//===-- UnwindAssembly-x86.cpp ----------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "UnwindAssembly-x86.h" #include "llvm-c/Disassembler.h" #include "llvm/Support/TargetSelect.h" #include "lldb/Core/Address.h" #include "lldb/Core/Error.h" #include "lldb/Core/ArchSpec.h" #include "lldb/Core/PluginManager.h" #include "lldb/Symbol/UnwindPlan.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/Process.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/Thread.h" #include "lldb/Target/Target.h" #include "lldb/Target/UnwindAssembly.h" using namespace lldb; using namespace lldb_private; enum CPU { k_i386, k_x86_64 }; enum i386_register_numbers { k_machine_eax = 0, k_machine_ecx = 1, k_machine_edx = 2, k_machine_ebx = 3, k_machine_esp = 4, k_machine_ebp = 5, k_machine_esi = 6, k_machine_edi = 7, k_machine_eip = 8 }; enum x86_64_register_numbers { k_machine_rax = 0, k_machine_rcx = 1, k_machine_rdx = 2, k_machine_rbx = 3, k_machine_rsp = 4, k_machine_rbp = 5, k_machine_rsi = 6, k_machine_rdi = 7, k_machine_r8 = 8, k_machine_r9 = 9, k_machine_r10 = 10, k_machine_r11 = 11, k_machine_r12 = 12, k_machine_r13 = 13, k_machine_r14 = 14, k_machine_r15 = 15, k_machine_rip = 16 }; struct regmap_ent { const char *name; int machine_regno; int lldb_regno; }; static struct regmap_ent i386_register_map[] = { {"eax", k_machine_eax, -1}, {"ecx", k_machine_ecx, -1}, {"edx", k_machine_edx, -1}, {"ebx", k_machine_ebx, -1}, {"esp", k_machine_esp, -1}, {"ebp", k_machine_ebp, -1}, {"esi", k_machine_esi, -1}, {"edi", k_machine_edi, -1}, {"eip", k_machine_eip, -1} }; const int size_of_i386_register_map = llvm::array_lengthof (i386_register_map); static int i386_register_map_initialized = 0; static struct regmap_ent x86_64_register_map[] = { {"rax", k_machine_rax, -1}, {"rcx", k_machine_rcx, -1}, {"rdx", k_machine_rdx, -1}, {"rbx", k_machine_rbx, -1}, {"rsp", k_machine_rsp, -1}, {"rbp", k_machine_rbp, -1}, {"rsi", k_machine_rsi, -1}, {"rdi", k_machine_rdi, -1}, {"r8", k_machine_r8, -1}, {"r9", k_machine_r9, -1}, {"r10", k_machine_r10, -1}, {"r11", k_machine_r11, -1}, {"r12", k_machine_r12, -1}, {"r13", k_machine_r13, -1}, {"r14", k_machine_r14, -1}, {"r15", k_machine_r15, -1}, {"rip", k_machine_rip, -1} }; const int size_of_x86_64_register_map = llvm::array_lengthof (x86_64_register_map); static int x86_64_register_map_initialized = 0; //----------------------------------------------------------------------------------------------- // AssemblyParse_x86 local-file class definition & implementation functions //----------------------------------------------------------------------------------------------- class AssemblyParse_x86 { public: AssemblyParse_x86 (const ExecutionContext &exe_ctx, int cpu, ArchSpec &arch, AddressRange func); ~AssemblyParse_x86 (); bool get_non_call_site_unwind_plan (UnwindPlan &unwind_plan); bool augment_unwind_plan_from_call_site (AddressRange& func, UnwindPlan &unwind_plan); bool get_fast_unwind_plan (AddressRange& func, UnwindPlan &unwind_plan); bool find_first_non_prologue_insn (Address &address); private: enum { kMaxInstructionByteSize = 32 }; bool nonvolatile_reg_p (int machine_regno); bool push_rbp_pattern_p (); bool push_0_pattern_p (); bool mov_rsp_rbp_pattern_p (); bool sub_rsp_pattern_p (int& amount); bool add_rsp_pattern_p (int& amount); bool push_reg_p (int& regno); bool pop_reg_p (int& regno); bool push_imm_pattern_p (); bool mov_reg_to_local_stack_frame_p (int& regno, int& fp_offset); bool ret_pattern_p (); bool pop_rbp_pattern_p (); bool call_next_insn_pattern_p(); uint32_t extract_4 (uint8_t *b); bool machine_regno_to_lldb_regno (int machine_regno, uint32_t& lldb_regno); bool instruction_length (Address addr, int &length); const ExecutionContext m_exe_ctx; AddressRange m_func_bounds; Address m_cur_insn; uint8_t m_cur_insn_bytes[kMaxInstructionByteSize]; uint32_t m_machine_ip_regnum; uint32_t m_machine_sp_regnum; uint32_t m_machine_fp_regnum; uint32_t m_lldb_ip_regnum; uint32_t m_lldb_sp_regnum; uint32_t m_lldb_fp_regnum; int m_wordsize; int m_cpu; ArchSpec m_arch; ::LLVMDisasmContextRef m_disasm_context; DISALLOW_COPY_AND_ASSIGN (AssemblyParse_x86); }; AssemblyParse_x86::AssemblyParse_x86 (const ExecutionContext &exe_ctx, int cpu, ArchSpec &arch, AddressRange func) : m_exe_ctx (exe_ctx), m_func_bounds(func), m_cur_insn (), m_machine_ip_regnum (LLDB_INVALID_REGNUM), m_machine_sp_regnum (LLDB_INVALID_REGNUM), m_machine_fp_regnum (LLDB_INVALID_REGNUM), m_lldb_ip_regnum (LLDB_INVALID_REGNUM), m_lldb_sp_regnum (LLDB_INVALID_REGNUM), m_lldb_fp_regnum (LLDB_INVALID_REGNUM), m_wordsize (-1), m_cpu(cpu), m_arch(arch) { int *initialized_flag = NULL; if (cpu == k_i386) { m_machine_ip_regnum = k_machine_eip; m_machine_sp_regnum = k_machine_esp; m_machine_fp_regnum = k_machine_ebp; m_wordsize = 4; initialized_flag = &i386_register_map_initialized; } else { m_machine_ip_regnum = k_machine_rip; m_machine_sp_regnum = k_machine_rsp; m_machine_fp_regnum = k_machine_rbp; m_wordsize = 8; initialized_flag = &x86_64_register_map_initialized; } // we only look at prologue - it will be complete earlier than 512 bytes into func if (m_func_bounds.GetByteSize() == 0) m_func_bounds.SetByteSize(512); Thread *thread = m_exe_ctx.GetThreadPtr(); if (thread && *initialized_flag == 0) { RegisterContext *reg_ctx = thread->GetRegisterContext().get(); if (reg_ctx) { struct regmap_ent *ent; int count, i; if (cpu == k_i386) { ent = i386_register_map; count = size_of_i386_register_map; } else { ent = x86_64_register_map; count = size_of_x86_64_register_map; } for (i = 0; i < count; i++, ent++) { const RegisterInfo *ri = reg_ctx->GetRegisterInfoByName (ent->name); if (ri) ent->lldb_regno = ri->kinds[eRegisterKindLLDB]; } *initialized_flag = 1; } } // on initial construction we may not have a Thread so these have to remain // uninitialized until we can get a RegisterContext to set up the register map table if (*initialized_flag == 1) { uint32_t lldb_regno; if (machine_regno_to_lldb_regno (m_machine_sp_regnum, lldb_regno)) m_lldb_sp_regnum = lldb_regno; if (machine_regno_to_lldb_regno (m_machine_fp_regnum, lldb_regno)) m_lldb_fp_regnum = lldb_regno; if (machine_regno_to_lldb_regno (m_machine_ip_regnum, lldb_regno)) m_lldb_ip_regnum = lldb_regno; } m_disasm_context = ::LLVMCreateDisasm(m_arch.GetTriple().getTriple().c_str(), (void*)this, /*TagType=*/1, NULL, NULL); } AssemblyParse_x86::~AssemblyParse_x86 () { ::LLVMDisasmDispose(m_disasm_context); } // This function expects an x86 native register number (i.e. the bits stripped out of the // actual instruction), not an lldb register number. bool AssemblyParse_x86::nonvolatile_reg_p (int machine_regno) { if (m_cpu == k_i386) { switch (machine_regno) { case k_machine_ebx: case k_machine_ebp: // not actually a nonvolatile but often treated as such by convention case k_machine_esi: case k_machine_edi: case k_machine_esp: return true; default: return false; } } if (m_cpu == k_x86_64) { switch (machine_regno) { case k_machine_rbx: case k_machine_rsp: case k_machine_rbp: // not actually a nonvolatile but often treated as such by convention case k_machine_r12: case k_machine_r13: case k_machine_r14: case k_machine_r15: return true; default: return false; } } return false; } // Macro to detect if this is a REX mode prefix byte. #define REX_W_PREFIX_P(opcode) (((opcode) & (~0x5)) == 0x48) // The high bit which should be added to the source register number (the "R" bit) #define REX_W_SRCREG(opcode) (((opcode) & 0x4) >> 2) // The high bit which should be added to the destination register number (the "B" bit) #define REX_W_DSTREG(opcode) ((opcode) & 0x1) // pushq %rbp [0x55] bool AssemblyParse_x86::push_rbp_pattern_p () { uint8_t *p = m_cur_insn_bytes; if (*p == 0x55) return true; return false; } // pushq $0 ; the first instruction in start() [0x6a 0x00] bool AssemblyParse_x86::push_0_pattern_p () { uint8_t *p = m_cur_insn_bytes; if (*p == 0x6a && *(p + 1) == 0x0) return true; return false; } // pushq $0 // pushl $0 bool AssemblyParse_x86::push_imm_pattern_p () { uint8_t *p = m_cur_insn_bytes; if (*p == 0x68 || *p == 0x6a) return true; return false; } // movq %rsp, %rbp [0x48 0x8b 0xec] or [0x48 0x89 0xe5] // movl %esp, %ebp [0x8b 0xec] or [0x89 0xe5] bool AssemblyParse_x86::mov_rsp_rbp_pattern_p () { uint8_t *p = m_cur_insn_bytes; if (m_wordsize == 8 && *p == 0x48) p++; if (*(p) == 0x8b && *(p + 1) == 0xec) return true; if (*(p) == 0x89 && *(p + 1) == 0xe5) return true; return false; } // subq $0x20, %rsp bool AssemblyParse_x86::sub_rsp_pattern_p (int& amount) { uint8_t *p = m_cur_insn_bytes; if (m_wordsize == 8 && *p == 0x48) p++; // 8-bit immediate operand if (*p == 0x83 && *(p + 1) == 0xec) { amount = (int8_t) *(p + 2); return true; } // 32-bit immediate operand if (*p == 0x81 && *(p + 1) == 0xec) { amount = (int32_t) extract_4 (p + 2); return true; } return false; } // addq $0x20, %rsp bool AssemblyParse_x86::add_rsp_pattern_p (int& amount) { uint8_t *p = m_cur_insn_bytes; if (m_wordsize == 8 && *p == 0x48) p++; // 8-bit immediate operand if (*p == 0x83 && *(p + 1) == 0xc4) { amount = (int8_t) *(p + 2); return true; } // 32-bit immediate operand if (*p == 0x81 && *(p + 1) == 0xc4) { amount = (int32_t) extract_4 (p + 2); return true; } return false; } // pushq %rbx // pushl %ebx bool AssemblyParse_x86::push_reg_p (int& regno) { uint8_t *p = m_cur_insn_bytes; int regno_prefix_bit = 0; // If we have a rex prefix byte, check to see if a B bit is set if (m_wordsize == 8 && *p == 0x41) { regno_prefix_bit = 1 << 3; p++; } if (*p >= 0x50 && *p <= 0x57) { regno = (*p - 0x50) | regno_prefix_bit; return true; } return false; } // popq %rbx // popl %ebx bool AssemblyParse_x86::pop_reg_p (int& regno) { uint8_t *p = m_cur_insn_bytes; int regno_prefix_bit = 0; // If we have a rex prefix byte, check to see if a B bit is set if (m_wordsize == 8 && *p == 0x41) { regno_prefix_bit = 1 << 3; p++; } if (*p >= 0x58 && *p <= 0x5f) { regno = (*p - 0x58) | regno_prefix_bit; return true; } return false; } // popq %rbp [0x5d] // popl %ebp [0x5d] bool AssemblyParse_x86::pop_rbp_pattern_p () { uint8_t *p = m_cur_insn_bytes; return (*p == 0x5d); } // call $0 [0xe8 0x0 0x0 0x0 0x0] bool AssemblyParse_x86::call_next_insn_pattern_p () { uint8_t *p = m_cur_insn_bytes; return (*p == 0xe8) && (*(p+1) == 0x0) && (*(p+2) == 0x0) && (*(p+3) == 0x0) && (*(p+4) == 0x0); } // Look for an instruction sequence storing a nonvolatile register // on to the stack frame. // movq %rax, -0x10(%rbp) [0x48 0x89 0x45 0xf0] // movl %eax, -0xc(%ebp) [0x89 0x45 0xf4] // The offset value returned in rbp_offset will be positive -- // but it must be subtraced from the frame base register to get // the actual location. The positive value returned for the offset // is a convention used elsewhere for CFA offsets et al. bool AssemblyParse_x86::mov_reg_to_local_stack_frame_p (int& regno, int& rbp_offset) { uint8_t *p = m_cur_insn_bytes; int src_reg_prefix_bit = 0; int target_reg_prefix_bit = 0; if (m_wordsize == 8 && REX_W_PREFIX_P (*p)) { src_reg_prefix_bit = REX_W_SRCREG (*p) << 3; target_reg_prefix_bit = REX_W_DSTREG (*p) << 3; if (target_reg_prefix_bit == 1) { // rbp/ebp don't need a prefix bit - we know this isn't the // reg we care about. return false; } p++; } if (*p == 0x89) { /* Mask off the 3-5 bits which indicate the destination register if this is a ModR/M byte. */ int opcode_destreg_masked_out = *(p + 1) & (~0x38); /* Is this a ModR/M byte with Mod bits 01 and R/M bits 101 and three bits between them, e.g. 01nnn101 We're looking for a destination of ebp-disp8 or ebp-disp32. */ int immsize; if (opcode_destreg_masked_out == 0x45) immsize = 2; else if (opcode_destreg_masked_out == 0x85) immsize = 4; else return false; int offset = 0; if (immsize == 2) offset = (int8_t) *(p + 2); if (immsize == 4) offset = (uint32_t) extract_4 (p + 2); if (offset > 0) return false; regno = ((*(p + 1) >> 3) & 0x7) | src_reg_prefix_bit; rbp_offset = offset > 0 ? offset : -offset; return true; } return false; } // ret [0xc9] or [0xc2 imm8] or [0xca imm8] bool AssemblyParse_x86::ret_pattern_p () { uint8_t *p = m_cur_insn_bytes; if (*p == 0xc9 || *p == 0xc2 || *p == 0xca || *p == 0xc3) return true; return false; } uint32_t AssemblyParse_x86::extract_4 (uint8_t *b) { uint32_t v = 0; for (int i = 3; i >= 0; i--) v = (v << 8) | b[i]; return v; } bool AssemblyParse_x86::machine_regno_to_lldb_regno (int machine_regno, uint32_t &lldb_regno) { struct regmap_ent *ent; int count, i; if (m_cpu == k_i386) { ent = i386_register_map; count = size_of_i386_register_map; } else { ent = x86_64_register_map; count = size_of_x86_64_register_map; } for (i = 0; i < count; i++, ent++) { if (ent->machine_regno == machine_regno) if (ent->lldb_regno != -1) { lldb_regno = ent->lldb_regno; return true; } } return false; } bool AssemblyParse_x86::instruction_length (Address