//===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "GDBRemoteRegisterContext.h" // C Includes // C++ Includes // Other libraries and framework includes #include "lldb/Core/DataBufferHeap.h" #include "lldb/Core/DataExtractor.h" #include "lldb/Core/RegisterValue.h" #include "lldb/Core/Scalar.h" #include "lldb/Core/StreamString.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/Target.h" #include "lldb/Utility/Utils.h" // Project includes #include "Utility/StringExtractorGDBRemote.h" #include "ProcessGDBRemote.h" #include "ProcessGDBRemoteLog.h" #include "ThreadGDBRemote.h" #include "Utility/ARM_DWARF_Registers.h" #include "Utility/ARM_ehframe_Registers.h" using namespace lldb; using namespace lldb_private; using namespace lldb_private::process_gdb_remote; //---------------------------------------------------------------------- // GDBRemoteRegisterContext constructor //---------------------------------------------------------------------- GDBRemoteRegisterContext::GDBRemoteRegisterContext ( ThreadGDBRemote &thread, uint32_t concrete_frame_idx, GDBRemoteDynamicRegisterInfo ®_info, bool read_all_at_once ) : RegisterContext (thread, concrete_frame_idx), m_reg_info (reg_info), m_reg_valid (), m_reg_data (), m_read_all_at_once (read_all_at_once) { // Resize our vector of bools to contain one bool for every register. // We will use these boolean values to know when a register value // is valid in m_reg_data. m_reg_valid.resize (reg_info.GetNumRegisters()); // Make a heap based buffer that is big enough to store all registers DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0)); m_reg_data.SetData (reg_data_sp); m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder()); } //---------------------------------------------------------------------- // Destructor //---------------------------------------------------------------------- GDBRemoteRegisterContext::~GDBRemoteRegisterContext() { } void GDBRemoteRegisterContext::InvalidateAllRegisters () { SetAllRegisterValid (false); } void GDBRemoteRegisterContext::SetAllRegisterValid (bool b) { std::vector::iterator pos, end = m_reg_valid.end(); for (pos = m_reg_valid.begin(); pos != end; ++pos) *pos = b; } size_t GDBRemoteRegisterContext::GetRegisterCount () { return m_reg_info.GetNumRegisters (); } const RegisterInfo * GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg) { RegisterInfo* reg_info = m_reg_info.GetRegisterInfoAtIndex (reg); if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) { const ArchSpec &arch = m_thread.GetProcess ()->GetTarget ().GetArchitecture (); uint8_t reg_size = UpdateDynamicRegisterSize (arch, reg_info); reg_info->byte_size = reg_size; } return reg_info; } size_t GDBRemoteRegisterContext::GetRegisterSetCount () { return m_reg_info.GetNumRegisterSets (); } const RegisterSet * GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set) { return m_reg_info.GetRegisterSet (reg_set); } bool GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value) { // Read the register if (ReadRegisterBytes (reg_info, m_reg_data)) { const bool partial_data_ok = false; Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok)); return error.Success(); } return false; } bool GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response) { const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg); if (reg_info == NULL) return false; // Invalidate if needed InvalidateIfNeeded(false); const uint32_t reg_byte_size = reg_info->byte_size; const size_t bytes_copied = response.GetHexBytes (const_cast(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc'); bool success = bytes_copied == reg_byte_size; if (success) { SetRegisterIsValid(reg, true); } else if (bytes_copied > 0) { // Only set register is valid to false if we copied some bytes, else // leave it as it was. SetRegisterIsValid(reg, false); } return success; } bool GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, uint64_t new_reg_val) { const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg); if (reg_info == NULL) return false; // Early in process startup, we can get a thread that has an invalid byte order // because the process hasn't been completely set up yet (see the ctor where the // byte order is setfrom the process). If that's the case, we can't set the // value here. if (m_reg_data.GetByteOrder() == eByteOrderInvalid) { return false; } // Invalidate if needed InvalidateIfNeeded (false); DataBufferSP buffer_sp (new DataBufferHeap (&new_reg_val, sizeof (new_reg_val))); DataExtractor data (buffer_sp, endian::InlHostByteOrder(), sizeof (void*)); // If our register context and our register info disagree, which should never happen, don't // overwrite past the end of the buffer. if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) return false; // Grab a pointer to where we are going to put this register uint8_t *dst = const_cast(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); if (dst == NULL) return false; if (data.CopyByteOrderedData (0, // src offset reg_info->byte_size, // src length dst, // dst reg_info->byte_size, // dst length m_reg_data.GetByteOrder())) // dst byte order { SetRegisterIsValid (reg, true); return true; } return false; } // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes(). bool GDBRemoteRegisterContext::GetPrimordialRegister(const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) { const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB]; const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin]; StringExtractorGDBRemote response; if (gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg, response)) return