//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines structures to encapsulate information gleaned from the // target register and register class definitions. // //===----------------------------------------------------------------------===// #include "CodeGenRegisters.h" #include "CodeGenTarget.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/IntEqClasses.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include #include #include #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "regalloc-emitter" //===----------------------------------------------------------------------===// // CodeGenSubRegIndex //===----------------------------------------------------------------------===// CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) { Name = std::string(R->getName()); if (R->getValue("Namespace")) Namespace = std::string(R->getValueAsString("Namespace")); Size = R->getValueAsInt("Size"); Offset = R->getValueAsInt("Offset"); } CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, unsigned Enum) : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)), Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {} std::string CodeGenSubRegIndex::getQualifiedName() const { std::string N = getNamespace(); if (!N.empty()) N += "::"; N += getName(); return N; } void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { if (!TheDef) return; std::vector Comps = TheDef->getValueAsListOfDefs("ComposedOf"); if (!Comps.empty()) { if (Comps.size() != 2) PrintFatalError(TheDef->getLoc(), "ComposedOf must have exactly two entries"); CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); CodeGenSubRegIndex *X = A->addComposite(B, this); if (X) PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); } std::vector Parts = TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); if (!Parts.empty()) { if (Parts.size() < 2) PrintFatalError(TheDef->getLoc(), "CoveredBySubRegs must have two or more entries"); SmallVector IdxParts; for (Record *Part : Parts) IdxParts.push_back(RegBank.getSubRegIdx(Part)); setConcatenationOf(IdxParts); } } LaneBitmask CodeGenSubRegIndex::computeLaneMask() const { // Already computed? if (LaneMask.any()) return LaneMask; // Recursion guard, shouldn't be required. LaneMask = LaneBitmask::getAll(); // The lane mask is simply the union of all sub-indices. LaneBitmask M; for (const auto &C : Composed) M |= C.second->computeLaneMask(); assert(M.any() && "Missing lane mask, sub-register cycle?"); LaneMask = M; return LaneMask; } void CodeGenSubRegIndex::setConcatenationOf( ArrayRef Parts) { if (ConcatenationOf.empty()) ConcatenationOf.assign(Parts.begin(), Parts.end()); else assert(std::equal(Parts.begin(), Parts.end(), ConcatenationOf.begin()) && "parts consistent"); } void CodeGenSubRegIndex::computeConcatTransitiveClosure() { for (SmallVectorImpl::iterator I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) { CodeGenSubRegIndex *SubIdx = *I; SubIdx->computeConcatTransitiveClosure(); #ifndef NDEBUG for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf) assert(SRI->ConcatenationOf.empty() && "No transitive closure?"); #endif if (SubIdx->ConcatenationOf.empty()) { ++I; } else { I = ConcatenationOf.erase(I); I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(), SubIdx->ConcatenationOf.end()); I += SubIdx->ConcatenationOf.size(); } } } //===----------------------------------------------------------------------===// // CodeGenRegister //===----------------------------------------------------------------------===// CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) : TheDef(R), EnumValue(Enum), CostPerUse(R->getValueAsListOfInts("CostPerUse")), CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), HasDisjunctSubRegs(false), SubRegsComplete(false), SuperRegsComplete(false), TopoSig(~0u) { Artificial = R->getValueAsBit("isArtificial"); } void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { std::vector SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); std::vector SRs = TheDef->getValueAsListOfDefs("SubRegs"); if (SRIs.size() != SRs.size()) PrintFatalError(TheDef->getLoc(), "SubRegs and SubRegIndices must have the same size"); for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); } // Also compute leading super-registers. Each register has a list of // covered-by-subregs super-registers where it appears as the first explicit // sub-register. // // This is used by computeSecondarySubRegs() to find candidates. if (CoveredBySubRegs && !ExplicitSubRegs.empty()) ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); // Add ad hoc alias links. This is a symmetric relationship between two // registers, so build a symmetric graph by adding links in both ends. std::vector Aliases = TheDef->getValueAsListOfDefs("Aliases"); for (Record *Alias : Aliases) { CodeGenRegister *Reg = RegBank.getReg(Alias); ExplicitAliases.push_back(Reg); Reg->ExplicitAliases.push_back(this); } } StringRef CodeGenRegister::getName() const { assert(TheDef && "no def"); return TheDef->getName(); } namespace { // Iterate over all register units in a set of registers. class RegUnitIterator { CodeGenRegister::Vec::const_iterator RegI, RegE; CodeGenRegister::RegUnitList::iterator UnitI, UnitE; public: RegUnitIterator(const CodeGenRegister::Vec &Regs): RegI(Regs.begin()), RegE(Regs.end()) { if (RegI != RegE) { UnitI = (*RegI)->getRegUnits().begin(); UnitE = (*RegI)->getRegUnits().end(); advance(); } } bool isValid() const { return UnitI != UnitE; } unsigned operator* () const { assert(isValid()); return *UnitI; } const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } /// Preincrement. Move to the next unit. void operator++() { assert(isValid() && "Cannot advance beyond the last operand"); ++UnitI; advance(); } protected: void advance() { while (UnitI == UnitE) { if (++RegI == RegE) break; UnitI = (*RegI)->getRegUnits().begin(); UnitE = (*RegI)->getRegUnits().end(); } } }; } // end anonymous namespace // Return true of this unit appears in RegUnits. static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { return RegUnits.test(Unit); } // Inherit register units from subregisters. // Return true if the RegUnits changed. bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { bool changed = false; for (const auto &SubReg : SubRegs) { CodeGenRegister *SR = SubReg.second; // Merge the subregister's units into this register's RegUnits. changed |= (RegUnits |= SR->RegUnits); } return changed; } const CodeGenRegister::SubRegMap & CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { // Only compute this map once. if (SubRegsComplete) return SubRegs; SubRegsComplete = true; HasDisjunctSubRegs = ExplicitSubRegs.size() > 1; // First insert the explicit subregs and make sure they are fully indexed. for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { CodeGenRegister *SR = ExplicitSubRegs[i]; CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; if (!SR->Artificial) Idx->Artificial = false; if (!SubRegs.insert(std::make_pair(Idx, SR)).second) PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + " appears twice in Register " + getName()); // Map explicit sub-registers first, so the names take precedence. // The inherited sub-registers are mapped below. SubReg2Idx.insert(std::make_pair(SR, Idx)); } // Keep track of inherited subregs and how they can be reached. SmallPtrSet Orphans; // Clone inherited subregs and place duplicate entries in Orphans. // Here the order is important - earlier subregs take precedence. for (CodeGenRegister *ESR : ExplicitSubRegs) { const SubRegMap &Map = ESR->computeSubRegs(RegBank); HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs; for (const auto &SR : Map) { if (!SubRegs.insert(SR).second) Orphans.insert(SR.second); } } // Expand any composed subreg indices. // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process // expanded subreg indices recursively. SmallVector Indices = ExplicitSubRegIndices; for (unsigned i = 0; i != Indices.size(); ++i) { CodeGenSubRegIndex *Idx = Indices[i]; const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); CodeGenRegister *SR = SubRegs[Idx]; const SubRegMap &Map = SR->computeSubRegs(RegBank); // Look at the possible compositions of Idx. // They may not all be supported by SR. for (auto Comp : Comps) { SubRegMap::const_iterator SRI = Map.find(Comp.first); if (SRI == Map.end()) continue; // Idx + I->first doesn't exist in SR. // Add I->second as a name for the subreg SRI->second, assuming it is // orphaned, and the name isn't already used for something else. if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second)) continue; // We found a new name for the orphaned sub-register. SubRegs.insert(std::make_pair(Comp.second, SRI->second)); Indices.push_back(Comp.second); } } // Now Orphans contains the inherited subregisters without a direct index. // Create inferred indexes for all missing entries. // Work backwards in the Indices vector in order to compose subregs bottom-up. // Consider this subreg sequence: // // qsub_1 -> dsub_0 -> ssub_0 // // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register // can be reached in two different ways: // // qsub_1 -> ssub_0 // dsub_2 -> ssub_0 // // We pick the latter composition because another register may have [dsub_0, // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The // dsub_2 -> ssub_0 composition can be shared. while (!Indices.empty() && !Orphans.empty()) { CodeGenSubRegIndex *Idx = Indices.pop_back_val(); CodeGenRegister *SR = SubRegs[Idx]; const SubRegMap &Map = SR->computeSubRegs(RegBank); for (const auto &SubReg : Map) if (Orphans.erase(SubReg.second)) SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second; } // Compute the inverse SubReg -> Idx map. for (const auto &SubReg : SubRegs) { if (SubReg.second == this) { ArrayRef Loc; if (TheDef) Loc = TheDef->getLoc(); PrintFatalError(Loc, "Register " + getName() + " has itself as a sub-register"); } // Compute AllSuperRegsCovered. if (!CoveredBySubRegs) SubReg.first->AllSuperRegsCovered = false; // Ensure that every sub-register has a unique name. DenseMap::iterator Ins = SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first; if (Ins->second == SubReg.first) continue; // Trouble: Two different names for SubReg.second. ArrayRef Loc; if (TheDef) Loc = TheDef->getLoc(); PrintFatalError(Loc, "Sub-register can't have two names: " + SubReg.second->getName() + " available as " + SubReg.first->getName() + " and " + Ins->second->getName()); } // Derive possible names for sub-register concatenations from any explicit // sub-registers. By doing this before computeSecondarySubRegs(), we ensure // that getConcatSubRegIndex() won't invent any concatenated indices that the // user already specified. for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { CodeGenRegister *SR = ExplicitSubRegs[i]; if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 || SR->Artificial) continue; // SR is composed of multiple sub-regs. Find their names in this register. SmallVector Parts; for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) { CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j]; if (!I.Artificial) Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); } // Offer this as an existing spelling for the concatenation of Parts. CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i]; Idx.setConcatenationOf(Parts); } // Initialize RegUnitList. Because getSubRegs is called recursively, this // processes the register hierarchy in postorder. // // Inherit all sub-register units. It is good enough to look at the explicit // sub-registers, the other registers won't contribute any more units. for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { CodeGenRegister *SR = ExplicitSubRegs[i]; RegUnits |= SR->RegUnits; } // Absent any ad hoc aliasing, we create one register unit per leaf register. // These units correspond to the maximal cliques in the register overlap // graph which is optimal. // // When there is ad hoc aliasing, we simply create one unit per edge in the // undirected ad hoc aliasing graph. Technically, we could do better by // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 // are extremely rare anyway (I've never seen one), so we don't bother with // the added complexity. for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { CodeGenRegister *AR = ExplicitAliases[i]; // Only visit each edge once. if (AR->SubRegsComplete) continue; // Create a RegUnit representing this alias edge, and add it to both // registers. unsigned Unit = RegBank.newRegUnit(this, AR); RegUnits.set(Unit); AR->RegUnits.set(Unit); } // Finally, create units for leaf registers without ad hoc aliases. Note that // a leaf register with ad hoc aliases doesn't get its own unit - it isn't // necessary. This means the aliasing leaf registers can share a single unit. if (RegUnits.empty()) RegUnits.set(RegBank.newRegUnit(this)); // We have now computed the native register units. More may be adopted later // for balancing purposes. NativeRegUnits = RegUnits; return SubRegs; } // In a register that is covered by its sub-registers, try to find redundant // sub-registers. For example: // // QQ0 = {Q0, Q1} // Q0 = {D0, D1} // Q1 = {D2, D3} // // We can infer that D1_D2 is also a sub-register, even if it wasn't named in // the register definition. // // The explicitly specified registers form a tree. This function discovers // sub-register relationships that would force a DAG. // void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { SmallVector NewSubRegs; std::queue> SubRegQueue; for (std::pair P : SubRegs) SubRegQueue.push(P); // Look at the leading super-registers of each sub-register. Those are the // candidates for new sub-registers, assuming they are fully contained in // this register. while (!SubRegQueue.empty()) { CodeGenSubRegIndex *SubRegIdx; const CodeGenRegister *SubReg; std::tie(SubRegIdx, SubReg) = SubRegQueue.front(); SubRegQueue.pop(); const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; for (unsigned i = 0, e = Leads.size(); i != e; ++i) { CodeGenRegister *Cand = const_cast(Leads[i]); // Already got this sub-register? if (Cand == this || getSubRegIndex(Cand)) continue; // Check if each component of Cand is already a sub-register. assert(!Cand->ExplicitSubRegs.empty() && "Super-register has no sub-registers"); if (Cand->ExplicitSubRegs.size() == 1) continue; SmallVector Parts; // We know that the first component is (SubRegIdx,SubReg). However we // may still need to split it into smaller subregister parts. assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct"); assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct"); for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) { if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) { if (SubRegIdx->ConcatenationOf.empty()) Parts.push_back(SubRegIdx); else append_range(Parts, SubRegIdx->ConcatenationOf); } else { // Sub-register doesn't exist. Parts.clear(); break; } } // There is nothing to do if some Cand sub-register is not part of this // register. if (Parts.empty()) continue; // Each part of Cand is a sub-register of this. Make the full Cand also // a sub-register with a concatenated sub-register index. CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts); std::pair NewSubReg = std::make_pair(Concat, Cand); if (!SubRegs.insert(NewSubReg).second) continue; // We inserted a new subregister. NewSubRegs.push_back(NewSubReg); SubRegQueue.push(NewSubReg); SubReg2Idx.insert(std::make_pair(Cand, Concat)); } } // Create sub-register index composition maps for the synthesized indices. for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; CodeGenRegister *NewSubReg = NewSubRegs[i].second; for (auto SubReg : NewSubReg->SubRegs) { CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second); if (!SubIdx) PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + SubReg.second->getName() + " in " + getName()); NewIdx->addComposite(SubReg.first, SubIdx); } } } void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { // Only visit each register once. if (SuperRegsComplete) return; SuperRegsComplete = true; // Make sure all sub-registers have been visited first, so the super-reg // lists will be topologically ordered. for (auto SubReg : SubRegs) SubReg.second->computeSuperRegs(RegBank); // Now add this as a super-register on all sub-registers. // Also compute the TopoSigId in post-order. TopoSigId Id; for (auto SubReg : SubRegs) { // Topological signature computed from SubIdx, TopoId(SubReg). // Loops and idempotent indices have TopoSig = ~0u. Id.push_back(SubReg.first->EnumValue); Id.push_back(SubReg.second->TopoSig); // Don't add duplicate entries. if (!SubReg.second->SuperRegs.empty() && SubReg.second->SuperRegs.back() == this) continue; SubReg.second->SuperRegs.push_back(this); } TopoSig = RegBank.getTopoSig(Id); } void CodeGenRegister::addSubRegsPreOrder(SetVector &OSet, CodeGenRegBank &RegBank) const { assert(SubRegsComplete && "Must precompute sub-registers"); for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { CodeGenRegister *SR = ExplicitSubRegs[i]; if (OSet.insert(SR)) SR->addSubRegsPreOrder(OSet, RegBank); } // Add any secondary sub-registers that weren't part of the explicit tree. for (auto SubReg : SubRegs) OSet.insert(SubReg.second); } // Get the sum of this register's unit weights. unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { unsigned Weight = 0; for (unsigned RegUnit : RegUnits) { Weight += RegBank.getRegUnit(RegUnit).Weight; } return Weight; } //===----------------------------------------------------------------------===// // RegisterTuples //===----------------------------------------------------------------------===// // A RegisterTuples def is used to generate pseudo-registers from lists of // sub-registers. We provide a SetTheory expander class that returns the new // registers. namespace { struct TupleExpander : SetTheory::Expander { // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of // the synthesized definitions for their lifetime. std::vector> &SynthDefs; TupleExpander(std::vector> &SynthDefs) : SynthDefs(SynthDefs) {} void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { std::vector Indices = Def->getValueAsListOfDefs("SubRegIndices"); unsigned Dim = Indices.size(); ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); if (Dim != SubRegs->size()) PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); if (Dim < 2) PrintFatalError(Def->getLoc(), "Tuples must have at least 2 sub-registers"); // Evaluate the sub-register lists to be zipped. unsigned Length = ~0u; SmallVector Lists(Dim); for (unsigned i = 0; i != Dim; ++i) { ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); Length = std::min(Length, unsigned(Lists[i].size())); } if (Length == 0) return; // Precompute some types. Record *RegisterCl = Def->getRecords().getClass("Register"); RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); std::vector RegNames = Def->getValueAsListOfStrings("RegAsmNames"); // Zip them up. for (unsigned n = 0; n != Length; ++n) { std::string Name; Record *Proto = Lists[0][n]; std::vector Tuple; for (unsigned i = 0; i != Dim; ++i) { Record *Reg = Lists[i][n]; if (i) Name += '_'; Name += Reg->getName(); Tuple.push_back(DefInit::get(Reg)); } // Take the cost list of the first register in the tuple. ListInit *CostList = Proto->getValueAsListInit("CostPerUse"); SmallVector CostPerUse; CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end()); StringInit *AsmName = StringInit::get(""); if (!RegNames.empty()) { if (RegNames.size() <= n) PrintFatalError(Def->getLoc(), "Register tuple definition missing name for '" + Name + "'."); AsmName = StringInit::get(RegNames[n]); } // Create a new Record representing the synthesized register. This record // is only for consumption by CodeGenRegister, it is not added to the // RecordKeeper. SynthDefs.emplace_back( std::make_unique(Name, Def->getLoc(), Def->getRecords())); Record *NewReg = SynthDefs.back().get(); Elts.insert(NewReg); // Copy Proto super-classes. ArrayRef> Supers = Proto->getSuperClasses(); for (const auto &SuperPair : Supers) NewReg->addSuperClass(SuperPair.first, SuperPair.second); // Copy Proto fields. for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { RecordVal RV = Proto->getValues()[i]; // Skip existing fields, like NAME. if (NewReg->getValue(RV.getNameInit())) continue; StringRef Field = RV.getName(); // Replace the sub-register list with Tuple. if (Field == "SubRegs") RV.setValue(ListInit::get(Tuple, RegisterRecTy)); if (Field == "AsmName") RV.setValue(AsmName); // CostPerUse is aggregated from all Tuple members. if (Field == "CostPerUse") RV.setValue(ListInit::get(CostPerUse, CostList->getElementType())); // Composite registers are always covered by sub-registers. if (Field == "CoveredBySubRegs") RV.setValue(BitInit::get(true)); // Copy fields from the RegisterTuples def. if (Field == "SubRegIndices" || Field == "CompositeIndices") { NewReg->addValue(*Def->getValue(Field)); continue; } // Some fields get their default uninitialized value. if (Field == "DwarfNumbers" || Field == "DwarfAlias" || Field == "Aliases") { if (const RecordVal *DefRV = RegisterCl->getValue(Field)) NewReg->addValue(*DefRV); continue; } // Everything else is copied from Proto. NewReg->addValue(RV); } } } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // CodeGenRegisterClass //===----------------------------------------------------------------------===// static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { llvm::sort(M, deref>()); M.erase(std::unique(M.begin(), M.end(), deref>()), M.end()); } CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) : TheDef(R), Name(std::string(R->getName())), TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1) { GeneratePressureSet = R->getValueAsBit("GeneratePressureSet"); std::vector TypeList = R->getValueAsListOfDefs("RegTypes"); if (TypeList.empty()) PrintFatalError(R->getLoc(), "RegTypes list must not be empty!"); for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { Record *Type = TypeList[i]; if (!Type->isSubClassOf("ValueType")) PrintFatalError(R->getLoc(), "RegTypes list member '" + Type->getName() + "' does not derive from the ValueType class!"); VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes())); } // Allocation order 0 is the full set. AltOrders provides others. const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); ListInit *AltOrders = R->getValueAsListInit("AltOrders"); Orders.resize(1 + AltOrders->size()); // Default allocation order always contains all registers. Artificial = true; for (unsigned i = 0, e = Elements->size(); i != e; ++i) { Orders[0].push_back((*Elements)[i]); const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); Members.push_back(Reg); Artificial &= Reg->Artificial; TopoSigs.set(Reg->getTopoSig()); } sortAndUniqueRegisters(Members); // Alternative allocation orders may be subsets. SetTheory::RecSet Order; for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); Orders[1 + i].append(Order.begin(), Order.end()); // Verify that all altorder members are regclass members. while (!Order.empty()) { CodeGenRegister *Reg = RegBank.getReg(Order.back()); Order.pop_back(); if (!contains(Reg)) PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + " is not a class member"); } } Namespace = R->getValueAsString("Namespace"); if (const RecordVal *RV = R->getValue("RegInfos")) if (DefInit *DI = dyn_cast_or_null(RV->getValue())) RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes()); unsigned Size = R->getValueAsInt("Size"); assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) && "Impossible to determine register size"); if (!RSI.hasDefault()) { RegSizeInfo RI; RI.RegSize = RI.SpillSize = Size ? Size : VTs[0].getSimple().getSizeInBits(); RI.SpillAlignment = R->getValueAsInt("Alignment"); RSI.insertRegSizeForMode(DefaultMode, RI); } CopyCost = R->getValueAsInt("CopyCost"); Allocatable = R->getValueAsBit("isAllocatable"); AltOrderSelect = R->getValueAsString("AltOrderSelect"); int AllocationPriority = R->getValueAsInt("AllocationPriority"); if (AllocationPriority < 0 || AllocationPriority > 63) PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]"); this->AllocationPriority = AllocationPriority; } // Create an inferred register class that was missing from the .td files. // Most properties will be inherited from the closest super-class after the // class structure has been computed. CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, StringRef Name, Key Props) : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)), TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI), CopyCost(0), Allocatable(true), AllocationPriority(0) { Artificial = true; GeneratePressureSet = false; for (const auto R : Members) { TopoSigs.set(R->getTopoSig()); Artificial &= R->Artificial; } } // Compute inherited propertied for a synthesized register class. void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { assert(!getDef() && "Only synthesized classes can inherit properties"); assert(!SuperClasses.empty() && "Synthesized class without super class"); // The last super-class is the smallest one. CodeGenRegisterClass &Super = *SuperClasses.back(); // Most properties are copied directly. // Exceptions are members, size, and alignment Namespace = Super.Namespace; VTs = Super.VTs; CopyCost = Super.CopyCost; // Check for allocatable superclasses. Allocatable = any_of(SuperClasses, [&](const CodeGenRegisterClass *S) { return S->Allocatable; }); AltOrderSelect = Super.AltOrderSelect; AllocationPriority = Super.AllocationPriority; GeneratePressureSet |= Super.GeneratePressureSet; // Copy all allocation orders, filter out foreign registers from the larger // super-class. Orders.resize(Super.Orders.size()); for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) if (contains(RegBank.getReg(Super.Orders[i][j]))) Orders[i].push_back(Super.Orders[i][j]); } bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { return std::binary_search(Members.begin(), Members.end(), Reg, deref>()); } unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const { if (TheDef && !TheDef->isValueUnset("Weight")) return TheDef->getValueAsInt("Weight"); if (Members.empty() || Artificial) return 0; return (*Members.begin())->getWeight(RegBank); } namespace llvm { raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { OS << "{ " << K.RSI; for (const auto R : *K.Members) OS << ", " << R->getName(); return OS << " }"; } } // end namespace llvm // This is a simple lexicographical order that can be used to search for sets. // It is not the same as the topological order provided by TopoOrderRC. bool CodeGenRegisterClass::Key:: operator<(const CodeGenRegisterClass::Key &B) const { assert(Members && B.Members); return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI); } // Returns true if RC is a strict subclass. // RC is a sub-class of this class if it is a valid replacement for any // instruction operand where a register of this classis required. It must // satisfy these conditions: // // 1. All RC registers are also in this. // 2. The RC spill size must not be smaller than our spill size. // 3. RC spill alignment must be compatible with ours. // static bool testSubClass(const CodeGenRegisterClass *A, const CodeGenRegisterClass *B) { return A->RSI.isSubClassOf(B->RSI) && std::includes(A->getMembers().begin(), A->getMembers().end(), B->getMembers().begin(), B->getMembers().end(), deref>()); } /// Sorting predicate for register classes. This provides a topological /// ordering that arranges all register classes before their sub-classes. /// /// Register classes with the same registers, spill size, and alignment form a /// clique. They will be ordered alphabetically. /// static bool TopoOrderRC(const CodeGenRegisterClass &PA, const CodeGenRegisterClass &PB) { auto *A = &PA; auto *B = &PB; if (A == B) return false; if (A->RSI < B->RSI) return true; if (A->RSI != B->RSI) return false; // Order by descending set size. Note that the classes' allocation order may // not have been computed yet. The Members set is always vaild. if (A->getMembers().size() > B->getMembers().size()) return true; if (A->getMembers().size() < B->getMembers().size()) return false; // Finally order by name as a tie breaker. return StringRef(A->getName()) < B->getName(); } std::string CodeGenRegisterClass::getQualifiedName() const { if (Namespace.empty()) return getName(); else return (Namespace + "::" + getName()).str(); } // Compute sub-classes of all register classes. // Assume the classes are ordered topologically. void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { auto &RegClasses = RegBank.getRegClasses(); // Visit backwards so sub-classes are seen first. for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { CodeGenRegisterClass &RC = *I; RC.SubClasses.resize(RegClasses.size()); RC.SubClasses.set(RC.EnumValue); if (RC.Artificial) continue; // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { CodeGenRegisterClass &SubRC = *I2; if (RC.SubClasses.test(SubRC.EnumValue)) continue; if (!testSubClass(&RC, &SubRC)) continue; // SubRC is a sub-class. Grap all its sub-classes so we won't have to // check them again. RC.SubClasses |= SubRC.SubClasses; } // Sweep up missed clique members. They will be immediately preceding RC. for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) RC.SubClasses.set(I2->EnumValue); } // Compute the SuperClasses lists from the SubClasses vectors. for (auto &RC : RegClasses) { const BitVector &SC = RC.getSubClasses(); auto I = RegClasses.begin(); for (int s = 0, next_s = SC.find_first(); next_s != -1; next_s = SC.find_next(s)) { std::advance(I, next_s - s); s = next_s; if (&*I == &RC) continue; I->SuperClasses.push_back(&RC); } } // With the class hierarchy in place, let synthesized register classes inherit // properties from their closest super-class. The iteration order here can // propagate properties down multiple levels. for (auto &RC : RegClasses) if (!RC.getDef()) RC.inheritProperties(RegBank); } Optional> CodeGenRegisterClass::getMatchingSubClassWithSubRegs( CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const { auto SizeOrder = [this](const CodeGenRegisterClass *A, const CodeGenRegisterClass *B) { // If there are multiple, identical register classes, prefer the original // register class. if (A == B) return false; if (A->getMembers().size() == B->getMembers().size()) return A == this; return A->getMembers().size() > B->getMembers().size(); }; auto &RegClasses = RegBank.getRegClasses(); // Find all the subclasses of this one that fully support the sub-register // index and order them by size. BiggestSuperRC should always be first. CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx); if (!BiggestSuperRegRC) return None; BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses(); std::vector SuperRegRCs; for (auto &RC : RegClasses) if (SuperRegRCsBV[RC.EnumValue]) SuperRegRCs.emplace_back(&RC); llvm::stable_sort(SuperRegRCs, SizeOrder); assert(SuperRegRCs.front() == BiggestSuperRegRC && "Biggest class wasn't first"); // Find all the subreg classes and order them by size too. std::vector> SuperRegClasses; for (auto &RC: RegClasses) { BitVector SuperRegClassesBV(RegClasses.size()); RC.getSuperRegClasses(SubIdx, SuperRegClassesBV); if (SuperRegClassesBV.any()) SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV)); } llvm::sort(SuperRegClasses, [&](const std::pair &A, const std::pair &B) { return SizeOrder(A.first, B.first); }); // Find the biggest subclass and subreg class such that R:subidx is in the // subreg class for all R in subclass. // // For example: // All registers in X86's GR64 have a sub_32bit subregister but no class // exists that contains all the 32-bit subregisters because GR64 contains RIP // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then, // having excluded RIP, we are able to find a SubRegRC (GR32). CodeGenRegisterClass *ChosenSuperRegClass = nullptr; CodeGenRegisterClass *SubRegRC = nullptr; for (auto *SuperRegRC : SuperRegRCs) { for (const auto &SuperRegClassPair : SuperRegClasses) { const BitVector &SuperRegClassBV = SuperRegClassPair.second; if (SuperRegClassBV[SuperRegRC->EnumValue]) { SubRegRC = SuperRegClassPair.first; ChosenSuperRegClass = SuperRegRC; // If SubRegRC is bigger than SuperRegRC then there are members of // SubRegRC that don't have super registers via SubIdx. Keep looking to // find a better fit and fall back on this one if there isn't one. // // This is intended to prevent X86 from making odd choices such as // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above. // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1 // mapping. if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size()) return std::make_pair(ChosenSuperRegClass, SubRegRC); } } // If we found a fit but it wasn't quite ideal because SubRegRC had excess // registers, then we're done. if (ChosenSuperRegClass) return std::make_pair(ChosenSuperRegClass, SubRegRC); } return None; } void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, BitVector &Out) const { auto FindI = SuperRegClasses.find(SubIdx); if (FindI == SuperRegClasses.end()) return; for (CodeGenRegisterClass *RC : FindI->second) Out.set(RC->EnumValue); } // Populate a unique sorted list of units from a register set. void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank, std::vector &RegUnits) const { std::vector TmpUnits; for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) { const RegUnit &RU = RegBank.getRegUnit(*UnitI); if (!RU.Artificial) TmpUnits.push_back(*UnitI); } llvm::sort(TmpUnits); std::unique_copy(TmpUnits.begin(), TmpUnits.end(), std::back_inserter(RegUnits)); } //===----------------------------------------------------------------------===// // CodeGenRegBank //===----------------------------------------------------------------------===// CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records, const CodeGenHwModes &Modes) : CGH(Modes) { // Configure register Sets to understand register classes and tuples. Sets.addFieldExpander("RegisterClass", "MemberList"); Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); Sets.addExpander("RegisterTuples", std::make_unique(SynthDefs)); // Read in the user-defined (named) sub-register indices. // More indices will be synthesized later. std::vector SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); llvm::sort(SRIs, LessRecord()); for (unsigned i = 0, e = SRIs.size(); i != e; ++i) getSubRegIdx(SRIs[i]); // Build composite maps from ComposedOf fields. for (auto &Idx : SubRegIndices) Idx.updateComponents(*this); // Read in the register definitions. std::vector Regs = Records.getAllDerivedDefinitions("Register"); llvm::sort(Regs, LessRecordRegister()); // Assign the enumeration values. for (unsigned i = 0, e = Regs.size(); i != e; ++i) getReg(Regs[i]); // Expand tuples and number the new registers. std::vector Tups = Records.getAllDerivedDefinitions("RegisterTuples"); for (Record *R : Tups) { std::vector TupRegs = *Sets.expand(R); llvm::sort(TupRegs, LessRecordRegister()); for (Record *RC : TupRegs) getReg(RC); } // Now all the registers are known. Build the object graph of explicit // register-register references. for (auto &Reg : Registers) Reg.buildObjectGraph(*this); // Compute register name map. for (auto &Reg : Registers) // FIXME: This could just be RegistersByName[name] = register, except that // causes some failures in MIPS - perhaps they have duplicate register name // entries? (or maybe there's a reason for it - I don't know much about this // code, just drive-by refactoring) RegistersByName.insert( std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); // Precompute all sub-register maps. // This will create Composite entries for all inferred sub-register indices. for (auto &Reg : Registers) Reg.computeSubRegs(*this); // Compute transitive closure of subregister index ConcatenationOf vectors // and initialize ConcatIdx map. for (CodeGenSubRegIndex &SRI : SubRegIndices) { SRI.computeConcatTransitiveClosure(); if (!SRI.ConcatenationOf.empty()) ConcatIdx.insert(std::make_pair( SmallVector(SRI.ConcatenationOf.begin(), SRI.ConcatenationOf.end()), &SRI)); } // Infer even more sub-registers by combining leading super-registers. for (auto &Reg : Registers) if (Reg.CoveredBySubRegs) Reg.computeSecondarySubRegs(*this); // After the sub-register graph is complete, compute the topologically // ordered SuperRegs list. for (auto &Reg : Registers) Reg.computeSuperRegs(*this); // For each pair of Reg:SR, if both are non-artificial, mark the // corresponding sub-register index as non-artificial. for (auto &Reg : Registers) { if (Reg.Artificial) continue; for (auto P : Reg.getSubRegs()) { const CodeGenRegister *SR = P.second; if (!SR->Artificial) P.first->Artificial = false; } } // Native register units are associated with a leaf register. They've all been // discovered now. NumNativeRegUnits = RegUnits.size(); // Read in register class definitions. std::vector RCs = Records.getAllDerivedDefinitions("RegisterClass"); if (RCs.empty()) PrintFatalError("No 'RegisterClass' subclasses defined!"); // Allocate user-defined register classes. for (auto *R : RCs) { RegClasses.emplace_back(*this, R); CodeGenRegisterClass &RC = RegClasses.back(); if (!RC.Artificial) addToMaps(&RC); } // Infer missing classes to create a full algebra. computeInferredRegisterClasses(); // Order register classes topologically and assign enum values. RegClasses.sort(TopoOrderRC); unsigned i = 0; for (auto &RC : RegClasses) RC.EnumValue = i++; CodeGenRegisterClass::computeSubClasses(*this); } // Create a synthetic CodeGenSubRegIndex without a corresponding Record. CodeGenSubRegIndex* CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); return &SubRegIndices.back(); } CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; if (Idx) return Idx; SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); Idx = &SubRegIndices.back(); return Idx; } const CodeGenSubRegIndex * CodeGenRegBank::findSubRegIdx(const Record* Def) const { return Def2SubRegIdx.lookup(Def); } CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { CodeGenRegister *&Reg = Def2Reg[Def]; if (Reg) return Reg; Registers.emplace_back(Def, Registers.size() + 1); Reg = &Registers.back(); return Reg; } void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { if (Record *Def = RC->getDef()) Def2RC.insert(std::make_pair(Def, RC)); // Duplicate classes are rejected by insert(). // That's OK, we only care about the properties handled by CGRC::Key. CodeGenRegisterClass::Key K(*RC); Key2RC.insert(std::make_pair(K, RC)); } // Create a synthetic sub-class if it is missing. CodeGenRegisterClass* CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, const CodeGenRegister::Vec *Members, StringRef Name) { // Synthetic sub-class has the same size and alignment as RC. CodeGenRegisterClass::Key K(Members, RC->RSI); RCKeyMap::const_iterator FoundI = Key2RC.find(K); if (FoundI != Key2RC.end()) return FoundI->second; // Sub-class doesn't exist, create a new one. RegClasses.emplace_back(*this, Name, K); addToMaps(&RegClasses.back()); return &RegClasses.back(); } CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const { if (CodeGenRegisterClass *RC = Def2RC.lookup(Def)) return RC; PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); } CodeGenSubRegIndex* CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, CodeGenSubRegIndex *B) { // Look for an existing entry. CodeGenSubRegIndex *Comp = A->compose(B); if (Comp) return Comp; // None exists, synthesize one. std::string Name = A->getName() + "_then_" + B->getName(); Comp = createSubRegIndex(Name, A->getNamespace()); A->addComposite(B, Comp); return Comp; } CodeGenSubRegIndex *CodeGenRegBank:: getConcatSubRegIndex(const SmallVector &Parts) { assert(Parts.size() > 1 && "Need two parts to concatenate"); #ifndef NDEBUG for (CodeGenSubRegIndex *Idx : Parts) { assert(Idx->ConcatenationOf.empty() && "No transitive closure?"); } #endif // Look for an existing entry. CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; if (Idx) return Idx; // None exists, synthesize one. std::string Name = Parts.front()->getName(); // Determine whether all parts are contiguous. bool isContinuous = true; unsigned Size = Parts.front()->Size; unsigned LastOffset = Parts.front()->Offset; unsigned LastSize = Parts.front()->Size; for (unsigned i = 1, e = Parts.size(); i != e; ++i) { Name += '_'; Name += Parts[i]->getName(); Size += Parts[i]->Size; if (Parts[i]->Offset != (LastOffset + LastSize)) isContinuous = false; LastOffset = Parts[i]->Offset; LastSize = Parts[i]->Size; } Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); Idx->Size = Size; Idx->Offset = isContinuous ? Parts.front()->Offset : -1; Idx->ConcatenationOf.assign(Parts.begin(), Parts.end()); return Idx; } void CodeGenRegBank::computeComposites() { using RegMap = std::map; // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from // register to (sub)register associated with the action of the left-hand // side subregister. std::map SubRegAction; for (const CodeGenRegister &R : Registers) { const CodeGenRegister::SubRegMap &SM = R.getSubRegs(); for (std::pair P : SM) SubRegAction[P.first].insert({&R, P.second}); } // Calculate the composition of two subregisters as compositions of their // associated actions. auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1, const CodeGenSubRegIndex *Sub2) { RegMap C; const RegMap &Img1 = SubRegAction.at(Sub1); const RegMap &Img2 = SubRegAction.at(Sub2); for (std::pair P : Img1) { auto F = Img2.find(P.second); if (F != Img2.end()) C.insert({P.first, F->second}); } return C; }; // Check if the two maps agree on the intersection of their domains. auto agree = [] (const RegMap &Map1, const RegMap &Map2) { // Technically speaking, an empty map agrees with any other map, but // this could flag false positives. We're interested in non-vacuous // agreements. if (Map1.empty() || Map2.empty()) return false; for (std::pair P : Map1) { auto F = Map2.find(P.first); if (F == Map2.end() || P.second != F->second) return false; } return true; }; using CompositePair = std::pair; SmallSet UserDefined; for (const CodeGenSubRegIndex &Idx : SubRegIndices) for (auto P : Idx.getComposites()) UserDefined.insert(std::make_pair(&Idx, P.first)); // Keep track of TopoSigs visited. We only need to visit each TopoSig once, // and many registers will share TopoSigs on regular architectures. BitVector TopoSigs(getNumTopoSigs()); for (const auto &Reg1 : Registers) { // Skip identical subreg structures already processed. if (TopoSigs.test(Reg1.getTopoSig())) continue; TopoSigs.set(Reg1.getTopoSig()); const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); for (auto I1 : SRM1) { CodeGenSubRegIndex *Idx1 = I1.first; CodeGenRegister *Reg2 = I1.second; // Ignore identity compositions. if (&Reg1 == Reg2) continue; const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); // Try composing Idx1 with another SubRegIndex. for (auto I2 : SRM2) { CodeGenSubRegIndex *Idx2 = I2.first; CodeGenRegister *Reg3 = I2.second; // Ignore identity compositions. if (Reg2 == Reg3) continue; // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); assert(Idx3 && "Sub-register doesn't have an index"); // Conflicting composition? Emit a warning but allow it. if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) { // If the composition was not user-defined, always emit a warning. if (!UserDefined.count({Idx1, Idx2}) || agree(compose(Idx1, Idx2), SubRegAction.at(Idx3))) PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + " and " + Idx2->getQualifiedName() + " compose ambiguously as " + Prev->getQualifiedName() + " or " + Idx3->getQualifiedName()); } } } } } // Compute lane masks. This is similar to register units, but at the // sub-register index level. Each bit in the lane mask is like a register unit // class, and two lane masks will have a bit in common if two sub-register // indices overlap in some register. // // Conservatively share a lane mask bit if two sub-register indices overlap in // some registers, but not in others. That shouldn't happen a lot. void CodeGenRegBank::computeSubRegLaneMasks() { // First assign individual bits to all the leaf indices. unsigned Bit = 0; // Determine mask of lanes that cover their registers. CoveringLanes = LaneBitmask::getAll(); for (auto &Idx : SubRegIndices) { if (Idx.getComposites().empty()) { if (Bit > LaneBitmask::BitWidth) { PrintFatalError( Twine("Ran out of lanemask bits to represent subregister ") + Idx.getName()); } Idx.LaneMask = LaneBitmask::getLane(Bit); ++Bit; } else { Idx.LaneMask = LaneBitmask::getNone(); } } // Compute transformation sequences for composeSubRegIndexLaneMask. The idea // here is that for each possible target subregister we look at the leafs // in the subregister graph that compose for this target and create // transformation sequences for the lanemasks. Each step in the sequence // consists of a bitmask and a bitrotate operation. As the rotation amounts // are usually the same for many subregisters we can easily combine the steps // by combining the masks. for (const auto &Idx : SubRegIndices) { const auto &Composites = Idx.getComposites(); auto &LaneTransforms = Idx.CompositionLaneMaskTransform; if (Composites.empty()) { // Moving from a class with no subregisters we just had a single lane: // The subregister must be a leaf subregister and only occupies 1 bit. // Move the bit from the class without subregisters into that position. unsigned DstBit = Idx.LaneMask.getHighestLane(); assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) && "Must be a leaf subregister"); MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit }; LaneTransforms.push_back(MaskRol); } else { // Go through all leaf subregisters and find the ones that compose with // Idx. These make out all possible valid bits in the lane mask we want to // transform. Looking only at the leafs ensure that only a single bit in // the mask is set. unsigned NextBit = 0; for (auto &Idx2 : SubRegIndices) { // Skip non-leaf subregisters. if (!Idx2.getComposites().empty()) continue; // Replicate the behaviour from the lane mask generation loop above. unsigned SrcBit = NextBit; LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit); if (NextBit < LaneBitmask::BitWidth-1) ++NextBit; assert(Idx2.LaneMask == SrcMask); // Get the composed subregister if there is any. auto C = Composites.find(&Idx2); if (C == Composites.end()) continue; const CodeGenSubRegIndex *Composite = C->second; // The Composed subreg should be a leaf subreg too assert(Composite->getComposites().empty()); // Create Mask+Rotate operation and merge with existing ops if possible. unsigned DstBit = Composite->LaneMask.getHighestLane(); int Shift = DstBit - SrcBit; uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift : LaneBitmask::BitWidth + Shift; for (auto &I : LaneTransforms) { if (I.RotateLeft == RotateLeft) { I.Mask |= SrcMask; SrcMask = LaneBitmask::getNone(); } } if (SrcMask.any()) { MaskRolPair MaskRol = { SrcMask, RotateLeft }; LaneTransforms.push_back(MaskRol); } } } // Optimize if the transformation consists of one step only: Set mask to // 0xffffffff (including some irrelevant invalid bits) so that it should // merge with more entries later while compressing the table. if (LaneTransforms.size() == 1) LaneTransforms[0].Mask = LaneBitmask::getAll(); // Further compression optimization: For invalid compositions resulting // in a sequence with 0 entries we can just pick any other. Choose // Mask 0xffffffff with Rotation 0. if (LaneTransforms.size() == 0) { MaskRolPair P = { LaneBitmask::getAll(), 0 }; LaneTransforms.push_back(P); } } // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented // by the sub-register graph? This doesn't occur in any known targets. // Inherit lanes from composites. for (const auto &Idx : SubRegIndices) { LaneBitmask Mask = Idx.computeLaneMask(); // If some super-registers without CoveredBySubRegs use this index, we can // no longer assume that the lanes are covering their registers. if (!Idx.AllSuperRegsCovered) CoveringLanes &= ~Mask; } // Compute lane mask combinations for register classes. for (auto &RegClass : RegClasses) { LaneBitmask LaneMask; for (const auto &SubRegIndex : SubRegIndices) { if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr) continue; LaneMask |= SubRegIndex.LaneMask; } // For classes without any subregisters set LaneMask to 1 instead of 0. // This makes it easier for client code to handle classes uniformly. if (LaneMask.none()) LaneMask = LaneBitmask::getLane(0); RegClass.LaneMask = LaneMask; } } namespace { // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is // the transitive closure of the union of overlapping register // classes. Together, the UberRegSets form a partition of the registers. If we // consider overlapping register classes to be connected, then each UberRegSet // is a set of connected components. // // An UberRegSet will likely be a horizontal slice of register names of // the same width. Nontrivial subregisters should then be in a separate // UberRegSet. But this property isn't required for valid computation of // register unit weights. // // A Weight field caches the max per-register unit weight in each UberRegSet. // // A set of SingularDeterminants flags single units of some register in this set // for which the unit weight equals the set weight. These units should not have // their weight increased. struct UberRegSet { CodeGenRegister::Vec Regs; unsigned Weight = 0; CodeGenRegister::RegUnitList SingularDeterminants; UberRegSet() = default; }; } // end anonymous namespace // Partition registers into UberRegSets, where each set is the transitive // closure of the union of overlapping register classes. // // UberRegSets[0] is a special non-allocatable set. static void computeUberSets(std::vector &UberSets, std::vector &RegSets, CodeGenRegBank &RegBank) { const auto &Registers = RegBank.getRegisters(); // The Register EnumValue is one greater than its index into Registers. assert(Registers.size() == Registers.back().EnumValue && "register enum value mismatch"); // For simplicitly make the SetID the same as EnumValue. IntEqClasses UberSetIDs(Registers.size()+1); std::set AllocatableRegs; for (auto &RegClass : RegBank.getRegClasses()) { if (!RegClass.Allocatable) continue; const CodeGenRegister::Vec &Regs = RegClass.getMembers(); if (Regs.empty()) continue; unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); assert(USetID && "register number 0 is invalid"); AllocatableRegs.insert((*Regs.begin())->EnumValue); for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) { AllocatableRegs.insert((*I)->EnumValue); UberSetIDs.join(USetID, (*I)->EnumValue); } } // Combine non-allocatable regs. for (const auto &Reg : Registers) { unsigned RegNum = Reg.EnumValue; if (AllocatableRegs.count(RegNum)) continue; UberSetIDs.join(0, RegNum); } UberSetIDs.compress(); // Make the first UberSet a special unallocatable set. unsigned ZeroID = UberSetIDs[0]; // Insert Registers into the UberSets formed by union-find. // Do not resize after this. UberSets.resize(UberSetIDs.getNumClasses()); unsigned i = 0; for (const CodeGenRegister &Reg : Registers) { unsigned USetID = UberSetIDs[Reg.EnumValue]; if (!USetID) USetID = ZeroID; else if (USetID == ZeroID) USetID = 0; UberRegSet *USet = &UberSets[USetID]; USet->Regs.push_back(&Reg); sortAndUniqueRegisters(USet->Regs); RegSets[i++] = USet; } } // Recompute each UberSet weight after changing unit weights. static void computeUberWeights(std::vector &UberSets, CodeGenRegBank &RegBank) { // Skip the first unallocatable set. for (std::vector::iterator I = std::next(UberSets.begin()), E = UberSets.end(); I != E; ++I) { // Initialize all unit weights in this set, and remember the max units/reg. const CodeGenRegister *Reg = nullptr; unsigned MaxWeight = 0, Weight = 0; for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { if (Reg != UnitI.getReg()) { if (Weight > MaxWeight) MaxWeight = Weight; Reg = UnitI.getReg(); Weight = 0; } if (!RegBank.getRegUnit(*UnitI).Artificial) { unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; if (!UWeight) { UWeight = 1; RegBank.increaseRegUnitWeight(*UnitI, UWeight); } Weight += UWeight; } } if (Weight > MaxWeight) MaxWeight = Weight; if (I->Weight != MaxWeight) { LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight; for (auto &Unit : I->Regs) dbgs() << " " << Unit->getName(); dbgs() << "\n"); // Update the set weight. I->Weight = MaxWeight; } // Find singular determinants. for (const auto R : I->Regs) { if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { I->SingularDeterminants |= R->getRegUnits(); } } } } // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of // a register and its subregisters so that they have the same weight as their // UberSet. Self-recursion processes the subregister tree in postorder so // subregisters are normalized first. // // Side effects: // - creates new adopted register units // - causes superregisters to inherit adopted units // - increases the weight of "singular" units // - induces recomputation of UberWeights. static bool normalizeWeight(CodeGenRegister *Reg, std::vector &UberSets, std::vector &RegSets, BitVector &NormalRegs, CodeGenRegister::RegUnitList &NormalUnits, CodeGenRegBank &RegBank) { NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size())); if (NormalRegs.test(Reg->EnumValue)) return false; NormalRegs.set(Reg->EnumValue); bool Changed = false; const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); for (auto SRI : SRM) { if (SRI.second == Reg) continue; // self-cycles happen Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs, NormalUnits, RegBank); } // Postorder register normalization. // Inherit register units newly adopted by subregisters. if (Reg->inheritRegUnits(RegBank)) computeUberWeights(UberSets, RegBank); // Check if this register is too skinny for its UberRegSet. UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; unsigned RegWeight = Reg->getWeight(RegBank); if (UberSet->Weight > RegWeight) { // A register unit's weight can be adjusted only if it is the singular unit // for this register, has not been used to normalize a subregister's set, // and has not already been used to singularly determine this UberRegSet. unsigned AdjustUnit = *Reg->getRegUnits().begin(); if (Reg->getRegUnits().count() != 1 || hasRegUnit(NormalUnits, AdjustUnit) || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { // We don't have an adjustable unit, so adopt a new one. AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); Reg->adoptRegUnit(AdjustUnit); // Adopting a unit does not immediately require recomputing set weights. } else { // Adjust the existing single unit. if (!RegBank.getRegUnit(AdjustUnit).Artificial) RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); // The unit may be shared among sets and registers within this set. computeUberWeights(UberSets, RegBank); } Changed = true; } // Mark these units normalized so superregisters can't change their weights. NormalUnits |= Reg->getRegUnits(); return Changed; } // Compute a weight for each register unit created during getSubRegs. // // The goal is that two registers in the same class will have the same weight, // where each register's weight is defined as sum of its units' weights. void CodeGenRegBank::computeRegUnitWeights() { std::vector UberSets; std::vector RegSets(Registers.size()); computeUberSets(UberSets, RegSets, *this); // UberSets and RegSets are now immutable. computeUberWeights(UberSets, *this); // Iterate over each Register, normalizing the unit weights until reaching // a fix point. unsigned NumIters = 0; for (bool Changed = true; Changed; ++NumIters) { assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); Changed = false; for (auto &Reg : Registers) { CodeGenRegister::RegUnitList NormalUnits; BitVector NormalRegs; Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, NormalUnits, *this); } } } // Find a set in UniqueSets with the same elements as Set. // Return an iterator into UniqueSets. static std::vector::const_iterator findRegUnitSet(const std::vector &UniqueSets, const RegUnitSet &Set) { std::vector::const_iterator I = UniqueSets.begin(), E = UniqueSets.end(); for(;I != E; ++I) { if (I->Units == Set.Units) break; } return I; } // Return true if the RUSubSet is a subset of RUSuperSet. static bool isRegUnitSubSet(const std::vector &RUSubSet, const std::vector &RUSuperSet) { return std::includes(RUSuperSet.begin(), RUSuperSet.end(), RUSubSet.begin(), RUSubSet.end()); } /// Iteratively prune unit sets. Prune subsets that are close to the superset, /// but with one or two registers removed. We occasionally have registers like /// APSR and PC thrown in with the general registers. We also see many /// special-purpose register subsets, such as tail-call and Thumb /// encodings. Generating all possible overlapping sets is combinatorial and /// overkill for modeling pressure. Ideally we could fix this statically in /// tablegen by (1) having the target define register classes that only include /// the allocatable registers and marking other classes