInfo.isClobber()) && "expected a local dependence"); assert(Load->isUnordered() && "rules below are incorrect for ordered access"); const DataLayout &DL = Load->getModule()->getDataLayout(); Instruction *DepInst = DepInfo.getInst(); if (DepInfo.isClobber()) { // If the dependence is to a store that writes to a superset of the bits // read by the load, we can extract the bits we need for the load from the // stored value. if (StoreInst *DepSI = dyn_cast(DepInst)) { // Can't forward from non-atomic to atomic without violating memory model. if (Address && Load->isAtomic() <= DepSI->isAtomic()) { int Offset = analyzeLoadFromClobberingStore(Load->getType(), Address, DepSI, DL); if (Offset != -1) { Res = AvailableValue::get(DepSI->getValueOperand(), Offset); return true; } } } // Check to see if we have something like this: // load i32* P // load i8* (P+1) // if we have this, replace the later with an extraction from the former. if (LoadInst *DepLoad = dyn_cast(DepInst)) { // If this is a clobber and L is the first instruction in its block, then // we have the first instruction in the entry block. // Can't forward from non-atomic to atomic without violating memory model. if (DepLoad != Load && Address && Load->isAtomic() <= DepLoad->isAtomic()) { Type *LoadType = Load->getType(); int Offset = -1; // If MD reported clobber, check it was nested. if (DepInfo.isClobber() && canCoerceMustAliasedValueToLoad(DepLoad, LoadType, DL)) { const auto ClobberOff = MD->getClobberOffset(DepLoad); // GVN has no deal with a negative offset. Offset = (ClobberOff == None || ClobberOff.getValue() < 0) ? -1 : ClobberOff.getValue(); } if (Offset == -1) Offset = analyzeLoadFromClobberingLoad(LoadType, Address, DepLoad, DL); if (Offset != -1) { Res = AvailableValue::getLoad(DepLoad, Offset); return true; } } } // If the clobbering value is a memset/memcpy/memmove, see if we can // forward a value on from it. if (MemIntrinsic *DepMI = dyn_cast(DepInst)) { if (Address && !Load->isAtomic()) { int Offset = analyzeLoadFromClobberingMemInst(Load->getType(), Address, DepMI, DL); if (Offset != -1) { Res = AvailableValue::getMI(DepMI, Offset); return true; } } } // Nothing known about this clobber, have to be conservative LLVM_DEBUG( // fast print dep, using operator<< on instruction is too slow. dbgs() << "GVN: load "; Load->printAsOperand(dbgs()); dbgs() << " is clobbered by " << *DepInst << '\n';); if (ORE->allowExtraAnalysis(DEBUG_TYPE)) reportMayClobberedLoad(Load, DepInfo, DT, ORE); return false; } assert(DepInfo.isDef() && "follows from above"); // Loading the allocation -> undef. if (isa(DepInst) || isMallocLikeFn(DepInst, TLI) || isAlignedAllocLikeFn(DepInst, TLI) || // Loading immediately after lifetime begin -> undef. isLifetimeStart(DepInst)) { Res = AvailableValue::get(UndefValue::get(Load->getType())); return true; } // Loading from calloc (which zero initializes memory) -> zero if (isCallocLikeFn(DepInst, TLI)) { Res = AvailableValue::get(Constant::getNullValue(Load->getType())); return true; } if (StoreInst *S = dyn_cast(DepInst)) { // Reject loads and stores that are to the same address but are of // different types if we have to. If the stored value is convertable to // the loaded value, we can reuse it. if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), Load->getType(), DL)) return false; // Can't forward from non-atomic to atomic without violating memory model. if (S->isAtomic() < Load->isAtomic()) return false; Res = AvailableValue::get(S->getValueOperand()); return true; } if (LoadInst *LD = dyn_cast(DepInst)) { // If the types mismatch and we can't handle it, reject reuse of the load. // If the stored value is larger or equal to the loaded value, we can reuse // it. if (!canCoerceMustAliasedValueToLoad(LD, Load->getType(), DL)) return false; // Can't forward from non-atomic to atomic without violating memory model. if (LD->isAtomic() < Load->isAtomic()) return false; Res = AvailableValue::getLoad(LD); return true; } // Unknown def - must be conservative LLVM_DEBUG( // fast print dep, using operator<< on instruction is too slow. dbgs() << "GVN: load "; Load->printAsOperand(dbgs()); dbgs() << " has unknown def " << *DepInst << '\n';); return false; } void GVN::AnalyzeLoadAvailability(LoadInst *Load, LoadDepVect &Deps, AvailValInBlkVect &ValuesPerBlock, UnavailBlkVect &UnavailableBlocks) { // Filter out useless results (non-locals, etc). Keep track of the blocks // where we have a value available in repl, also keep track of whether we see // dependencies that produce an unknown value for the load (such as a call // that could potentially clobber the load). unsigned NumDeps = Deps.size(); for (unsigned i = 0, e = NumDeps; i != e; ++i) { BasicBlock *DepBB = Deps[i].getBB(); MemDepResult DepInfo = Deps[i].getResult(); if (DeadBlocks.count(DepBB)) { // Dead dependent mem-op disguise as a load evaluating the same value // as the load in question. ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB)); continue; } if (!DepInfo.isDef() && !DepInfo.isClobber()) { UnavailableBlocks.push_back(DepBB); continue; } // The address being loaded in this non-local block may not be the same as // the pointer operand of the load if PHI translation occurs. Make sure // to consider the right address. Value *Address = Deps[i].getAddress(); AvailableValue AV; if (AnalyzeLoadAvailability(Load, DepInfo, Address, AV)) { // subtlety: because we know this was a non-local dependency, we know // it's safe to materialize anywhere between the instruction within // DepInfo and the end of it's block. ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, std::move(AV))); } else { UnavailableBlocks.push_back(DepBB); } } assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() && "post condition violation"); } void GVN::eliminatePartiallyRedundantLoad( LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, MapVector &AvailableLoads) { for (const auto &AvailableLoad : AvailableLoads) { BasicBlock *UnavailableBlock = AvailableLoad.first; Value *LoadPtr = AvailableLoad.second; auto *NewLoad = new LoadInst(Load->getType(), LoadPtr, Load->getName() + ".pre", Load->isVolatile(), Load->getAlign(), Load->getOrdering(), Load->getSyncScopeID(), UnavailableBlock->getTerminator()); NewLoad->setDebugLoc(Load->getDebugLoc()); if (MSSAU) { auto *MSSA = MSSAU->getMemorySSA(); // Get the defining access of the original load or use the load if it is a // MemoryDef (e.g. because it is volatile). The inserted loads are // guaranteed to load from the same definition. auto *LoadAcc = MSSA->getMemoryAccess(Load); auto *DefiningAcc = isa(LoadAcc) ? LoadAcc : LoadAcc->getDefiningAccess(); auto *NewAccess = MSSAU->createMemoryAccessInBB( NewLoad, DefiningAcc, NewLoad->getParent(), MemorySSA::BeforeTerminator); if (auto *NewDef = dyn_cast(NewAccess)) MSSAU->insertDef(NewDef, /*RenameUses=*/true); else MSSAU->insertUse(cast(NewAccess), /*RenameUses=*/true); } // Transfer the old load's AA tags to the new load. AAMDNodes Tags; Load->getAAMetadata(Tags); if (Tags) NewLoad->setAAMetadata(Tags); if (auto *MD = Load->getMetadata(LLVMContext::MD_invariant_load)) NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD); if (auto *InvGroupMD = Load->getMetadata(LLVMContext::MD_invariant_group)) NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD); if (auto *RangeMD = Load->getMetadata(LLVMContext::MD_range)) NewLoad->setMetadata(LLVMContext::MD_range, RangeMD); if (auto *AccessMD = Load->getMetadata(LLVMContext::MD_access_group)) if (LI && LI->getLoopFor(Load->getParent()) == LI->getLoopFor(UnavailableBlock)) NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD); // We do not propagate the old load's debug location, because the new // load now lives in a different BB, and we want to avoid a jumpy line // table. // FIXME: How do we retain source locations without causing poor debugging // behavior? // Add the newly created load. ValuesPerBlock.push_back( AvailableValueInBlock::get(UnavailableBlock, NewLoad)); MD->invalidateCachedPointerInfo(LoadPtr); LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); } // Perform PHI construction. Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this); Load->replaceAllUsesWith(V); if (isa(V)) V->takeName(Load); if (Instruction *I = dyn_cast(V)) I->setDebugLoc(Load->getDebugLoc()); if (V->getType()->isPtrOrPtrVectorTy()) MD->invalidateCachedPointerInfo(V); markInstructionForDeletion(Load); ORE->emit([&]() { return OptimizationRemark(DEBUG_TYPE, "LoadPRE", Load) << "load eliminated by PRE"; }); } bool GVN::PerformLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, UnavailBlkVect &UnavailableBlocks) { // Okay, we have *some* definitions of the value. This means that the value // is available in some of our (transitive) predecessors. Lets think about // doing PRE of this load. This will involve inserting a new load into the // predecessor when it's not available. We could do this in general, but // prefer to not increase code size. As such, we only do this when we know // that we only have to insert *one* load (which means we're basically moving // the load, not inserting a new one). SmallPtrSet Blockers(UnavailableBlocks.begin(), UnavailableBlocks.end()); // Let's find the first basic block with more than one predecessor. Walk // backwards through predecessors if needed. BasicBlock *LoadBB = Load->getParent(); BasicBlock *TmpBB = LoadBB; // Check that there is no implicit control flow instructions above our load in // its block. If there is an instruction that doesn't always pass the // execution to the following instruction, then moving through it may become // invalid. For example: // // int arr[LEN]; // int index = ???; // ... // guard(0 <= index && index < LEN); // use(arr[index]); // // It is illegal to move the array access to any point above the guard, // because if the index is out of bounds we should deoptimize rather than // access the array. // Check that there is no guard in this block above our instruction. bool MustEnsureSafetyOfSpeculativeExecution = ICF->isDominatedByICFIFromSameBlock(Load); while (TmpBB->getSinglePredecessor()) { TmpBB = TmpBB->getSinglePredecessor(); if (TmpBB == LoadBB) // Infinite (unreachable) loop. return false; if (Blockers.count(TmpBB)) return false; // If any of these blocks has more than one successor (i.e. if the edge we // just traversed was critical), then there are other paths through this // block along which the load may not be anticipated. Hoisting the load // above this block would be adding the load to execution paths along // which it was not previously executed. if (TmpBB->getTerminator()->getNumSuccessors() != 1) return false; // Check that there is no implicit control flow in a block above. MustEnsureSafetyOfSpeculativeExecution = MustEnsureSafetyOfSpeculativeExecution || ICF->hasICF(TmpBB); } assert(TmpBB); LoadBB = TmpBB; // Check to see how many predecessors have the loaded value fully // available. MapVector PredLoads; DenseMap FullyAvailableBlocks; for (const AvailableValueInBlock &AV : ValuesPerBlock) FullyAvailableBlocks[AV.BB] = AvailabilityState::Available; for (BasicBlock *UnavailableBB : UnavailableBlocks) FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable; SmallVector CriticalEdgePred; for (BasicBlock *Pred : predecessors(LoadBB)) { // If any predecessor block is an EH pad that does not allow non-PHI // instructions before the terminator, we can't PRE the load. if (Pred->getTerminator()->isEHPad()) { LLVM_DEBUG( dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '" << Pred->getName() << "': " << *Load << '\n'); return false; } if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) { continue; } if (Pred->getTerminator()->getNumSuccessors() != 1) { if (isa(Pred->getTerminator())) { LLVM_DEBUG( dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" << Pred->getName() << "': " << *Load << '\n'); return false; } // FIXME: Can we support the fallthrough edge? if (isa(Pred->getTerminator())) { LLVM_DEBUG( dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '" << Pred->getName() << "': " << *Load << '\n'); return false; } if (LoadBB->isEHPad()) { LLVM_DEBUG( dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '" << Pred->getName() << "': " << *Load << '\n'); return false; } // Do not split backedge as it will break the canonical loop form. if (!isLoadPRESplitBackedgeEnabled()) if (DT->dominates(LoadBB, Pred)) { LLVM_DEBUG( dbgs() << "COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '" << Pred->getName() << "': " << *Load << '\n'); return false; } CriticalEdgePred.push_back(Pred); } else { // Only add the predecessors that will not be split for now. PredLoads[Pred] = nullptr; } } // Decide whether PRE is profitable for this load. unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size(); assert(NumUnavailablePreds != 0 && "Fully available value should already be eliminated!"); // If this load is unavailable in multiple predecessors, reject it. // FIXME: If we could restructure the CFG, we could make a common pred with // all the preds that don't have an available Load and insert a new load into // that one block. if (NumUnavailablePreds != 1) return false; // Now we know where we will insert load. We must ensure that it is safe // to speculatively execute the load at that points. if (MustEnsureSafetyOfSpeculativeExecution) { if (CriticalEdgePred.size()) if (!isSafeToSpeculativelyExecute(Load, LoadBB->getFirstNonPHI(), DT)) return false; for (auto &PL : PredLoads) if (!isSafeToSpeculativelyExecute(Load, PL.first->getTerminator(), DT)) return false; } // Split critical edges, and update the unavailable predecessors accordingly. for (BasicBlock *OrigPred : CriticalEdgePred) { BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!"); PredLoads[NewPred] = nullptr; LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" << LoadBB->getName() << '\n'); } // Check if the load can safely be moved to all the unavailable predecessors. bool CanDoPRE = true; const DataLayout &DL = Load->getModule()->getDataLayout(); SmallVector NewInsts; for (auto &PredLoad : PredLoads) { BasicBlock *UnavailablePred = PredLoad.first; // Do PHI translation to get its value in the predecessor if necessary. The // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. // We do the translation for each edge we skipped by going from Load's block // to LoadBB, otherwise we might miss pieces needing translation. // If all preds have a single successor, then we know it is safe to insert // the load on the pred (?!?), so we can insert code to materialize the // pointer if it is not available. Value *LoadPtr = Load->getPointerOperand(); BasicBlock *Cur = Load->getParent(); while (Cur != LoadBB) { PHITransAddr Address(LoadPtr, DL, AC); LoadPtr = Address.PHITranslateWithInsertion( Cur, Cur->getSinglePredecessor(), *DT, NewInsts); if (!LoadPtr) { CanDoPRE = false; break; } Cur = Cur->getSinglePredecessor(); } if (LoadPtr) { PHITransAddr Address(LoadPtr, DL, AC); LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT, NewInsts); } // If we couldn't find or insert a computation of this phi translated value, // we fail PRE. if (!LoadPtr) { LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " << *Load->getPointerOperand() << "\n"); CanDoPRE = false; break; } PredLoad.second = LoadPtr; } if (!CanDoPRE) { while (!NewInsts.empty()) { // Erase instructions generated by the failed PHI translation before // trying to number them. PHI translation might insert instructions // in basic blocks other than the current one, and we delete them // directly, as markInstructionForDeletion only allows removing from the // current basic block. NewInsts.pop_back_val()->eraseFromParent(); } // HINT: Don't revert the edge-splitting as following transformation may // also need to split these critical edges. return !CriticalEdgePred.empty(); } // Okay, we can eliminate this load by inserting a reload in the predecessor // and using PHI construction to get the value in the other predecessors, do // it. LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *Load << '\n'); LLVM_DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back() << '\n'); // Assign value numbers to the new instructions. for (Instruction *I : NewInsts) { // Instructions that have been inserted in predecessor(s) to materialize // the load address do not retain their original debug locations. Doing // so could lead to confusing (but correct) source attributions. I->updateLocationAfterHoist(); // FIXME: We really _ought_ to insert these value numbers into their // parent's availability map. However, in doing so, we risk