PrivateSetRegisterValue (lldb_reg, response); return false; } bool GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data) { ExecutionContext exe_ctx (CalculateThread()); Process *process = exe_ctx.GetProcessPtr(); Thread *thread = exe_ctx.GetThreadPtr(); if (process == NULL || thread == NULL) return false; GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); InvalidateIfNeeded(false); const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; if (!GetRegisterIsValid(reg)) { if (m_read_all_at_once) { StringExtractorGDBRemote response; if (!gdb_comm.ReadAllRegisters(m_thread.GetProtocolID(), response)) return false; if (response.IsNormalResponse()) if (response.GetHexBytes(const_cast(reinterpret_cast(m_reg_data.GetDataStart())), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize()) SetAllRegisterValid (true); } else if (reg_info->value_regs) { // Process this composite register request by delegating to the constituent // primordial registers. // Index of the primordial register. bool success = true; for (uint32_t idx = 0; success; ++idx) { const uint32_t prim_reg = reg_info->value_regs[idx]; if (prim_reg == LLDB_INVALID_REGNUM) break; // We have a valid primordial register as our constituent. // Grab the corresponding register info. const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg); if (prim_reg_info == NULL) success = false; else { // Read the containing register if it hasn't already been read if (!GetRegisterIsValid(prim_reg)) success = GetPrimordialRegister(prim_reg_info, gdb_comm); } } if (success) { // If we reach this point, all primordial register requests have succeeded. // Validate this composite register. SetRegisterIsValid (reg_info, true); } } else { // Get each register individually GetPrimordialRegister(reg_info, gdb_comm); } // Make sure we got a valid register value after reading it if (!GetRegisterIsValid(reg)) return false; } if (&data != &m_reg_data) { #if defined (LLDB_CONFIGURATION_DEBUG) assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size); #endif // If our register context and our register info disagree, which should never happen, don't // read past the end of the buffer. if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) return false; // If we aren't extracting into our own buffer (which // only happens when this function is called from // ReadRegisterValue(uint32_t, Scalar&)) then // we transfer bytes from our buffer into the data // buffer that was passed in data.SetByteOrder (m_reg_data.GetByteOrder()); data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size); } return true; } bool GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info, const RegisterValue &value) { DataExtractor data; if (value.GetData (data)) return WriteRegisterBytes (reg_info, data, 0); return false; } // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes(). bool GDBRemoteRegisterContext::SetPrimordialRegister(const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) { StreamString packet; StringExtractorGDBRemote response; const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]); packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size), reg_info->byte_size, endian::InlHostByteOrder(), endian::InlHostByteOrder()); if (gdb_comm.GetThreadSuffixSupported()) packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); // Invalidate just this register SetRegisterIsValid(reg, false); if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), packet.GetString().size(), response, false) == GDBRemoteCommunication::PacketResult::Success) { if (response.IsOKResponse()) return true; } return false; } void GDBRemoteRegisterContext::SyncThreadState(Process *process) { // NB. We assume our caller has locked the sequence mutex. GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote()); if (!gdb_comm.GetSyncThreadStateSupported()) return; StreamString packet; StringExtractorGDBRemote response; packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID()); if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), packet.GetString().size(), response, false) == GDBRemoteCommunication::PacketResult::Success) { if (response.IsOKResponse()) InvalidateAllRegisters(); } } bool GDBRemoteRegisterContext::WriteRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset) { ExecutionContext exe_ctx (CalculateThread()); Process *process = exe_ctx.GetProcessPtr(); Thread *thread = exe_ctx.GetThreadPtr(); if (process == NULL || thread == NULL) return false; GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); // FIXME: This check isn't right because IsRunning checks the Public state, but this // is work you need to do - for instance in ShouldStop & friends - before the public // state has been changed. // if (gdb_comm.IsRunning()) // return false; #if defined (LLDB_CONFIGURATION_DEBUG) assert (m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size); #endif // If our register context and our register info disagree, which should never happen, don't // overwrite past the end of the buffer. if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) return false; // Grab a pointer to where we are going to put this register uint8_t *dst = const_cast(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); if (dst == NULL) return false; if (data.CopyByteOrderedData (data_offset, // src offset reg_info->byte_size, // src length dst, // dst reg_info->byte_size, // dst length m_reg_data.GetByteOrder())) // dst byte order { Mutex::Locker locker; if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register.")) { const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); ProcessSP