addr, int &length) { const uint32_t max_op_byte_size = m_arch.GetMaximumOpcodeByteSize(); llvm::SmallVector opcode_data; opcode_data.resize (max_op_byte_size); if (!addr.IsValid()) return false; const bool prefer_file_cache = true; Error error; Target *target = m_exe_ctx.GetTargetPtr(); if (target->ReadMemory (addr, prefer_file_cache, opcode_data.data(), max_op_byte_size, error) == static_cast(-1)) { return false; } char out_string[512]; const addr_t pc = addr.GetFileAddress(); const size_t inst_size = ::LLVMDisasmInstruction (m_disasm_context, opcode_data.data(), max_op_byte_size, pc, // PC value out_string, sizeof(out_string)); length = inst_size; return true; } bool AssemblyParse_x86::get_non_call_site_unwind_plan (UnwindPlan &unwind_plan) { UnwindPlan::RowSP row(new UnwindPlan::Row); int non_prologue_insn_count = 0; m_cur_insn = m_func_bounds.GetBaseAddress (); int current_func_text_offset = 0; int current_sp_bytes_offset_from_cfa = 0; UnwindPlan::Row::RegisterLocation initial_regloc; Error error; if (!m_cur_insn.IsValid()) { return false; } unwind_plan.SetPlanValidAddressRange (m_func_bounds); unwind_plan.SetRegisterKind (eRegisterKindLLDB); // At the start of the function, find the CFA by adding wordsize to the SP register row->SetOffset (current_func_text_offset); row->SetCFARegister (m_lldb_sp_regnum); row->SetCFAOffset (m_wordsize); // caller's stack pointer value before the call insn is the CFA address initial_regloc.SetIsCFAPlusOffset (0); row->SetRegisterInfo (m_lldb_sp_regnum, initial_regloc); // saved instruction pointer can be found at CFA - wordsize. current_sp_bytes_offset_from_cfa = m_wordsize; initial_regloc.SetAtCFAPlusOffset (-current_sp_bytes_offset_from_cfa); row->SetRegisterInfo (m_lldb_ip_regnum, initial_regloc); unwind_plan.AppendRow (row); // Allocate a new Row, populate it with the existing Row contents. UnwindPlan::Row *newrow = new UnwindPlan::Row; *newrow = *row.get(); row.reset(newrow); const bool prefer_file_cache = true; Target *target = m_exe_ctx.GetTargetPtr(); while (m_func_bounds.ContainsFileAddress (m_cur_insn) && non_prologue_insn_count < 10) { int stack_offset, insn_len; int machine_regno; // register numbers masked directly out of instructions uint32_t lldb_regno; // register numbers in lldb's eRegisterKindLLDB numbering scheme if (!instruction_length (m_cur_insn, insn_len) || insn_len == 0 || insn_len > kMaxInstructionByteSize) { // An unrecognized/junk instruction break; } if (target->ReadMemory (m_cur_insn, prefer_file_cache, m_cur_insn_bytes, insn_len, error) == static_cast(-1)) { // Error reading the instruction out of the file, stop scanning break; } if (push_rbp_pattern_p ()) { row->SetOffset (current_func_text_offset + insn_len); current_sp_bytes_offset_from_cfa += m_wordsize; row->SetCFAOffset (current_sp_bytes_offset_from_cfa); UnwindPlan::Row::RegisterLocation regloc; regloc.SetAtCFAPlusOffset (-row->GetCFAOffset()); row->SetRegisterInfo (m_lldb_fp_regnum, regloc); unwind_plan.AppendRow (row); // Allocate a new Row, populate it with the existing Row contents. newrow = new UnwindPlan::Row; *newrow = *row.get(); row.reset(newrow); goto loopnext; } if (mov_rsp_rbp_pattern_p ()) { row->SetOffset (current_func_text_offset + insn_len); row->SetCFARegister (m_lldb_fp_regnum); unwind_plan.AppendRow (row); // Allocate a new Row, populate it with the existing Row contents. newrow = new UnwindPlan::Row; *newrow = *row.get(); row.reset(newrow); goto loopnext; } // This is the start() function (or a pthread equivalent), it starts with a pushl $0x0 which puts the // saved pc value of 0 on the stack. In this case we want to pretend we didn't see a stack movement at all -- // normally the saved pc value is already on the stack by the time the function starts executing. if (push_0_pattern_p ()) { goto loopnext; } if (push_reg_p (machine_regno)) { current_sp_bytes_offset_from_cfa += m_wordsize; bool need_to_push_row = false; // the PUSH instruction has moved the stack pointer - if the CFA is set in terms of the stack pointer, // we need to add a new row of instructions. if (row->GetCFARegister() == m_lldb_sp_regnum) { need_to_push_row = true; row->SetCFAOffset (current_sp_bytes_offset_from_cfa); } // record where non-volatile (callee-saved, spilled) registers are saved