//===-- ABISysV_mips64.cpp --------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "ABISysV_mips64.h" // C Includes // C++ Includes // Other libraries and framework includes #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Triple.h" // Project includes #include "lldb/Core/ConstString.h" #include "lldb/Core/DataExtractor.h" #include "lldb/Core/Error.h" #include "lldb/Core/Log.h" #include "lldb/Core/Module.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/RegisterValue.h" #include "lldb/Core/Value.h" #include "lldb/Core/ValueObjectConstResult.h" #include "lldb/Core/ValueObjectRegister.h" #include "lldb/Core/ValueObjectMemory.h" #include "lldb/Symbol/UnwindPlan.h" #include "lldb/Target/Target.h" #include "lldb/Target/Process.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/StackFrame.h" #include "lldb/Target/Thread.h" using namespace lldb; using namespace lldb_private; enum dwarf_regnums { dwarf_r0 = 0, dwarf_r1, dwarf_r2, dwarf_r3, dwarf_r4, dwarf_r5, dwarf_r6, dwarf_r7, dwarf_r8, dwarf_r9, dwarf_r10, dwarf_r11, dwarf_r12, dwarf_r13, dwarf_r14, dwarf_r15, dwarf_r16, dwarf_r17, dwarf_r18, dwarf_r19, dwarf_r20, dwarf_r21, dwarf_r22, dwarf_r23, dwarf_r24, dwarf_r25, dwarf_r26, dwarf_r27, dwarf_r28, dwarf_r29, dwarf_r30, dwarf_r31, dwarf_sr, dwarf_lo, dwarf_hi, dwarf_bad, dwarf_cause, dwarf_pc }; static const RegisterInfo g_register_infos_mips64[] = { // NAME ALT SZ OFF ENCODING FORMAT EH_FRAME DWARF GENERIC PROCESS PLUGIN LLDB NATIVE VALUE REGS INVALIDATE REGS // ======== ====== == === ============= ========== ============= ================= ==================== ================= ==================== ========== =============== { "r0" , "zero", 8, 0, eEncodingUint, eFormatHex, { dwarf_r0, dwarf_r0, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r1" , "AT", 8, 0, eEncodingUint, eFormatHex, { dwarf_r1, dwarf_r1, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r2" , "v0", 8, 0, eEncodingUint, eFormatHex, { dwarf_r2, dwarf_r2, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r3" , "v1", 8, 0, eEncodingUint, eFormatHex, { dwarf_r3, dwarf_r3, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r4" , "arg1", 8, 0, eEncodingUint, eFormatHex, { dwarf_r4, dwarf_r4, LLDB_REGNUM_GENERIC_ARG1, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r5" , "arg2", 8, 0, eEncodingUint, eFormatHex, { dwarf_r5, dwarf_r5, LLDB_REGNUM_GENERIC_ARG2, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r6" , "arg3", 8, 0, eEncodingUint, eFormatHex, { dwarf_r6, dwarf_r6, LLDB_REGNUM_GENERIC_ARG3, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r7" , "arg4", 8, 0, eEncodingUint, eFormatHex, { dwarf_r7, dwarf_r7, LLDB_REGNUM_GENERIC_ARG4, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r8" , "arg5", 8, 0, eEncodingUint, eFormatHex, { dwarf_r8, dwarf_r8, LLDB_REGNUM_GENERIC_ARG5, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r9" , "arg6", 8, 0, eEncodingUint, eFormatHex, { dwarf_r9, dwarf_r9, LLDB_REGNUM_GENERIC_ARG6, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r10" , "arg7", 8, 0, eEncodingUint, eFormatHex, { dwarf_r10, dwarf_r10, LLDB_REGNUM_GENERIC_ARG7, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r11" , "arg8", 8, 0, eEncodingUint, eFormatHex, { dwarf_r11, dwarf_r11, LLDB_REGNUM_GENERIC_ARG8, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r12" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_r12, dwarf_r12, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r13" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_r13, dwarf_r13, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r14" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_r14, dwarf_r14, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r15" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_r15, dwarf_r15, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r16" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_r16, dwarf_r16, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r17" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_r17, dwarf_r17, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r18" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_r18, dwarf_r18, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r19" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_r19, dwarf_r19, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r20" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_r20, dwarf_r20, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r21" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_r21, dwarf_r21, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r22" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_r22, dwarf_r22, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r23" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_r23, dwarf_r23, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r24" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_r24, dwarf_r24, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r25" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_r25, dwarf_r25, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r26" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_r26, dwarf_r26, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r27" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_r27, dwarf_r27, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r28" , "gp", 8, 0, eEncodingUint, eFormatHex, { dwarf_r28, dwarf_r28, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r29" , "sp", 8, 0, eEncodingUint, eFormatHex, { dwarf_r29, dwarf_r29, LLDB_REGNUM_GENERIC_SP, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r30" , "fp", 8, 0, eEncodingUint, eFormatHex, { dwarf_r30, dwarf_r30, LLDB_REGNUM_GENERIC_FP, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "r31" , "ra", 8, 0, eEncodingUint, eFormatHex, { dwarf_r31, dwarf_r31, LLDB_REGNUM_GENERIC_RA, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "sr" , nullptr,4, 0, eEncodingUint, eFormatHex, { dwarf_sr, dwarf_sr, LLDB_REGNUM_GENERIC_FLAGS, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "lo" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_lo, dwarf_lo, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "hi" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_hi, dwarf_hi, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "bad" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_bad, dwarf_bad, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "cause" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_cause, dwarf_cause, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, { "pc" , nullptr,8, 0, eEncodingUint, eFormatHex, { dwarf_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, nullptr, nullptr }, }; static const uint32_t k_num_register_infos = llvm::array_lengthof(g_register_infos_mips64); const lldb_private::RegisterInfo * ABISysV_mips64::GetRegisterInfoArray (uint32_t &count) { count = k_num_register_infos; return g_register_infos_mips64; } size_t ABISysV_mips64::GetRedZoneSize () const { return 0; } //------------------------------------------------------------------ // Static Functions //------------------------------------------------------------------ ABISP ABISysV_mips64::CreateInstance (const ArchSpec &arch) { static ABISP g_abi_sp; const llvm::Triple::ArchType arch_type = arch.GetTriple().getArch(); if ((arch_type == llvm::Triple::mips64) || (arch_type == llvm::Triple::mips64el)) { if (!g_abi_sp) g_abi_sp.reset (new ABISysV_mips64); return g_abi_sp; } return ABISP(); } bool ABISysV_mips64::PrepareTrivialCall (Thread &thread, addr_t sp, addr_t func_addr, addr_t