process_sp (m_thread.GetProcess()); if (thread_suffix_supported || static_cast(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) { StreamString packet; StringExtractorGDBRemote response; if (m_read_all_at_once) { // Set all registers in one packet packet.PutChar ('G'); packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), endian::InlHostByteOrder(), endian::InlHostByteOrder()); if (thread_suffix_supported) packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); // Invalidate all register values InvalidateIfNeeded (true); if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), packet.GetString().size(), response, false) == GDBRemoteCommunication::PacketResult::Success) { SetAllRegisterValid (false); if (response.IsOKResponse()) { return true; } } } else { bool success = true; if (reg_info->value_regs) { // This register is part of another register. In this case we read the actual // register data for any "value_regs", and once all that data is read, we will // have enough data in our register context bytes for the value of this register // Invalidate this composite register first. for (uint32_t idx = 0; success; ++idx) { const uint32_t reg = reg_info->value_regs[idx]; if (reg == LLDB_INVALID_REGNUM) break; // We have a valid primordial register as our constituent. // Grab the corresponding register info. const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg); if (value_reg_info == NULL) success = false; else success = SetPrimordialRegister(value_reg_info, gdb_comm); } } else { // This is an actual register, write it success = SetPrimordialRegister(reg_info, gdb_comm); } // Check if writing this register will invalidate any other register values? // If so, invalidate them if (reg_info->invalidate_regs) { for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0]; reg != LLDB_INVALID_REGNUM; reg = reg_info->invalidate_regs[++idx]) { SetRegisterIsValid(reg, false); } } return success; } } } else { Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); if (log) { if (log->GetVerbose()) { StreamString strm; gdb_comm.DumpHistory(strm); log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData()); } else log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name); } } } return false; } bool GDBRemoteRegisterContext::ReadAllRegisterValues (RegisterCheckpoint ®_checkpoint) { ExecutionContext exe_ctx (CalculateThread()); Process *process = exe_ctx.GetProcessPtr(); Thread *thread = exe_ctx.GetThreadPtr(); if (process == NULL || thread == NULL) return false; GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); uint32_t save_id = 0; if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) { reg_checkpoint.SetID(save_id); reg_checkpoint.GetData().reset(); return true; } else { reg_checkpoint.SetID(0); // Invalid save ID is zero return ReadAllRegisterValues(reg_checkpoint.GetData()); } } bool GDBRemoteRegisterContext::WriteAllRegisterValues (const RegisterCheckpoint ®_checkpoint) { uint32_t save_id = reg_checkpoint.GetID(); if (save_id != 0) { ExecutionContext exe_ctx (CalculateThread()); Process *process = exe_ctx.GetProcessPtr(); Thread *thread = exe_ctx.GetThreadPtr(); if (process == NULL || thread == NULL) return false; GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id); } else { return WriteAllRegisterValues(reg_checkpoint.GetData()); } } bool GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp) { ExecutionContext exe_ctx (CalculateThread()); Process *process = exe_ctx.GetProcessPtr(); Thread *thread = exe_ctx.GetThreadPtr(); if (process == NULL || thread == NULL) return false; GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); StringExtractorGDBRemote response; const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false; Mutex::Locker locker; if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers.")) { SyncThreadState(process); char packet[32]; const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); ProcessSP process_sp (m_thread.GetProcess()); if (thread_suffix_supported || static_cast(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) { int packet_len = 0; if (thread_suffix_supported) packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID()); else packet_len = ::snprintf (packet, sizeof(packet), "g"); assert (packet_len < ((int)sizeof(packet) - 1)); if (use_g_packet && gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success) { int packet_len = 0; if (thread_suffix_supported) packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID()); else packet_len = ::snprintf (packet, sizeof(packet), "g"); assert (packet_len < ((int)sizeof(packet) - 1)); if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success) { if (response.IsErrorResponse()) return false; std::string &response_str = response.GetStringRef(); if (isxdigit(response_str[0])) { response_str.insert(0, 1, 'G'); if (thread_suffix_supported) { char thread_id_cstr[64]; ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); response_str.append (thread_id_cstr); } data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size())); return true; } } } else { // For the use_g_packet == false case, we're going to read each register // individually and store them as binary data in a buffer instead of as ascii // characters. const RegisterInfo *reg_info; // data_sp will take ownership of this DataBufferHeap pointer soon. DataBufferSP reg_ctx(new DataBufferHeap(m_reg_info.GetRegisterDataByteSize(), 0)); for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++) { if (reg_info->value_regs) // skip registers that