//===-- ClangASTContext.cpp -------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Symbol/ClangASTContext.h" #include "llvm/Support/FormatAdapters.h" #include "llvm/Support/FormatVariadic.h" // C Includes // C++ Includes #include // std::once #include #include // Other libraries and framework includes // Clang headers like to use NDEBUG inside of them to enable/disable debug // related features using "#ifndef NDEBUG" preprocessor blocks to do one thing // or another. This is bad because it means that if clang was built in release // mode, it assumes that you are building in release mode which is not always // the case. You can end up with functions that are defined as empty in header // files when NDEBUG is not defined, and this can cause link errors with the // clang .a files that you have since you might be missing functions in the .a // file. So we have to define NDEBUG when including clang headers to avoid any // mismatches. This is covered by rdar://problem/8691220 #if !defined(NDEBUG) && !defined(LLVM_NDEBUG_OFF) #define LLDB_DEFINED_NDEBUG_FOR_CLANG #define NDEBUG // Need to include assert.h so it is as clang would expect it to be (disabled) #include #endif #include "clang/AST/ASTContext.h" #include "clang/AST/ASTImporter.h" #include "clang/AST/Attr.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Mangle.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/Type.h" #include "clang/AST/VTableBuilder.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/FileSystemOptions.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/TargetOptions.h" #include "clang/Frontend/FrontendOptions.h" #include "clang/Frontend/LangStandard.h" #ifdef LLDB_DEFINED_NDEBUG_FOR_CLANG #undef NDEBUG #undef LLDB_DEFINED_NDEBUG_FOR_CLANG // Need to re-include assert.h so it is as _we_ would expect it to be (enabled) #include #endif #include "llvm/Support/Signals.h" #include "Plugins/ExpressionParser/Clang/ClangFunctionCaller.h" #include "Plugins/ExpressionParser/Clang/ClangUserExpression.h" #include "Plugins/ExpressionParser/Clang/ClangUtilityFunction.h" #include "lldb/Core/ArchSpec.h" #include "lldb/Core/Flags.h" #include "lldb/Core/Log.h" #include "lldb/Core/Module.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/RegularExpression.h" #include "lldb/Core/Scalar.h" #include "lldb/Core/StreamFile.h" #include "lldb/Core/ThreadSafeDenseMap.h" #include "lldb/Core/UniqueCStringMap.h" #include "lldb/Symbol/ClangASTContext.h" #include "lldb/Symbol/ClangASTImporter.h" #include "lldb/Symbol/ClangExternalASTSourceCallbacks.h" #include "lldb/Symbol/ClangExternalASTSourceCommon.h" #include "lldb/Symbol/ClangUtil.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Symbol/SymbolFile.h" #include "lldb/Symbol/VerifyDecl.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/Language.h" #include "lldb/Target/ObjCLanguageRuntime.h" #include "lldb/Target/Process.h" #include "lldb/Target/Target.h" #include "lldb/Utility/LLDBAssert.h" #include "Plugins/SymbolFile/DWARF/DWARFASTParserClang.h" #include "Plugins/SymbolFile/PDB/PDBASTParser.h" #include #include using namespace lldb; using namespace lldb_private; using namespace llvm; using namespace clang; namespace { static inline bool ClangASTContextSupportsLanguage(lldb::LanguageType language) { return language == eLanguageTypeUnknown || // Clang is the default type system Language::LanguageIsC(language) || Language::LanguageIsCPlusPlus(language) || Language::LanguageIsObjC(language) || Language::LanguageIsPascal(language) || // Use Clang for Rust until there is a proper language plugin for it language == eLanguageTypeRust || language == eLanguageTypeExtRenderScript || // Use Clang for D until there is a proper language plugin for it language == eLanguageTypeD; } } typedef lldb_private::ThreadSafeDenseMap ClangASTMap; static ClangASTMap &GetASTMap() { static ClangASTMap *g_map_ptr = nullptr; static std::once_flag g_once_flag; std::call_once(g_once_flag, []() { g_map_ptr = new ClangASTMap(); // leaked on purpose to avoid spins }); return *g_map_ptr; } static bool IsOperator(const char *name, clang::OverloadedOperatorKind &op_kind) { if (name == nullptr || name[0] == '\0') return false; #define OPERATOR_PREFIX "operator" #define OPERATOR_PREFIX_LENGTH (sizeof(OPERATOR_PREFIX) - 1) const char *post_op_name = nullptr; bool no_space = true; if (::strncmp(name, OPERATOR_PREFIX, OPERATOR_PREFIX_LENGTH)) return false; post_op_name = name + OPERATOR_PREFIX_LENGTH; if (post_op_name[0] == ' ') { post_op_name++; no_space = false; } #undef OPERATOR_PREFIX #undef OPERATOR_PREFIX_LENGTH // This is an operator, set the overloaded operator kind to invalid // in case this is a conversion operator... op_kind = clang::NUM_OVERLOADED_OPERATORS; switch (post_op_name[0]) { default: if (no_space) return false; break; case 'n': if (no_space) return false; if (strcmp(post_op_name, "new") == 0) op_kind = clang::OO_New; else if (strcmp(post_op_name, "new[]") == 0) op_kind = clang::OO_Array_New; break; case 'd': if (no_space) return false; if (strcmp(post_op_name, "delete") == 0) op_kind = clang::OO_Delete; else if (strcmp(post_op_name, "delete[]") == 0) op_kind = clang::OO_Array_Delete; break; case '+': if (post_op_name[1] == '\0') op_kind = clang::OO_Plus; else if (post_op_name[2] == '\0') { if (post_op_name[1] == '=') op_kind = clang::OO_PlusEqual; else if (post_op_name[1] == '+') op_kind = clang::OO_PlusPlus; } break; case '-': if (post_op_name[1] == '\0') op_kind = clang::OO_Minus; else if (post_op_name[2] == '\0') { switch (post_op_name[1]) { case '=': op_kind = clang::OO_MinusEqual; break; case '-': op_kind = clang::OO_MinusMinus; break; case '>': op_kind = clang::OO_Arrow; break; } } else if (post_op_name[3] == '\0') { if (post_op_name[2] == '*') op_kind = clang::OO_ArrowStar; break; } break; case '*': if (post_op_name[1] == '\0') op_kind = clang::OO_Star; else if (post_op_name[1] == '=' && post_op_name[2] == '\0') op_kind = clang::OO_StarEqual; break; case '/': if (post_op_name[1] == '\0') op_kind = clang::OO_Slash; else if (post_op_name[1] == '=' && post_op_name[2] == '\0') op_kind = clang::OO_SlashEqual; break; case '%': if (post_op_name[1] == '\0') op_kind = clang::OO_Percent; else if (post_op_name[1] == '=' && post_op_name[2] == '\0') op_kind = clang::OO_PercentEqual; break; case '^': if (post_op_name[1] == '\0') op_kind = clang::OO_Caret; else if (post_op_name[1] == '=' && post_op_name[2] == '\0') op_kind = clang::OO_CaretEqual; break; case '&': if (post_op_name[1] == '\0') op_kind = clang::OO_Amp; else if (post_op_name[2] == '\0') { switch (post_op_name[1]) { case '=': op_kind = clang::OO_AmpEqual; break; case '&': op_kind = clang::OO_AmpAmp; break; } } break; case '|': if (post_op_name[1] == '\0') op_kind = clang::OO_Pipe; else if (post_op_name[2] == '\0') { switch (post_op_name[1]) { case '=': op_kind = clang::OO_PipeEqual; break; case '|': op_kind = clang::OO_PipePipe; break; } } break; case '~': if (post_op_name[1] == '\0') op_kind = clang::OO_Tilde; break; case '!': if (post_op_name[1] == '\0') op_kind = clang::OO_Exclaim; else if (post_op_name[1] == '=' && post_op_name[2] == '\0') op_kind = clang::OO_ExclaimEqual; break; case '=': if (post_op_name[1] == '\0') op_kind = clang::OO_Equal; else if (post_op_name[1] == '=' && post_op_name[2] == '\0') op_kind = clang::OO_EqualEqual; break; case '<': if (post_op_name[1] == '\0') op_kind = clang::OO_Less; else if (post_op_name[2] == '\0') { switch (post_op_name[1]) { case '<': op_kind = clang::OO_LessLess; break; case '=': op_kind = clang::OO_LessEqual; break; } } else if (post_op_name[3] == '\0') { if (post_op_name[2] == '=') op_kind = clang::OO_LessLessEqual; } break; case '>': if (post_op_name[1] == '\0') op_kind = clang::OO_Greater; else if (post_op_name[2] == '\0') { switch (post_op_name[1]) { case '>': op_kind = clang::OO_GreaterGreater; break; case '=': op_kind = clang::OO_GreaterEqual; break; } } else if (post_op_name[1] == '>' && post_op_name[2] == '=' && post_op_name[3] == '\0') { op_kind = clang::OO_GreaterGreaterEqual; } break; case ',': if (post_op_name[1] == '\0') op_kind = clang::OO_Comma; break; case '(': if (post_op_name[1] == ')' && post_op_name[2] == '\0') op_kind = clang::OO_Call; break; case '[': if (post_op_name[1] == ']' && post_op_name[2] == '\0') op_kind = clang::OO_Subscript; break; } return true; } clang::AccessSpecifier ClangASTContext::ConvertAccessTypeToAccessSpecifier(AccessType access) { switch (access) { default: break; case eAccessNone: return AS_none; case eAccessPublic: return AS_public; case eAccessPrivate: return AS_private; case eAccessProtected: return AS_protected; } return AS_none; } static void ParseLangArgs(LangOptions &Opts, InputKind IK, const char *triple) { // FIXME: Cleanup per-file based stuff. // Set some properties which depend solely on the input kind; it would be nice // to move these to the language standard, and have the driver resolve the // input kind + language standard. if (IK == IK_Asm) { Opts.AsmPreprocessor = 1; } else if (IK == IK_ObjC || IK == IK_ObjCXX || IK == IK_PreprocessedObjC || IK == IK_PreprocessedObjCXX) { Opts.ObjC1 = Opts.ObjC2 = 1; } LangStandard::Kind LangStd = LangStandard::lang_unspecified; if (LangStd == LangStandard::lang_unspecified) { // Based on the base language, pick one. switch (IK) { case IK_None: case IK_AST: case IK_LLVM_IR: case IK_RenderScript: llvm_unreachable("Invalid input kind!"); case IK_OpenCL: LangStd = LangStandard::lang_opencl; break; case IK_CUDA: case IK_PreprocessedCuda: LangStd = LangStandard::lang_cuda; break; case IK_Asm: case IK_C: case IK_PreprocessedC: case IK_ObjC: case IK_PreprocessedObjC: LangStd = LangStandard::lang_gnu99; break; case IK_CXX: case IK_PreprocessedCXX: case IK_ObjCXX: case IK_PreprocessedObjCXX: LangStd = LangStandard::lang_gnucxx98; break; } } const LangStandard &Std = LangStandard::getLangStandardForKind(LangStd); Opts.LineComment = Std.hasLineComments(); Opts.C99 = Std.isC99(); Opts.CPlusPlus = Std.isCPlusPlus(); Opts.CPlusPlus11 = Std.isCPlusPlus11(); Opts.Digraphs = Std.hasDigraphs(); Opts.GNUMode = Std.isGNUMode(); Opts.GNUInline = !Std.isC99(); Opts.HexFloats = Std.hasHexFloats(); Opts.ImplicitInt = Std.hasImplicitInt(); Opts.WChar = true; // OpenCL has some additional defaults. if (LangStd == LangStandard::lang_opencl) { Opts.OpenCL = 1; Opts.AltiVec = 1; Opts.CXXOperatorNames = 1; Opts.LaxVectorConversions = 1; } // OpenCL and C++ both have bool, true, false keywords. Opts.Bool = Opts.OpenCL || Opts.CPlusPlus; // if (Opts.CPlusPlus) // Opts.CXXOperatorNames = !Args.hasArg(OPT_fno_operator_names); // // if (Args.hasArg(OPT_fobjc_gc_only)) // Opts.setGCMode(LangOptions::GCOnly); // else if (Args.hasArg(OPT_fobjc_gc)) // Opts.setGCMode(LangOptions::HybridGC); // // if (Args.hasArg(OPT_print_ivar_layout)) // Opts.ObjCGCBitmapPrint = 1; // // if (Args.hasArg(OPT_faltivec)) // Opts.AltiVec = 1; // // if (Args.hasArg(OPT_pthread)) // Opts.POSIXThreads = 1; // // llvm::StringRef Vis = getLastArgValue(Args, OPT_fvisibility, // "default"); // if (Vis == "default") Opts.setValueVisibilityMode(DefaultVisibility); // else if (Vis == "hidden") // Opts.setVisibilityMode(LangOptions::Hidden); // else if (Vis == "protected") // Opts.setVisibilityMode(LangOptions::Protected); // else // Diags.Report(diag::err_drv_invalid_value) // << Args.getLastArg(OPT_fvisibility)->getAsString(Args) << Vis; // Opts.OverflowChecking = Args.hasArg(OPT_ftrapv); // Mimicing gcc's behavior, trigraphs are only enabled if -trigraphs // is specified, or -std is set to a conforming mode. Opts.Trigraphs = !Opts.GNUMode; // if (Args.hasArg(OPT_trigraphs)) // Opts.Trigraphs = 1; // // Opts.DollarIdents = Args.hasFlag(OPT_fdollars_in_identifiers, // OPT_fno_dollars_in_identifiers, // !Opts.AsmPreprocessor); // Opts.PascalStrings = Args.hasArg(OPT_fpascal_strings); // Opts.Microsoft = Args.hasArg(OPT_fms_extensions); // Opts.WritableStrings = Args.hasArg(OPT_fwritable_strings); // if (Args.hasArg(OPT_fno_lax_vector_conversions)) // Opts.LaxVectorConversions = 0; // Opts.Exceptions = Args.hasArg(OPT_fexceptions); // Opts.RTTI = !Args.hasArg(OPT_fno_rtti); // Opts.Blocks = Args.hasArg(OPT_fblocks); Opts.CharIsSigned = ArchSpec(triple).CharIsSignedByDefault(); // Opts.ShortWChar = Args.hasArg(OPT_fshort_wchar); // Opts.Freestanding = Args.hasArg(OPT_ffreestanding); // Opts.NoBuiltin = Args.hasArg(OPT_fno_builtin) || Opts.Freestanding; // Opts.AssumeSaneOperatorNew = // !Args.hasArg(OPT_fno_assume_sane_operator_new); // Opts.HeinousExtensions = Args.hasArg(OPT_fheinous_gnu_extensions); // Opts.AccessControl = Args.hasArg(OPT_faccess_control); // Opts.ElideConstructors = !Args.hasArg(OPT_fno_elide_constructors); // Opts.MathErrno = !Args.hasArg(OPT_fno_math_errno); // Opts.InstantiationDepth = getLastArgIntValue(Args, OPT_ftemplate_depth, // 99, // Diags); // Opts.NeXTRuntime = !Args.hasArg(OPT_fgnu_runtime); // Opts.ObjCConstantStringClass = getLastArgValue(Args, // OPT_fconstant_string_class); // Opts.ObjCNonFragileABI = Args.hasArg(OPT_fobjc_nonfragile_abi); // Opts.CatchUndefined = Args.hasArg(OPT_fcatch_undefined_behavior); // Opts.EmitAllDecls = Args.hasArg(OPT_femit_all_decls); // Opts.PICLevel = getLastArgIntValue(Args, OPT_pic_level, 0, Diags); // Opts.Static = Args.hasArg(OPT_static_define); Opts.OptimizeSize = 0; // FIXME: Eliminate this dependency. // unsigned Opt = // Args.hasArg(OPT_Os) ? 2 : getLastArgIntValue(Args, OPT_O, 0, Diags); // Opts.Optimize = Opt != 0; unsigned Opt = 0; // This is the __NO_INLINE__ define, which just depends on things like the // optimization level and -fno-inline, not actually whether the backend has // inlining enabled. // // FIXME: This is affected by other options (-fno-inline). Opts.NoInlineDefine = !Opt; // unsigned SSP = getLastArgIntValue(Args, OPT_stack_protector, 0, Diags); // switch (SSP) { // default: // Diags.Report(diag::err_drv_invalid_value) // << Args.getLastArg(OPT_stack_protector)->getAsString(Args) << // SSP; // break; // case 0: Opts.setStackProtectorMode(LangOptions::SSPOff); break; // case 1: Opts.setStackProtectorMode(LangOptions::SSPOn); break; // case 2: Opts.setStackProtectorMode(LangOptions::SSPReq); break; // } } ClangASTContext::ClangASTContext(const char *target_triple) : TypeSystem(TypeSystem::eKindClang), m_target_triple(), m_ast_ap(), m_language_options_ap(), m_source_manager_ap(), m_diagnostics_engine_ap(), m_target_options_rp(), m_target_info_ap(), m_identifier_table_ap(), m_selector_table_ap(), m_builtins_ap(), m_callback_tag_decl(nullptr), m_callback_objc_decl(nullptr), m_callback_baton(nullptr), m_pointer_byte_size(0), m_ast_owned(false) { if (target_triple && target_triple[0]) SetTargetTriple(target_triple); } //---------------------------------------------------------------------- // Destructor //---------------------------------------------------------------------- ClangASTContext::~ClangASTContext() { Finalize(); } ConstString ClangASTContext::GetPluginNameStatic() { return ConstString("clang"); } ConstString ClangASTContext::GetPluginName() { return ClangASTContext::GetPluginNameStatic(); } uint32_t ClangASTContext::GetPluginVersion() { return 1; } lldb::TypeSystemSP ClangASTContext::CreateInstance(lldb::LanguageType language, lldb_private::Module *module, Target *target) { if (ClangASTContextSupportsLanguage(language)) { ArchSpec arch; if (module) arch = module->GetArchitecture(); else if (target) arch = target->GetArchitecture(); if (arch.IsValid()) { ArchSpec fixed_arch = arch; // LLVM wants this to be set to iOS or MacOSX; if we're working on // a bare-boards type image, change the triple for llvm's benefit. if (fixed_arch.GetTriple().getVendor() == llvm::Triple::Apple && fixed_arch.GetTriple().getOS() == llvm::Triple::UnknownOS) { if (fixed_arch.GetTriple().getArch() == llvm::Triple::arm || fixed_arch.GetTriple().getArch() == llvm::Triple::aarch64 || fixed_arch.GetTriple().getArch() == llvm::Triple::thumb) { fixed_arch.GetTriple().setOS(llvm::Triple::IOS); } else { fixed_arch.GetTriple().setOS(llvm::Triple::MacOSX); } } if (module) { std::shared_ptr ast_sp(new ClangASTContext); if (ast_sp) { ast_sp->SetArchitecture(fixed_arch); } return