getting into // ordering issues. If a block hasn't been processed yet, we would be // marking a value as AVAIL-IN, which isn't what we intend. VN.lookupOrAdd(I); } eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads); ++NumPRELoad; return true; } bool GVN::performLoopLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, UnavailBlkVect &UnavailableBlocks) { if (!LI) return false; const Loop *L = LI->getLoopFor(Load->getParent()); // TODO: Generalize to other loop blocks that dominate the latch. if (!L || L->getHeader() != Load->getParent()) return false; BasicBlock *Preheader = L->getLoopPreheader(); BasicBlock *Latch = L->getLoopLatch(); if (!Preheader || !Latch) return false; Value *LoadPtr = Load->getPointerOperand(); // Must be available in preheader. if (!L->isLoopInvariant(LoadPtr)) return false; // We plan to hoist the load to preheader without introducing a new fault. // In order to do it, we need to prove that we cannot side-exit the loop // once loop header is first entered before execution of the load. if (ICF->isDominatedByICFIFromSameBlock(Load)) return false; BasicBlock *LoopBlock = nullptr; for (auto *Blocker : UnavailableBlocks) { // Blockers from outside the loop are handled in preheader. if (!L->contains(Blocker)) continue; // Only allow one loop block. Loop header is not less frequently executed // than each loop block, and likely it is much more frequently executed. But // in case of multiple loop blocks, we need extra information (such as block // frequency info) to understand whether it is profitable to PRE into // multiple loop blocks. if (LoopBlock) return false; // Do not sink into inner loops. This may be non-profitable. if (L != LI->getLoopFor(Blocker)) return false; // Blocks that dominate the latch execute on every single iteration, maybe // except the last one. So PREing into these blocks doesn't make much sense // in most cases. But the blocks that do not necessarily execute on each // iteration are sometimes much colder than the header, and this is when // PRE is potentially profitable. if (DT->dominates(Blocker, Latch)) return false; // Make sure that the terminator itself doesn't clobber. if (Blocker->getTerminator()->mayWriteToMemory()) return false; LoopBlock = Blocker; } if (!LoopBlock) return false; // Make sure the memory at this pointer cannot be freed, therefore we can // safely reload from it after clobber. if (LoadPtr->canBeFreed()) return false; // TODO: Support critical edge splitting if blocker has more than 1 successor. MapVector AvailableLoads; AvailableLoads[LoopBlock] = LoadPtr; AvailableLoads[Preheader] = LoadPtr; LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOOP LOAD: " << *Load << '\n'); eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads); ++NumPRELoopLoad; return true; } static void reportLoadElim(LoadInst *Load, Value *AvailableValue, OptimizationRemarkEmitter *ORE) { using namespace ore; ORE->emit([&]() { return OptimizationRemark(DEBUG_TYPE, "LoadElim", Load) << "load of type " << NV("Type", Load->getType()) << " eliminated" << setExtraArgs() << " in favor of " << NV("InfavorOfValue", AvailableValue); }); } /// Attempt to eliminate a load whose dependencies are /// non-local by performing PHI construction. bool GVN::processNonLocalLoad(LoadInst *Load) { // non-local speculations are not allowed under asan. if (Load->getParent()->getParent()->hasFnAttribute( Attribute::SanitizeAddress) || Load->getParent()->getParent()->hasFnAttribute( Attribute::SanitizeHWAddress)) return false; // Step 1: Find the non-local dependencies of the load. LoadDepVect Deps; MD->getNonLocalPointerDependency(Load, Deps); // If we had to process more than one hundred blocks to find the // dependencies, this load isn't worth worrying about. Optimizing // it will be too expensive. unsigned NumDeps = Deps.size(); if (NumDeps > MaxNumDeps) return false; // If we had a phi translation failure, we'll have a single entry which is a // clobber in the current block. Reject this early. if (NumDeps == 1 && !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { LLVM_DEBUG(dbgs() << "GVN: non-local load "; Load->printAsOperand(dbgs()); dbgs() << " has unknown dependencies\n";); return false; } bool Changed = false; // If this load follows a GEP, see if we can PRE the indices before analyzing. if (GetElementPtrInst *GEP = dyn_cast(Load->getOperand(0))) { for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(), OE = GEP->idx_end(); OI != OE; ++OI) if (Instruction *I = dyn_cast(OI->get())) Changed |= performScalarPRE(I); } // Step 2: Analyze the availability of the load AvailValInBlkVect ValuesPerBlock; UnavailBlkVect UnavailableBlocks; AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks); // If we have no predecessors that produce a known value for this load, exit // early. if (ValuesPerBlock.empty()) return Changed; // Step 3: Eliminate fully redundancy. // // If all of the instructions we depend on produce a known value for this // load, then it is fully redundant and we can use PHI insertion to compute // its value. Insert PHIs and remove the fully redundant value now. if (UnavailableBlocks.empty()) { LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *Load << '\n'); // Perform PHI construction. Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this); Load->replaceAllUsesWith(V); if (isa(V)) V->takeName(Load); if (Instruction *I = dyn_cast(V)) // If instruction I has debug info, then we should not update it. // Also, if I has a null DebugLoc, then it is still potentially incorrect // to propagate Load's DebugLoc because Load may not post-dominate I. if (Load->getDebugLoc() && Load->getParent() == I->getParent()) I->setDebugLoc(Load->getDebugLoc()); if (V->getType()->isPtrOrPtrVectorTy()) MD->invalidateCachedPointerInfo(V); markInstructionForDeletion(Load); ++NumGVNLoad; reportLoadElim(Load, V, ORE); return true; } // Step 4: Eliminate partial redundancy. if (!isPREEnabled() || !isLoadPREEnabled()) return Changed; if (!isLoadInLoopPREEnabled() && LI && LI->getLoopFor(Load->getParent())) return Changed; return Changed || PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) || performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks); } static bool impliesEquivalanceIfTrue(CmpInst* Cmp) { if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ) return true; // Floating point comparisons can be equal, but not equivalent. Cases: // NaNs for unordered operators // +0.0 vs 0.0 for all operators if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ || (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ && Cmp->getFastMathFlags().noNaNs())) { Value *LHS = Cmp->getOperand(0); Value *RHS = Cmp->getOperand(1); // If we can prove either side non-zero, then equality must imply // equivalence. // FIXME: We should do this optimization if 'no signed zeros' is // applicable via an instruction-level fast-math-flag or some other // indicator that relaxed FP semantics are being used. if (isa(LHS) && !cast(LHS)->isZero()) return true; if (isa(RHS) && !cast(RHS)->isZero()) return true;; // TODO: Handle vector floating point constants } return false; } static bool impliesEquivalanceIfFalse(CmpInst* Cmp) { if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE) return true; // Floating point comparisons can be equal, but not equivelent. Cases: // NaNs for unordered operators // +0.0 vs 0.0 for all operators if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE && Cmp->getFastMathFlags().noNaNs()) || Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) { Value *LHS = Cmp->getOperand(0); Value *RHS = Cmp->getOperand(1); // If we can prove either side non-zero, then equality must imply // equivalence. // FIXME: We should do this optimization if 'no signed zeros' is // applicable via an instruction-level fast-math-flag or some other // indicator that relaxed FP semantics are being used. if (isa(LHS) && !cast(LHS)->isZero()) return true; if (isa(RHS) && !cast(RHS)->isZero()) return true;; // TODO: Handle vector floating point constants } return false; } static bool hasUsersIn(Value *V, BasicBlock *BB) { for (User *U : V->users()) if (isa(U) && cast(U)->getParent() == BB) return true; return false; } bool GVN::processAssumeIntrinsic(AssumeInst *IntrinsicI) { Value *V = IntrinsicI->getArgOperand(0); if (ConstantInt *Cond = dyn_cast(V)) { if (Cond->isZero()) { Type *Int8Ty = Type::getInt8Ty(V->getContext()); // Insert a new store to null instruction before the load to indicate that // this code is not reachable. FIXME: We could insert unreachable // instruction directly because we can modify the CFG. auto *NewS = new StoreInst(UndefValue::get(Int8Ty), Constant::getNullValue(Int8Ty->getPointerTo()), IntrinsicI); if (MSSAU) { const MemoryUseOrDef *FirstNonDom = nullptr; const auto *AL = MSSAU->getMemorySSA()->getBlockAccesses(IntrinsicI->getParent()); // If there are accesses in the current basic block, find the first one // that does not come before NewS. The new memory access is inserted // after the found access or before the terminator if no such access is // found. if (AL) { for (auto &Acc : *AL) { if (auto *Current = dyn_cast(&Acc)) if (!Current->getMemoryInst()->comesBefore(NewS)) { FirstNonDom = Current; break; } } } // This added store is to null, so it will never executed and we can // just use the LiveOnEntry def as defining access. auto *NewDef = FirstNonDom ? MSSAU->createMemoryAccessBefore( NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(), const_cast(FirstNonDom)) : MSSAU->createMemoryAccessInBB( NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(), NewS->getParent(), MemorySSA::BeforeTerminator); MSSAU->insertDef(cast(NewDef), /*RenameUses=*/false); } } if (isAssumeWithEmptyBundle(*IntrinsicI)) markInstructionForDeletion(IntrinsicI); return false; } else if (isa(V)) { // If it's not false, and constant, it must evaluate to true. This means our // assume is assume(true), and thus, pointless, and we don't want to do // anything more here. return false; } Constant *True = ConstantInt::getTrue(V->getContext()); bool Changed = false; for (BasicBlock *Successor : successors(IntrinsicI->getParent())) { BasicBlockEdge Edge(IntrinsicI->getParent(), Successor); // This property is only true in dominated successors, propagateEquality // will check dominance for us. Changed |= propagateEquality(V, True, Edge, false); } // We can replace assume value with true, which covers cases like this: // call void @llvm.assume(i1 %cmp) // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true ReplaceOperandsWithMap[V] = True; // Similarly, after assume(!NotV) we know that NotV == false. Value *NotV; if (match(V, m_Not(m_Value(NotV)))) ReplaceOperandsWithMap[NotV] = ConstantInt::getFalse(V->getContext()); // If we find an equality fact, canonicalize all dominated uses in this block // to one of the two values. We heuristically choice the "oldest" of the // two where age is determined by value number. (Note that propagateEquality // above handles the cross block case.) // // Key case to cover are: // 1) // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen // call void @llvm.assume(i1 %cmp) // ret float %0 ; will change it to ret float 3.000000e+00 // 2) // %load = load float, float* %addr // %cmp = fcmp oeq float %load, %0 // call void @llvm.assume(i1 %cmp) // ret float %load ; will change it to ret float %0 if (auto *CmpI = dyn_cast(V)) { if (impliesEquivalanceIfTrue(CmpI)) { Value *CmpLHS = CmpI->getOperand(0); Value *CmpRHS = CmpI->getOperand(1); // Heuristically pick the better replacement -- the choice of heuristic // isn't terribly important here, but the fact we canonicalize on some // replacement is for exposing other simplifications. // TODO: pull this out as a helper function and reuse w/existing // (slightly different) logic. if (isa(CmpLHS) && !isa(CmpRHS)) std::swap(CmpLHS, CmpRHS); if (!isa(CmpLHS) && isa(CmpRHS)) std::swap(CmpLHS, CmpRHS); if ((isa(CmpLHS) && isa(CmpRHS)) || (isa(CmpLHS) && isa(CmpRHS))) { // Move the 'oldest' value to the right-hand side, using the value // number as a proxy for age. uint32_t LVN = VN.lookupOrAdd(CmpLHS); uint32_t RVN = VN.lookupOrAdd(CmpRHS); if (LVN < RVN) std::swap(CmpLHS, CmpRHS); } // Handle degenerate case where we either haven't pruned a dead path or a // removed a trivial assume yet. if (isa(CmpLHS) && isa(CmpRHS)) return Changed; LLVM_DEBUG(dbgs() << "Replacing dominated uses of " << *CmpLHS << " with " << *CmpRHS << " in block " << IntrinsicI->getParent()->getName() << "\n"); // Setup the replacement map - this handles uses within the same block if (hasUsersIn(CmpLHS, IntrinsicI->getParent())) ReplaceOperandsWithMap[CmpLHS] = CmpRHS; // NOTE: The non-block local cases are handled by the call to // propagateEquality above; this block is just about handling the block // local cases. TODO: There's a bunch of logic in propagateEqualiy which // isn't duplicated for the block local case, can we share it somehow? } } return Changed; } static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { patchReplacementInstruction(I, Repl); I->replaceAllUsesWith(Repl); } /// Attempt to eliminate a load, first by eliminating it /// locally, and then attempting non-local elimination if that fails. bool GVN::processLoad(LoadInst *L) { if (!MD) return false; // This code hasn't been audited for ordered or volatile memory access if (!L->isUnordered()) return false; if (L->use_empty()) { markInstructionForDeletion(L); return true; } // ... to a pointer that has been loaded from before... MemDepResult Dep = MD->getDependency(L); // If it is defined in another block, try harder. if (Dep.isNonLocal()) return processNonLocalLoad(L); // Only handle the local case below if (!Dep.isDef() && !Dep.isClobber()) { // This might be a NonFuncLocal or an Unknown LLVM_DEBUG( // fast print dep, using operator<< on instruction is too slow. dbgs() << "GVN: load "; L->printAsOperand(dbgs()); dbgs() << " has unknown dependence\n";); return false; } AvailableValue AV; if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) { Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this); // Replace the load! patchAndReplaceAllUsesWith(L, AvailableValue); markInstructionForDeletion(L); if (MSSAU) MSSAU->removeMemoryAccess(L); ++NumGVNLoad; reportLoadElim(L, AvailableValue, ORE); // Tell MDA to reexamine the reused pointer since we might have more // information after forwarding it. if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy()) MD->invalidateCachedPointerInfo(AvailableValue); return true; } return false; } /// Return a pair the first field showing the value number of \p Exp and the /// second field showing whether it is a value number newly created. std::pair GVN::ValueTable::assignExpNewValueNum(Expression &Exp) { uint32_t &e = expressionNumbering[Exp]; bool CreateNewValNum = !e; if (CreateNewValNum) { Expressions.push_back(Exp); if (ExprIdx.size() < nextValueNumber + 1) ExprIdx.resize(nextValueNumber * 2); e = nextValueNumber; ExprIdx[nextValueNumber++] = nextExprNumber++; } return {e, CreateNewValNum}; } /// Return whether all the values related with the same \p num are /// defined in \p BB. bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB, GVN &Gvn) { LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; while (Vals && Vals->BB == BB) Vals = Vals->Next; return !Vals; } /// Wrap phiTranslateImpl to provide caching functionality. uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred, const BasicBlock *PhiBlock, uint32_t Num, GVN &Gvn) { auto FindRes = PhiTranslateTable.find({Num, Pred}); if (FindRes != PhiTranslateTable.end()) return FindRes->second; uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn); PhiTranslateTable.insert({{Num, Pred}, NewNum}); return NewNum; } // Return true if the value number \p Num and NewNum have equal value. // Return false if the result is unknown. bool GVN::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum, const BasicBlock *Pred, const BasicBlock *PhiBlock, GVN &Gvn) { CallInst *Call = nullptr; LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; while (Vals) { Call = dyn_cast(Vals->Val); if (Call && Call->getParent() == PhiBlock) break; Vals = Vals->Next; } if (AA->doesNotAccessMemory(Call)) return true; if (!MD || !AA->onlyReadsMemory(Call)) return false; MemDepResult local_dep = MD->getDependency(Call); if (!local_dep.isNonLocal()) return false; const MemoryDependenceResults::NonLocalDepInfo &deps = MD->getNonLocalCallDependency(Call); // Check to see if the Call has no function local clobber. for (const NonLocalDepEntry &D : deps) { if (D.getResult().isNonFuncLocal()) return true; } return false; } /// Translate value number \p Num using phis, so that it has the values of /// the phis in BB. uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred, const BasicBlock *PhiBlock, uint32_t Num, GVN &Gvn) { if (PHINode *PN = NumberingPhi[Num]) { for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred) if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false)) return TransVal; } return Num; } // If there is any value related with Num is defined in a BB other than // PhiBlock, it cannot depend on a phi in PhiBlock without going through // a backedge. We can do an early exit in that case to save compile time. if (!areAllValsInBB(Num, PhiBlock, Gvn)) return Num; if (Num >= ExprIdx.size() || ExprIdx[Num] == 0) return Num; Expression Exp = Expressions[ExprIdx[Num]]; for (unsigned i = 0; i < Exp.varargs.size(); i++) { // For InsertValue and ExtractValue, some varargs are index numbers // instead of value numbers. Those index numbers should not be // translated. if ((i > 1 && Exp.opcode == Instruction::InsertValue) || (i > 0 && Exp.opcode == Instruction::ExtractValue) || (i > 1 && Exp.opcode == Instruction::ShuffleVector)) continue; Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn); } if (Exp.commutative) { assert(Exp.varargs.size() >= 2 && "Unsupported commutative instruction!"); if (Exp.varargs[0] > Exp.varargs[1]) { std::swap(Exp.varargs[0], Exp.varargs[1]); uint32_t Opcode = Exp.opcode >> 8; if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) Exp.opcode = (Opcode << 8) | CmpInst::getSwappedPredicate( static_cast(Exp.opcode & 255)); } } if (uint32_t NewNum = expressionNumbering[Exp]) { if (Exp.opcode == Instruction::Call && NewNum != Num) return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num; return NewNum; } return Num; } /// Erase stale entry from phiTranslate cache so phiTranslate can be computed /// again. void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num, const BasicBlock &CurrBlock) { for (const BasicBlock *Pred : predecessors(&CurrBlock)) PhiTranslateTable.erase({Num, Pred}); } // In order to find a leader for a given value number at a // specific basic block, we first obtain the list of all Values for that number, // and then scan the list to find one whose block dominates the block in // question. This is fast because dominator tree queries consist of only // a few comparisons of DFS numbers. Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) { LeaderTableEntry Vals = LeaderTable[num]; if (!Vals.Val) return nullptr; Value *Val = nullptr; if (DT->dominates(Vals.BB, BB)) { Val = Vals.Val; if (isa(Val)) return Val; } LeaderTableEntry* Next = Vals.Next; while (Next) { if (DT->dominates(Next->BB, BB)) { if (isa(Next->Val)) return Next->Val; if (!Val) Val = Next->Val; } Next = Next->Next; } return Val; } /// There is an edge from 'Src' to 'Dst'. Return /// true if every path from the entry block to 'Dst' passes via this edge. In /// particular 'Dst' must not be reachable via another edge from 'Src'. static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, DominatorTree *DT) { // While in theory it is interesting to consider the case in which Dst has // more than one predecessor, because Dst might be part of a loop which is // only reachable from Src, in practice it is pointless since at the time // GVN runs all such loops have preheaders, which means that Dst will have // been changed to have only one predecessor, namely Src. const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); assert((!Pred || Pred == E.getStart()) && "No edge between these basic blocks!"); return Pred != nullptr; } void GVN::assignBlockRPONumber(Function &F) { BlockRPONumber.clear(); uint32_t NextBlockNumber = 1; ReversePostOrderTraversal RPOT(&F); for (BasicBlock *BB : RPOT) BlockRPONumber[BB] = NextBlockNumber++; InvalidBlockRPONumbers = false; } bool GVN::replaceOperandsForInBlockEquality(Instruction *Instr) const { bool Changed = false; for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) { Value *Operand = Instr->getOperand(OpNum); auto it = ReplaceOperandsWithMap.find(Operand); if (it != ReplaceOperandsWithMap.end()) { LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " << *it->second << " in instruction " << *Instr << '\n'); Instr->setOperand(OpNum, it->second); Changed = true; } } return Changed; } /// The given values are known to be equal in every block /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with /// 'RHS' everywhere in the scope. Returns whether a change was made. /// If DominatesByEdge is false, then it means that we will propagate the RHS /// value starting from the end of Root.Start. bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root, bool DominatesByEdge) { SmallVector, 4> Worklist; Worklist.push_back(std::make_pair(LHS, RHS)); bool Changed = false; // For speed, compute a conservative fast approximation to // DT->dominates(Root, Root.getEnd()); const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); while (!Worklist.empty()) { std::pair Item = Worklist.pop_back_val(); LHS = Item.first; RHS = Item.second; if (LHS == RHS) continue; assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); // Don't try to propagate equalities between constants. if (isa(LHS) && isa(RHS)) continue; // Prefer a constant on the right-hand side, or an Argument if no constants. if (isa(LHS) || (isa(LHS) && !isa(RHS))) std::swap(LHS, RHS); assert((isa(LHS) || isa(LHS)) && "Unexpected value!"); // If there is no obvious reason to prefer the left-hand side over the // right-hand side, ensure the longest lived term is on the right-hand side, // so the shortest lived term will be replaced by the longest lived. // This tends to expose more simplifications. uint32_t LVN = VN.lookupOrAdd(LHS); if ((isa(LHS) && isa(RHS)) || (isa(LHS) && isa(RHS))) { // Move the 'oldest' value to the right-hand side, using the value number // as a proxy for age. uint32_t RVN = VN.lookupOrAdd(RHS); if (LVN < RVN) { std::swap(LHS, RHS); LVN = RVN; } } // If value numbering later sees that an instruction in the scope is equal // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve // the invariant that instructions only occur in the leader table for their // own value number (this is used by removeFromLeaderTable), do not do this // if RHS is an instruction (if an instruction in the scope is morphed into // LHS then it will be turned into RHS by the next GVN iteration anyway, so // using the leader table is about compiling faster, not optimizing better). // The leader table only tracks basic blocks, not edges. Only add to if we // have the simple case where the edge dominates the end. if (RootDominatesEnd && !isa(RHS)) addToLeaderTable(LVN, RHS, Root.getEnd()); // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As // LHS always has at least one use that is not dominated by Root, this will // never do anything if LHS has only one use. if (!LHS->hasOneUse()) { unsigned NumReplacements = DominatesByEdge ? replaceDominatedUsesWith(LHS, RHS, *DT, Root) : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart()); Changed |= NumReplacements > 0; NumGVNEqProp += NumReplacements; // Cached information for anything that uses LHS will be invalid. if (MD) MD->invalidateCachedPointerInfo(LHS); } // Now try to deduce additional equalities from this one. For example, if // the known equality was "(A != B)" == "false" then it follows that A and B // are equal in the scope. Only boolean equalities with an explicit true or // false RHS are currently supported. if (!RHS->getType()->isIntegerTy(1)) // Not a boolean equality - bail out. continue; ConstantInt *CI = dyn_cast(RHS); if (!CI) // RHS neither 'true' nor 'false' - bail out. continue; // Whether RHS equals 'true'. Otherwise it equals 'false'. bool isKnownTrue = CI->isMinusOne(); bool isKnownFalse = !isKnownTrue; // If "A && B" is known true then both A and B are known true. If "A || B" // is known false then both A and B are known false. Value *A, *B; if ((isKnownTrue && match(LHS, m_LogicalAnd(m_Value(A), m_Value(B)))) || (isKnownFalse && match(LHS, m_LogicalOr(m_Value(A), m_Value(B))))) { Worklist.push_back(std::make_pair(A, RHS)); Worklist.push_back(std::make_pair(B, RHS)); continue; } // If we are propagating an equality