are slices of real registers continue; ReadRegisterBytes (reg_info, m_reg_data); // ReadRegisterBytes saves the contents of the register in to the m_reg_data buffer } memcpy (reg_ctx->GetBytes(), m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize()); data_sp = reg_ctx; return true; } } } else { Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); if (log) { if (log->GetVerbose()) { StreamString strm; gdb_comm.DumpHistory(strm); log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData()); } else log->Printf("error: failed to get packet sequence mutex, not sending read all registers"); } } data_sp.reset(); return false; } bool GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp) { if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0) return false; ExecutionContext exe_ctx (CalculateThread()); Process *process = exe_ctx.GetProcessPtr(); Thread *thread = exe_ctx.GetThreadPtr(); if (process == NULL || thread == NULL) return false; GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); const bool use_g_packet = gdb_comm.AvoidGPackets ((ProcessGDBRemote *)process) == false; StringExtractorGDBRemote response; Mutex::Locker locker; if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers.")) { const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); ProcessSP process_sp (m_thread.GetProcess()); if (thread_suffix_supported || static_cast(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) { // The data_sp contains the entire G response packet including the // G, and if the thread suffix is supported, it has the thread suffix // as well. const char *G_packet = (const char *)data_sp->GetBytes(); size_t G_packet_len = data_sp->GetByteSize(); if (use_g_packet && gdb_comm.SendPacketAndWaitForResponse (G_packet, G_packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success) { // The data_sp contains the entire G response packet including the // G, and if the thread suffix is supported, it has the thread suffix // as well. const char *G_packet = (const char *)data_sp->GetBytes(); size_t G_packet_len = data_sp->GetByteSize(); if (gdb_comm.SendPacketAndWaitForResponse (G_packet, G_packet_len, response, false) == GDBRemoteCommunication::PacketResult::Success) { if (response.IsOKResponse()) return true; else if (response.IsErrorResponse()) { uint32_t num_restored = 0; // We need to manually go through all of the registers and // restore them manually response.GetStringRef().assign (G_packet, G_packet_len); response.SetFilePos(1); // Skip the leading 'G' // G_packet_len is hex-ascii characters plus prefix 'G' plus suffix thread specifier. // This means buffer will be a little more than 2x larger than necessary but we resize // it down once we've extracted all hex ascii chars from the packet. DataBufferHeap buffer (G_packet_len, 0); const uint32_t bytes_extracted = response.GetHexBytes (buffer.GetBytes(), buffer.GetByteSize(), '\xcc'); DataExtractor restore_data (buffer.GetBytes(), buffer.GetByteSize(), m_reg_data.GetByteOrder(), m_reg_data.GetAddressByteSize()); if (bytes_extracted < restore_data.GetByteSize()) restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder()); const RegisterInfo *reg_info; // The g packet contents may either include the slice registers (registers defined in // terms of other registers, e.g. eax is a subset of rax) or not. The slice registers // should NOT be in the g packet, but some implementations may incorrectly include them. // // If the slice registers are included in the packet, we must step over the slice registers // when parsing the packet -- relying on the RegisterInfo byte_offset field would be incorrect. // If the slice registers are not included, then using the byte_offset values into the // data buffer is the best way to find individual register values. uint64_t size_including_slice_registers = 0; uint64_t size_not_including_slice_registers = 0; uint64_t size_by_highest_offset = 0; for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx) { size_including_slice_registers += reg_info->byte_size; if (reg_info->value_regs == NULL) size_not_including_slice_registers += reg_info->byte_size; if (reg_info->byte_offset >= size_by_highest_offset) size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size; } bool use_byte_offset_into_buffer; if (size_by_highest_offset == restore_data.GetByteSize()) { // The size of the packet agrees with the highest offset: + size in the register file use_byte_offset_into_buffer = true; } else if (size_not_including_slice_registers == restore_data.GetByteSize()) { // The size of the packet is the same as concatenating all of the registers sequentially, // skipping the slice registers use_byte_offset_into_buffer = true; } else if (size_including_slice_registers == restore_data.GetByteSize()) { // The slice registers are present in the packet (when they shouldn't be). // Don't try to use the RegisterInfo byte_offset into the restore_data, it will // point to the wrong place. use_byte_offset_into_buffer = false; } else { // None of our expected sizes match the actual g packet data we're looking at. // The most conservative approach here is to use the running total byte offset. use_byte_offset_into_buffer = false; } // In case our register definitions don't include the correct offsets, // keep track of the size of each reg & compute offset based on that. uint32_t running_byte_offset = 0; for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, running_byte_offset += reg_info->byte_size) { // Skip composite aka slice registers (e.g. eax is a slice of rax). if (reg_info->value_regs) continue; const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; uint32_t register_offset; if (use_byte_offset_into_buffer) { register_offset = reg_info->byte_offset; } else { register_offset = running_byte_offset; } // Only write down the registers that need to be written // if we are going to be doing registers individually. bool write_reg = true; const uint32_t reg_byte_size = reg_info->byte_size; const char *restore_src = (const char *)restore_data.PeekData(register_offset, reg_byte_size); if (restore_src) { StreamString packet; packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]); packet.PutBytesAsRawHex8 (restore_src, reg_byte_size, endian::InlHostByteOrder(), endian::InlHostByteOrder()); if (thread_suffix_supported) packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); SetRegisterIsValid(reg, false); if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), packet.GetString().size(), response, false) == GDBRemoteCommunication::PacketResult::Success) { const char *current_src = (const char *)m_reg_data.PeekData(register_offset, reg_byte_size); if (current_src) write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0; } if (write_reg) { StreamString packet; packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]); packet.PutBytesAsRawHex8 (restore_src, reg_byte_size, endian::InlHostByteOrder(), endian::InlHostByteOrder()); if (thread_suffix_supported) packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); SetRegisterIsValid(reg, false); if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), packet.GetString().size(), response, false) == GDBRemoteCommunication::PacketResult::Success) { if (response.IsOKResponse()) ++num_restored; } } } } return num_restored > 0; } } } else { // For the use_g_packet == false case, we're going to write each register // individually. The data buffer is binary data in this case, instead of // ascii characters. bool arm64_debugserver = false; if (m_thread.GetProcess().get()) { const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture(); if (arch.IsValid() && arch.GetMachine() == llvm::Triple::aarch64 && arch.GetTriple().getVendor() == llvm::Triple::Apple && arch.GetTriple().getOS() == llvm::Triple::IOS) { arm64_debugserver = true; } } uint32_t num_restored = 0; const RegisterInfo *reg_info; for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex (i)) != NULL; i++) { if (reg_info->value_regs) // skip registers that are slices of real registers continue; // Skip the fpsr and fpcr floating point status/control register writing to // work around a bug in an older version of debugserver that would lead to // register context corruption when writing fpsr/fpcr. if (arm64_debugserver && (strcmp (reg_info->name, "fpsr") == 0 || strcmp (reg_info->name, "fpcr") == 0)) { continue; } StreamString packet; packet.Printf ("P%x=", reg_info->kinds[eRegisterKindProcessPlugin]); packet.PutBytesAsRawHex8 (data_sp->GetBytes() + reg_info->byte_offset, reg_info->byte_size, endian::InlHostByteOrder(), endian::InlHostByteOrder()); if (thread_suffix_supported) packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); SetRegisterIsValid(reg_info, false); if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), packet.GetString().size(), response, false) == GDBRemoteCommunication::PacketResult::Success) { if (response.IsOKResponse()) ++num_restored; } } return num_restored > 0; } } } else { Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); if (log) { if (log->GetVerbose()) { StreamString strm; gdb_comm.DumpHistory(strm); log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData()); } else log->Printf("error: failed to get packet sequence mutex, not sending write all registers"); } } return false; } uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (lldb::RegisterKind kind, uint32_t num) { return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num); } void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) { // For Advanced SIMD and VFP register mapping. static uint32_t g_d0_regs[] = { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1) static uint32_t g_d1_regs[] = { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3) static uint32_t g_d2_regs[] = { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5) static uint32_t g_d3_regs[] = { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7) static uint32_t g_d4_regs[] = { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9) static uint32_t g_d5_regs[] = { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11) static uint32_t g_d6_regs[] = { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13) static uint32_t g_d7_regs[] = { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15) static uint32_t g_d8_regs[] = { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17) static uint32_t g_d9_regs[] = { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19) static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21) static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23) static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25) static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27) static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29) static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31) static uint32_t g_q0_regs[] = { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3) static uint32_t g_q1_regs[] = { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7) static uint32_t g_q2_regs[] = { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11) static uint32_t g_q3_regs[] = { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15) static