ast_sp; } else if (target && target->IsValid()) { std::shared_ptr ast_sp( new ClangASTContextForExpressions(*target)); if (ast_sp) { ast_sp->SetArchitecture(fixed_arch); ast_sp->m_scratch_ast_source_ap.reset( new ClangASTSource(target->shared_from_this())); ast_sp->m_scratch_ast_source_ap->InstallASTContext( ast_sp->getASTContext()); llvm::IntrusiveRefCntPtr proxy_ast_source( ast_sp->m_scratch_ast_source_ap->CreateProxy()); ast_sp->SetExternalSource(proxy_ast_source); return ast_sp; } } } } return lldb::TypeSystemSP(); } void ClangASTContext::EnumerateSupportedLanguages( std::set &languages_for_types, std::set &languages_for_expressions) { static std::vector s_supported_languages_for_types( {lldb::eLanguageTypeC89, lldb::eLanguageTypeC, lldb::eLanguageTypeC11, lldb::eLanguageTypeC_plus_plus, lldb::eLanguageTypeC99, lldb::eLanguageTypeObjC, lldb::eLanguageTypeObjC_plus_plus, lldb::eLanguageTypeC_plus_plus_03, lldb::eLanguageTypeC_plus_plus_11, lldb::eLanguageTypeC11, lldb::eLanguageTypeC_plus_plus_14}); static std::vector s_supported_languages_for_expressions( {lldb::eLanguageTypeC_plus_plus, lldb::eLanguageTypeObjC_plus_plus, lldb::eLanguageTypeC_plus_plus_03, lldb::eLanguageTypeC_plus_plus_11, lldb::eLanguageTypeC_plus_plus_14}); languages_for_types.insert(s_supported_languages_for_types.begin(), s_supported_languages_for_types.end()); languages_for_expressions.insert( s_supported_languages_for_expressions.begin(), s_supported_languages_for_expressions.end()); } void ClangASTContext::Initialize() { PluginManager::RegisterPlugin(GetPluginNameStatic(), "clang base AST context plug-in", CreateInstance, EnumerateSupportedLanguages); } void ClangASTContext::Terminate() { PluginManager::UnregisterPlugin(CreateInstance); } void ClangASTContext::Finalize() { if (m_ast_ap.get()) { GetASTMap().Erase(m_ast_ap.get()); if (!m_ast_owned) m_ast_ap.release(); } m_builtins_ap.reset(); m_selector_table_ap.reset(); m_identifier_table_ap.reset(); m_target_info_ap.reset(); m_target_options_rp.reset(); m_diagnostics_engine_ap.reset(); m_source_manager_ap.reset(); m_language_options_ap.reset(); m_ast_ap.reset(); m_scratch_ast_source_ap.reset(); } void ClangASTContext::Clear() { m_ast_ap.reset(); m_language_options_ap.reset(); m_source_manager_ap.reset(); m_diagnostics_engine_ap.reset(); m_target_options_rp.reset(); m_target_info_ap.reset(); m_identifier_table_ap.reset(); m_selector_table_ap.reset(); m_builtins_ap.reset(); m_pointer_byte_size = 0; } const char *ClangASTContext::GetTargetTriple() { return m_target_triple.c_str(); } void ClangASTContext::SetTargetTriple(const char *target_triple) { Clear(); m_target_triple.assign(target_triple); } void ClangASTContext::SetArchitecture(const ArchSpec &arch) { SetTargetTriple(arch.GetTriple().str().c_str()); } bool ClangASTContext::HasExternalSource() { ASTContext *ast = getASTContext(); if (ast) return ast->getExternalSource() != nullptr; return false; } void ClangASTContext::SetExternalSource( llvm::IntrusiveRefCntPtr &ast_source_ap) { ASTContext *ast = getASTContext(); if (ast) { ast->setExternalSource(ast_source_ap); ast->getTranslationUnitDecl()->setHasExternalLexicalStorage(true); // ast->getTranslationUnitDecl()->setHasExternalVisibleStorage(true); } } void ClangASTContext::RemoveExternalSource() { ASTContext *ast = getASTContext(); if (ast) { llvm::IntrusiveRefCntPtr empty_ast_source_ap; ast->setExternalSource(empty_ast_source_ap); ast->getTranslationUnitDecl()->setHasExternalLexicalStorage(false); // ast->getTranslationUnitDecl()->setHasExternalVisibleStorage(false); } } void ClangASTContext::setASTContext(clang::ASTContext *ast_ctx) { if (!m_ast_owned) { m_ast_ap.release(); } m_ast_owned = false; m_ast_ap.reset(ast_ctx); GetASTMap().Insert(ast_ctx, this); } ASTContext *ClangASTContext::getASTContext() { if (m_ast_ap.get() == nullptr) { m_ast_owned = true; m_ast_ap.reset(new ASTContext(*getLanguageOptions(), *getSourceManager(), *getIdentifierTable(), *getSelectorTable(), *getBuiltinContext())); m_ast_ap->getDiagnostics().setClient(getDiagnosticConsumer(), false); // This can be NULL if we don't know anything about the architecture or if // the // target for an architecture isn't enabled in the llvm/clang that we built TargetInfo *target_info = getTargetInfo(); if (target_info) m_ast_ap->InitBuiltinTypes(*target_info); if ((m_callback_tag_decl || m_callback_objc_decl) && m_callback_baton) { m_ast_ap->getTranslationUnitDecl()->setHasExternalLexicalStorage(); // m_ast_ap->getTranslationUnitDecl()->setHasExternalVisibleStorage(); } GetASTMap().Insert(m_ast_ap.get(), this); llvm::IntrusiveRefCntPtr ast_source_ap( new ClangExternalASTSourceCallbacks( ClangASTContext::CompleteTagDecl, ClangASTContext::CompleteObjCInterfaceDecl, nullptr, ClangASTContext::LayoutRecordType, this)); SetExternalSource(ast_source_ap); } return m_ast_ap.get(); } ClangASTContext *ClangASTContext::GetASTContext(clang::ASTContext *ast) { ClangASTContext *clang_ast = GetASTMap().Lookup(ast); return clang_ast; } Builtin::Context *ClangASTContext::getBuiltinContext() { if (m_builtins_ap.get() == nullptr) m_builtins_ap.reset(new Builtin::Context()); return m_builtins_ap.get(); } IdentifierTable *ClangASTContext::getIdentifierTable() { if (m_identifier_table_ap.get() == nullptr) m_identifier_table_ap.reset( new IdentifierTable(*ClangASTContext::getLanguageOptions(), nullptr)); return m_identifier_table_ap.get(); } LangOptions *ClangASTContext::getLanguageOptions() { if (m_language_options_ap.get() == nullptr) { m_language_options_ap.reset(new LangOptions()); ParseLangArgs(*m_language_options_ap, IK_ObjCXX, GetTargetTriple()); // InitializeLangOptions(*m_language_options_ap, IK_ObjCXX); } return m_language_options_ap.get(); } SelectorTable *ClangASTContext::getSelectorTable() { if (m_selector_table_ap.get() == nullptr) m_selector_table_ap.reset(new SelectorTable()); return m_selector_table_ap.get(); } clang::FileManager *ClangASTContext::getFileManager() { if (m_file_manager_ap.get() == nullptr) { clang::FileSystemOptions file_system_options; m_file_manager_ap.reset(new clang::FileManager(file_system_options)); } return m_file_manager_ap.get(); } clang::SourceManager *ClangASTContext::getSourceManager() { if (m_source_manager_ap.get() == nullptr) m_source_manager_ap.reset( new clang::SourceManager(*getDiagnosticsEngine(), *getFileManager())); return m_source_manager_ap.get(); } clang::DiagnosticsEngine *ClangASTContext::getDiagnosticsEngine() { if (m_diagnostics_engine_ap.get() == nullptr) { llvm::IntrusiveRefCntPtr diag_id_sp(new DiagnosticIDs()); m_diagnostics_engine_ap.reset( new DiagnosticsEngine(diag_id_sp, new DiagnosticOptions())); } return m_diagnostics_engine_ap.get(); } clang::MangleContext *ClangASTContext::getMangleContext() { if (m_mangle_ctx_ap.get() == nullptr) m_mangle_ctx_ap.reset(getASTContext()->createMangleContext()); return m_mangle_ctx_ap.get(); } class NullDiagnosticConsumer : public DiagnosticConsumer { public: NullDiagnosticConsumer() { m_log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS); } void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, const clang::Diagnostic &info) { if (m_log) { llvm::SmallVector diag_str(10); info.FormatDiagnostic(diag_str); diag_str.push_back('\0'); m_log->Printf("Compiler diagnostic: %s\n", diag_str.data()); } } DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const { return new NullDiagnosticConsumer(); } private: Log *m_log; }; DiagnosticConsumer *ClangASTContext::getDiagnosticConsumer() { if (m_diagnostic_consumer_ap.get() == nullptr) m_diagnostic_consumer_ap.reset(new NullDiagnosticConsumer); return m_diagnostic_consumer_ap.get(); } std::shared_ptr &ClangASTContext::getTargetOptions() { if (m_target_options_rp.get() == nullptr && !m_target_triple.empty()) { m_target_options_rp = std::make_shared(); if (m_target_options_rp.get() != nullptr) m_target_options_rp->Triple = m_target_triple; } return m_target_options_rp; } TargetInfo *ClangASTContext::getTargetInfo() { // target_triple should be something like "x86_64-apple-macosx" if (m_target_info_ap.get() == nullptr && !m_target_triple.empty()) m_target_info_ap.reset(TargetInfo::CreateTargetInfo(*getDiagnosticsEngine(), getTargetOptions())); return m_target_info_ap.get(); } #pragma mark Basic Types static inline bool QualTypeMatchesBitSize(const uint64_t bit_size, ASTContext *ast, QualType qual_type) { uint64_t qual_type_bit_size = ast->getTypeSize(qual_type); if (qual_type_bit_size == bit_size) return true; return false; } CompilerType ClangASTContext::GetBuiltinTypeForEncodingAndBitSize(Encoding encoding, size_t bit_size) { return ClangASTContext::GetBuiltinTypeForEncodingAndBitSize( getASTContext(), encoding, bit_size); } CompilerType ClangASTContext::GetBuiltinTypeForEncodingAndBitSize( ASTContext *ast, Encoding encoding, uint32_t bit_size) { if (!ast) return CompilerType(); switch (encoding) { case eEncodingInvalid: if (QualTypeMatchesBitSize(bit_size, ast, ast->VoidPtrTy)) return CompilerType(ast, ast->VoidPtrTy); break; case eEncodingUint: if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedCharTy)) return CompilerType(ast, ast->UnsignedCharTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedShortTy)) return CompilerType(ast, ast->UnsignedShortTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedIntTy)) return CompilerType(ast, ast->UnsignedIntTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedLongTy)) return CompilerType(ast, ast->UnsignedLongTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedLongLongTy)) return CompilerType(ast, ast->UnsignedLongLongTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedInt128Ty)) return CompilerType(ast, ast->UnsignedInt128Ty); break; case eEncodingSint: if (QualTypeMatchesBitSize(bit_size, ast, ast->SignedCharTy)) return CompilerType(ast, ast->SignedCharTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->ShortTy)) return CompilerType(ast, ast->ShortTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->IntTy)) return CompilerType(ast, ast->IntTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->LongTy)) return CompilerType(ast, ast->LongTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->LongLongTy)) return CompilerType(ast, ast->LongLongTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->Int128Ty)) return CompilerType(ast, ast->Int128Ty); break; case eEncodingIEEE754: if (QualTypeMatchesBitSize(bit_size, ast, ast->FloatTy)) return CompilerType(ast, ast->FloatTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->DoubleTy)) return CompilerType(ast, ast->DoubleTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->LongDoubleTy)) return CompilerType(ast, ast->LongDoubleTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->HalfTy)) return CompilerType(ast, ast->HalfTy); break; case eEncodingVector: // Sanity check that bit_size is a multiple of 8's. if (bit_size && !(bit_size & 0x7u)) return CompilerType( ast, ast->getExtVectorType(ast->UnsignedCharTy, bit_size / 8)); break; } return CompilerType(); } lldb::BasicType ClangASTContext::GetBasicTypeEnumeration(const ConstString &name) { if (name) { typedef UniqueCStringMap TypeNameToBasicTypeMap; static TypeNameToBasicTypeMap g_type_map; static std::once_flag g_once_flag; std::call_once(g_once_flag, []() { // "void" g_type_map.Append(ConstString("void").GetStringRef(), eBasicTypeVoid); // "char" g_type_map.Append(ConstString("char").GetStringRef(), eBasicTypeChar); g_type_map.Append(ConstString("signed char").GetStringRef(), eBasicTypeSignedChar); g_type_map.Append(ConstString("unsigned char").GetStringRef(), eBasicTypeUnsignedChar); g_type_map.Append(ConstString("wchar_t").GetStringRef(), eBasicTypeWChar); g_type_map.Append(ConstString("signed wchar_t").GetStringRef(), eBasicTypeSignedWChar); g_type_map.Append(ConstString("unsigned wchar_t").GetStringRef(), eBasicTypeUnsignedWChar); // "short" g_type_map.Append(ConstString("short").GetStringRef(), eBasicTypeShort); g_type_map.Append(ConstString("short int").GetStringRef(), eBasicTypeShort); g_type_map.Append(ConstString("unsigned short").GetStringRef(), eBasicTypeUnsignedShort); g_type_map.Append(ConstString("unsigned short int").GetStringRef(), eBasicTypeUnsignedShort); // "int" g_type_map.Append(ConstString("int").GetStringRef(), eBasicTypeInt); g_type_map.Append(ConstString("signed int").GetStringRef(), eBasicTypeInt); g_type_map.Append(ConstString("unsigned int").GetStringRef(), eBasicTypeUnsignedInt); g_type_map.Append(ConstString("unsigned").GetStringRef(), eBasicTypeUnsignedInt); // "long" g_type_map.Append(ConstString("long").GetStringRef(), eBasicTypeLong); g_type_map.Append(ConstString("long int").GetStringRef(), eBasicTypeLong); g_type_map.Append(ConstString("unsigned long").GetStringRef(), eBasicTypeUnsignedLong); g_type_map.Append(ConstString("unsigned long int").GetStringRef(), eBasicTypeUnsignedLong); // "long long" g_type_map.Append(ConstString("long long").GetStringRef(), eBasicTypeLongLong); g_type_map.Append(ConstString("long long int").GetStringRef(), eBasicTypeLongLong); g_type_map.Append(ConstString("unsigned long long").GetStringRef(), eBasicTypeUnsignedLongLong); g_type_map.Append(ConstString("unsigned long long int").GetStringRef(), eBasicTypeUnsignedLongLong); // "int128" g_type_map.Append(ConstString("__int128_t").GetStringRef(), eBasicTypeInt128); g_type_map.Append(ConstString("__uint128_t").GetStringRef(), eBasicTypeUnsignedInt128); // Miscellaneous g_type_map.Append(ConstString("bool").GetStringRef(), eBasicTypeBool); g_type_map.Append(ConstString("float").GetStringRef(), eBasicTypeFloat); g_type_map.Append(ConstString("double").GetStringRef(), eBasicTypeDouble); g_type_map.Append(ConstString("long double").GetStringRef(), eBasicTypeLongDouble); g_type_map.Append(ConstString("id").GetStringRef(), eBasicTypeObjCID); g_type_map.Append(ConstString("SEL").GetStringRef(), eBasicTypeObjCSel); g_type_map.Append(ConstString("nullptr").GetStringRef(), eBasicTypeNullPtr); g_type_map.Sort(); }); return g_type_map.Find(name.GetStringRef(), eBasicTypeInvalid); } return eBasicTypeInvalid; } CompilerType ClangASTContext::GetBasicType(ASTContext *ast, const ConstString &name) { if (ast) { lldb::BasicType basic_type = ClangASTContext::GetBasicTypeEnumeration(name); return ClangASTContext::GetBasicType(ast, basic_type); } return CompilerType(); } uint32_t ClangASTContext::GetPointerByteSize() { if (m_pointer_byte_size == 0) m_pointer_byte_size = GetBasicType(lldb::eBasicTypeVoid) .GetPointerType() .GetByteSize(nullptr); return m_pointer_byte_size; } CompilerType ClangASTContext::GetBasicType(lldb::BasicType basic_type) { return GetBasicType(getASTContext(), basic_type); } CompilerType ClangASTContext::GetBasicType(ASTContext *ast, lldb::BasicType basic_type) { if (!ast) return CompilerType(); lldb::opaque_compiler_type_t clang_type = GetOpaqueCompilerType(ast, basic_type); if (clang_type) return CompilerType(GetASTContext(ast), clang_type); return CompilerType(); } CompilerType ClangASTContext::GetBuiltinTypeForDWARFEncodingAndBitSize( const char *type_name, uint32_t dw_ate, uint32_t bit_size) { ASTContext *ast = getASTContext(); #define streq(a, b) strcmp(a, b) == 0 assert(ast != nullptr); if (ast) { switch (dw_ate) { default: break; case DW_ATE_address: if (QualTypeMatchesBitSize(bit_size, ast, ast->VoidPtrTy)) return CompilerType(ast, ast->VoidPtrTy); break; case DW_ATE_boolean: if (QualTypeMatchesBitSize(bit_size, ast, ast->BoolTy)) return CompilerType(ast, ast->BoolTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedCharTy)) return CompilerType(ast, ast->UnsignedCharTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedShortTy)) return CompilerType(ast, ast->UnsignedShortTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedIntTy)) return CompilerType(ast, ast->UnsignedIntTy); break; case DW_ATE_lo_user: // This has been seen to mean DW_AT_complex_integer if (type_name) { if (::strstr(type_name, "complex")) { CompilerType complex_int_clang_type = GetBuiltinTypeForDWARFEncodingAndBitSize("int", DW_ATE_signed, bit_size / 2); return CompilerType(ast, ast->getComplexType(ClangUtil::GetQualType( complex_int_clang_type))); } } break; case