as non-allocatable and /// (2) having a way to mark special purpose classes as "don't-care" classes for /// the purpose of pressure. However, we make an attempt to handle targets that /// are not nicely defined by merging nearly identical register unit sets /// statically. This generates smaller tables. Then, dynamically, we adjust the /// set limit by filtering the reserved registers. /// /// Merge sets only if the units have the same weight. For example, on ARM, /// Q-tuples with ssub index 0 include all S regs but also include D16+. We /// should not expand the S set to include D regs. void CodeGenRegBank::pruneUnitSets() { assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); // Form an equivalence class of UnitSets with no significant difference. std::vector SuperSetIDs; for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); SubIdx != EndIdx; ++SubIdx) { const RegUnitSet &SubSet = RegUnitSets[SubIdx]; unsigned SuperIdx = 0; for (; SuperIdx != EndIdx; ++SuperIdx) { if (SuperIdx == SubIdx) continue; unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) && (SubSet.Units.size() + 3 > SuperSet.Units.size()) && UnitWeight == RegUnits[SuperSet.Units[0]].Weight && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx << "\n"); // We can pick any of the set names for the merged set. Go for the // shortest one to avoid picking the name of one of the classes that are // artificially created by tablegen. So "FPR128_lo" instead of // "QQQQ_with_qsub3_in_FPR128_lo". if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size()) RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name; break; } } if (SuperIdx == EndIdx) SuperSetIDs.push_back(SubIdx); } // Populate PrunedUnitSets with each equivalence class's superset. std::vector PrunedUnitSets(SuperSetIDs.size()); for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { unsigned SuperIdx = SuperSetIDs[i]; PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); } RegUnitSets.swap(PrunedUnitSets); } // Create a RegUnitSet for each RegClass that contains all units in the class // including adopted units that are necessary to model register pressure. Then // iteratively compute RegUnitSets such that the union of any two overlapping // RegUnitSets is repreresented. // // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any // RegUnitSet that is a superset of that RegUnitClass. void CodeGenRegBank::computeRegUnitSets() { assert(RegUnitSets.empty() && "dirty RegUnitSets"); // Compute a unique RegUnitSet for each RegClass. auto &RegClasses = getRegClasses(); for (auto &RC : RegClasses) { if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet) continue; // Speculatively grow the RegUnitSets to hold the new set. RegUnitSets.resize(RegUnitSets.size() + 1); RegUnitSets.back().Name = RC.getName(); // Compute a sorted list of units in this class. RC.buildRegUnitSet(*this, RegUnitSets.back().Units); // Find an existing RegUnitSet. std::vector::const_iterator SetI = findRegUnitSet(RegUnitSets, RegUnitSets.back()); if (SetI != std::prev(RegUnitSets.end())) RegUnitSets.pop_back(); } LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); USIdx < USEnd; ++USIdx) { dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; for (auto &U : RegUnitSets[USIdx].Units) printRegUnitName(U); dbgs() << "\n"; }); // Iteratively prune unit sets. pruneUnitSets(); LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); USIdx < USEnd; ++USIdx) { dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; for (auto &U : RegUnitSets[USIdx].Units) printRegUnitName(U); dbgs() << "\n"; } dbgs() << "\nUnion sets:\n"); // Iterate over all unit sets, including new ones added by this loop. unsigned NumRegUnitSubSets = RegUnitSets.size(); for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { // In theory, this is combinatorial. In practice, it needs to be bounded // by a small number of sets for regpressure to be efficient. // If the assert is hit, we need to implement pruning. assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); // Compare new sets with all original classes. for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; SearchIdx != EndIdx; ++SearchIdx) { std::set Intersection; std::set_intersection(RegUnitSets[Idx].Units.begin(), RegUnitSets[Idx].Units.end(), RegUnitSets[SearchIdx].Units.begin(), RegUnitSets[SearchIdx].Units.end(), std::inserter(Intersection, Intersection.begin())); if (Intersection.empty()) continue; // Speculatively grow the RegUnitSets to hold the new set. RegUnitSets.resize(RegUnitSets.size() + 1); RegUnitSets.back().Name = RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name; std::set_union(RegUnitSets[Idx].Units.begin(), RegUnitSets[Idx].Units.end(), RegUnitSets[SearchIdx].Units.begin(), RegUnitSets[SearchIdx].Units.end(), std::inserter(RegUnitSets.back().Units, RegUnitSets.back().Units.begin())); // Find an existing RegUnitSet, or add the union to the unique sets. std::vector::const_iterator SetI = findRegUnitSet(RegUnitSets, RegUnitSets.back()); if (SetI != std::prev(RegUnitSets.end())) RegUnitSets.pop_back(); else { LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " " << RegUnitSets.back().Name << ":"; for (auto &U : RegUnitSets.back().Units) printRegUnitName(U); dbgs() << "\n";); } } } // Iteratively prune unit sets after inferring supersets. pruneUnitSets(); LLVM_DEBUG( dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); USIdx < USEnd; ++USIdx) { dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; for (auto &U : RegUnitSets[USIdx].Units) printRegUnitName(U); dbgs() << "\n"; }); // For each register class, list the UnitSets that are supersets. RegClassUnitSets.resize(RegClasses.size()); int RCIdx = -1; for (auto &RC : RegClasses) { ++RCIdx; if (!RC.Allocatable) continue; // Recompute the sorted list of units in this class. std::vector RCRegUnits; RC.buildRegUnitSet(*this, RCRegUnits); // Don't increase pressure for unallocatable regclasses. if (RCRegUnits.empty()) continue; LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n"; for (auto U : RCRegUnits) printRegUnitName(U); dbgs() << "\n UnitSetIDs:"); // Find all supersets. for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); USIdx != USEnd; ++USIdx) { if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { LLVM_DEBUG(dbgs() << " " << USIdx); RegClassUnitSets[RCIdx].push_back(USIdx); } } LLVM_DEBUG(dbgs() << "\n"); assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); } // For each register unit, ensure that we have the list of UnitSets that // contain the unit. Normally, this matches an existing list of UnitSets for a // register class. If not, we create a new entry in RegClassUnitSets as a // "fake" register class. for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; UnitIdx < UnitEnd; ++UnitIdx) { std::vector RUSets; for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { RegUnitSet &RUSet = RegUnitSets[i]; if (!is_contained(RUSet.Units, UnitIdx)) continue; RUSets.push_back(i); } unsigned RCUnitSetsIdx = 0; for (unsigned e = RegClassUnitSets.size(); RCUnitSetsIdx != e; ++RCUnitSetsIdx) { if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { break; } } RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; if (RCUnitSetsIdx == RegClassUnitSets.size()) { // Create a new list of UnitSets as a "fake" register class. RegClassUnitSets.resize(RCUnitSetsIdx + 1); RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); } } } void CodeGenRegBank::computeRegUnitLaneMasks() { for (auto &Register : Registers) { // Create an initial lane mask for all register units. const auto &RegUnits = Register.getRegUnits(); CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone()); // Iterate through SubRegisters. typedef CodeGenRegister::SubRegMap SubRegMap; const SubRegMap &SubRegs = Register.getSubRegs(); for (auto S : SubRegs) { CodeGenRegister *SubReg = S.second; // Ignore non-leaf subregisters, their lane masks are fully covered by // the leaf subregisters anyway. if (!SubReg->getSubRegs().empty()) continue; CodeGenSubRegIndex *SubRegIndex = S.first; const CodeGenRegister *SubRegister = S.second; LaneBitmask LaneMask = SubRegIndex->LaneMask; // Distribute LaneMask to Register Units touched. for (unsigned SUI : SubRegister->getRegUnits()) { bool Found = false; unsigned u = 0; for (unsigned RU : RegUnits) { if (SUI == RU) { RegUnitLaneMasks[u] |= LaneMask; assert(!Found); Found = true; } ++u; } (void)Found; assert(Found); } } Register.setRegUnitLaneMasks(RegUnitLaneMasks); } } void CodeGenRegBank::computeDerivedInfo() { computeComposites(); computeSubRegLaneMasks(); // Compute a weight for each register unit created during getSubRegs. // This may create adopted register units (with unit # >= NumNativeRegUnits). computeRegUnitWeights(); // Compute a unique set of RegUnitSets. One for each RegClass and inferred // supersets for the union of overlapping sets. computeRegUnitSets(); computeRegUnitLaneMasks(); // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag. for (CodeGenRegisterClass &RC : RegClasses) { RC.HasDisjunctSubRegs = false; RC.CoveredBySubRegs = true; for (const CodeGenRegister *Reg : RC.getMembers()) { RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs; RC.CoveredBySubRegs &= Reg->CoveredBySubRegs; } } // Get the weight of each set. for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); // Find the order of each set. RegUnitSetOrder.reserve(RegUnitSets.size()); for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) RegUnitSetOrder.push_back(Idx); llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) { return