like "(A == B)" == "true" then also // propagate the equality A == B. When propagating a comparison such as // "(A >= B)" == "true", replace all instances of "A < B" with "false". if (CmpInst *Cmp = dyn_cast(LHS)) { Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); // If "A == B" is known true, or "A != B" is known false, then replace // A with B everywhere in the scope. For floating point operations, we // have to be careful since equality does not always imply equivalance. if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) || (isKnownFalse && impliesEquivalanceIfFalse(Cmp))) Worklist.push_back(std::make_pair(Op0, Op1)); // If "A >= B" is known true, replace "A < B" with false everywhere. CmpInst::Predicate NotPred = Cmp->getInversePredicate(); Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); // Since we don't have the instruction "A < B" immediately to hand, work // out the value number that it would have and use that to find an // appropriate instruction (if any). uint32_t NextNum = VN.getNextUnusedValueNumber(); uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1); // If the number we were assigned was brand new then there is no point in // looking for an instruction realizing it: there cannot be one! if (Num < NextNum) { Value *NotCmp = findLeader(Root.getEnd(), Num); if (NotCmp && isa(NotCmp)) { unsigned NumReplacements = DominatesByEdge ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root) : replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root.getStart()); Changed |= NumReplacements > 0; NumGVNEqProp += NumReplacements; // Cached information for anything that uses NotCmp will be invalid. if (MD) MD->invalidateCachedPointerInfo(NotCmp); } } // Ensure that any instruction in scope that gets the "A < B" value number // is replaced with false. // The leader table only tracks basic blocks, not edges. Only add to if we // have the simple case where the edge dominates the end. if (RootDominatesEnd) addToLeaderTable(Num, NotVal, Root.getEnd()); continue; } } return Changed; } /// When calculating availability, handle an instruction /// by inserting it into the appropriate sets bool GVN::processInstruction(Instruction *I) { // Ignore dbg info intrinsics. if (isa(I)) return false; // If the instruction can be easily simplified then do so now in preference // to value numbering it. Value numbering often exposes redundancies, for // example if it determines that %y is equal to %x then the instruction // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. const DataLayout &DL = I->getModule()->getDataLayout(); if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) { bool Changed = false; if (!I->use_empty()) { // Simplification can cause a special instruction to become not special. // For example, devirtualization to a willreturn function. ICF->removeUsersOf(I); I->replaceAllUsesWith(V); Changed = true; } if (isInstructionTriviallyDead(I, TLI)) { markInstructionForDeletion(I); Changed = true; } if (Changed) { if (MD && V->getType()->isPtrOrPtrVectorTy()) MD->invalidateCachedPointerInfo(V); ++NumGVNSimpl; return true; } } if (auto *Assume = dyn_cast(I)) return processAssumeIntrinsic(Assume); if (LoadInst *Load = dyn_cast(I)) { if (processLoad(Load)) return true; unsigned Num = VN.lookupOrAdd(Load); addToLeaderTable(Num, Load, Load->getParent()); return false; } // For conditional branches, we can perform simple conditional propagation on // the condition value itself. if (BranchInst *BI = dyn_cast(I)) { if (!BI->isConditional()) return false; if (isa(BI->getCondition())) return processFoldableCondBr(BI); Value *BranchCond = BI->getCondition(); BasicBlock *TrueSucc = BI->getSuccessor(0); BasicBlock *FalseSucc = BI->getSuccessor(1); // Avoid multiple edges early. if (TrueSucc == FalseSucc) return false; BasicBlock *Parent = BI->getParent(); bool Changed = false; Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); BasicBlockEdge TrueE(Parent, TrueSucc); Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true); Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); BasicBlockEdge FalseE(Parent, FalseSucc); Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true); return Changed; } // For switches, propagate the case values into the case destinations. if (SwitchInst *SI = dyn_cast(I)) { Value *SwitchCond = SI->getCondition(); BasicBlock *Parent = SI->getParent(); bool Changed = false; // Remember how many outgoing edges there are to every successor. SmallDenseMap SwitchEdges; for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) ++SwitchEdges[SI->getSuccessor(i)]; for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) { BasicBlock *Dst = i->getCaseSuccessor(); // If there is only a single edge, propagate the case value into it. if (SwitchEdges.lookup(Dst) == 1) { BasicBlockEdge E(Parent, Dst); Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true); } } return Changed; } // Instructions with void type don't return a value, so there's // no point in trying to find redundancies in them. if (I->getType()->isVoidTy()) return false; uint32_t NextNum = VN.getNextUnusedValueNumber(); unsigned Num = VN.lookupOrAdd(I); // Allocations are always uniquely numbered, so we can save time and memory // by fast failing them. if (isa(I) || I->isTerminator() || isa(I)) { addToLeaderTable(Num, I, I->getParent()); return false; } // If the number we were assigned was a brand new VN, then we don't // need to do a lookup to see if the number already exists // somewhere in the domtree: it can't! if (Num >= NextNum) { addToLeaderTable(Num, I, I->getParent()); return false; } // Perform fast-path value-number based elimination of values inherited from // dominators. Value *Repl = findLeader(I->getParent(), Num); if (!Repl) { // Failure, just remember this instance for future use. addToLeaderTable(Num, I, I->getParent()); return false; } else if (Repl == I) { // If I was the result of a shortcut PRE, it might already be in the table // and the best replacement for itself. Nothing to do. return false; } // Remove it! patchAndReplaceAllUsesWith(I, Repl); if (MD && Repl->getType()->isPtrOrPtrVectorTy()) MD->invalidateCachedPointerInfo(Repl); markInstructionForDeletion(I); return true; } /// runOnFunction - This is the main transformation entry point for a function. bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, const TargetLibraryInfo &RunTLI, AAResults &RunAA, MemoryDependenceResults *RunMD, LoopInfo *LI, OptimizationRemarkEmitter *RunORE, MemorySSA *MSSA) { AC = &RunAC; DT = &RunDT; VN.setDomTree(DT); TLI = &RunTLI; VN.setAliasAnalysis(&RunAA); MD = RunMD; ImplicitControlFlowTracking ImplicitCFT; ICF = &ImplicitCFT; this->LI = LI; VN.setMemDep(MD); ORE = RunORE; InvalidBlockRPONumbers = true; MemorySSAUpdater Updater(MSSA); MSSAU = MSSA ? &Updater : nullptr; bool Changed = false; bool ShouldContinue = true; DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); // Merge unconditional branches, allowing PRE to catch more // optimization opportunities. for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) { BasicBlock *BB = &*FI++; bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, MSSAU, MD); if (removedBlock) ++NumGVNBlocks; Changed |= removedBlock; } unsigned Iteration = 0; while (ShouldContinue) { LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); ShouldContinue = iterateOnFunction(F); Changed |= ShouldContinue; ++Iteration; } if (isPREEnabled()) { // Fabricate val-num for dead-code in order to suppress assertion in // performPRE(). assignValNumForDeadCode(); bool PREChanged = true; while (PREChanged) { PREChanged = performPRE(F); Changed |= PREChanged; } } // FIXME: Should perform GVN again after PRE does something. PRE can move // computations into blocks where they become fully redundant. Note that // we can't do this until PRE's critical edge splitting updates memdep. // Actually, when this happens, we should just fully integrate PRE into GVN. cleanupGlobalSets(); // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each // iteration. DeadBlocks.clear(); if (MSSA && VerifyMemorySSA) MSSA->verifyMemorySSA(); return Changed; } bool GVN::processBlock(BasicBlock *BB) { // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function // (and incrementing BI before processing an