return_addr, llvm::ArrayRef args) const { Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); if (log) { StreamString s; s.Printf("ABISysV_mips64::PrepareTrivialCall (tid = 0x%" PRIx64 ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64 ", return_addr = 0x%" PRIx64, thread.GetID(), (uint64_t)sp, (uint64_t)func_addr, (uint64_t)return_addr); for (size_t i = 0; i < args.size(); ++i) s.Printf (", arg%zd = 0x%" PRIx64, i + 1, args[i]); s.PutCString (")"); log->PutCString(s.GetString().c_str()); } RegisterContext *reg_ctx = thread.GetRegisterContext().get(); if (!reg_ctx) return false; const RegisterInfo *reg_info = nullptr; if (args.size() > 8) // TODO handle more than 8 arguments return false; for (size_t i = 0; i < args.size(); ++i) { reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + i); if (log) log->Printf("About to write arg%zd (0x%" PRIx64 ") into %s", i + 1, args[i], reg_info->name); if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i])) return false; } // First, align the SP if (log) log->Printf("16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64, (uint64_t)sp, (uint64_t)(sp & ~0xfull)); sp &= ~(0xfull); // 16-byte alignment Error error; const RegisterInfo *pc_reg_info = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); const RegisterInfo *sp_reg_info = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP); const RegisterInfo *ra_reg_info = reg_ctx->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA); const RegisterInfo *r25_info = reg_ctx->GetRegisterInfoByName("r25", 0); const RegisterInfo *r0_info = reg_ctx->GetRegisterInfoByName("zero", 0); if (log) log->Printf("Writing R0: 0x%" PRIx64, (uint64_t)0); /* Write r0 with 0, in case we are stopped in syscall, * such setting prevents automatic decrement of the PC. * This clears the bug 23659 for MIPS. */ if (!reg_ctx->WriteRegisterFromUnsigned (r0_info, (uint64_t)0)) return false; if (log) log->Printf("Writing SP: 0x%" PRIx64, (uint64_t)sp); // Set "sp" to the requested value if (!reg_ctx->WriteRegisterFromUnsigned (sp_reg_info, sp)) return false; if (log) log->Printf("Writing RA: 0x%" PRIx64, (uint64_t)return_addr); // Set "ra" to the return address if (!reg_ctx->WriteRegisterFromUnsigned (ra_reg_info, return_addr)) return false; if (log) log->Printf("Writing PC: 0x%" PRIx64, (uint64_t)func_addr); // Set pc to the address of the called function. if (!reg_ctx->WriteRegisterFromUnsigned (pc_reg_info, func_addr)) return false; if (log) log->Printf("Writing r25: 0x%" PRIx64, (uint64_t)func_addr); // All callers of position independent functions must place the address of the called function in t9 (r25) if (!reg_ctx->WriteRegisterFromUnsigned (r25_info, func_addr)) return false; return true; } bool ABISysV_mips64::GetArgumentValues (Thread &thread, ValueList &values) const { return false; } Error ABISysV_mips64::SetReturnValueObject(lldb::StackFrameSP &frame_sp, lldb::ValueObjectSP &new_value_sp) { Error error; if (!new_value_sp) { error.SetErrorString("Empty value object for return value."); return error; } CompilerType compiler_type = new_value_sp->GetCompilerType(); if (!compiler_type) { error.SetErrorString ("Null clang type for return value."); return error; } Thread *thread = frame_sp->GetThread().get(); RegisterContext *reg_ctx = thread->GetRegisterContext().get(); if (!reg_ctx) error.SetErrorString("no registers are available"); DataExtractor data; Error data_error; size_t num_bytes = new_value_sp->GetData(data, data_error); if (data_error.Fail()) { error.SetErrorStringWithFormat("Couldn't convert return value to raw data: %s", data_error.AsCString()); return error; } const uint32_t type_flags = compiler_type.GetTypeInfo(nullptr); if (type_flags & eTypeIsScalar || type_flags & eTypeIsPointer) { if (type_flags & eTypeIsInteger || type_flags & eTypeIsPointer ) { lldb::offset_t offset = 0; if (num_bytes <= 16) { const RegisterInfo *r2_info = reg_ctx->GetRegisterInfoByName("r2", 0); if (num_bytes <= 8) { uint64_t raw_value = data.GetMaxU64(&offset, num_bytes); if (!reg_ctx->WriteRegisterFromUnsigned (r2_info, raw_value)) error.SetErrorString ("failed to write register r2"); } else { uint64_t raw_value = data.GetMaxU64(&offset, 8); if (reg_ctx->WriteRegisterFromUnsigned (r2_info, raw_value)) { const RegisterInfo *r3_info = reg_ctx->GetRegisterInfoByName("r3", 0); raw_value = data.GetMaxU64(&offset, num_bytes - offset); if (!reg_ctx->WriteRegisterFromUnsigned (r3_info, raw_value)) error.SetErrorString ("failed to write register r3"); } else error.SetErrorString ("failed to write register r2"); } } else { error.SetErrorString("We don't support returning longer than 128 bit integer values at present."); } } else if (type_flags & eTypeIsFloat) { error.SetErrorString("TODO: Handle Float Types."); } } else if (type_flags & eTypeIsVector) { error.SetErrorString("returning vector values are not supported"); } return error; } ValueObjectSP ABISysV_mips64::GetReturnValueObjectSimple (Thread &thread, CompilerType &return_compiler_type) const { ValueObjectSP return_valobj_sp; return return_valobj_sp; } ValueObjectSP ABISysV_mips64::GetReturnValueObjectImpl (Thread &thread, CompilerType &return_compiler_type) const { ValueObjectSP return_valobj_sp; Value value; Error error; ExecutionContext exe_ctx (thread.shared_from_this()); if (exe_ctx.GetTargetPtr() == nullptr || exe_ctx.GetProcessPtr() == nullptr) return return_valobj_sp; value.SetCompilerType(return_compiler_type); RegisterContext *reg_ctx = thread.GetRegisterContext().get(); if (!reg_ctx) return return_valobj_sp; Target *target = exe_ctx.GetTargetPtr(); const ArchSpec target_arch = target->GetArchitecture(); ByteOrder target_byte_order = target_arch.GetByteOrder(); const size_t byte_size = return_compiler_type.GetByteSize(nullptr); const uint32_t type_flags = return_compiler_type.GetTypeInfo(nullptr); uint32_t fp_flag = target_arch.GetFlags () & lldb_private::ArchSpec::eMIPS_ABI_FP_mask; const RegisterInfo *r2_info = reg_ctx->GetRegisterInfoByName("r2", 0); const RegisterInfo *r3_info = reg_ctx->GetRegisterInfoByName("r3", 0); if (type_flags & eTypeIsScalar || type_flags & eTypeIsPointer) { value.SetValueType(Value::eValueTypeScalar); bool success = false; if (type_flags & eTypeIsInteger || type_flags & eTypeIsPointer) { // Extract the register context so we can read arguments from registers // In MIPS register "r2" (v0) holds the integer function return values uint64_t raw_value = reg_ctx->ReadRegisterAsUnsigned(r2_info, 0); const bool is_signed = (type_flags & eTypeIsSigned) != 0; switch (byte_size) { default: break; case sizeof(uint64_t): if (is_signed) value.GetScalar() = (int64_t)(raw_value); else value.GetScalar() = (uint64_t)(raw_value); success = true; break; case sizeof(uint32_t): if (is_signed) value.GetScalar() = (int32_t)(raw_value & UINT32_MAX); else value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX); success = true; break; case sizeof(uint16_t): if (is_signed) value.GetScalar() = (int16_t)(raw_value & UINT16_MAX); else value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX); success = true; break; case sizeof(uint8_t): if (is_signed) value.GetScalar() = (int8_t)(raw_value & UINT8_MAX); else value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX); success = true; break; } } else if (type_flags & eTypeIsFloat) { if (type_flags & eTypeIsComplex) { // Don't handle complex yet. } else if (IsSoftFloat(fp_flag)) { uint64_t raw_value = reg_ctx->ReadRegisterAsUnsigned(r2_info, 0); switch (byte_size) { case 4: value.GetScalar() = *((float *)(&raw_value)); success = true; break; case 8: value.GetScalar() = *((double *)(&raw_value)); success = true; break; case 16: uint64_t result[2]; if (target_byte_order == eByteOrderLittle) { result[0] = raw_value; result[1] = reg_ctx->ReadRegisterAsUnsigned(r3_info, 0); value.GetScalar() = *((long double *)(result)); } else { result[0] = reg_ctx->ReadRegisterAsUnsigned(r3_info, 0); result[1] = raw_value; value.GetScalar() = *((long double *)(result)); } success = true; break; } } else { if (byte_size <= sizeof(long double)) { const RegisterInfo *f0_info = reg_ctx->GetRegisterInfoByName("f0", 0); RegisterValue f0_value; DataExtractor f0_data; reg_ctx->ReadRegister (f0_info, f0_value); f0_value.GetData(f0_data); lldb::offset_t offset = 0; if (byte_size == sizeof(float)) { value.GetScalar() = (float) f0_data.GetFloat(&offset); success = true; } else if (byte_size == sizeof(double)) { value.GetScalar() = (double) f0_data.GetDouble(&offset); success = true; } else if (byte_size == sizeof(long double)) { const RegisterInfo *f2_info = reg_ctx->GetRegisterInfoByName("f2", 0); RegisterValue f2_value; DataExtractor f2_data; reg_ctx->ReadRegister (f2_info, f2_value); DataExtractor *copy_from_extractor = nullptr; DataBufferSP data_sp (new DataBufferHeap(16, 0)); DataExtractor return_ext (data_sp, target_byte_order, target->GetArchitecture().GetAddressByteSize()); if (target_byte_order == eByteOrderLittle) { copy_from_extractor = &f0_data; copy_from_extractor->CopyByteOrderedData (0, 8, data_sp->GetBytes(), byte_size - 8, target_byte_order); f2_value.GetData(f2_data); copy_from_extractor = &f2_data; copy_from_extractor->CopyByteOrderedData (0, 8, data_sp->GetBytes() + 8, byte_size - 8, target_byte_order); } else { copy_from_extractor = &f0_data; copy_from_extractor->CopyByteOrderedData (0, 8, data_sp->GetBytes() + 8, byte_size - 8, target_byte_order); f2_value.GetData(f2_data); copy_from_extractor = &f2_data; copy_from_extractor->CopyByteOrderedData (0, 8, data_sp->GetBytes(), byte_size - 8, target_byte_order); } return_valobj_sp = ValueObjectConstResult::Create (&thread, return_compiler_type, ConstString(""), return_ext); return return_valobj_sp; } } } } if (success) return_valobj_sp = ValueObjectConstResult::Create (thread.GetStackFrameAtIndex(0).get(), value, ConstString("")); } else if (type_flags & eTypeIsStructUnion || type_flags & eTypeIsClass || type_flags & eTypeIsVector) { // Any structure of up to 16 bytes in size is returned in the registers. if (byte_size <= 16) { DataBufferSP data_sp (new DataBufferHeap(16, 0)); DataExtractor return_ext (data_sp, target_byte_order, target->GetArchitecture().GetAddressByteSize()); RegisterValue r2_value, r3_value, f0_value, f1_value, f2_value; uint32_t integer_bytes = 0; // Tracks how much bytes of r2 and r3 registers we've consumed so far bool use_fp_regs = 0; // True if return values are in FP return registers. bool found_non_fp_field = 0; // True if we found any non floating point field in structure. bool use_r2 = 0; // True if return values are in r2 register. bool use_r3 = 0; // True if return values are in r3 register. bool sucess = 0; // True if the result is copied into our data buffer std::string name; bool is_complex; uint32_t count; const uint32_t num_children = return_compiler_type.GetNumFields (); // A structure consisting of one or two FP values (and nothing else) will be // returned in the two FP return-value registers i.e fp0 and fp2. if (num_children <= 2) { uint64_t field_bit_offset = 0; // Check if this structure contains only floating point fields for (uint32_t idx = 0; idx < num_children; idx++) { CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(idx, name, &field_bit_offset, nullptr, nullptr); if (field_compiler_type.IsFloatingPointType (count, is_complex)) use_fp_regs = 1; else found_non_fp_field = 1; } if (use_fp_regs && !found_non_fp_field) { // We have one or two FP-only values in this structure. Get it from f0/f2 registers. DataExtractor f0_data, f1_data, f2_data; const RegisterInfo *f0_info = reg_ctx->GetRegisterInfoByName("f0", 0); const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0); const RegisterInfo *f2_info = reg_ctx->GetRegisterInfoByName("f2", 0); reg_ctx->ReadRegister (f0_info, f0_value); reg_ctx->ReadRegister (f2_info, f2_value); f0_value.GetData(f0_data); f2_value.GetData(f2_data); for (uint32_t idx = 0; idx < num_children; idx++) { CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(idx, name, &field_bit_offset, nullptr, nullptr); const size_t field_byte_width = field_compiler_type.GetByteSize(nullptr); DataExtractor *copy_from_extractor = nullptr; if (idx == 0) { if (field_byte_width == 16) // This case is for long double type. { // If structure contains long double type, then it is returned in fp0/fp1 registers. reg_ctx->ReadRegister (f1_info, f1_value); f1_value.GetData(f1_data); if (target_byte_order == eByteOrderLittle) { f0_data.Append(f1_data); copy_from_extractor = &f0_data; } else { f1_data.Append(f0_data); copy_from_extractor = &f1_data; } } else copy_from_extractor = &f0_data; // This is in f0, copy from register to our result structure } else copy_from_extractor = &f2_data; // This is in f2, copy from register to our result structure // Sanity check to avoid crash if (!copy_from_extractor || field_byte_width > copy_from_extractor->GetByteSize()) return return_valobj_sp; // copy the register contents into our data buffer copy_from_extractor->CopyByteOrderedData (0, field_byte_width, data_sp->GetBytes() + (field_bit_offset/8), field_byte_width, target_byte_order); } // The result is in our data buffer. Create a variable object out of it return_valobj_sp = ValueObjectConstResult::Create (&thread, return_compiler_type, ConstString(""), return_ext); return return_valobj_sp; } } // If we reach here, it means this structure either contains more than two fields or // it contains at least one non floating point type. // In that case, all fields are returned in GP return registers. for (uint32_t idx = 0; idx < num_children; idx++) { uint64_t field_bit_offset = 0; bool is_signed; uint32_t padding; CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(idx, name, &field_bit_offset, nullptr, nullptr); const size_t field_byte_width = field_compiler_type.GetByteSize(nullptr); // if we don't know the size of the field (e.g. invalid type), just bail out if (field_byte_width == 0) break; uint32_t field_byte_offset = field_bit_offset/8; if (field_compiler_type.IsIntegerOrEnumerationType (is_signed) || field_compiler_type.IsPointerType () || field_compiler_type.IsFloatingPointType (count, is_complex)) { padding = field_byte_offset - integer_bytes; if (integer_bytes < 8) { // We have not yet consumed r2 completely. if (integer_bytes + field_byte_width + padding <= 8) { // This field fits in r2, copy its value from r2 to our result structure integer_bytes = integer_bytes + field_byte_width + padding; // Increase the consumed bytes. use_r2 = 1; } else { // There isn't enough space left in r2 for this field, so this will be in r3. integer_bytes = integer_bytes + field_byte_width + padding; // Increase the consumed bytes. use_r3 = 1; } } // We already have consumed at-least 8 bytes that means r2 is done, and this field will be in r3. // Check if this field can fit in r3. else if (integer_bytes + field_byte_width + padding <= 16) { integer_bytes = integer_bytes + field_byte_width + padding; use_r3 = 1; } else { // There isn't any space left for this field, this should not happen as we have already checked // the overall size is not greater than 16 bytes. For now, return a nullptr return value object. return