DW_ATE_complex_float: if (QualTypeMatchesBitSize(bit_size, ast, ast->FloatComplexTy)) return CompilerType(ast, ast->FloatComplexTy); else if (QualTypeMatchesBitSize(bit_size, ast, ast->DoubleComplexTy)) return CompilerType(ast, ast->DoubleComplexTy); else if (QualTypeMatchesBitSize(bit_size, ast, ast->LongDoubleComplexTy)) return CompilerType(ast, ast->LongDoubleComplexTy); else { CompilerType complex_float_clang_type = GetBuiltinTypeForDWARFEncodingAndBitSize("float", DW_ATE_float, bit_size / 2); return CompilerType(ast, ast->getComplexType(ClangUtil::GetQualType( complex_float_clang_type))); } break; case DW_ATE_float: if (streq(type_name, "float") && QualTypeMatchesBitSize(bit_size, ast, ast->FloatTy)) return CompilerType(ast, ast->FloatTy); if (streq(type_name, "double") && QualTypeMatchesBitSize(bit_size, ast, ast->DoubleTy)) return CompilerType(ast, ast->DoubleTy); if (streq(type_name, "long double") && QualTypeMatchesBitSize(bit_size, ast, ast->LongDoubleTy)) return CompilerType(ast, ast->LongDoubleTy); // Fall back to not requiring a name match if (QualTypeMatchesBitSize(bit_size, ast, ast->FloatTy)) return CompilerType(ast, ast->FloatTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->DoubleTy)) return CompilerType(ast, ast->DoubleTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->LongDoubleTy)) return CompilerType(ast, ast->LongDoubleTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->HalfTy)) return CompilerType(ast, ast->HalfTy); break; case DW_ATE_signed: if (type_name) { if (streq(type_name, "wchar_t") && QualTypeMatchesBitSize(bit_size, ast, ast->WCharTy) && (getTargetInfo() && TargetInfo::isTypeSigned(getTargetInfo()->getWCharType()))) return CompilerType(ast, ast->WCharTy); if (streq(type_name, "void") && QualTypeMatchesBitSize(bit_size, ast, ast->VoidTy)) return CompilerType(ast, ast->VoidTy); if (strstr(type_name, "long long") && QualTypeMatchesBitSize(bit_size, ast, ast->LongLongTy)) return CompilerType(ast, ast->LongLongTy); if (strstr(type_name, "long") && QualTypeMatchesBitSize(bit_size, ast, ast->LongTy)) return CompilerType(ast, ast->LongTy); if (strstr(type_name, "short") && QualTypeMatchesBitSize(bit_size, ast, ast->ShortTy)) return CompilerType(ast, ast->ShortTy); if (strstr(type_name, "char")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->CharTy)) return CompilerType(ast, ast->CharTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->SignedCharTy)) return CompilerType(ast, ast->SignedCharTy); } if (strstr(type_name, "int")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->IntTy)) return CompilerType(ast, ast->IntTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->Int128Ty)) return CompilerType(ast, ast->Int128Ty); } } // We weren't able to match up a type name, just search by size if (QualTypeMatchesBitSize(bit_size, ast, ast->CharTy)) return CompilerType(ast, ast->CharTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->ShortTy)) return CompilerType(ast, ast->ShortTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->IntTy)) return CompilerType(ast, ast->IntTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->LongTy)) return CompilerType(ast, ast->LongTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->LongLongTy)) return CompilerType(ast, ast->LongLongTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->Int128Ty)) return CompilerType(ast, ast->Int128Ty); break; case DW_ATE_signed_char: if (ast->getLangOpts().CharIsSigned && type_name && streq(type_name, "char")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->CharTy)) return CompilerType(ast, ast->CharTy); } if (QualTypeMatchesBitSize(bit_size, ast, ast->SignedCharTy)) return CompilerType(ast, ast->SignedCharTy); break; case DW_ATE_unsigned: if (type_name) { if (streq(type_name, "wchar_t")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->WCharTy)) { if (!(getTargetInfo() && TargetInfo::isTypeSigned(getTargetInfo()->getWCharType()))) return CompilerType(ast, ast->WCharTy); } } if (strstr(type_name, "long long")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedLongLongTy)) return CompilerType(ast, ast->UnsignedLongLongTy); } else if (strstr(type_name, "long")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedLongTy)) return CompilerType(ast, ast->UnsignedLongTy); } else if (strstr(type_name, "short")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedShortTy)) return CompilerType(ast, ast->UnsignedShortTy); } else if (strstr(type_name, "char")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedCharTy)) return CompilerType(ast, ast->UnsignedCharTy); } else if (strstr(type_name, "int")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedIntTy)) return CompilerType(ast, ast->UnsignedIntTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedInt128Ty)) return CompilerType(ast, ast->UnsignedInt128Ty); } } // We weren't able to match up a type name, just search by size if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedCharTy)) return CompilerType(ast, ast->UnsignedCharTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedShortTy)) return CompilerType(ast, ast->UnsignedShortTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedIntTy)) return CompilerType(ast, ast->UnsignedIntTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedLongTy)) return CompilerType(ast, ast->UnsignedLongTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedLongLongTy)) return CompilerType(ast, ast->UnsignedLongLongTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedInt128Ty)) return CompilerType(ast, ast->UnsignedInt128Ty); break; case DW_ATE_unsigned_char: if (!ast->getLangOpts().CharIsSigned && type_name && streq(type_name, "char")) { if (QualTypeMatchesBitSize(bit_size, ast, ast->CharTy)) return CompilerType(ast, ast->CharTy); } if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedCharTy)) return CompilerType(ast, ast->UnsignedCharTy); if (QualTypeMatchesBitSize(bit_size, ast, ast->UnsignedShortTy)) return CompilerType(ast, ast->UnsignedShortTy); break; case DW_ATE_imaginary_float: break; case DW_ATE_UTF: if (type_name) { if (streq(type_name, "char16_t")) { return CompilerType(ast, ast->Char16Ty); } else if (streq(type_name, "char32_t")) { return CompilerType(ast, ast->Char32Ty); } } break; } } // This assert should fire for anything that we don't catch above so we know // to fix any issues we run into. if (type_name) { Host::SystemLog(Host::eSystemLogError, "error: need to add support for " "DW_TAG_base_type '%s' encoded with " "DW_ATE = 0x%x, bit_size = %u\n", type_name, dw_ate, bit_size); } else { Host::SystemLog(Host::eSystemLogError, "error: need to add support for " "DW_TAG_base_type encoded with " "DW_ATE = 0x%x, bit_size = %u\n", dw_ate, bit_size); } return CompilerType(); } CompilerType ClangASTContext::GetUnknownAnyType(clang::ASTContext *ast) { if (ast) return CompilerType(ast, ast->UnknownAnyTy); return CompilerType(); } CompilerType ClangASTContext::GetCStringType(bool is_const) { ASTContext *ast = getASTContext(); QualType char_type(ast->CharTy); if (is_const) char_type.addConst(); return CompilerType(ast, ast->getPointerType(char_type)); } clang::DeclContext * ClangASTContext::GetTranslationUnitDecl(clang::ASTContext *ast) { return ast->getTranslationUnitDecl(); } clang::Decl *ClangASTContext::CopyDecl(ASTContext *dst_ast, ASTContext *src_ast, clang::Decl *source_decl) { FileSystemOptions file_system_options; FileManager file_manager(file_system_options); ASTImporter importer(*dst_ast, file_manager, *src_ast, file_manager, false); return importer.Import(source_decl); } bool ClangASTContext::AreTypesSame(CompilerType type1, CompilerType type2, bool ignore_qualifiers) { ClangASTContext *ast = llvm::dyn_cast_or_null(type1.GetTypeSystem()); if (!ast || ast != type2.GetTypeSystem()) return false; if (type1.GetOpaqueQualType() == type2.GetOpaqueQualType()) return true; QualType type1_qual = ClangUtil::GetQualType(type1); QualType type2_qual = ClangUtil::GetQualType(type2); if (ignore_qualifiers) { type1_qual = type1_qual.getUnqualifiedType(); type2_qual = type2_qual.getUnqualifiedType(); } return ast->getASTContext()->hasSameType(type1_qual, type2_qual); } CompilerType ClangASTContext::GetTypeForDecl(clang::NamedDecl *decl) { if (clang::ObjCInterfaceDecl *interface_decl = llvm::dyn_cast(decl)) return GetTypeForDecl(interface_decl); if (clang::TagDecl *tag_decl = llvm::dyn_cast(decl)) return GetTypeForDecl(tag_decl); return CompilerType(); } CompilerType ClangASTContext::GetTypeForDecl(TagDecl *decl) { // No need to call the getASTContext() accessor (which can create the AST // if it isn't created yet, because we can't have created a decl in this // AST if our AST didn't already exist... ASTContext *ast = &decl->getASTContext(); if (ast) return CompilerType(ast, ast->getTagDeclType(decl)); return CompilerType(); } CompilerType ClangASTContext::GetTypeForDecl(ObjCInterfaceDecl *decl) { // No need to call the getASTContext() accessor (which can create the AST // if it isn't created yet, because we can't have created a decl in this // AST if our AST didn't already exist... ASTContext *ast = &decl->getASTContext(); if (ast) return CompilerType(ast, ast->getObjCInterfaceType(decl)); return CompilerType(); } #pragma mark Structure, Unions, Classes CompilerType ClangASTContext::CreateRecordType(DeclContext *decl_ctx, AccessType access_type, const char *name, int kind, LanguageType language, ClangASTMetadata *metadata) { ASTContext *ast = getASTContext(); assert(ast != nullptr); if (decl_ctx == nullptr) decl_ctx = ast->getTranslationUnitDecl(); if (language == eLanguageTypeObjC || language == eLanguageTypeObjC_plus_plus) { bool isForwardDecl = true; bool isInternal = false; return CreateObjCClass(name, decl_ctx, isForwardDecl, isInternal, metadata); } // NOTE: Eventually CXXRecordDecl will be merged back into RecordDecl and // we will need to update this code. I was told to currently always use // the CXXRecordDecl class since we often don't know from debug information // if something is struct or a class, so we default to always use the more // complete definition just in case. bool is_anonymous = (!name) || (!name[0]); CXXRecordDecl *decl = CXXRecordDecl::Create( *ast, (TagDecl::TagKind)kind, decl_ctx, SourceLocation(), SourceLocation(), is_anonymous ? nullptr : &ast->Idents.get(name)); if (is_anonymous) decl->setAnonymousStructOrUnion(true); if (decl) { if (metadata) SetMetadata(ast, decl, *metadata); if (access_type != eAccessNone) decl->setAccess(ConvertAccessTypeToAccessSpecifier(access_type)); if (decl_ctx) decl_ctx->addDecl(decl); return CompilerType(ast, ast->getTagDeclType(decl)); } return CompilerType(); } static TemplateParameterList *CreateTemplateParameterList( ASTContext *ast, const ClangASTContext::TemplateParameterInfos &template_param_infos, llvm::SmallVector &template_param_decls) { const bool parameter_pack = false; const bool is_typename = false; const unsigned depth = 0; const size_t num_template_params = template_param_infos.GetSize(); for (size_t i = 0; i < num_template_params; ++i) { const char *name = template_param_infos.names[i]; IdentifierInfo *identifier_info = nullptr; if (name && name[0]) identifier_info = &ast->Idents.get(name); if (template_param_infos.args[i].getKind() == TemplateArgument::Integral) { template_param_decls.push_back(NonTypeTemplateParmDecl::Create( *ast, ast->getTranslationUnitDecl(), // Is this the right decl context?, // SourceLocation StartLoc, SourceLocation(), SourceLocation(), depth, i, identifier_info, template_param_infos.args[i].getIntegralType(), parameter_pack, nullptr)); } else { template_param_decls.push_back(TemplateTypeParmDecl::Create( *ast, ast->getTranslationUnitDecl(), // Is this the right decl context? SourceLocation(), SourceLocation(), depth, i, identifier_info, is_typename, parameter_pack)); } } clang::Expr *const requires_clause = nullptr; // TODO: Concepts TemplateParameterList *template_param_list = TemplateParameterList::Create( *ast, SourceLocation(), SourceLocation(), template_param_decls, SourceLocation(), requires_clause); return template_param_list; } clang::FunctionTemplateDecl *ClangASTContext::CreateFunctionTemplateDecl( clang::DeclContext *decl_ctx, clang::FunctionDecl *func_decl, const char *name, const TemplateParameterInfos &template_param_infos) { // /// \brief Create a function template node. ASTContext *ast = getASTContext(); llvm::SmallVector template_param_decls; TemplateParameterList *template_param_list = CreateTemplateParameterList( ast, template_param_infos, template_param_decls); FunctionTemplateDecl *func_tmpl_decl = FunctionTemplateDecl::Create( *ast, decl_ctx, func_decl->getLocation(), func_decl->getDeclName(), template_param_list, func_decl); for (size_t i = 0, template_param_decl_count = template_param_decls.size(); i < template_param_decl_count; ++i) { // TODO: verify which decl context we should put template_param_decls into.. template_param_decls[i]->setDeclContext(func_decl); } return func_tmpl_decl; } void ClangASTContext::CreateFunctionTemplateSpecializationInfo( FunctionDecl *func_decl, clang::FunctionTemplateDecl *func_tmpl_decl, const TemplateParameterInfos &infos) { TemplateArgumentList template_args(TemplateArgumentList::OnStack, infos.args); func_decl->setFunctionTemplateSpecialization(func_tmpl_decl, &template_args, nullptr); } ClassTemplateDecl *ClangASTContext::CreateClassTemplateDecl( DeclContext *decl_ctx, lldb::AccessType access_type, const char *class_name, int kind, const TemplateParameterInfos &template_param_infos) { ASTContext *ast = getASTContext(); ClassTemplateDecl *class_template_decl = nullptr; if (decl_ctx == nullptr) decl_ctx = ast->getTranslationUnitDecl(); IdentifierInfo &identifier_info = ast->Idents.get(class_name); DeclarationName decl_name(&identifier_info); clang::DeclContext::lookup_result result = decl_ctx->lookup(decl_name); for (NamedDecl *decl : result) { class_template_decl = dyn_cast(decl); if (class_template_decl) return class_template_decl; } llvm::SmallVector template_param_decls; TemplateParameterList *template_param_list = CreateTemplateParameterList( ast, template_param_infos, template_param_decls); CXXRecordDecl *template_cxx_decl = CXXRecordDecl::Create( *ast, (TagDecl::TagKind)kind, decl_ctx, // What decl context do we use here? TU? The actual decl // context? SourceLocation(), SourceLocation(), &identifier_info); for (size_t i = 0, template_param_decl_count = template_param_decls.size(); i < template_param_decl_count; ++i) { template_param_decls[i]->setDeclContext(template_cxx_decl); } // With templated classes, we say that a class is templated with // specializations, but that the bare class has no functions. // template_cxx_decl->startDefinition(); // template_cxx_decl->completeDefinition(); class_template_decl = ClassTemplateDecl::Create( *ast, decl_ctx, // What decl context do we use here? TU? The actual decl // context? SourceLocation(), decl_name, template_param_list, template_cxx_decl, nullptr); if (class_template_decl) { if (access_type != eAccessNone) class_template_decl->setAccess( ConvertAccessTypeToAccessSpecifier(access_type)); // if (TagDecl *ctx_tag_decl = dyn_cast(decl_ctx)) // CompleteTagDeclarationDefinition(GetTypeForDecl(ctx_tag_decl)); decl_ctx->addDecl(class_template_decl); #ifdef LLDB_CONFIGURATION_DEBUG VerifyDecl(class_template_decl); #endif } return class_template_decl; } ClassTemplateSpecializationDecl * ClangASTContext::CreateClassTemplateSpecializationDecl( DeclContext *decl_ctx, ClassTemplateDecl *class_template_decl, int kind, const TemplateParameterInfos &template_param_infos) { ASTContext *ast = getASTContext(); ClassTemplateSpecializationDecl *class_template_specialization_decl = ClassTemplateSpecializationDecl::Create( *ast, (TagDecl::TagKind)kind, decl_ctx, SourceLocation(), SourceLocation(), class_template_decl, template_param_infos.args, nullptr); class_template_specialization_decl->setSpecializationKind( TSK_ExplicitSpecialization); return class_template_specialization_decl; } CompilerType ClangASTContext::CreateClassTemplateSpecializationType( ClassTemplateSpecializationDecl *class_template_specialization_decl) { if (class_template_specialization_decl) { ASTContext *ast = getASTContext(); if (ast) return CompilerType( ast, ast->getTagDeclType(class_template_specialization_decl)); } return CompilerType(); } static inline bool check_op_param(bool is_method, clang::OverloadedOperatorKind op_kind, bool unary, bool binary, uint32_t num_params) { // Special-case call since it can take any number of operands if (op_kind == OO_Call) return true; // The parameter count doesn't include "this" if (is_method) ++num_params; if (num_params == 1) return unary; if (num_params == 2) return binary; else return false; } bool ClangASTContext::CheckOverloadedOperatorKindParameterCount( bool is_method, clang::OverloadedOperatorKind op_kind, uint32_t num_params) { switch (op_kind) { default: break; // C++ standard allows any number of arguments to new/delete case OO_New: case OO_Array_New: case OO_Delete: case OO_Array_Delete: return true; } #define OVERLOADED_OPERATOR(Name, Spelling, Token, Unary, Binary, MemberOnly) \ case OO_##Name: \ return check_op_param(is_method, op_kind, Unary, Binary, num_params); switch (op_kind) { #include "clang/Basic/OperatorKinds.def" default: break; } return false; } clang::AccessSpecifier ClangASTContext::UnifyAccessSpecifiers(clang::AccessSpecifier lhs, clang::AccessSpecifier rhs) { // Make the access equal to the stricter of the field and the nested field's // access if (lhs == AS_none || rhs == AS_none) return AS_none; if (lhs == AS_private || rhs == AS_private) return AS_private; if (lhs == AS_protected || rhs == AS_protected) return AS_protected; return AS_public; } bool ClangASTContext::FieldIsBitfield(FieldDecl *field, uint32_t &bitfield_bit_size) { return FieldIsBitfield(getASTContext(), field, bitfield_bit_size); } bool ClangASTContext::FieldIsBitfield(ASTContext *ast, FieldDecl *field, uint32_t &bitfield_bit_size) { if (ast == nullptr || field == nullptr) return false; if (field->isBitField()) { Expr *bit_width_expr = field->getBitWidth(); if (bit_width_expr) { llvm::APSInt bit_width_apsint; if (bit_width_expr->isIntegerConstantExpr(bit_width_apsint, *ast)) { bitfield_bit_size = bit_width_apsint.getLimitedValue(UINT32_MAX); return true; } } } return false; } bool ClangASTContext::RecordHasFields(const RecordDecl *record_decl) { if (record_decl == nullptr) return false; if (!record_decl->field_empty()) return true; // No fields, lets check this is a CXX record and check the base classes const CXXRecordDecl *cxx_record_decl = dyn_cast(record_decl); if (cxx_record_decl) { CXXRecordDecl::base_class_const_iterator base_class, base_class_end; for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end(); base_class != base_class_end; ++base_class) { const CXXRecordDecl *base_class_decl = cast( base_class->getType()->getAs()->getDecl()); if (RecordHasFields(base_class_decl)) return true; } } return false; } #pragma mark Objective C Classes CompilerType ClangASTContext::CreateObjCClass(const char *name, DeclContext *decl_ctx, bool isForwardDecl, bool isInternal, ClangASTMetadata *metadata) { ASTContext *ast = getASTContext(); assert(ast != nullptr); assert(name && name[0]); if (decl_ctx == nullptr) decl_ctx = ast->getTranslationUnitDecl(); ObjCInterfaceDecl *decl = ObjCInterfaceDecl::Create( *ast, decl_ctx, SourceLocation(), &ast->Idents.get(name), nullptr, nullptr, SourceLocation(), /*isForwardDecl,*/ isInternal); if (decl && metadata) SetMetadata(ast, decl, *metadata); return CompilerType(ast, ast->getObjCInterfaceType(decl)); } static inline bool BaseSpecifierIsEmpty(const CXXBaseSpecifier *b) { return ClangASTContext::RecordHasFields(b->getType()->getAsCXXRecordDecl()) == false; } uint32_t ClangASTContext::GetNumBaseClasses(const CXXRecordDecl *cxx_record_decl, bool omit_empty_base_classes) { uint32_t num_bases = 0; if (cxx_record_decl) { if (omit_empty_base_classes) { CXXRecordDecl::base_class_const_iterator base_class, base_class_end; for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end(); base_class != base_class_end; ++base_class) { // Skip empty base classes if (omit_empty_base_classes) { if (BaseSpecifierIsEmpty(base_class)) continue; } ++num_bases; } } else num_bases = cxx_record_decl->getNumBases(); } return num_bases; } #pragma mark Namespace Declarations NamespaceDecl * ClangASTContext::GetUniqueNamespaceDeclaration(const char *name, DeclContext *decl_ctx) { NamespaceDecl *namespace_decl = nullptr; ASTContext *ast = getASTContext(); TranslationUnitDecl *translation_unit_decl = ast->getTranslationUnitDecl(); if (decl_ctx == nullptr) decl_ctx = translation_unit_decl; if (name) { IdentifierInfo &identifier_info = ast->Idents.get(name); DeclarationName decl_name(&identifier_info); clang::DeclContext::lookup_result result = decl_ctx->lookup(decl_name); for (NamedDecl *decl : result) { namespace_decl = dyn_cast(decl); if (namespace_decl) return namespace_decl; } namespace_decl = NamespaceDecl::Create(*ast, decl_ctx, false, SourceLocation(), SourceLocation(), &identifier_info, nullptr); decl_ctx->addDecl(namespace_decl); } else { if (decl_ctx == translation_unit_decl) { namespace_decl = translation_unit_decl->getAnonymousNamespace(); if (namespace_decl) return namespace_decl; namespace_decl = NamespaceDecl::Create(*ast, decl_ctx, false, SourceLocation(), SourceLocation(), nullptr, nullptr); translation_unit_decl->setAnonymousNamespace(namespace_decl); translation_unit_decl->addDecl(namespace_decl); assert(namespace_decl == translation_unit_decl->getAnonymousNamespace()); } else { NamespaceDecl *parent_namespace_decl = cast(decl_ctx); if (parent_namespace_decl) { namespace_decl = parent_namespace_decl->getAnonymousNamespace(); if (namespace_decl) return namespace_decl; namespace_decl = NamespaceDecl::Create(*ast, decl_ctx, false, SourceLocation(), SourceLocation(), nullptr, nullptr); parent_namespace_decl->setAnonymousNamespace(namespace_decl); parent_namespace_decl->addDecl(namespace_decl); assert(namespace_decl == parent_namespace_decl->getAnonymousNamespace()); } else { // BAD!!! } } } #ifdef LLDB_CONFIGURATION_DEBUG VerifyDecl(namespace_decl); #endif return namespace_decl; } NamespaceDecl *ClangASTContext::GetUniqueNamespaceDeclaration( clang::ASTContext *ast, const char *name, clang::DeclContext *decl_ctx) { ClangASTContext *ast_ctx = ClangASTContext::GetASTContext(ast); if (ast_ctx == nullptr) return nullptr; return ast_ctx->GetUniqueNamespaceDeclaration(name, decl_ctx); } clang::BlockDecl * ClangASTContext::CreateBlockDeclaration(clang::DeclContext *ctx) { if (ctx != nullptr) { clang::BlockDecl *decl = clang::BlockDecl::Create(*getASTContext(), ctx, clang::SourceLocation()); ctx->addDecl(decl); return decl; } return nullptr; } clang::DeclContext *FindLCABetweenDecls(clang::DeclContext *left, clang::DeclContext *right, clang::DeclContext *root) { if (root == nullptr) return nullptr; std::set path_left; for (clang::DeclContext *d = left; d != nullptr; d = d->getParent()) path_left.insert(d); for (clang::DeclContext *d = right; d != nullptr; d = d->getParent()) if (path_left.find(d) != path_left.end()) return d; return nullptr; } clang::UsingDirectiveDecl *ClangASTContext::CreateUsingDirectiveDeclaration( clang::DeclContext *decl_ctx, clang::NamespaceDecl *ns_decl) { if (decl_ctx != nullptr && ns_decl != nullptr) { clang::TranslationUnitDecl *translation_unit = (clang::TranslationUnitDecl *)GetTranslationUnitDecl(getASTContext()); clang::UsingDirectiveDecl *using_decl = clang::UsingDirectiveDecl::Create( *getASTContext(), decl_ctx, clang::SourceLocation(), clang::SourceLocation(), clang::NestedNameSpecifierLoc(), clang::SourceLocation(), ns_decl, FindLCABetweenDecls(decl_ctx, ns_decl, translation_unit)); decl_ctx->addDecl(using_decl); return using_decl; } return nullptr; } clang::UsingDecl * ClangASTContext::CreateUsingDeclaration(clang::DeclContext *current_decl_ctx, clang::NamedDecl *target) { if (current_decl_ctx != nullptr && target != nullptr) { clang::UsingDecl *using_decl = clang::UsingDecl::Create( *getASTContext(), current_decl_ctx, clang::SourceLocation(), clang::NestedNameSpecifierLoc(), clang::DeclarationNameInfo(), false); clang::UsingShadowDecl *shadow_decl = clang::UsingShadowDecl::Create( *getASTContext(), current_decl_ctx, clang::SourceLocation(), using_decl, target); using_decl->addShadowDecl(shadow_decl); current_decl_ctx->addDecl(using_decl); return using_decl; } return nullptr; } clang::VarDecl *ClangASTContext::CreateVariableDeclaration( clang::DeclContext *decl_context, const char *name, clang::QualType type) { if (decl_context != nullptr) { clang::VarDecl *var_decl = clang::VarDecl::Create( *getASTContext(), decl_context, clang::SourceLocation(), clang::SourceLocation(), name && name[0] ? &getASTContext()->Idents.getOwn(name) : nullptr, type, nullptr, clang::SC_None); var_decl->setAccess(clang::AS_public); decl_context->addDecl(var_decl); return var_decl; } return nullptr; } lldb::opaque_compiler_type_t ClangASTContext::GetOpaqueCompilerType(clang::ASTContext *ast, lldb::BasicType basic_type) { switch (basic_type) { case eBasicTypeVoid: return ast->VoidTy.getAsOpaquePtr(); case eBasicTypeChar: return ast->CharTy.getAsOpaquePtr(); case eBasicTypeSignedChar: return ast->SignedCharTy.getAsOpaquePtr(); case eBasicTypeUnsignedChar: return ast->UnsignedCharTy.getAsOpaquePtr(); case eBasicTypeWChar: return ast->getWCharType().getAsOpaquePtr(); case eBasicTypeSignedWChar: return ast->getSignedWCharType().getAsOpaquePtr(); case eBasicTypeUnsignedWChar: return ast->getUnsignedWCharType().getAsOpaquePtr(); case eBasicTypeChar16: return ast->Char16Ty.getAsOpaquePtr(); case eBasicTypeChar32: return ast->Char32Ty.getAsOpaquePtr(); case eBasicTypeShort: return ast->ShortTy.getAsOpaquePtr(); case eBasicTypeUnsignedShort: return ast->UnsignedShortTy.getAsOpaquePtr(); case eBasicTypeInt: return ast->IntTy.getAsOpaquePtr(); case eBasicTypeUnsignedInt: return ast->UnsignedIntTy.getAsOpaquePtr(); case eBasicTypeLong: return ast->LongTy.getAsOpaquePtr(); case eBasicTypeUnsignedLong: return ast->UnsignedLongTy.getAsOpaquePtr(); case eBasicTypeLongLong: return ast->LongLongTy.getAsOpaquePtr(); case eBasicTypeUnsignedLongLong: return ast->UnsignedLongLongTy.getAsOpaquePtr(); case eBasicTypeInt128: return ast->Int128Ty.getAsOpaquePtr(); case eBasicTypeUnsignedInt128: return ast->UnsignedInt128Ty.getAsOpaquePtr(); case eBasicTypeBool: return ast->BoolTy.getAsOpaquePtr(); case eBasicTypeHalf: return ast->HalfTy.getAsOpaquePtr(); case eBasicTypeFloat: return ast->FloatTy.getAsOpaquePtr(); case eBasicTypeDouble: return ast->DoubleTy.getAsOpaquePtr(); case eBasicTypeLongDouble: return ast->LongDoubleTy.getAsOpaquePtr(); case eBasicTypeFloatComplex: return ast->FloatComplexTy.getAsOpaquePtr(); case eBasicTypeDoubleComplex: return ast->DoubleComplexTy.getAsOpaquePtr(); case eBasicTypeLongDoubleComplex: return ast->LongDoubleComplexTy.getAsOpaquePtr(); case eBasicTypeObjCID: return ast->getObjCIdType().getAsOpaquePtr(); case eBasicTypeObjCClass: return ast->getObjCClassType().getAsOpaquePtr(); case eBasicTypeObjCSel: return ast->getObjCSelType().getAsOpaquePtr(); case eBasicTypeNullPtr: return ast->NullPtrTy.getAsOpaquePtr(); default: return nullptr; } } #pragma mark Function Types clang::DeclarationName ClangASTContext::GetDeclarationName(const char *name, const CompilerType &function_clang_type) { if (!name || !name[0]) return clang::DeclarationName(); clang::OverloadedOperatorKind op_kind = clang::NUM_OVERLOADED_OPERATORS; if (!IsOperator(name, op_kind) || op_kind == clang::NUM_OVERLOADED_OPERATORS) return DeclarationName(&getASTContext()->Idents.get( name)); // Not operator, but a regular function. // Check the number of operator parameters. Sometimes we have // seen bad DWARF that doesn't correctly describe operators and // if we try to create a method and add it to the class, clang // will assert and crash, so we need to make sure things are // acceptable. clang::QualType method_qual_type(ClangUtil::GetQualType(function_clang_type)); const clang::FunctionProtoType *function_type = llvm::dyn_cast(method_qual_type.getTypePtr()); if (function_type == nullptr) return clang::DeclarationName(); const bool is_method = false; const unsigned int num_params = function_type->getNumParams(); if (!ClangASTContext::CheckOverloadedOperatorKindParameterCount( is_method, op_kind, num_params)) return clang::DeclarationName(); return getASTContext()->DeclarationNames.getCXXOperatorName(op_kind); } FunctionDecl *ClangASTContext::CreateFunctionDeclaration( DeclContext *decl_ctx, const char *name, const CompilerType &function_clang_type, int storage, bool is_inline) { FunctionDecl *func_decl = nullptr; ASTContext *ast = getASTContext(); if (decl_ctx == nullptr) decl_ctx = ast->getTranslationUnitDecl(); const bool hasWrittenPrototype = true; const bool isConstexprSpecified = false; clang::DeclarationName declarationName = GetDeclarationName(name, function_clang_type); func_decl = FunctionDecl::Create( *ast, decl_ctx, SourceLocation(), SourceLocation(), declarationName, ClangUtil::GetQualType(function_clang_type), nullptr, (clang::StorageClass)storage, is_inline, hasWrittenPrototype, isConstexprSpecified); if (func_decl) decl_ctx->addDecl(func_decl); #ifdef LLDB_CONFIGURATION_DEBUG VerifyDecl(func_decl); #endif return func_decl; } CompilerType ClangASTContext::CreateFunctionType( ASTContext *ast, const CompilerType &result_type, const CompilerType *args, unsigned num_args, bool is_variadic, unsigned type_quals) { if (ast == nullptr) return CompilerType(); // invalid AST if (!result_type || !ClangUtil::IsClangType(result_type)) return CompilerType(); // invalid return type std::vector qual_type_args; if (num_args > 0 && args == nullptr) return CompilerType(); // invalid argument array passed in // Verify that all arguments are valid and the right type for (unsigned i = 0; i < num_args; ++i) { if (args[i]) { // Make sure we have a clang type in args[i] and not a type from another // language whose name might match const bool is_clang_type = ClangUtil::IsClangType(args[i]); lldbassert(is_clang_type); if (is_clang_type) qual_type_args.push_back(ClangUtil::GetQualType(args[i])); else return CompilerType(); // invalid argument type (must be a clang type) } else return CompilerType(); // invalid argument type (empty) } // TODO: Detect calling convention in DWARF? FunctionProtoType::ExtProtoInfo proto_info; proto_info.Variadic = is_variadic; proto_info.ExceptionSpec = EST_None; proto_info.TypeQuals = type_quals; proto_info.RefQualifier = RQ_None; return CompilerType(ast, ast->getFunctionType(ClangUtil::GetQualType(result_type), qual_type_args, proto_info)); } ParmVarDecl *ClangASTContext::CreateParameterDeclaration( const char *name, const CompilerType ¶m_type, int storage) { ASTContext *ast = getASTContext(); assert(ast != nullptr); return ParmVarDecl::Create(*ast, ast->getTranslationUnitDecl(), SourceLocation(), SourceLocation(), name && name[0] ? &ast->Idents.get(name) : nullptr, ClangUtil::GetQualType(param_type), nullptr, (clang::StorageClass)storage, nullptr); } void ClangASTContext::SetFunctionParameters(FunctionDecl *function_decl, ParmVarDecl **params, unsigned num_params) { if (function_decl) function_decl->setParams(ArrayRef(params, num_params)); } CompilerType ClangASTContext::CreateBlockPointerType(const CompilerType &function_type) { QualType block_type = m_ast_ap->getBlockPointerType( clang::QualType::getFromOpaquePtr(function_type.GetOpaqueQualType())); return CompilerType(this, block_type.getAsOpaquePtr()); } #pragma mark Array Types CompilerType ClangASTContext::CreateArrayType(const CompilerType &element_type, size_t element_count, bool is_vector) { if (element_type.IsValid()) { ASTContext *ast = getASTContext(); assert(ast != nullptr); if (is_vector) { return CompilerType( ast, ast->getExtVectorType(ClangUtil::GetQualType(element_type), element_count)); } else { llvm::APInt ap_element_count(64, element_count); if (element_count == 0) { return CompilerType(ast, ast->getIncompleteArrayType( ClangUtil::GetQualType(element_type), clang::ArrayType::Normal, 0)); } else { return