instruction). assert(InstrsToErase.empty() && "We expect InstrsToErase to be empty across iterations"); if (DeadBlocks.count(BB)) return false; // Clearing map before every BB because it can be used only for single BB. ReplaceOperandsWithMap.clear(); bool ChangedFunction = false; // Since we may not have visited the input blocks of the phis, we can't // use our normal hash approach for phis. Instead, simply look for // obvious duplicates. The first pass of GVN will tend to create // identical phis, and the second or later passes can eliminate them. ChangedFunction |= EliminateDuplicatePHINodes(BB); for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { if (!ReplaceOperandsWithMap.empty()) ChangedFunction |= replaceOperandsForInBlockEquality(&*BI); ChangedFunction |= processInstruction(&*BI); if (InstrsToErase.empty()) { ++BI; continue; } // If we need some instructions deleted, do it now. NumGVNInstr += InstrsToErase.size(); // Avoid iterator invalidation. bool AtStart = BI == BB->begin(); if (!AtStart) --BI; for (auto *I : InstrsToErase) { assert(I->getParent() == BB && "Removing instruction from wrong block?"); LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n'); salvageKnowledge(I, AC); salvageDebugInfo(*I); if (MD) MD->removeInstruction(I); if (MSSAU) MSSAU->removeMemoryAccess(I); LLVM_DEBUG(verifyRemoved(I)); ICF->removeInstruction(I); I->eraseFromParent(); } InstrsToErase.clear(); if (AtStart) BI = BB->begin(); else ++BI; } return ChangedFunction; } // Instantiate an expression in a predecessor that lacked it. bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, BasicBlock *Curr, unsigned int ValNo) { // Because we are going top-down through the block, all value numbers // will be available in the predecessor by the time we need them. Any // that weren't originally present will have been instantiated earlier // in this loop. bool success = true; for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) { Value *Op = Instr->getOperand(i); if (isa(Op) || isa(Op) || isa(Op)) continue; // This could be a newly inserted instruction, in which case, we won't // find a value number, and should give up before we hurt ourselves. // FIXME: Rewrite the infrastructure to let it easier to value number // and process newly inserted instructions. if (!VN.exists(Op)) { success = false; break; } uint32_t TValNo = VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this); if (Value *V = findLeader(Pred, TValNo)) { Instr->setOperand(i, V); } else { success = false; break; } } // Fail out if we encounter an operand that is not available in // the PRE predecessor. This is typically because of loads which // are not value numbered precisely. if (!success) return false; Instr->insertBefore(Pred->getTerminator()); Instr->setName(Instr->getName() + ".pre"); Instr->setDebugLoc(Instr->getDebugLoc()); ICF->insertInstructionTo(Instr, Pred); unsigned Num = VN.lookupOrAdd(Instr); VN.add(Instr, Num); // Update the availability map to include the new instruction. addToLeaderTable(Num, Instr, Pred); return true; } bool GVN::performScalarPRE(Instruction *CurInst) { if (isa(CurInst) || CurInst->isTerminator() || isa(CurInst) || CurInst->getType()->isVoidTy() || CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || isa(CurInst)) return false; // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from // sinking the compare again, and it would force the code generator to // move the i1 from processor flags or predicate registers into a general // purpose register. if (isa(CurInst)) return false; // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from // sinking the addressing mode computation back to its uses. Extending the // GEP's live range increases the register pressure, and therefore it can // introduce unnecessary spills. // // This doesn't prevent Load PRE. PHI translation will make the GEP available // to the load by moving it to the predecessor block if necessary. if (isa(CurInst)) return false; if (auto *CallB = dyn_cast(CurInst)) { // We don't currently value number ANY inline asm calls. if (CallB->isInlineAsm()) return false; // Don't do PRE on convergent calls. if (CallB->isConvergent()) return false; } uint32_t ValNo = VN.lookup(CurInst); // Look for the predecessors for PRE opportunities. We're // only trying to solve the basic diamond case, where // a value is computed in the successor and one predecessor, // but not the other. We also explicitly disallow cases // where the successor is its own predecessor, because they're // more complicated to get right. unsigned NumWith = 0; unsigned NumWithout = 0; BasicBlock *PREPred = nullptr; BasicBlock *CurrentBlock = CurInst->getParent(); // Update the RPO numbers for this function. if (InvalidBlockRPONumbers) assignBlockRPONumber(*CurrentBlock->getParent()); SmallVector, 8> predMap; for (BasicBlock *P : predecessors(CurrentBlock)) { // We're not interested in PRE where blocks with predecessors that are // not reachable. if (!DT->isReachableFromEntry(P)) { NumWithout = 2; break; } // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and // when CurInst has operand defined in CurrentBlock (so it may be defined // by phi in the loop header). assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) && "Invalid BlockRPONumber map."); if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] && llvm::any_of(CurInst->operands(), [&](const Use &U) { if (auto *Inst = dyn_cast(U.get())) return Inst->getParent() == CurrentBlock; return false; })) { NumWithout = 2; break; } uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this); Value *predV = findLeader(P, TValNo); if (!predV) { predMap.push_back(std::make_pair(static_cast(nullptr), P)); PREPred = P; ++NumWithout; } else if (predV == CurInst) { /* CurInst dominates this predecessor. */ NumWithout = 2; break; } else { predMap.push_back(std::make_pair(predV, P)); ++NumWith; } } // Don't do PRE when it might increase code size, i.e. when // we would need to insert instructions in more than one pred. if (NumWithout > 1 || NumWith == 0) return false; // We may have a case where all predecessors have the instruction, // and we just need to insert a phi node. Otherwise, perform // insertion. Instruction *PREInstr = nullptr; if (NumWithout != 0) { if (!isSafeToSpeculativelyExecute(CurInst)) { // It is only valid to insert a new instruction if the current instruction // is always executed. An instruction with implicit control flow could // prevent us from doing it. If we cannot speculate the execution, then // PRE should be prohibited. if (ICF->isDominatedByICFIFromSameBlock(CurInst)) return false; } // Don't do PRE across indirect branch. if (isa(PREPred->getTerminator())) return false; // Don't do PRE across callbr. // FIXME: Can we do this across the fallthrough edge? if (isa(PREPred->getTerminator())) return false; // We can't do PRE safely on a critical edge, so instead we schedule // the edge to be split and perform the PRE the next time we iterate // on the function. unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); return false; } // We need to insert somewhere, so let's give it a shot PREInstr = CurInst->clone(); if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) { // If we failed insertion, make sure we remove the instruction. LLVM_DEBUG(verifyRemoved(PREInstr)); PREInstr->deleteValue(); return false; } } // Either we should have filled in the PRE instruction, or we should // not have needed insertions. assert(PREInstr != nullptr || NumWithout == 0); ++NumGVNPRE; // Create a PHI to make the value available in this block. PHINode *Phi = PHINode::Create(CurInst->getType(), predMap.size(), CurInst->getName() + ".pre-phi", &CurrentBlock->front()); for (unsigned i = 0, e = predMap.size(); i != e; ++i) { if (Value *V = predMap[i].first) { // If we use an existing value in this phi, we have to patch the original // value because the phi will be used to replace a later value. patchReplacementInstruction(CurInst, V); Phi->addIncoming(V, predMap[i].second); } else Phi->addIncoming(PREInstr, PREPred); } VN.add(Phi, ValNo); // After creating a new PHI for ValNo, the phi translate result for ValNo will // be changed, so erase the related stale entries in phi translate cache. VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock); addToLeaderTable(ValNo, Phi, CurrentBlock); Phi->setDebugLoc(CurInst->getDebugLoc()); CurInst->replaceAllUsesWith(Phi); if (MD && Phi->getType()->isPtrOrPtrVectorTy()) MD->invalidateCachedPointerInfo(Phi); VN.erase(CurInst); removeFromLeaderTable(ValNo, CurInst, CurrentBlock); LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); if (MD) MD->removeInstruction(CurInst); if (MSSAU) MSSAU->removeMemoryAccess(CurInst); LLVM_DEBUG(verifyRemoved(CurInst)); // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes // some assertion failures. ICF->removeInstruction(CurInst); CurInst->eraseFromParent(); ++NumGVNInstr; return true; } /// Perform a purely local form of PRE that looks for diamond /// control flow patterns and attempts to perform simple PRE at the join point. bool GVN::performPRE(Function &F) { bool Changed = false; for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) { // Nothing to PRE in the entry block. if (CurrentBlock == &F.getEntryBlock()) continue; // Don't perform PRE on an EH pad. if (CurrentBlock->isEHPad()) continue; for (BasicBlock::iterator BI = CurrentBlock->begin(), BE = CurrentBlock->end(); BI != BE;) { Instruction *CurInst = &*BI++; Changed |= performScalarPRE(CurInst); } } if (splitCriticalEdges()) Changed = true; return Changed; } /// Split the critical edge connecting the given two blocks, and return /// the block inserted to the critical edge. BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { // GVN does not require loop-simplify, do not try to preserve it if it is not // possible. BasicBlock *BB = SplitCriticalEdge( Pred, Succ, CriticalEdgeSplittingOptions(DT, LI, MSSAU).unsetPreserveLoopSimplify()); if (BB) { if (MD) MD->invalidateCachedPredecessors(); InvalidBlockRPONumbers = true; } return BB; } /// Split critical edges found during the previous /// iteration that may enable further optimization. bool GVN::splitCriticalEdges() { if (toSplit.empty()) return false; bool Changed = false; do { std::pair Edge = toSplit.pop_back_val(); Changed |= SplitCriticalEdge(Edge.first, Edge.second, CriticalEdgeSplittingOptions(DT, LI, MSSAU)) != nullptr; } while (!toSplit.empty()); if (Changed) { if (MD) MD->invalidateCachedPredecessors(); InvalidBlockRPONumbers = true; } return Changed; } /// Executes one iteration of GVN bool GVN::iterateOnFunction(Function &F) { cleanupGlobalSets(); // Top-down walk of the dominator tree bool Changed = false; // Needed for value numbering with phi construction to work. // RPOT walks the graph in its constructor and will not be invalidated during // processBlock. ReversePostOrderTraversal RPOT(&F); for (BasicBlock *BB : RPOT) Changed |= processBlock(BB); return Changed; } void GVN::cleanupGlobalSets() { VN.clear(); LeaderTable.clear(); BlockRPONumber.clear(); TableAllocator.Reset(); ICF->clear(); InvalidBlockRPONumbers = true; } /// Verify that the specified instruction does not occur in our /// internal data structures. void GVN::verifyRemoved(const Instruction *Inst) const { VN.verifyRemoved(Inst); // Walk through the value number scope to make sure the instruction isn't // ferreted away in it. for (const auto &I : LeaderTable) { const LeaderTableEntry *Node = &I.second; assert(Node->Val != Inst && "Inst still in value numbering scope!"); while (Node->Next) { Node = Node->Next; assert(Node->Val != Inst && "Inst still in value numbering scope!"); } } } /// BB is declared dead, which implied other blocks become dead as well. This /// function is to add all these blocks to "DeadBlocks". For the dead blocks' /// live successors, update their phi nodes by replacing the operands /// corresponding to dead blocks with UndefVal. void GVN::addDeadBlock(BasicBlock *BB) { SmallVector NewDead; SmallSetVector DF; NewDead.push_back(BB); while (!NewDead.empty()) { BasicBlock *D = NewDead.pop_back_val(); if (DeadBlocks.count(D)) continue; // All blocks dominated by D are dead. SmallVector Dom; DT->getDescendants(D, Dom); DeadBlocks.insert(Dom.begin(), Dom.end()); // Figure out the dominance-frontier(D). for (BasicBlock *B : Dom) { for (BasicBlock *S : successors(B)) { if (DeadBlocks.count(S)) continue; bool AllPredDead = true; for (BasicBlock *P : predecessors(S)) if (!DeadBlocks.count(P)) { AllPredDead = false; break; } if (!AllPredDead) { // S could be proved dead later on. That is why we don't update phi // operands at this moment. DF.insert(S); } else { // While S is not dominated by D, it is dead by now. This could take // place if S already have a dead predecessor before D is declared // dead. NewDead.push_back(S); } } } } // For the dead blocks' live successors, update their phi nodes by replacing // the operands corresponding to dead blocks with UndefVal. for (BasicBlock *B : DF) { if (DeadBlocks.count(B)) continue; // First, split the critical edges. This might also create additional blocks // to preserve LoopSimplify form and adjust edges accordingly. SmallVector Preds(predecessors(B)); for (BasicBlock *P : Preds) { if (!DeadBlocks.count(P)) continue; if (llvm::is_contained(successors(P), B) && isCriticalEdge(P->getTerminator(), B)) { if (BasicBlock *S = splitCriticalEdges(P, B)) DeadBlocks.insert(P = S); } } // Now undef the incoming values from the dead predecessors. for (BasicBlock *P : predecessors(B)) { if (!DeadBlocks.count(P)) continue; for (PHINode &Phi : B->phis()) { Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType())); if (MD) MD->invalidateCachedPointerInfo(&Phi); } } } } // If the given branch is recognized as a foldable branch (i.e. conditional // branch with constant condition), it will perform following analyses and // transformation. // 1) If the dead out-coming edge is a critical-edge, split it. Let // R be the target of the dead out-coming edge. // 1) Identify the set of dead blocks implied by the branch's dead outcoming // edge. The result of this step will be {X| X is dominated by R} // 2) Identify those blocks which haves at least one dead predecessor. The // result of this step will be dominance-frontier(R). // 3) Update the PHIs in DF(R) by replacing the operands corresponding to // dead blocks with "UndefVal" in an hope these PHIs will optimized away. // // Return true iff *NEW* dead code are found. bool GVN::processFoldableCondBr(BranchInst *BI) { if (!BI || BI->isUnconditional()) return false; // If a branch has two identical successors, we cannot declare either dead. if (BI->getSuccessor(0) == BI->getSuccessor(1)) return false; ConstantInt *Cond = dyn_cast(BI->getCondition()); if (!Cond) return false; BasicBlock *DeadRoot = Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0); if (DeadBlocks.count(DeadRoot)) return false; if (!DeadRoot->getSinglePredecessor()) DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot); addDeadBlock(DeadRoot); return true; } // performPRE() will trigger assert if it comes across an instruction without // associated val-num. As it normally has far more live instructions than dead // instructions, it makes more sense just to "fabricate" a val-number for the // dead code than checking if instruction involved is dead or not. void GVN::assignValNumForDeadCode() { for (BasicBlock *BB : DeadBlocks) { for (Instruction &Inst : *BB) { unsigned ValNum = VN.lookupOrAdd(&Inst); addToLeaderTable(ValNum, &Inst, BB); } } } class llvm::gvn::GVNLegacyPass : public FunctionPass { public: static char ID; // Pass identification, replacement for typeid explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep) : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) { initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto *LIWP = getAnalysisIfAvailable(); auto *MSSAWP = getAnalysisIfAvailable(); return Impl.runImpl( F, getAnalysis().getAssumptionCache(F), getAnalysis().getDomTree(), getAnalysis().getTLI(F), getAnalysis().getAAResults(), Impl.isMemDepEnabled() ? &getAnalysis().getMemDep() : nullptr, LIWP ? &LIWP->getLoopInfo() : nullptr, &getAnalysis().getORE(), MSSAWP ? &MSSAWP->getMSSA() : nullptr); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); if (Impl.isMemDepEnabled()) AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); } private: GVN Impl; }; char GVNLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) // The public interface to this file... FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) { return new GVNLegacyPass(NoMemDepAnalysis); }