return_valobj_sp; } } } // Vector types upto 16 bytes are returned in GP return registers if (type_flags & eTypeIsVector) { if (byte_size <= 8) use_r2 = 1; else { use_r2 = 1; use_r3 = 1; } } if (use_r2) { reg_ctx->ReadRegister (r2_info, r2_value); const size_t bytes_copied = r2_value.GetAsMemoryData (r2_info, data_sp->GetBytes(), r2_info->byte_size, target_byte_order, error); if (bytes_copied != r2_info->byte_size) return return_valobj_sp; sucess = 1; } if (use_r3) { reg_ctx->ReadRegister (r3_info, r3_value); const size_t bytes_copied = r3_value.GetAsMemoryData (r3_info, data_sp->GetBytes() + r2_info->byte_size, r3_info->byte_size, target_byte_order, error); if (bytes_copied != r3_info->byte_size) return return_valobj_sp; sucess = 1; } if (sucess) { // The result is in our data buffer. Create a variable object out of it return_valobj_sp = ValueObjectConstResult::Create (&thread, return_compiler_type, ConstString(""), return_ext); } return return_valobj_sp; } // Any structure/vector greater than 16 bytes in size is returned in memory. // The pointer to that memory is returned in r2. uint64_t mem_address = reg_ctx->ReadRegisterAsUnsigned(reg_ctx->GetRegisterInfoByName("r2", 0), 0); // We have got the address. Create a memory object out of it return_valobj_sp = ValueObjectMemory::Create(&thread, "", Address(mem_address, nullptr), return_compiler_type); } return return_valobj_sp; } bool ABISysV_mips64::CreateFunctionEntryUnwindPlan (UnwindPlan &unwind_plan) { unwind_plan.Clear(); unwind_plan.SetRegisterKind (eRegisterKindDWARF); UnwindPlan::RowSP row(new UnwindPlan::Row); // Our Call Frame Address is the stack pointer value row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_r29, 0); // The previous PC is in the RA row->SetRegisterLocationToRegister(dwarf_pc, dwarf_r31, true); unwind_plan.AppendRow (row); // All other registers are the same. unwind_plan.SetSourceName ("mips64 at-func-entry default"); unwind_plan.SetSourcedFromCompiler (eLazyBoolNo); unwind_plan.SetReturnAddressRegister(dwarf_r31); return true; } bool ABISysV_mips64::CreateDefaultUnwindPlan (UnwindPlan &unwind_plan) { unwind_plan.Clear(); unwind_plan.SetRegisterKind (eRegisterKindDWARF); UnwindPlan::RowSP row(new UnwindPlan::Row); row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_r29, 0); row->SetRegisterLocationToRegister(dwarf_pc, dwarf_r31, true); unwind_plan.AppendRow (row); unwind_plan.SetSourceName ("mips64 default unwind plan"); unwind_plan.SetSourcedFromCompiler (eLazyBoolNo); unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo); return true; } bool ABISysV_mips64::RegisterIsVolatile (const RegisterInfo *reg_info) { return !RegisterIsCalleeSaved (reg_info); } bool ABISysV_mips64::IsSoftFloat (uint32_t fp_flag) const { return (fp_flag == lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT); } bool ABISysV_mips64::RegisterIsCalleeSaved (const RegisterInfo *reg_info) { if (reg_info) { // Preserved registers are : // r16-r23, r28, r29, r30, r31 int reg = ((reg_info->byte_offset) / 8); bool save = (reg >= 16) && (reg <= 23); save |= (reg >= 28) && (reg <= 31); return save; } return false; } void ABISysV_mips64::Initialize() { PluginManager::RegisterPlugin (GetPluginNameStatic(), "System V ABI for mips64 targets", CreateInstance); } void ABISysV_mips64::Terminate() { PluginManager::UnregisterPlugin (CreateInstance); } lldb_private::ConstString ABISysV_mips64::GetPluginNameStatic() { static ConstString g_name("sysv-mips64"); return g_name; } //------------------------------------------------------------------ // PluginInterface protocol //------------------------------------------------------------------ lldb_private::ConstString ABISysV_mips64::GetPluginName() { return GetPluginNameStatic(); } uint32_t ABISysV_mips64::GetPluginVersion() { return 1; }