CompilerType( ast, ast->getConstantArrayType(ClangUtil::GetQualType(element_type), ap_element_count, clang::ArrayType::Normal, 0)); } } } return CompilerType(); } CompilerType ClangASTContext::CreateStructForIdentifier( const ConstString &type_name, const std::initializer_list> &type_fields, bool packed) { CompilerType type; if (!type_name.IsEmpty() && (type = GetTypeForIdentifier(type_name)) .IsValid()) { lldbassert(0 && "Trying to create a type for an existing name"); return type; } type = CreateRecordType(nullptr, lldb::eAccessPublic, type_name.GetCString(), clang::TTK_Struct, lldb::eLanguageTypeC); StartTagDeclarationDefinition(type); for (const auto &field : type_fields) AddFieldToRecordType(type, field.first, field.second, lldb::eAccessPublic, 0); if (packed) SetIsPacked(type); CompleteTagDeclarationDefinition(type); return type; } CompilerType ClangASTContext::GetOrCreateStructForIdentifier( const ConstString &type_name, const std::initializer_list> &type_fields, bool packed) { CompilerType type; if ((type = GetTypeForIdentifier(type_name)).IsValid()) return type; return CreateStructForIdentifier(type_name, type_fields, packed); } #pragma mark Enumeration Types CompilerType ClangASTContext::CreateEnumerationType(const char *name, DeclContext *decl_ctx, const Declaration &decl, const CompilerType &integer_clang_type) { // TODO: Do something intelligent with the Declaration object passed in // like maybe filling in the SourceLocation with it... ASTContext *ast = getASTContext(); // TODO: ask about these... // const bool IsScoped = false; // const bool IsFixed = false; EnumDecl *enum_decl = EnumDecl::Create( *ast, decl_ctx, SourceLocation(), SourceLocation(), name && name[0] ? &ast->Idents.get(name) : nullptr, nullptr, false, // IsScoped false, // IsScopedUsingClassTag false); // IsFixed if (enum_decl) { // TODO: check if we should be setting the promotion type too? enum_decl->setIntegerType(ClangUtil::GetQualType(integer_clang_type)); enum_decl->setAccess(AS_public); // TODO respect what's in the debug info return CompilerType(ast, ast->getTagDeclType(enum_decl)); } return CompilerType(); } // Disable this for now since I can't seem to get a nicely formatted float // out of the APFloat class without just getting the float, double or quad // and then using a formatted print on it which defeats the purpose. We ideally // would like to get perfect string values for any kind of float semantics // so we can support remote targets. The code below also requires a patch to // llvm::APInt. // bool // ClangASTContext::ConvertFloatValueToString (ASTContext *ast, // lldb::opaque_compiler_type_t clang_type, const uint8_t* bytes, size_t // byte_size, int apint_byte_order, std::string &float_str) //{ // uint32_t count = 0; // bool is_complex = false; // if (ClangASTContext::IsFloatingPointType (clang_type, count, is_complex)) // { // unsigned num_bytes_per_float = byte_size / count; // unsigned num_bits_per_float = num_bytes_per_float * 8; // // float_str.clear(); // uint32_t i; // for (i=0; i 0) // { // if (i > 0) // float_str.append(", "); // float_str.append(s); // if (i == 1 && is_complex) // float_str.append(1, 'i'); // } // } // return !float_str.empty(); // } // return false; //} CompilerType ClangASTContext::GetIntTypeFromBitSize(clang::ASTContext *ast, size_t bit_size, bool is_signed) { if (ast) { if (is_signed) { if (bit_size == ast->getTypeSize(ast->SignedCharTy)) return CompilerType(ast, ast->SignedCharTy); if (bit_size == ast->getTypeSize(ast->ShortTy)) return CompilerType(ast, ast->ShortTy); if (bit_size == ast->getTypeSize(ast->IntTy)) return CompilerType(ast, ast->IntTy); if (bit_size == ast->getTypeSize(ast->LongTy)) return CompilerType(ast, ast->LongTy); if (bit_size == ast->getTypeSize(ast->LongLongTy)) return CompilerType(ast, ast->LongLongTy); if (bit_size == ast->getTypeSize(ast->Int128Ty)) return CompilerType(ast, ast->Int128Ty); } else { if (bit_size == ast->getTypeSize(ast->UnsignedCharTy)) return CompilerType(ast, ast->UnsignedCharTy); if (bit_size == ast->getTypeSize(ast->UnsignedShortTy)) return CompilerType(ast, ast->UnsignedShortTy); if (bit_size == ast->getTypeSize(ast->UnsignedIntTy)) return CompilerType(ast, ast->UnsignedIntTy); if (bit_size == ast->getTypeSize(ast->UnsignedLongTy)) return CompilerType(ast, ast->UnsignedLongTy); if (bit_size == ast->getTypeSize(ast->UnsignedLongLongTy)) return CompilerType(ast, ast->UnsignedLongLongTy); if (bit_size == ast->getTypeSize(ast->UnsignedInt128Ty)) return CompilerType(ast, ast->UnsignedInt128Ty); } } return CompilerType(); } CompilerType ClangASTContext::GetPointerSizedIntType(clang::ASTContext *ast, bool is_signed) { if (ast) return GetIntTypeFromBitSize(ast, ast->getTypeSize(ast->VoidPtrTy), is_signed); return CompilerType(); } void ClangASTContext::DumpDeclContextHiearchy(clang::DeclContext *decl_ctx) { if (decl_ctx) { DumpDeclContextHiearchy(decl_ctx->getParent()); clang::NamedDecl *named_decl = llvm::dyn_cast(decl_ctx); if (named_decl) { printf("%20s: %s\n", decl_ctx->getDeclKindName(), named_decl->getDeclName().getAsString().c_str()); } else { printf("%20s\n", decl_ctx->getDeclKindName()); } } } void ClangASTContext::DumpDeclHiearchy(clang::Decl *decl) { if (decl == nullptr) return; DumpDeclContextHiearchy(decl->getDeclContext()); clang::RecordDecl *record_decl = llvm::dyn_cast(decl); if (record_decl) { printf("%20s: %s%s\n", decl->getDeclKindName(), record_decl->getDeclName().getAsString().c_str(), record_decl->isInjectedClassName() ? " (injected class name)" : ""); } else { clang::NamedDecl *named_decl = llvm::dyn_cast(decl); if (named_decl) { printf("%20s: %s\n", decl->getDeclKindName(), named_decl->getDeclName().getAsString().c_str()); } else { printf("%20s\n", decl->getDeclKindName()); } } } bool ClangASTContext::DeclsAreEquivalent(clang::Decl *lhs_decl, clang::Decl *rhs_decl) { if (lhs_decl && rhs_decl) { //---------------------------------------------------------------------- // Make sure the decl kinds match first //---------------------------------------------------------------------- const clang::Decl::Kind lhs_decl_kind = lhs_decl->getKind(); const clang::Decl::Kind rhs_decl_kind = rhs_decl->getKind(); if (lhs_decl_kind == rhs_decl_kind) { //------------------------------------------------------------------ // Now check that the decl contexts kinds are all equivalent // before we have to check any names of the decl contexts... //------------------------------------------------------------------ clang::DeclContext *lhs_decl_ctx = lhs_decl->getDeclContext(); clang::DeclContext *rhs_decl_ctx = rhs_decl->getDeclContext(); if (lhs_decl_ctx && rhs_decl_ctx) { while (1) { if (lhs_decl_ctx && rhs_decl_ctx) { const clang::Decl::Kind lhs_decl_ctx_kind = lhs_decl_ctx->getDeclKind(); const clang::Decl::Kind rhs_decl_ctx_kind = rhs_decl_ctx->getDeclKind(); if (lhs_decl_ctx_kind == rhs_decl_ctx_kind) { lhs_decl_ctx = lhs_decl_ctx->getParent(); rhs_decl_ctx = rhs_decl_ctx->getParent(); if (lhs_decl_ctx == nullptr && rhs_decl_ctx == nullptr) break; } else return false; } else return false; } //-------------------------------------------------------------- // Now make sure the name of the decls match //-------------------------------------------------------------- clang::NamedDecl *lhs_named_decl = llvm::dyn_cast(lhs_decl); clang::NamedDecl *rhs_named_decl = llvm::dyn_cast(rhs_decl); if (lhs_named_decl && rhs_named_decl) { clang::DeclarationName lhs_decl_name = lhs_named_decl->getDeclName(); clang::DeclarationName rhs_decl_name = rhs_named_decl->getDeclName(); if (lhs_decl_name.getNameKind() == rhs_decl_name.getNameKind()) { if (lhs_decl_name.getAsString() != rhs_decl_name.getAsString()) return false; } else return false; } else return false; //-------------------------------------------------------------- // We know that the decl context kinds all match, so now we need // to make sure the names match as well //-------------------------------------------------------------- lhs_decl_ctx = lhs_decl->getDeclContext(); rhs_decl_ctx = rhs_decl->getDeclContext(); while (1) { switch (lhs_decl_ctx->getDeclKind()) { case clang::Decl::TranslationUnit: // We don't care about the translation unit names return true; default: { clang::NamedDecl *lhs_named_decl = llvm::dyn_cast(lhs_decl_ctx); clang::NamedDecl *rhs_named_decl = llvm::dyn_cast(rhs_decl_ctx); if (lhs_named_decl && rhs_named_decl) { clang::DeclarationName lhs_decl_name = lhs_named_decl->getDeclName(); clang::DeclarationName rhs_decl_name = rhs_named_decl->getDeclName(); if (lhs_decl_name.getNameKind() == rhs_decl_name.getNameKind()) { if (lhs_decl_name.getAsString() != rhs_decl_name.getAsString()) return false; } else return false; } else return false; } break; } lhs_decl_ctx = lhs_decl_ctx->getParent(); rhs_decl_ctx = rhs_decl_ctx->getParent(); } } } } return false; } bool ClangASTContext::GetCompleteDecl(clang::ASTContext *ast, clang::Decl *decl) { if (!decl) return false; ExternalASTSource *ast_source = ast->getExternalSource(); if (!ast_source) return false; if (clang::TagDecl *tag_decl = llvm::dyn_cast(decl)) { if (tag_decl->isCompleteDefinition()) return true; if (!tag_decl->hasExternalLexicalStorage()) return false; ast_source->CompleteType(tag_decl); return !tag_decl->getTypeForDecl()->isIncompleteType(); } else if (clang::ObjCInterfaceDecl *objc_interface_decl = llvm::dyn_cast(decl)) { if (objc_interface_decl->getDefinition()) return true; if (!objc_interface_decl->hasExternalLexicalStorage()) return false; ast_source->CompleteType(objc_interface_decl); return !objc_interface_decl->getTypeForDecl()->isIncompleteType(); } else { return false; } } void ClangASTContext::SetMetadataAsUserID(const void *object, user_id_t user_id) { ClangASTMetadata meta_data; meta_data.SetUserID(user_id); SetMetadata(object, meta_data); } void ClangASTContext::SetMetadata(clang::ASTContext *ast, const void *object, ClangASTMetadata &metadata) { ClangExternalASTSourceCommon *external_source = ClangExternalASTSourceCommon::Lookup(ast->getExternalSource()); if (external_source) external_source->SetMetadata(object, metadata); } ClangASTMetadata *ClangASTContext::GetMetadata(clang::ASTContext *ast, const void *object) { ClangExternalASTSourceCommon *external_source = ClangExternalASTSourceCommon::Lookup(ast->getExternalSource()); if (external_source && external_source->HasMetadata(object)) return external_source->GetMetadata(object); else return nullptr; } clang::DeclContext * ClangASTContext::GetAsDeclContext(clang::CXXMethodDecl *cxx_method_decl) { return llvm::dyn_cast(cxx_method_decl); } clang::DeclContext * ClangASTContext::GetAsDeclContext(clang::ObjCMethodDecl *objc_method_decl) { return llvm::dyn_cast(objc_method_decl); } bool ClangASTContext::SetTagTypeKind(clang::QualType tag_qual_type, int kind) const { const clang::Type *clang_type = tag_qual_type.getTypePtr(); if (clang_type) { const clang::TagType *tag_type = llvm::dyn_cast(clang_type); if (tag_type) { clang::TagDecl *tag_decl = llvm::dyn_cast(tag_type->getDecl()); if (tag_decl) { tag_decl->setTagKind((clang::TagDecl::TagKind)kind); return true; } } } return false; } bool ClangASTContext::SetDefaultAccessForRecordFields( clang::RecordDecl *record_decl, int default_accessibility, int *assigned_accessibilities, size_t num_assigned_accessibilities) { if (record_decl) { uint32_t field_idx; clang::RecordDecl::field_iterator field, field_end; for (field = record_decl->field_begin(), field_end = record_decl->field_end(), field_idx = 0; field != field_end; ++field, ++field_idx) { // If no accessibility was assigned, assign the correct one if (field_idx < num_assigned_accessibilities && assigned_accessibilities[field_idx] == clang::AS_none) field->setAccess((clang::AccessSpecifier)default_accessibility); } return true; } return false; } clang::DeclContext * ClangASTContext::GetDeclContextForType(const CompilerType &type) { return GetDeclContextForType(ClangUtil::GetQualType(type)); } clang::DeclContext * ClangASTContext::GetDeclContextForType(clang::QualType type) { if (type.isNull()) return nullptr; clang::QualType qual_type = type.getCanonicalType(); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::ObjCInterface: return llvm::cast(qual_type.getTypePtr()) ->getInterface(); case clang::Type::ObjCObjectPointer: return GetDeclContextForType( llvm::cast(qual_type.getTypePtr()) ->getPointeeType()); case clang::Type::Record: return llvm::cast(qual_type)->getDecl(); case clang::Type::Enum: return llvm::cast(qual_type)->getDecl(); case clang::Type::Typedef: return GetDeclContextForType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()); case clang::Type::Auto: return GetDeclContextForType( llvm::cast(qual_type)->getDeducedType()); case clang::Type::Elaborated: return GetDeclContextForType( llvm::cast(qual_type)->getNamedType()); case clang::Type::Paren: return GetDeclContextForType( llvm::cast(qual_type)->desugar()); default: break; } // No DeclContext in this type... return nullptr; } static bool GetCompleteQualType(clang::ASTContext *ast, clang::QualType qual_type, bool allow_completion = true) { const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::ConstantArray: case clang::Type::IncompleteArray: case clang::Type::VariableArray: { const clang::ArrayType *array_type = llvm::dyn_cast(qual_type.getTypePtr()); if (array_type) return GetCompleteQualType(ast, array_type->getElementType(), allow_completion); } break; case clang::Type::Record: { clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) { if (cxx_record_decl->hasExternalLexicalStorage()) { const bool is_complete = cxx_record_decl->isCompleteDefinition(); const bool fields_loaded = cxx_record_decl->hasLoadedFieldsFromExternalStorage(); if (is_complete && fields_loaded) return true; if (!allow_completion) return false; // Call the field_begin() accessor to for it to use the external source // to load the fields... clang::ExternalASTSource *external_ast_source = ast->getExternalSource(); if (external_ast_source) { external_ast_source->CompleteType(cxx_record_decl); if (cxx_record_decl->isCompleteDefinition()) { cxx_record_decl->field_begin(); cxx_record_decl->setHasLoadedFieldsFromExternalStorage(true); } } } } const clang::TagType *tag_type = llvm::cast(qual_type.getTypePtr()); return !tag_type->isIncompleteType(); } break; case clang::Type::Enum: { const clang::TagType *tag_type = llvm::dyn_cast(qual_type.getTypePtr()); if (tag_type) { clang::TagDecl *tag_decl = tag_type->getDecl(); if (tag_decl) { if (tag_decl->getDefinition()) return true; if (!allow_completion) return false; if (tag_decl->hasExternalLexicalStorage()) { if (ast) { clang::ExternalASTSource *external_ast_source = ast->getExternalSource(); if (external_ast_source) { external_ast_source->CompleteType(tag_decl); return !tag_type->isIncompleteType(); } } } return false; } } } break; case clang::Type::ObjCObject: case clang::Type::ObjCInterface: { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); // We currently can't complete objective C types through the newly added // ASTContext // because it only supports TagDecl objects right now... if (class_interface_decl) { if (class_interface_decl->getDefinition()) return true; if (!allow_completion) return false; if (class_interface_decl->hasExternalLexicalStorage()) { if (ast) { clang::ExternalASTSource *external_ast_source = ast->getExternalSource(); if (external_ast_source) { external_ast_source->CompleteType(class_interface_decl); return !objc_class_type->isIncompleteType(); } } } return false; } } } break; case clang::Type::Typedef: return GetCompleteQualType(ast, llvm::cast(qual_type) ->getDecl() ->getUnderlyingType(), allow_completion); case clang::Type::Auto: return GetCompleteQualType( ast, llvm::cast(qual_type)->getDeducedType(), allow_completion); case clang::Type::Elaborated: return GetCompleteQualType( ast, llvm::cast(qual_type)->getNamedType(), allow_completion); case clang::Type::Paren: return GetCompleteQualType( ast, llvm::cast(qual_type)->desugar(), allow_completion); case clang::Type::Attributed: return GetCompleteQualType( ast, llvm::cast(qual_type)->getModifiedType(), allow_completion); default: break; } return true; } static clang::ObjCIvarDecl::AccessControl ConvertAccessTypeToObjCIvarAccessControl(AccessType access) { switch (access) { case eAccessNone: return clang::ObjCIvarDecl::None; case eAccessPublic: return clang::ObjCIvarDecl::Public; case eAccessPrivate: return clang::ObjCIvarDecl::Private; case eAccessProtected: return clang::ObjCIvarDecl::Protected; case eAccessPackage: return clang::ObjCIvarDecl::Package; } return clang::ObjCIvarDecl::None; } //---------------------------------------------------------------------- // Tests //---------------------------------------------------------------------- bool ClangASTContext::IsAggregateType(lldb::opaque_compiler_type_t type) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::IncompleteArray: case clang::Type::VariableArray: case clang::Type::ConstantArray: case clang::Type::ExtVector: case clang::Type::Vector: case clang::Type::Record: case clang::Type::ObjCObject: case clang::Type::ObjCInterface: return true; case clang::Type::Auto: return IsAggregateType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr()); case clang::Type::Elaborated: return IsAggregateType(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr()); case clang::Type::Typedef: return IsAggregateType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr()); case clang::Type::Paren: return IsAggregateType( llvm::cast(qual_type)->desugar().getAsOpaquePtr()); default: break; } // The clang type does have a value return false; } bool ClangASTContext::IsAnonymousType(lldb::opaque_compiler_type_t type) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: { if (const clang::RecordType *record_type = llvm::dyn_cast_or_null( qual_type.getTypePtrOrNull())) { if (const clang::RecordDecl *record_decl = record_type->getDecl()) { return record_decl->isAnonymousStructOrUnion(); } } break; } case clang::Type::Auto: return IsAnonymousType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr()); case clang::Type::Elaborated: return IsAnonymousType(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr()); case clang::Type::Typedef: return IsAnonymousType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr()); case clang::Type::Paren: return IsAnonymousType( llvm::cast(qual_type)->desugar().getAsOpaquePtr()); default: break; } // The clang type does have a value return false; } bool ClangASTContext::IsArrayType(lldb::opaque_compiler_type_t type, CompilerType *element_type_ptr, uint64_t *size, bool *is_incomplete) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { default: break; case clang::Type::ConstantArray: if (element_type_ptr) element_type_ptr->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getElementType()); if (size) *size = llvm::cast(qual_type) ->getSize() .getLimitedValue(ULLONG_MAX); if (is_incomplete) *is_incomplete = false; return true; case clang::Type::IncompleteArray: if (element_type_ptr) element_type_ptr->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getElementType()); if (size) *size = 0; if (is_incomplete) *is_incomplete = true; return true; case clang::Type::VariableArray: if (element_type_ptr) element_type_ptr->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getElementType()); if (size) *size = 0; if (is_incomplete) *is_incomplete = false; return true; case clang::Type::DependentSizedArray: if (element_type_ptr) element_type_ptr->SetCompilerType( getASTContext(), llvm::cast(qual_type) ->getElementType()); if (size) *size = 0; if (is_incomplete) *is_incomplete = false; return true; case clang::Type::Typedef: return IsArrayType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), element_type_ptr, size, is_incomplete); case clang::Type::Auto: return IsArrayType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), element_type_ptr, size, is_incomplete); case clang::Type::Elaborated: return IsArrayType(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), element_type_ptr, size, is_incomplete); case clang::Type::Paren: return IsArrayType( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), element_type_ptr, size, is_incomplete); } if (element_type_ptr) element_type_ptr->Clear(); if (size) *size = 0; if (is_incomplete) *is_incomplete = false; return false; } bool ClangASTContext::IsVectorType(lldb::opaque_compiler_type_t type, CompilerType *element_type, uint64_t *size) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Vector: { const clang::VectorType *vector_type = qual_type->getAs(); if (vector_type) { if (size) *size = vector_type->getNumElements(); if (element_type) *element_type = CompilerType(getASTContext(), vector_type->getElementType()); } return true; } break; case clang::Type::ExtVector: { const clang::ExtVectorType *ext_vector_type = qual_type->getAs(); if (ext_vector_type) { if (size) *size = ext_vector_type->getNumElements(); if (element_type) *element_type = CompilerType(getASTContext(), ext_vector_type->getElementType()); } return true; } default: break; } return false; } bool ClangASTContext::IsRuntimeGeneratedType( lldb::opaque_compiler_type_t type) { clang::DeclContext *decl_ctx = ClangASTContext::GetASTContext(getASTContext()) ->GetDeclContextForType(GetQualType(type)); if (!decl_ctx) return false; if (!llvm::isa(decl_ctx)) return false; clang::ObjCInterfaceDecl *result_iface_decl = llvm::dyn_cast(decl_ctx); ClangASTMetadata *ast_metadata = ClangASTContext::GetMetadata(getASTContext(), result_iface_decl); if (!ast_metadata) return false; return (ast_metadata->GetISAPtr() != 0); } bool ClangASTContext::IsCharType(lldb::opaque_compiler_type_t type) { return GetQualType(type).getUnqualifiedType()->isCharType(); } bool ClangASTContext::IsCompleteType(lldb::opaque_compiler_type_t type) { const bool allow_completion = false; return GetCompleteQualType(getASTContext(), GetQualType(type), allow_completion); } bool ClangASTContext::IsConst(lldb::opaque_compiler_type_t type) { return GetQualType(type).isConstQualified(); } bool ClangASTContext::IsCStringType(lldb::opaque_compiler_type_t type, uint32_t &length) { CompilerType pointee_or_element_clang_type; length = 0; Flags type_flags(GetTypeInfo(type, &pointee_or_element_clang_type)); if (!pointee_or_element_clang_type.IsValid()) return false; if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer)) { if (pointee_or_element_clang_type.IsCharType()) { if (type_flags.Test(eTypeIsArray)) { // We know the size of the array and it could be a C string // since it is an array of characters length = llvm::cast( GetCanonicalQualType(type).getTypePtr()) ->getSize() .getLimitedValue(); } return true; } } return false; } bool ClangASTContext::IsFunctionType(lldb::opaque_compiler_type_t type, bool *is_variadic_ptr) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); if (qual_type->isFunctionType()) { if (is_variadic_ptr) { const clang::FunctionProtoType *function_proto_type = llvm::dyn_cast(qual_type.getTypePtr()); if (function_proto_type) *is_variadic_ptr = function_proto_type->isVariadic(); else *is_variadic_ptr = false; } return true; } const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { default: break; case clang::Type::Typedef: return IsFunctionType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), nullptr); case clang::Type::Auto: return IsFunctionType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), nullptr); case clang::Type::Elaborated: return IsFunctionType(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), nullptr); case clang::Type::Paren: return IsFunctionType( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), nullptr); case clang::Type::LValueReference: case clang::Type::RValueReference: { const clang::ReferenceType *reference_type = llvm::cast(qual_type.getTypePtr()); if (reference_type) return IsFunctionType(reference_type->getPointeeType().getAsOpaquePtr(), nullptr); } break; } } return false; } // Used to detect "Homogeneous Floating-point Aggregates" uint32_t ClangASTContext::IsHomogeneousAggregate(lldb::opaque_compiler_type_t type, CompilerType *base_type_ptr) { if (!type) return 0; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) { if (cxx_record_decl->getNumBases() || cxx_record_decl->isDynamicClass()) return 0; } const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); if (record_type) { const clang::RecordDecl *record_decl = record_type->getDecl(); if (record_decl) { // We are looking for a structure that contains only floating point // types clang::RecordDecl::field_iterator field_pos, field_end = record_decl->field_end(); uint32_t num_fields = 0; bool is_hva = false; bool is_hfa = false; clang::QualType base_qual_type; uint64_t base_bitwidth = 0; for (field_pos = record_decl->field_begin(); field_pos != field_end; ++field_pos) { clang::QualType field_qual_type = field_pos->getType(); uint64_t field_bitwidth = getASTContext()->getTypeSize(qual_type); if (field_qual_type->isFloatingType()) { if (field_qual_type->isComplexType()) return 0; else { if (num_fields == 0) base_qual_type = field_qual_type; else { if (is_hva) return 0; is_hfa = true; if (field_qual_type.getTypePtr() != base_qual_type.getTypePtr()) return 0; } } } else if (field_qual_type->isVectorType() || field_qual_type->isExtVectorType()) { if (num_fields == 0) { base_qual_type = field_qual_type; base_bitwidth = field_bitwidth; } else { if (is_hfa) return 0; is_hva = true; if (base_bitwidth != field_bitwidth) return 0; if (field_qual_type.getTypePtr() != base_qual_type.getTypePtr()) return 0; } } else return 0; ++num_fields; } if (base_type_ptr) *base_type_ptr = CompilerType(getASTContext(), base_qual_type); return num_fields; } } } break; case clang::Type::Typedef: return IsHomogeneousAggregate(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), base_type_ptr); case clang::Type::Auto: return IsHomogeneousAggregate(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), base_type_ptr); case clang::Type::Elaborated: return IsHomogeneousAggregate(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), base_type_ptr); default: break; } return 0; } size_t ClangASTContext::GetNumberOfFunctionArguments( lldb::opaque_compiler_type_t type) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::FunctionProtoType *func = llvm::dyn_cast(qual_type.getTypePtr()); if (func) return func->getNumParams(); } return 0; } CompilerType ClangASTContext::GetFunctionArgumentAtIndex(lldb::opaque_compiler_type_t type, const size_t index) { if (type) { clang::QualType qual_type(GetQualType(type)); const clang::FunctionProtoType *func = llvm::dyn_cast(qual_type.getTypePtr()); if (func) { if (index < func->getNumParams()) return CompilerType(getASTContext(), func->getParamType(index)); } } return CompilerType(); } bool ClangASTContext::IsFunctionPointerType(lldb::opaque_compiler_type_t type) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); if (qual_type->isFunctionPointerType()) return true; const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { default: break; case clang::Type::Typedef: return IsFunctionPointerType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr()); case clang::Type::Auto: return IsFunctionPointerType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr()); case clang::Type::Elaborated: return IsFunctionPointerType(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr()); case clang::Type::Paren: return IsFunctionPointerType( llvm::cast(qual_type)->desugar().getAsOpaquePtr()); case clang::Type::LValueReference: case clang::Type::RValueReference: { const clang::ReferenceType *reference_type = llvm::cast(qual_type.getTypePtr()); if (reference_type) return IsFunctionPointerType( reference_type->getPointeeType().getAsOpaquePtr()); } break; } } return false; } bool ClangASTContext::IsBlockPointerType( lldb::opaque_compiler_type_t type, CompilerType *function_pointer_type_ptr) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); if (qual_type->isBlockPointerType()) { if (function_pointer_type_ptr) { const clang::BlockPointerType *block_pointer_type = qual_type->getAs(); QualType pointee_type = block_pointer_type->getPointeeType(); QualType function_pointer_type = m_ast_ap->getPointerType(pointee_type); *function_pointer_type_ptr = CompilerType(getASTContext(), function_pointer_type); } return true; } const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { default: break; case clang::Type::Typedef: return IsBlockPointerType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), function_pointer_type_ptr); case clang::Type::Auto: return IsBlockPointerType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), function_pointer_type_ptr); case clang::Type::Elaborated: return IsBlockPointerType(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), function_pointer_type_ptr); case clang::Type::Paren: return IsBlockPointerType( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), function_pointer_type_ptr); case clang::Type::LValueReference: case clang::Type::RValueReference: { const clang::ReferenceType *reference_type = llvm::cast(qual_type.getTypePtr()); if (reference_type) return IsBlockPointerType( reference_type->getPointeeType().getAsOpaquePtr(), function_pointer_type_ptr); } break; } } return false; } bool ClangASTContext::IsIntegerType(lldb::opaque_compiler_type_t type, bool &is_signed) { if (!type) return false; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::BuiltinType *builtin_type = llvm::dyn_cast(qual_type->getCanonicalTypeInternal()); if (builtin_type) { if (builtin_type->isInteger()) { is_signed = builtin_type->isSignedInteger(); return true; } } return false; } bool ClangASTContext::IsEnumerationType(lldb::opaque_compiler_type_t type, bool &is_signed) { if (type) { const clang::EnumType *enum_type = llvm::dyn_cast( GetCanonicalQualType(type)->getCanonicalTypeInternal()); if (enum_type) { IsIntegerType(enum_type->getDecl()->getIntegerType().getAsOpaquePtr(), is_signed); return true; } } return false; } bool ClangASTContext::IsPointerType(lldb::opaque_compiler_type_t type, CompilerType *pointee_type) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Builtin: switch (llvm::cast(qual_type)->getKind()) { default: break; case clang::BuiltinType::ObjCId: case clang::BuiltinType::ObjCClass: return true; } return false; case clang::Type::ObjCObjectPointer: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type) ->getPointeeType()); return true; case clang::Type::BlockPointer: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getPointeeType()); return true; case clang::Type::Pointer: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getPointeeType()); return true; case clang::Type::MemberPointer: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getPointeeType()); return true; case clang::Type::Typedef: return IsPointerType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), pointee_type); case clang::Type::Auto: return IsPointerType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), pointee_type); case clang::Type::Elaborated: return IsPointerType(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), pointee_type); case clang::Type::Paren: return IsPointerType( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), pointee_type); default: break; } } if (pointee_type) pointee_type->Clear(); return false; } bool ClangASTContext::IsPointerOrReferenceType( lldb::opaque_compiler_type_t type, CompilerType *pointee_type) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Builtin: switch (llvm::cast(qual_type)->getKind()) { default: break; case clang::BuiltinType::ObjCId: case clang::BuiltinType::ObjCClass: return true; } return false; case clang::Type::ObjCObjectPointer: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type) ->getPointeeType()); return true; case clang::Type::BlockPointer: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getPointeeType()); return true; case clang::Type::Pointer: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getPointeeType()); return true; case clang::Type::MemberPointer: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getPointeeType()); return true; case clang::Type::LValueReference: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->desugar()); return true; case