uint32_t g_q4_regs[] = { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19) static uint32_t g_q5_regs[] = { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23) static uint32_t g_q6_regs[] = { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27) static uint32_t g_q7_regs[] = { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31) static uint32_t g_q8_regs[] = { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17) static uint32_t g_q9_regs[] = { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19) static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21) static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23) static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25) static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27) static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29) static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31) // This is our array of composite registers, with each element coming from the above register mappings. static uint32_t *g_composites[] = { g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs, g_d6_regs, g_d7_regs, g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs, g_q1_regs, g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs, g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs }; static RegisterInfo g_register_infos[] = { // NAME ALT SZ OFF ENCODING FORMAT EH_FRAME DWARF GENERIC PROCESS PLUGIN LLDB VALUE REGS INVALIDATE REGS // ====== ====== === === ============= ============ =================== =================== ====================== ============= ==== ========== =============== { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { ehframe_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, NULL, NULL}, { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { ehframe_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, NULL, NULL}, { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { ehframe_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, NULL, NULL}, { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { ehframe_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, NULL, NULL}, { "r4", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, NULL, NULL}, { "r5", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, NULL, NULL}, { "r6", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, NULL, NULL}, { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { ehframe_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, NULL, NULL}, { "r8", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, NULL, NULL}, { "r9", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, NULL, NULL}, { "r10", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, NULL, NULL}, { "r11", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, NULL, NULL}, { "r12", NULL, 4, 0, eEncodingUint, eFormatHex, { ehframe_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, NULL, NULL}, { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { ehframe_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, NULL, NULL}, { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { ehframe_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, NULL, NULL}, { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { ehframe_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, NULL, NULL}, { "f0", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, NULL, NULL}, { "f1", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, NULL, NULL}, { "f2", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, NULL, NULL}, { "f3", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, NULL, NULL}, { "f4", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, NULL, NULL}, { "f5", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, NULL, NULL}, { "f6", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, NULL, NULL}, { "f7", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, NULL, NULL}, { "fps", NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, NULL, NULL}, { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { ehframe_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, NULL, NULL}, { "s0", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, NULL, NULL}, { "s1", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, NULL, NULL}, { "s2", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, NULL, NULL}, { "s3", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, NULL, NULL}, { "s4", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, NULL, NULL}, { "s5", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, NULL, NULL}, { "s6", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, NULL, NULL}, { "s7", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, NULL, NULL}, { "s8", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, NULL, NULL}, { "s9", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, NULL, NULL}, { "s10", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, NULL, NULL}, { "s11", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, NULL, NULL}, { "s12", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, NULL, NULL}, { "s13", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, NULL, NULL}, { "s14", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, NULL, NULL}, { "s15", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, NULL, NULL}, { "s16", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, NULL, NULL}, { "s17", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, NULL, NULL}, { "s18", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, NULL, NULL}, { "s19", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, NULL, NULL}, { "s20", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, NULL, NULL}, { "s21", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, NULL, NULL}, { "s22", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, NULL, NULL}, { "s23", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, NULL, NULL}, { "s24", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, NULL, NULL}, { "s25", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, NULL, NULL}, { "s26", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, NULL, NULL}, { "s27", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, NULL, NULL}, { "s28", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, NULL, NULL}, { "s29", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, NULL, NULL}, { "s30", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, NULL, NULL}, { "s31", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, NULL, NULL}, { "fpscr",NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, NULL, NULL}, { "d16", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, NULL, NULL}, { "d17", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, NULL, NULL}, { "d18", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, NULL, NULL}, { "d19", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, NULL, NULL}, { "d20", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, NULL, NULL}, { "d21", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, NULL, NULL}, { "d22", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, NULL, NULL}, { "d23", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, NULL, NULL}, { "d24", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, NULL, NULL}, { "d25", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, NULL, NULL}, { "d26", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, NULL, NULL}, { "d27", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, NULL, NULL}, { "d28", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, NULL, NULL}, { "d29", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, NULL, NULL}, { "d30", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, NULL, NULL}, { "d31", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, NULL, NULL}, { "d0", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, NULL}, { "d1", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, NULL}, { "d2", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, NULL}, { "d3", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, NULL}, { "d4", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, NULL}, { "d5", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, NULL}, { "d6", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, NULL}, { "d7", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, NULL}, { "d8", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, NULL}, { "d9", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, NULL}, { "d10", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, NULL}, { "d11", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, NULL}, { "d12", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, NULL}, { "d13", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, NULL}, { "d14", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, NULL}, { "d15", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, NULL}, { "q0", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, NULL}, { "q1", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, NULL}, { "q2", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, NULL}, { "q3", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, NULL}, { "q4", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, NULL}, { "q5", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, NULL}, { "q6", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, NULL}, { "q7", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, NULL}, { "q8", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, NULL}, { "q9", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, NULL}, { "q10", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, NULL}, { "q11", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, NULL}, { "q12", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, NULL}, { "q13", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, NULL}, { "q14", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, NULL}, { "q15", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, NULL} }; static const uint32_t num_registers = llvm::array_lengthof(g_register_infos); static ConstString gpr_reg_set ("General Purpose Registers"); static ConstString sfp_reg_set ("Software Floating Point Registers"); static ConstString vfp_reg_set ("Floating Point Registers"); size_t i; if (from_scratch) { // Calculate the offsets of the registers // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the // "primordial" registers is important. This enables us to calculate the offset of the composite // register by using the offset of its first primordial register. For example, to calculate the // offset of q0, use s0's offset. if (g_register_infos[2].byte_offset == 0) { uint32_t byte_offset = 0; for (i=0; iname && ::strcasecmp(reg_info->name, reg_name) == 0) { // The name matches the existing primordial entry. // Find and assign the offset, and then add this composite register entry. g_comp_register_infos[i].byte_offset = reg_info->byte_offset; name.SetCString(g_comp_register_infos[i].name); AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set); } } } } } } }