getRegPressureSet(ID1).Units.size() < getRegPressureSet(ID2).Units.size(); }); for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; } } // // Synthesize missing register class intersections. // // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) // returns a maximal register class for all X. // void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { assert(!RegClasses.empty()); // Stash the iterator to the last element so that this loop doesn't visit // elements added by the getOrCreateSubClass call within it. for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); I != std::next(E); ++I) { CodeGenRegisterClass *RC1 = RC; CodeGenRegisterClass *RC2 = &*I; if (RC1 == RC2) continue; // Compute the set intersection of RC1 and RC2. const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); CodeGenRegister::Vec Intersection; std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(), std::inserter(Intersection, Intersection.begin()), deref>()); // Skip disjoint class pairs. if (Intersection.empty()) continue; // If RC1 and RC2 have different spill sizes or alignments, use the // stricter one for sub-classing. If they are equal, prefer RC1. if (RC2->RSI.hasStricterSpillThan(RC1->RSI)) std::swap(RC1, RC2); getOrCreateSubClass(RC1, &Intersection, RC1->getName() + "_and_" + RC2->getName()); } } // // Synthesize missing sub-classes for getSubClassWithSubReg(). // // Make sure that the set of registers in RC with a given SubIdx sub-register // form a register class. Update RC->SubClassWithSubReg. // void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. typedef std::map>> SubReg2SetMap; // Compute the set of registers supporting each SubRegIndex. SubReg2SetMap SRSets; for (const auto R : RC->getMembers()) { if (R->Artificial) continue; const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); for (auto I : SRM) { if (!I.first->Artificial) SRSets[I.first].push_back(R); } } for (auto I : SRSets) sortAndUniqueRegisters(I.second); // Find matching classes for all SRSets entries. Iterate in SubRegIndex // numerical order to visit synthetic indices last. for (const auto &SubIdx : SubRegIndices) { if (SubIdx.Artificial) continue; SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); // Unsupported SubRegIndex. Skip it. if (I == SRSets.end()) continue; // In most cases, all RC registers support the SubRegIndex. if (I->second.size() == RC->getMembers().size()) { RC->setSubClassWithSubReg(&SubIdx, RC); continue; } // This is a real subset. See if we have a matching class. CodeGenRegisterClass *SubRC = getOrCreateSubClass(RC, &I->second, RC->getName() + "_with_" + I->first->getName()); RC->setSubClassWithSubReg(&SubIdx, SubRC); } } // // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). // // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) // has a maximal result for any SubIdx and any X >= FirstSubRegRC. // void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, std::list::iterator FirstSubRegRC) { SmallVector, 16> SSPairs; BitVector TopoSigs(getNumTopoSigs()); // Iterate in SubRegIndex numerical order to visit synthetic indices last. for (auto &SubIdx : SubRegIndices) { // Skip indexes that aren't fully supported by RC's registers. This was // computed by inferSubClassWithSubReg() above which should have been // called first. if (RC->getSubClassWithSubReg(&SubIdx) != RC) continue; // Build list of (Super, Sub) pairs for this SubIdx. SSPairs.clear(); TopoSigs.reset(); for (const auto Super : RC->getMembers()) { const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; assert(Sub && "Missing sub-register"); SSPairs.push_back(std::make_pair(Super, Sub)); TopoSigs.set(Sub->getTopoSig()); } // Iterate over sub-register class candidates. Ignore classes created by // this loop. They will never be useful. // Store an iterator to the last element (not end) so that this loop doesn't // visit newly inserted elements. assert(!RegClasses.empty()); for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); I != std::next(E); ++I) { CodeGenRegisterClass &SubRC = *I; if (SubRC.Artificial) continue; // Topological shortcut: SubRC members have the wrong shape. if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) continue; // Compute the subset of RC that maps into SubRC. CodeGenRegister::Vec SubSetVec; for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) if (SubRC.contains(SSPairs[i].second)) SubSetVec.push_back(SSPairs[i].first); if (SubSetVec.empty()) continue; // RC injects completely into SubRC. sortAndUniqueRegisters(SubSetVec); if (SubSetVec.size() == SSPairs.size()) { SubRC.addSuperRegClass(&SubIdx, RC); continue; } // Only a subset of RC maps into SubRC. Make sure it is represented by a // class. getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + SubIdx.getName() + "_in_" + SubRC.getName()); } } } // // Infer missing register classes. // void CodeGenRegBank::computeInferredRegisterClasses() { assert(!RegClasses.empty()); // When this function is called, the register classes have not been sorted // and assigned EnumValues yet. That means getSubClasses(), // getSuperClasses(), and hasSubClass() functions are defunct. // Use one-before-the-end so it doesn't move forward when new elements are // added. auto FirstNewRC = std::prev(RegClasses.end()); // Visit all register classes, including the ones being added by the loop. // Watch out for iterator invalidation here. for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { CodeGenRegisterClass *RC = &*I; if (RC->Artificial) continue; // Synthesize answers for getSubClassWithSubReg(). inferSubClassWithSubReg(RC); // Synthesize answers for getCommonSubClass(). inferCommonSubClass(RC); // Synthesize answers for getMatchingSuperRegClass(). inferMatchingSuperRegClass(RC); // New register classes are created while this loop is running, and we need // to visit all of them. I particular, inferMatchingSuperRegClass needs // to match old super-register classes with sub-register classes created // after inferMatchingSuperRegClass was called. At this point, // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. if (I == FirstNewRC) { auto NextNewRC = std::prev(RegClasses.end()); for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; ++I2) inferMatchingSuperRegClass(&*I2, E2); FirstNewRC = NextNewRC; } } } /// getRegisterClassForRegister - Find the register class that contains the /// specified physical register. If the register is not in a register class, /// return null. If the register is in multiple classes, and the classes have a /// superset-subset relationship and the same set of types, return the /// superclass. Otherwise return null. const CodeGenRegisterClass* CodeGenRegBank::getRegClassForRegister(Record *R) { const CodeGenRegister *Reg = getReg(R); const CodeGenRegisterClass *FoundRC = nullptr; for (const auto &RC : getRegClasses()) { if (!RC.contains(Reg)) continue; // If this is the first class that contains the register, // make a note of it and go on to the next class. if (!FoundRC) { FoundRC = &RC; continue; } // If a register's classes have different types, return null. if (RC.getValueTypes() != FoundRC->getValueTypes()) return nullptr; // Check to see if the previously found class that contains // the register is a subclass of the current class. If so, // prefer the superclass. if (RC.hasSubClass(FoundRC)) { FoundRC = &RC; continue; } // Check to see if the previously found class that contains // the register is a superclass of the current class. If so, // prefer the superclass. if (FoundRC->hasSubClass(&RC)) continue; // Multiple classes, and neither is a superclass of the other. // Return null. return nullptr; } return FoundRC; } const CodeGenRegisterClass * CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord, ValueTypeByHwMode *VT) { const CodeGenRegister *Reg = getReg(RegRecord); const CodeGenRegisterClass *BestRC = nullptr; for (const auto &RC : getRegClasses()) { if ((!VT || RC.hasType(*VT)) && RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC))) BestRC = &RC; } assert(BestRC && "Couldn't find the register class"); return BestRC; } BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef Regs) { SetVector Set; // First add Regs with all sub-registers. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { CodeGenRegister *Reg = getReg(Regs[i]); if (Set.insert(Reg)) // Reg is new, add all sub-registers. // The pre-ordering is not important here. Reg->addSubRegsPreOrder(Set, *this); } // Second, find all super-registers that are completely covered by the set. for (unsigned i = 0; i != Set.size(); ++i) { const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); for (unsigned j = 0, e = SR.size(); j != e; ++j) { const CodeGenRegister *Super = SR[j]; if (!Super->CoveredBySubRegs || Set.count(Super)) continue; // This new super-register is covered by its sub-registers. bool AllSubsInSet = true; const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); for (auto I : SRM) if (!Set.count(I.second)) { AllSubsInSet = false; break; } // All sub-registers in Set, add Super as well. // We will visit Super later to recheck its super-registers. if (AllSubsInSet) Set.insert(Super); } } // Convert to BitVector. BitVector BV(Registers.size() + 1); for (unsigned i = 0, e = Set.size(); i != e; ++i) BV.set(Set[i]->EnumValue); return BV; } void CodeGenRegBank::printRegUnitName(unsigned Unit) const { if (Unit < NumNativeRegUnits) dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName(); else dbgs() << " #" << Unit; }