clang::Type::RValueReference: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->desugar()); return true; case clang::Type::Typedef: return IsPointerOrReferenceType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), pointee_type); case clang::Type::Auto: return IsPointerOrReferenceType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), pointee_type); case clang::Type::Elaborated: return IsPointerOrReferenceType( llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), pointee_type); case clang::Type::Paren: return IsPointerOrReferenceType( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), pointee_type); default: break; } } if (pointee_type) pointee_type->Clear(); return false; } bool ClangASTContext::IsReferenceType(lldb::opaque_compiler_type_t type, CompilerType *pointee_type, bool *is_rvalue) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::LValueReference: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->desugar()); if (is_rvalue) *is_rvalue = false; return true; case clang::Type::RValueReference: if (pointee_type) pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->desugar()); if (is_rvalue) *is_rvalue = true; return true; case clang::Type::Typedef: return IsReferenceType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), pointee_type, is_rvalue); case clang::Type::Auto: return IsReferenceType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), pointee_type, is_rvalue); case clang::Type::Elaborated: return IsReferenceType(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), pointee_type, is_rvalue); case clang::Type::Paren: return IsReferenceType( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), pointee_type, is_rvalue); default: break; } } if (pointee_type) pointee_type->Clear(); return false; } bool ClangASTContext::IsFloatingPointType(lldb::opaque_compiler_type_t type, uint32_t &count, bool &is_complex) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); if (const clang::BuiltinType *BT = llvm::dyn_cast( qual_type->getCanonicalTypeInternal())) { clang::BuiltinType::Kind kind = BT->getKind(); if (kind >= clang::BuiltinType::Float && kind <= clang::BuiltinType::LongDouble) { count = 1; is_complex = false; return true; } } else if (const clang::ComplexType *CT = llvm::dyn_cast( qual_type->getCanonicalTypeInternal())) { if (IsFloatingPointType(CT->getElementType().getAsOpaquePtr(), count, is_complex)) { count = 2; is_complex = true; return true; } } else if (const clang::VectorType *VT = llvm::dyn_cast( qual_type->getCanonicalTypeInternal())) { if (IsFloatingPointType(VT->getElementType().getAsOpaquePtr(), count, is_complex)) { count = VT->getNumElements(); is_complex = false; return true; } } } count = 0; is_complex = false; return false; } bool ClangASTContext::IsDefined(lldb::opaque_compiler_type_t type) { if (!type) return false; clang::QualType qual_type(GetQualType(type)); const clang::TagType *tag_type = llvm::dyn_cast(qual_type.getTypePtr()); if (tag_type) { clang::TagDecl *tag_decl = tag_type->getDecl(); if (tag_decl) return tag_decl->isCompleteDefinition(); return false; } else { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) return class_interface_decl->getDefinition() != nullptr; return false; } } return true; } bool ClangASTContext::IsObjCClassType(const CompilerType &type) { if (type) { clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type)); const clang::ObjCObjectPointerType *obj_pointer_type = llvm::dyn_cast(qual_type); if (obj_pointer_type) return obj_pointer_type->isObjCClassType(); } return false; } bool ClangASTContext::IsObjCObjectOrInterfaceType(const CompilerType &type) { if (ClangUtil::IsClangType(type)) return ClangUtil::GetCanonicalQualType(type)->isObjCObjectOrInterfaceType(); return false; } bool ClangASTContext::IsClassType(lldb::opaque_compiler_type_t type) { if (!type) return false; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); return (type_class == clang::Type::Record); } bool ClangASTContext::IsEnumType(lldb::opaque_compiler_type_t type) { if (!type) return false; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); return (type_class == clang::Type::Enum); } bool ClangASTContext::IsPolymorphicClass(lldb::opaque_compiler_type_t type) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); if (record_decl) { const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); if (cxx_record_decl) return cxx_record_decl->isPolymorphic(); } } break; default: break; } } return false; } bool ClangASTContext::IsPossibleDynamicType(lldb::opaque_compiler_type_t type, CompilerType *dynamic_pointee_type, bool check_cplusplus, bool check_objc) { clang::QualType pointee_qual_type; if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); bool success = false; const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Builtin: if (check_objc && llvm::cast(qual_type)->getKind() == clang::BuiltinType::ObjCId) { if (dynamic_pointee_type) dynamic_pointee_type->SetCompilerType(this, type); return true; } break; case clang::Type::ObjCObjectPointer: if (check_objc) { if (auto objc_pointee_type = qual_type->getPointeeType().getTypePtrOrNull()) { if (auto objc_object_type = llvm::dyn_cast_or_null( objc_pointee_type)) { if (objc_object_type->isObjCClass()) return false; } } if (dynamic_pointee_type) dynamic_pointee_type->SetCompilerType( getASTContext(), llvm::cast(qual_type) ->getPointeeType()); return true; } break; case clang::Type::Pointer: pointee_qual_type = llvm::cast(qual_type)->getPointeeType(); success = true; break; case clang::Type::LValueReference: case clang::Type::RValueReference: pointee_qual_type = llvm::cast(qual_type)->getPointeeType(); success = true; break; case clang::Type::Typedef: return IsPossibleDynamicType(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), dynamic_pointee_type, check_cplusplus, check_objc); case clang::Type::Auto: return IsPossibleDynamicType(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), dynamic_pointee_type, check_cplusplus, check_objc); case clang::Type::Elaborated: return IsPossibleDynamicType(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), dynamic_pointee_type, check_cplusplus, check_objc); case clang::Type::Paren: return IsPossibleDynamicType( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), dynamic_pointee_type, check_cplusplus, check_objc); default: break; } if (success) { // Check to make sure what we are pointing too is a possible dynamic C++ // type // We currently accept any "void *" (in case we have a class that has been // watered down to an opaque pointer) and virtual C++ classes. const clang::Type::TypeClass pointee_type_class = pointee_qual_type.getCanonicalType()->getTypeClass(); switch (pointee_type_class) { case clang::Type::Builtin: switch (llvm::cast(pointee_qual_type)->getKind()) { case clang::BuiltinType::UnknownAny: case clang::BuiltinType::Void: if (dynamic_pointee_type) dynamic_pointee_type->SetCompilerType(getASTContext(), pointee_qual_type); return true; default: break; } break; case clang::Type::Record: if (check_cplusplus) { clang::CXXRecordDecl *cxx_record_decl = pointee_qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) { bool is_complete = cxx_record_decl->isCompleteDefinition(); if (is_complete) success = cxx_record_decl->isDynamicClass(); else { ClangASTMetadata *metadata = ClangASTContext::GetMetadata( getASTContext(), cxx_record_decl); if (metadata) success = metadata->GetIsDynamicCXXType(); else { is_complete = CompilerType(getASTContext(), pointee_qual_type) .GetCompleteType(); if (is_complete) success = cxx_record_decl->isDynamicClass(); else success = false; } } if (success) { if (dynamic_pointee_type) dynamic_pointee_type->SetCompilerType(getASTContext(), pointee_qual_type); return true; } } } break; case clang::Type::ObjCObject: case clang::Type::ObjCInterface: if (check_objc) { if (dynamic_pointee_type) dynamic_pointee_type->SetCompilerType(getASTContext(), pointee_qual_type); return true; } break; default: break; } } } if (dynamic_pointee_type) dynamic_pointee_type->Clear(); return false; } bool ClangASTContext::IsScalarType(lldb::opaque_compiler_type_t type) { if (!type) return false; return (GetTypeInfo(type, nullptr) & eTypeIsScalar) != 0; } bool ClangASTContext::IsTypedefType(lldb::opaque_compiler_type_t type) { if (!type) return false; return GetQualType(type)->getTypeClass() == clang::Type::Typedef; } bool ClangASTContext::IsVoidType(lldb::opaque_compiler_type_t type) { if (!type) return false; return GetCanonicalQualType(type)->isVoidType(); } bool ClangASTContext::SupportsLanguage(lldb::LanguageType language) { return ClangASTContextSupportsLanguage(language); } bool ClangASTContext::GetCXXClassName(const CompilerType &type, std::string &class_name) { if (type) { clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type)); if (!qual_type.isNull()) { clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) { class_name.assign(cxx_record_decl->getIdentifier()->getNameStart()); return true; } } } class_name.clear(); return false; } bool ClangASTContext::IsCXXClassType(const CompilerType &type) { if (!type) return false; clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type)); if (!qual_type.isNull() && qual_type->getAsCXXRecordDecl() != nullptr) return true; return false; } bool ClangASTContext::IsBeingDefined(lldb::opaque_compiler_type_t type) { if (!type) return false; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::TagType *tag_type = llvm::dyn_cast(qual_type); if (tag_type) return tag_type->isBeingDefined(); return false; } bool ClangASTContext::IsObjCObjectPointerType(const CompilerType &type, CompilerType *class_type_ptr) { if (!type) return false; clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type)); if (!qual_type.isNull() && qual_type->isObjCObjectPointerType()) { if (class_type_ptr) { if (!qual_type->isObjCClassType() && !qual_type->isObjCIdType()) { const clang::ObjCObjectPointerType *obj_pointer_type = llvm::dyn_cast(qual_type); if (obj_pointer_type == nullptr) class_type_ptr->Clear(); else class_type_ptr->SetCompilerType( type.GetTypeSystem(), clang::QualType(obj_pointer_type->getInterfaceType(), 0) .getAsOpaquePtr()); } } return true; } if (class_type_ptr) class_type_ptr->Clear(); return false; } bool ClangASTContext::GetObjCClassName(const CompilerType &type, std::string &class_name) { if (!type) return false; clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type)); const clang::ObjCObjectType *object_type = llvm::dyn_cast(qual_type); if (object_type) { const clang::ObjCInterfaceDecl *interface = object_type->getInterface(); if (interface) { class_name = interface->getNameAsString(); return true; } } return false; } //---------------------------------------------------------------------- // Type Completion //---------------------------------------------------------------------- bool ClangASTContext::GetCompleteType(lldb::opaque_compiler_type_t type) { if (!type) return false; const bool allow_completion = true; return GetCompleteQualType(getASTContext(), GetQualType(type), allow_completion); } ConstString ClangASTContext::GetTypeName(lldb::opaque_compiler_type_t type) { std::string type_name; if (type) { clang::PrintingPolicy printing_policy(getASTContext()->getPrintingPolicy()); clang::QualType qual_type(GetQualType(type)); printing_policy.SuppressTagKeyword = true; const clang::TypedefType *typedef_type = qual_type->getAs(); if (typedef_type) { const clang::TypedefNameDecl *typedef_decl = typedef_type->getDecl(); type_name = typedef_decl->getQualifiedNameAsString(); } else { type_name = qual_type.getAsString(printing_policy); } } return ConstString(type_name); } uint32_t ClangASTContext::GetTypeInfo(lldb::opaque_compiler_type_t type, CompilerType *pointee_or_element_clang_type) { if (!type) return 0; if (pointee_or_element_clang_type) pointee_or_element_clang_type->Clear(); clang::QualType qual_type(GetQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Builtin: { const clang::BuiltinType *builtin_type = llvm::dyn_cast( qual_type->getCanonicalTypeInternal()); uint32_t builtin_type_flags = eTypeIsBuiltIn | eTypeHasValue; switch (builtin_type->getKind()) { case clang::BuiltinType::ObjCId: case clang::BuiltinType::ObjCClass: if (pointee_or_element_clang_type) pointee_or_element_clang_type->SetCompilerType( getASTContext(), getASTContext()->ObjCBuiltinClassTy); builtin_type_flags |= eTypeIsPointer | eTypeIsObjC; break; case clang::BuiltinType::ObjCSel: if (pointee_or_element_clang_type) pointee_or_element_clang_type->SetCompilerType(getASTContext(), getASTContext()->CharTy); builtin_type_flags |= eTypeIsPointer | eTypeIsObjC; break; case clang::BuiltinType::Bool: case clang::BuiltinType::Char_U: case clang::BuiltinType::UChar: case clang::BuiltinType::WChar_U: case clang::BuiltinType::Char16: case clang::BuiltinType::Char32: case clang::BuiltinType::UShort: case clang::BuiltinType::UInt: case clang::BuiltinType::ULong: case clang::BuiltinType::ULongLong: case clang::BuiltinType::UInt128: case clang::BuiltinType::Char_S: case clang::BuiltinType::SChar: case clang::BuiltinType::WChar_S: case clang::BuiltinType::Short: case clang::BuiltinType::Int: case clang::BuiltinType::Long: case clang::BuiltinType::LongLong: case clang::BuiltinType::Int128: case clang::BuiltinType::Float: case clang::BuiltinType::Double: case clang::BuiltinType::LongDouble: builtin_type_flags |= eTypeIsScalar; if (builtin_type->isInteger()) { builtin_type_flags |= eTypeIsInteger; if (builtin_type->isSignedInteger()) builtin_type_flags |= eTypeIsSigned; } else if (builtin_type->isFloatingPoint()) builtin_type_flags |= eTypeIsFloat; break; default: break; } return builtin_type_flags; } case clang::Type::BlockPointer: if (pointee_or_element_clang_type) pointee_or_element_clang_type->SetCompilerType( getASTContext(), qual_type->getPointeeType()); return eTypeIsPointer | eTypeHasChildren | eTypeIsBlock; case clang::Type::Complex: { uint32_t complex_type_flags = eTypeIsBuiltIn | eTypeHasValue | eTypeIsComplex; const clang::ComplexType *complex_type = llvm::dyn_cast( qual_type->getCanonicalTypeInternal()); if (complex_type) { clang::QualType complex_element_type(complex_type->getElementType()); if (complex_element_type->isIntegerType()) complex_type_flags |= eTypeIsFloat; else if (complex_element_type->isFloatingType()) complex_type_flags |= eTypeIsInteger; } return complex_type_flags; } break; case clang::Type::ConstantArray: case clang::Type::DependentSizedArray: case clang::Type::IncompleteArray: case clang::Type::VariableArray: if (pointee_or_element_clang_type) pointee_or_element_clang_type->SetCompilerType( getASTContext(), llvm::cast(qual_type.getTypePtr()) ->getElementType()); return eTypeHasChildren | eTypeIsArray; case clang::Type::DependentName: return 0; case clang::Type::DependentSizedExtVector: return eTypeHasChildren | eTypeIsVector; case clang::Type::DependentTemplateSpecialization: return eTypeIsTemplate; case clang::Type::Decltype: return 0; case clang::Type::Enum: if (pointee_or_element_clang_type) pointee_or_element_clang_type->SetCompilerType( getASTContext(), llvm::cast(qual_type)->getDecl()->getIntegerType()); return eTypeIsEnumeration | eTypeHasValue; case clang::Type::Auto: return CompilerType( getASTContext(), llvm::cast(qual_type)->getDeducedType()) .GetTypeInfo(pointee_or_element_clang_type); case clang::Type::Elaborated: return CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetTypeInfo(pointee_or_element_clang_type); case clang::Type::Paren: return CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetTypeInfo(pointee_or_element_clang_type); case clang::Type::FunctionProto: return eTypeIsFuncPrototype | eTypeHasValue; case clang::Type::FunctionNoProto: return eTypeIsFuncPrototype | eTypeHasValue; case clang::Type::InjectedClassName: return 0; case clang::Type::LValueReference: case clang::Type::RValueReference: if (pointee_or_element_clang_type) pointee_or_element_clang_type->SetCompilerType( getASTContext(), llvm::cast(qual_type.getTypePtr()) ->getPointeeType()); return eTypeHasChildren | eTypeIsReference | eTypeHasValue; case clang::Type::MemberPointer: return eTypeIsPointer | eTypeIsMember | eTypeHasValue; case