on the stack if (nonvolatile_reg_p (machine_regno) && machine_regno_to_lldb_regno (machine_regno, lldb_regno)) { need_to_push_row = true; UnwindPlan::Row::RegisterLocation regloc; regloc.SetAtCFAPlusOffset (-current_sp_bytes_offset_from_cfa); row->SetRegisterInfo (lldb_regno, regloc); } if (need_to_push_row) { row->SetOffset (current_func_text_offset + insn_len); unwind_plan.AppendRow (row); // Allocate a new Row, populate it with the existing Row contents. newrow = new UnwindPlan::Row; *newrow = *row.get(); row.reset(newrow); } goto loopnext; } if (mov_reg_to_local_stack_frame_p (machine_regno, stack_offset) && nonvolatile_reg_p (machine_regno)) { if (machine_regno_to_lldb_regno (machine_regno, lldb_regno)) { row->SetOffset (current_func_text_offset + insn_len); UnwindPlan::Row::RegisterLocation regloc; // stack_offset for 'movq %r15, -80(%rbp)' will be 80. // In the Row, we want to express this as the offset from the CFA. If the frame base // is rbp (like the above instruction), the CFA offset for rbp is probably 16. So we // want to say that the value is stored at the CFA address - 96. regloc.SetAtCFAPlusOffset (-(stack_offset + row->GetCFAOffset())); row->SetRegisterInfo (lldb_regno, regloc); unwind_plan.AppendRow (row); // Allocate a new Row, populate it with the existing Row contents. newrow = new UnwindPlan::Row; *newrow = *row.get(); row.reset(newrow); goto loopnext; } } if (sub_rsp_pattern_p (stack_offset)) { current_sp_bytes_offset_from_cfa += stack_offset; if (row->GetCFARegister() == m_lldb_sp_regnum) { row->SetOffset (current_func_text_offset + insn_len); row->SetCFAOffset (current_sp_bytes_offset_from_cfa); unwind_plan.AppendRow (row); // Allocate a new Row, populate it with the existing Row contents. newrow = new UnwindPlan::Row; *newrow = *row.get(); row.reset(newrow); } goto loopnext; } if (ret_pattern_p ()) { // we know where the end of the function is; set the limit on the PlanValidAddressRange // in case our initial "high pc" value was overly large // int original_size = m_func_bounds.GetByteSize(); // int calculated_size = m_cur_insn.GetOffset() - m_func_bounds.GetBaseAddress().GetOffset() + insn_len + 1; // m_func_bounds.SetByteSize (calculated_size); // unwind_plan.SetPlanValidAddressRange (m_func_bounds); break; } // FIXME recognize the i386 picbase setup instruction sequence, // 0x1f16: call 0x1f1b ; main + 11 at /private/tmp/a.c:3 // 0x1f1b: popl %eax // and record the temporary stack movements if the CFA is not expressed in terms of ebp. non_prologue_insn_count++; loopnext: m_cur_insn.SetOffset (m_cur_insn.GetOffset() + insn_len); current_func_text_offset += insn_len; } // Now look at the byte at the end of the AddressRange for a limited attempt at describing the // epilogue. We're looking for the sequence // [ 0x5d ] mov %rbp, %rsp (aka pop %rbp) // [ 0xc3 ] ret // or // [ 0x5d ] mov %rbp, %rsp (aka pop %rbp) // [ 0xe9 xx xx xx xx ] jmp objc_retainAutoreleaseReturnValue (this is sometimes the final insn in the function) // or // [ 0x5d ] mov %rbp, %rsp (aka pop %rbp) // [ 0xc3 ] ret // [ 0xe8 xx xx xx xx ] call __stack_chk_fail (this is sometimes the final insn in the function) // We want to add a Row describing how to unwind when we're stopped on the 'ret' instruction where the // CFA is no longer defined in terms of rbp, but is now defined in terms of rsp like on function entry. // (or the 'jmp' instruction in the second case) uint64_t ret_insn_offset = LLDB_INVALID_ADDRESS; Address end_of_fun(m_func_bounds.GetBaseAddress()); end_of_fun.SetOffset (end_of_fun.GetOffset() + m_func_bounds.GetByteSize()); if (m_func_bounds.GetByteSize() > 7) { uint8_t bytebuf[7]; Address last_seven_bytes(end_of_fun); last_seven_bytes.SetOffset (last_seven_bytes.GetOffset() - 7); if (target->ReadMemory (last_seven_bytes, prefer_file_cache, bytebuf, 7, error) != static_cast(-1)) { if (bytebuf[5] == 0x5d && bytebuf[6] == 0xc3) // mov & ret { ret_insn_offset = m_func_bounds.GetByteSize() - 1; } else if (bytebuf[1] == 0x5d && bytebuf[2] == 0xe9) // mov & jmp { // When the pc is sitting on the 'jmp' instruction, we have the same // unwind state as if it was sitting on a 'ret' instruction. ret_insn_offset = m_func_bounds.GetByteSize() - 5; } else if (bytebuf[0] == 0x5d && bytebuf[1] == 0xc3 && bytebuf[2] == 0xe8) // mov & ret & call { ret_insn_offset = m_func_bounds.GetByteSize() - 6; } } } else if (m_func_bounds.GetByteSize() > 2) { uint8_t bytebuf[2]; Address last_two_bytes(end_of_fun); last_two_bytes.SetOffset (last_two_bytes.GetOffset() - 2); if (target->ReadMemory (last_two_bytes, prefer_file_cache, bytebuf, 2, error) != static_cast(-1)) { if (bytebuf[0] == 0x5d && bytebuf[1] == 0xc3) // mov & ret { ret_insn_offset = m_func_bounds.GetByteSize() - 1; } } } if (ret_insn_offset != LLDB_INVALID_ADDRESS) { // Create a fresh, empty Row and RegisterLocation - don't mention any other registers UnwindPlan::RowSP epi_row(new UnwindPlan::Row); UnwindPlan::Row::RegisterLocation epi_regloc; // When the ret instruction is about to be executed, here's our state epi_row->SetOffset (ret_insn_offset); epi_row->SetCFARegister (m_lldb_sp_regnum); epi_row->SetCFAOffset (m_wordsize); // caller's stack pointer value before the call insn is the CFA address epi_regloc.SetIsCFAPlusOffset (0); epi_row->SetRegisterInfo (m_lldb_sp_regnum, epi_regloc); // saved instruction pointer can be found at CFA - wordsize epi_regloc.SetAtCFAPlusOffset (-m_wordsize); epi_row->SetRegisterInfo (m_lldb_ip_regnum, epi_regloc); unwind_plan.AppendRow (epi_row); } unwind_plan.SetSourceName ("assembly insn profiling"); unwind_plan.SetSourcedFromCompiler (eLazyBoolNo); unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolYes); return true; } bool AssemblyParse_x86::augment_unwind_plan_from_call_site (AddressRange& func, UnwindPlan &unwind_plan) { // Is func address valid? Address addr_start = func.GetBaseAddress(); if (!addr_start.IsValid()) return false; // Is original unwind_plan valid? // unwind_plan should have at least one row which is ABI-default (CFA register is sp), // and another row in mid-function. if (unwind_plan.GetRowCount() < 2) return false; UnwindPlan::RowSP first_row = unwind_plan.GetRowAtIndex (0); if (first_row->GetOffset() != 0) return false; uint32_t cfa_reg = m_exe_ctx.GetThreadPtr()->GetRegisterContext() ->ConvertRegisterKindToRegisterNumber (unwind_plan.GetRegisterKind(), first_row->GetCFARegister()); if (cfa_reg != m_lldb_sp_regnum || first_row->GetCFAOffset() != m_wordsize) return false; Target *target = m_exe_ctx.GetTargetPtr(); m_cur_insn = func.GetBaseAddress(); uint64_t offset = 0; int row_id = 1; bool unwind_plan_updated = false; UnwindPlan::RowSP row(new UnwindPlan::Row(*first_row)); while (func.ContainsFileAddress (m_cur_insn)) { int insn_len; if (!instruction_length (m_cur_insn, insn_len) || insn_len == 0 || insn_len > kMaxInstructionByteSize) { // An unrecognized/junk instruction. break; } const bool prefer_file_cache = true; Error error; if (target->ReadMemory (m_cur_insn, prefer_file_cache, m_cur_insn_bytes, insn_len, error) == static_cast(-1)) { // Error reading the instruction out of the file, stop scanning. break; } // Advance offsets. offset += insn_len; m_cur_insn.SetOffset(m_cur_insn.GetOffset() + insn_len); // If we already have one row for this instruction, we can continue. while (row_id < unwind_plan.GetRowCount() && unwind_plan.GetRowAtIndex (row_id)->GetOffset() <= offset) row_id++; UnwindPlan::RowSP original_row = unwind_plan.GetRowAtIndex (row_id - 1); if (original_row->GetOffset() == offset) { *row = *original_row; continue; } if (row_id == 0) { // If we are here, compiler didn't generate CFI for prologue. // This won't happen to GCC or clang. // In this case, bail out directly. return false; } // Inspect the instruction to check if we need a new row for it. cfa_reg = m_exe_ctx.GetThreadPtr()->GetRegisterContext() ->ConvertRegisterKindToRegisterNumber (unwind_plan.GetRegisterKind(), row->GetCFARegister()); if (cfa_reg == m_lldb_sp_regnum) { // CFA register is sp. // call next instruction // call 0 // => pop %ebx if (call_next_insn_pattern_p ()) { row->SetOffset (offset); row->SetCFAOffset (m_wordsize + row->GetCFAOffset()); UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row)); unwind_plan.InsertRow (new_row); unwind_plan_updated = true; continue; } // push/pop register int regno; if (push_reg_p (regno)) { row->SetOffset (offset); row->SetCFAOffset (m_wordsize + row->GetCFAOffset()); UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row)); unwind_plan.InsertRow (new_row); unwind_plan_updated = true; continue; } if (pop_reg_p (regno)) { // Technically, this might be a nonvolatile register recover in epilogue. // We should reset RegisterInfo for the register. // But in practice, previous rule for the register is still valid... // So we ignore this case. row->SetOffset (offset); row->SetCFAOffset (-m_wordsize + row->GetCFAOffset()); UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row)); unwind_plan.InsertRow (new_row); unwind_plan_updated = true; continue; } // push imm if (push_imm_pattern_p ()) { row->SetOffset (offset); row->SetCFAOffset (m_wordsize + row->GetCFAOffset()); UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row)); unwind_plan.InsertRow (new_row); unwind_plan_updated = true; continue; } // add/sub %rsp/%esp int amount; if (add_rsp_pattern_p (amount)) { row->SetOffset (offset); row->SetCFAOffset (-amount + row->GetCFAOffset()); UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row)); unwind_plan.InsertRow (new_row); unwind_plan_updated = true; continue; } if (sub_rsp_pattern_p (amount)) { row->SetOffset (offset); row->SetCFAOffset (amount + row->GetCFAOffset()); UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row)); unwind_plan.InsertRow (new_row); unwind_plan_updated = true; continue; } } else if (cfa_reg == m_lldb_fp_regnum) { // CFA register is fp. // The only case we care about is epilogue: // [0x5d] pop %rbp/%ebp // => [0xc3] ret if (pop_rbp_pattern_p ()) { if (target->ReadMemory (m_cur_insn, prefer_file_cache, m_cur_insn_bytes, 1, error) != static_cast(-1) && ret_pattern_p ()) { row->SetOffset (offset); row->SetCFARegister (first_row->GetCFARegister()); row->SetCFAOffset (m_wordsize); UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row)); unwind_plan.InsertRow (new_row); unwind_plan_updated = true; continue; } } } else { // CFA register is not sp or fp. // This must be hand-written assembly. // Just trust eh_frame and assume we have finished. break; } } unwind_plan.SetPlanValidAddressRange (func); if (unwind_plan_updated) { std::string unwind_plan_source (unwind_plan.GetSourceName().AsCString()); unwind_plan_source += " plus augmentation from assembly parsing"; unwind_plan.SetSourceName (unwind_plan_source.c_str()); unwind_plan.SetSourcedFromCompiler (eLazyBoolNo); } return true; } /* The "fast unwind plan" is valid for functions that follow the usual convention of using the frame pointer register (ebp, rbp), i.e. the function prologue looks like push %rbp [0x55] mov %rsp,%rbp [0x48 0x89 0xe5] (this is a 2-byte insn seq on i386) */ bool AssemblyParse_x86::get_fast_unwind_plan (AddressRange& func, UnwindPlan &unwind_plan) { UnwindPlan::RowSP row(new UnwindPlan::Row); UnwindPlan::Row::RegisterLocation pc_reginfo; UnwindPlan::Row::RegisterLocation sp_reginfo; UnwindPlan::Row::RegisterLocation fp_reginfo; unwind_plan.SetRegisterKind (eRegisterKindLLDB); if (!func.GetBaseAddress().IsValid()) return false; Target *target = m_exe_ctx.GetTargetPtr(); uint8_t bytebuf[4]; Error error; const bool prefer_file_cache = true; if (target->ReadMemory (func.GetBaseAddress(), prefer_file_cache, bytebuf, sizeof (bytebuf), error) == static_cast(-1)) return false; uint8_t i386_prologue[] = {0x55, 0x89, 0xe5}; uint8_t x86_64_prologue[] = {0x55, 0x48, 0x89, 0xe5}; int prologue_size; if (memcmp (bytebuf, i386_prologue, sizeof (i386_prologue)) == 0) { prologue_size = sizeof (i386_prologue); } else if (memcmp (bytebuf, x86_64_prologue, sizeof (x86_64_prologue)) == 0) { prologue_size = sizeof (x86_64_prologue); } else { return false; } pc_reginfo.SetAtCFAPlusOffset (-m_wordsize); row->SetRegisterInfo (m_lldb_ip_regnum, pc_reginfo); sp_reginfo.SetIsCFAPlusOffset (0); row->SetRegisterInfo (m_lldb_sp_regnum, sp_reginfo); // Zero instructions into the function row->SetCFARegister (m_lldb_sp_regnum); row->SetCFAOffset (m_wordsize); row->SetOffset (0); unwind_plan.AppendRow (row); UnwindPlan::Row *newrow = new UnwindPlan::Row; *newrow = *row.get(); row.reset(newrow); // push %rbp has executed - stack moved, rbp now saved row->SetCFAOffset (2 * m_wordsize); fp_reginfo.SetAtCFAPlusOffset (2 * -m_wordsize); row->SetRegisterInfo (m_lldb_fp_regnum, fp_reginfo); row->SetOffset (1); unwind_plan.AppendRow (row); newrow = new UnwindPlan::Row; *newrow = *row.get(); row.reset(newrow); // mov %rsp, %rbp has executed row->SetCFARegister (m_lldb_fp_regnum); row->SetCFAOffset (2 * m_wordsize); row->SetOffset (prologue_size); /// 3 or 4 bytes depending on arch unwind_plan.AppendRow (row); newrow = new UnwindPlan::Row; *newrow = *row.get(); row.reset(newrow); unwind_plan.SetPlanValidAddressRange (func); unwind_plan.SetSourceName ("fast unwind assembly profiling"); unwind_plan.SetSourcedFromCompiler (eLazyBoolNo); unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo); return true; } bool AssemblyParse_x86::find_first_non_prologue_insn (Address &address) { m_cur_insn = m_func_bounds.GetBaseAddress (); if (!m_cur_insn.IsValid()) { return false; } const bool prefer_file_cache = true; Target *target = m_exe_ctx.GetTargetPtr(); while (m_func_bounds.ContainsFileAddress (m_cur_insn)) { Error error; int insn_len, offset, regno; if (!instruction_length (m_cur_insn, insn_len) || insn_len > kMaxInstructionByteSize || insn_len == 0) { // An error parsing the instruction, i.e. probably data/garbage - stop scanning break; } if (target->ReadMemory (m_cur_insn, prefer_file_cache, m_cur_insn_bytes, insn_len, error) == static_cast(-1)) { // Error reading the instruction out of the file, stop scanning break; } if (push_rbp_pattern_p () || mov_rsp_rbp_pattern_p () || sub_rsp_pattern_p (offset) || push_reg_p (regno) || mov_reg_to_local_stack_frame_p (regno, offset)) { m_cur_insn.SetOffset (m_cur_insn.GetOffset() + insn_len); continue; } // Unknown non-prologue instruction - stop scanning break; } address = m_cur_insn; return true; } //----------------------------------------------------------------------------------------------- // UnwindAssemblyParser_x86 method definitions //----------------------------------------------------------------------------------------------- UnwindAssembly_x86::UnwindAssembly_x86 (const ArchSpec &arch, int cpu) : lldb_private::UnwindAssembly(arch), m_cpu(cpu), m_arch(arch) { } UnwindAssembly_x86::~UnwindAssembly_x86 () { } bool UnwindAssembly_x86::GetNonCallSiteUnwindPlanFromAssembly (AddressRange& func, Thread& thread, UnwindPlan& unwind_plan) { ExecutionContext exe_ctx (thread.shared_from_this()); AssemblyParse_x86 asm_parse(exe_ctx, m_cpu, m_arch, func); return asm_parse.get_non_call_site_unwind_plan (unwind_plan); } bool UnwindAssembly_x86::AugmentUnwindPlanFromCallSite (AddressRange& func, Thread& thread, UnwindPlan& unwind_plan) { ExecutionContext exe_ctx (thread.shared_from_this()); AssemblyParse_x86 asm_parse(exe_ctx, m_cpu, m_arch, func); return asm_parse.augment_unwind_plan_from_call_site (func, unwind_plan); } bool UnwindAssembly_x86::GetFastUnwindPlan (AddressRange& func, Thread& thread, UnwindPlan &unwind_plan) { ExecutionContext exe_ctx (thread.shared_from_this()); AssemblyParse_x86 asm_parse(exe_ctx, m_cpu, m_arch, func); return asm_parse.get_fast_unwind_plan (func, unwind_plan); } bool UnwindAssembly_x86::FirstNonPrologueInsn (AddressRange& func, const ExecutionContext &exe_ctx, Address& first_non_prologue_insn) { AssemblyParse_x86 asm_parse(exe_ctx, m_cpu, m_arch, func); return asm_parse.find_first_non_prologue_insn (first_non_prologue_insn); } UnwindAssembly * UnwindAssembly_x86::CreateInstance (const ArchSpec &arch) { const llvm::Triple::ArchType cpu = arch.GetMachine (); if (cpu == llvm::Triple::x86) return new UnwindAssembly_x86 (arch, k_i386); else if (cpu == llvm::Triple::x86_64) return new UnwindAssembly_x86 (arch, k_x86_64); return NULL; } //------------------------------------------------------------------ // PluginInterface protocol in UnwindAssemblyParser_x86 //------------------------------------------------------------------ ConstString UnwindAssembly_x86::GetPluginName() { return GetPluginNameStatic(); } uint32_t UnwindAssembly_x86::GetPluginVersion() { return 1; } void UnwindAssembly_x86::Initialize() { PluginManager::RegisterPlugin (GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance); } void UnwindAssembly_x86::Terminate() { PluginManager::UnregisterPlugin (CreateInstance); } lldb_private::ConstString UnwindAssembly_x86::GetPluginNameStatic() { static ConstString g_name("x86"); return g_name; } const char * UnwindAssembly_x86::GetPluginDescriptionStatic() { return "i386 and x86_64 assembly language profiler plugin."; }