clang::Type::ObjCObjectPointer: if (pointee_or_element_clang_type) pointee_or_element_clang_type->SetCompilerType( getASTContext(), qual_type->getPointeeType()); return eTypeHasChildren | eTypeIsObjC | eTypeIsClass | eTypeIsPointer | eTypeHasValue; case clang::Type::ObjCObject: return eTypeHasChildren | eTypeIsObjC | eTypeIsClass; case clang::Type::ObjCInterface: return eTypeHasChildren | eTypeIsObjC | eTypeIsClass; case clang::Type::Pointer: if (pointee_or_element_clang_type) pointee_or_element_clang_type->SetCompilerType( getASTContext(), qual_type->getPointeeType()); return eTypeHasChildren | eTypeIsPointer | eTypeHasValue; case clang::Type::Record: if (qual_type->getAsCXXRecordDecl()) return eTypeHasChildren | eTypeIsClass | eTypeIsCPlusPlus; else return eTypeHasChildren | eTypeIsStructUnion; break; case clang::Type::SubstTemplateTypeParm: return eTypeIsTemplate; case clang::Type::TemplateTypeParm: return eTypeIsTemplate; case clang::Type::TemplateSpecialization: return eTypeIsTemplate; case clang::Type::Typedef: return eTypeIsTypedef | CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetTypeInfo(pointee_or_element_clang_type); case clang::Type::TypeOfExpr: return 0; case clang::Type::TypeOf: return 0; case clang::Type::UnresolvedUsing: return 0; case clang::Type::ExtVector: case clang::Type::Vector: { uint32_t vector_type_flags = eTypeHasChildren | eTypeIsVector; const clang::VectorType *vector_type = llvm::dyn_cast( qual_type->getCanonicalTypeInternal()); if (vector_type) { if (vector_type->isIntegerType()) vector_type_flags |= eTypeIsFloat; else if (vector_type->isFloatingType()) vector_type_flags |= eTypeIsInteger; } return vector_type_flags; } default: return 0; } return 0; } lldb::LanguageType ClangASTContext::GetMinimumLanguage(lldb::opaque_compiler_type_t type) { if (!type) return lldb::eLanguageTypeC; // If the type is a reference, then resolve it to what it refers to first: clang::QualType qual_type(GetCanonicalQualType(type).getNonReferenceType()); if (qual_type->isAnyPointerType()) { if (qual_type->isObjCObjectPointerType()) return lldb::eLanguageTypeObjC; clang::QualType pointee_type(qual_type->getPointeeType()); if (pointee_type->getPointeeCXXRecordDecl() != nullptr) return lldb::eLanguageTypeC_plus_plus; if (pointee_type->isObjCObjectOrInterfaceType()) return lldb::eLanguageTypeObjC; if (pointee_type->isObjCClassType()) return lldb::eLanguageTypeObjC; if (pointee_type.getTypePtr() == getASTContext()->ObjCBuiltinIdTy.getTypePtr()) return lldb::eLanguageTypeObjC; } else { if (qual_type->isObjCObjectOrInterfaceType()) return lldb::eLanguageTypeObjC; if (qual_type->getAsCXXRecordDecl()) return lldb::eLanguageTypeC_plus_plus; switch (qual_type->getTypeClass()) { default: break; case clang::Type::Builtin: switch (llvm::cast(qual_type)->getKind()) { default: case clang::BuiltinType::Void: case clang::BuiltinType::Bool: case clang::BuiltinType::Char_U: case clang::BuiltinType::UChar: case clang::BuiltinType::WChar_U: case clang::BuiltinType::Char16: case clang::BuiltinType::Char32: case clang::BuiltinType::UShort: case clang::BuiltinType::UInt: case clang::BuiltinType::ULong: case clang::BuiltinType::ULongLong: case clang::BuiltinType::UInt128: case clang::BuiltinType::Char_S: case clang::BuiltinType::SChar: case clang::BuiltinType::WChar_S: case clang::BuiltinType::Short: case clang::BuiltinType::Int: case clang::BuiltinType::Long: case clang::BuiltinType::LongLong: case clang::BuiltinType::Int128: case clang::BuiltinType::Float: case clang::BuiltinType::Double: case clang::BuiltinType::LongDouble: break; case clang::BuiltinType::NullPtr: return eLanguageTypeC_plus_plus; case clang::BuiltinType::ObjCId: case clang::BuiltinType::ObjCClass: case clang::BuiltinType::ObjCSel: return eLanguageTypeObjC; case clang::BuiltinType::Dependent: case clang::BuiltinType::Overload: case clang::BuiltinType::BoundMember: case clang::BuiltinType::UnknownAny: break; } break; case clang::Type::Typedef: return CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetMinimumLanguage(); } } return lldb::eLanguageTypeC; } lldb::TypeClass ClangASTContext::GetTypeClass(lldb::opaque_compiler_type_t type) { if (!type) return lldb::eTypeClassInvalid; clang::QualType qual_type(GetQualType(type)); switch (qual_type->getTypeClass()) { case clang::Type::UnaryTransform: break; case clang::Type::FunctionNoProto: return lldb::eTypeClassFunction; case clang::Type::FunctionProto: return lldb::eTypeClassFunction; case clang::Type::IncompleteArray: return lldb::eTypeClassArray; case clang::Type::VariableArray: return lldb::eTypeClassArray; case clang::Type::ConstantArray: return lldb::eTypeClassArray; case clang::Type::DependentSizedArray: return lldb::eTypeClassArray; case clang::Type::DependentSizedExtVector: return lldb::eTypeClassVector; case clang::Type::ExtVector: return lldb::eTypeClassVector; case clang::Type::Vector: return lldb::eTypeClassVector; case clang::Type::Builtin: return lldb::eTypeClassBuiltin; case clang::Type::ObjCObjectPointer: return lldb::eTypeClassObjCObjectPointer; case clang::Type::BlockPointer: return lldb::eTypeClassBlockPointer; case clang::Type::Pointer: return lldb::eTypeClassPointer; case clang::Type::LValueReference: return lldb::eTypeClassReference; case clang::Type::RValueReference: return lldb::eTypeClassReference; case clang::Type::MemberPointer: return lldb::eTypeClassMemberPointer; case clang::Type::Complex: if (qual_type->isComplexType()) return lldb::eTypeClassComplexFloat; else return lldb::eTypeClassComplexInteger; case clang::Type::ObjCObject: return lldb::eTypeClassObjCObject; case clang::Type::ObjCInterface: return lldb::eTypeClassObjCInterface; case clang::Type::Record: { const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); if (record_decl->isUnion()) return lldb::eTypeClassUnion; else if (record_decl->isStruct()) return lldb::eTypeClassStruct; else return lldb::eTypeClassClass; } break; case clang::Type::Enum: return lldb::eTypeClassEnumeration; case clang::Type::Typedef: return lldb::eTypeClassTypedef; case clang::Type::UnresolvedUsing: break; case clang::Type::Paren: return CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetTypeClass(); case clang::Type::Auto: return CompilerType( getASTContext(), llvm::cast(qual_type)->getDeducedType()) .GetTypeClass(); case clang::Type::Elaborated: return CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetTypeClass(); case clang::Type::Attributed: break; case clang::Type::TemplateTypeParm: break; case clang::Type::SubstTemplateTypeParm: break; case clang::Type::SubstTemplateTypeParmPack: break; case clang::Type::InjectedClassName: break; case clang::Type::DependentName: break; case clang::Type::DependentTemplateSpecialization: break; case clang::Type::PackExpansion: break; case clang::Type::TypeOfExpr: break; case clang::Type::TypeOf: break; case clang::Type::Decltype: break; case clang::Type::TemplateSpecialization: break; case clang::Type::Atomic: break; case clang::Type::Pipe: break; // pointer type decayed from an array or function type. case clang::Type::Decayed: break; case clang::Type::Adjusted: break; case clang::Type::ObjCTypeParam: break; } // We don't know hot to display this type... return lldb::eTypeClassOther; } unsigned ClangASTContext::GetTypeQualifiers(lldb::opaque_compiler_type_t type) { if (type) return GetQualType(type).getQualifiers().getCVRQualifiers(); return 0; } //---------------------------------------------------------------------- // Creating related types //---------------------------------------------------------------------- CompilerType ClangASTContext::GetArrayElementType(lldb::opaque_compiler_type_t type, uint64_t *stride) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type *array_eletype = qual_type.getTypePtr()->getArrayElementTypeNoTypeQual(); if (!array_eletype) return CompilerType(); CompilerType element_type(getASTContext(), array_eletype->getCanonicalTypeUnqualified()); // TODO: the real stride will be >= this value.. find the real one! if (stride) *stride = element_type.GetByteSize(nullptr); return element_type; } return CompilerType(); } CompilerType ClangASTContext::GetArrayType(lldb::opaque_compiler_type_t type, uint64_t size) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); if (clang::ASTContext *ast_ctx = getASTContext()) { if (size != 0) return CompilerType( ast_ctx, ast_ctx->getConstantArrayType( qual_type, llvm::APInt(64, size), clang::ArrayType::ArraySizeModifier::Normal, 0)); else return CompilerType( ast_ctx, ast_ctx->getIncompleteArrayType( qual_type, clang::ArrayType::ArraySizeModifier::Normal, 0)); } } return CompilerType(); } CompilerType ClangASTContext::GetCanonicalType(lldb::opaque_compiler_type_t type) { if (type) return CompilerType(getASTContext(), GetCanonicalQualType(type)); return CompilerType(); } static clang::QualType GetFullyUnqualifiedType_Impl(clang::ASTContext *ast, clang::QualType qual_type) { if (qual_type->isPointerType()) qual_type = ast->getPointerType( GetFullyUnqualifiedType_Impl(ast, qual_type->getPointeeType())); else qual_type = qual_type.getUnqualifiedType(); qual_type.removeLocalConst(); qual_type.removeLocalRestrict(); qual_type.removeLocalVolatile(); return qual_type; } CompilerType ClangASTContext::GetFullyUnqualifiedType(lldb::opaque_compiler_type_t type) { if (type) return CompilerType( getASTContext(), GetFullyUnqualifiedType_Impl(getASTContext(), GetQualType(type))); return CompilerType(); } int ClangASTContext::GetFunctionArgumentCount( lldb::opaque_compiler_type_t type) { if (type) { const clang::FunctionProtoType *func = llvm::dyn_cast(GetCanonicalQualType(type)); if (func) return func->getNumParams(); } return -1; } CompilerType ClangASTContext::GetFunctionArgumentTypeAtIndex( lldb::opaque_compiler_type_t type, size_t idx) { if (type) { const clang::FunctionProtoType *func = llvm::dyn_cast(GetQualType(type)); if (func) { const uint32_t num_args = func->getNumParams(); if (idx < num_args) return CompilerType(getASTContext(), func->getParamType(idx)); } } return CompilerType(); } CompilerType ClangASTContext::GetFunctionReturnType(lldb::opaque_compiler_type_t type) { if (type) { clang::QualType qual_type(GetQualType(type)); const clang::FunctionProtoType *func = llvm::dyn_cast(qual_type.getTypePtr()); if (func) return CompilerType(getASTContext(), func->getReturnType()); } return CompilerType(); } size_t ClangASTContext::GetNumMemberFunctions(lldb::opaque_compiler_type_t type) { size_t num_functions = 0; if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); switch (qual_type->getTypeClass()) { case clang::Type::Record: if (GetCompleteQualType(getASTContext(), qual_type)) { const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); assert(record_decl); const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); if (cxx_record_decl) num_functions = std::distance(cxx_record_decl->method_begin(), cxx_record_decl->method_end()); } break; case clang::Type::ObjCObjectPointer: { const clang::ObjCObjectPointerType *objc_class_type = qual_type->getAsObjCInterfacePointerType(); const clang::ObjCInterfaceType *objc_interface_type = objc_class_type->getInterfaceType(); if (objc_interface_type && GetCompleteType((lldb::opaque_compiler_type_t)objc_interface_type)) { clang::ObjCInterfaceDecl *class_interface_decl = objc_interface_type->getDecl(); if (class_interface_decl) { num_functions = std::distance(class_interface_decl->meth_begin(), class_interface_decl->meth_end()); } } break; } case clang::Type::ObjCObject: case clang::Type::ObjCInterface: if (GetCompleteType(type)) { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) num_functions = std::distance(class_interface_decl->meth_begin(), class_interface_decl->meth_end()); } } break; case clang::Type::Typedef: return CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetNumMemberFunctions(); case clang::Type::Auto: return CompilerType( getASTContext(), llvm::cast(qual_type)->getDeducedType()) .GetNumMemberFunctions(); case clang::Type::Elaborated: return CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetNumMemberFunctions(); case clang::Type::Paren: return CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetNumMemberFunctions(); default: break; } } return num_functions; } TypeMemberFunctionImpl ClangASTContext::GetMemberFunctionAtIndex(lldb::opaque_compiler_type_t type, size_t idx) { std::string name; MemberFunctionKind kind(MemberFunctionKind::eMemberFunctionKindUnknown); CompilerType clang_type; CompilerDecl clang_decl; if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); switch (qual_type->getTypeClass()) { case clang::Type::Record: if (GetCompleteQualType(getASTContext(), qual_type)) { const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); assert(record_decl); const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); if (cxx_record_decl) { auto method_iter = cxx_record_decl->method_begin(); auto method_end = cxx_record_decl->method_end(); if (idx < static_cast(std::distance(method_iter, method_end))) { std::advance(method_iter, idx); clang::CXXMethodDecl *cxx_method_decl = method_iter->getCanonicalDecl(); if (cxx_method_decl) { name = cxx_method_decl->getDeclName().getAsString(); if (cxx_method_decl->isStatic()) kind = lldb::eMemberFunctionKindStaticMethod; else if (llvm::isa(cxx_method_decl)) kind = lldb::eMemberFunctionKindConstructor; else if (llvm::isa(cxx_method_decl)) kind = lldb::eMemberFunctionKindDestructor; else kind = lldb::eMemberFunctionKindInstanceMethod; clang_type = CompilerType( this, cxx_method_decl->getType().getAsOpaquePtr()); clang_decl = CompilerDecl(this, cxx_method_decl); } } } } break; case clang::Type::ObjCObjectPointer: { const clang::ObjCObjectPointerType *objc_class_type = qual_type->getAsObjCInterfacePointerType(); const clang::ObjCInterfaceType *objc_interface_type = objc_class_type->getInterfaceType(); if (objc_interface_type && GetCompleteType((lldb::opaque_compiler_type_t)objc_interface_type)) { clang::ObjCInterfaceDecl *class_interface_decl = objc_interface_type->getDecl(); if (class_interface_decl) { auto method_iter = class_interface_decl->meth_begin(); auto method_end = class_interface_decl->meth_end(); if (idx < static_cast(std::distance(method_iter, method_end))) { std::advance(method_iter, idx); clang::ObjCMethodDecl *objc_method_decl = method_iter->getCanonicalDecl(); if (objc_method_decl) { clang_decl = CompilerDecl(this, objc_method_decl); name = objc_method_decl->getSelector().getAsString(); if (objc_method_decl->isClassMethod()) kind = lldb::eMemberFunctionKindStaticMethod; else kind = lldb::eMemberFunctionKindInstanceMethod; } } } } break; } case clang::Type::ObjCObject: case clang::Type::ObjCInterface: if (GetCompleteType(type)) { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) { auto method_iter = class_interface_decl->meth_begin(); auto method_end = class_interface_decl->meth_end(); if (idx < static_cast(std::distance(method_iter, method_end))) { std::advance(method_iter, idx); clang::ObjCMethodDecl *objc_method_decl = method_iter->getCanonicalDecl(); if (objc_method_decl) { clang_decl = CompilerDecl(this, objc_method_decl); name = objc_method_decl->getSelector().getAsString(); if (objc_method_decl->isClassMethod()) kind = lldb::eMemberFunctionKindStaticMethod; else kind = lldb::eMemberFunctionKindInstanceMethod; } } } } } break; case clang::Type::Typedef: return GetMemberFunctionAtIndex(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), idx); case clang::Type::Auto: return GetMemberFunctionAtIndex(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), idx); case clang::Type::Elaborated: return GetMemberFunctionAtIndex( llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), idx); case clang::Type::Paren: return GetMemberFunctionAtIndex( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), idx); default: break; } } if (kind == eMemberFunctionKindUnknown) return TypeMemberFunctionImpl(); else return TypeMemberFunctionImpl(clang_type, clang_decl, name, kind); } CompilerType ClangASTContext::GetNonReferenceType(lldb::opaque_compiler_type_t type) { if (type) return CompilerType(getASTContext(), GetQualType(type).getNonReferenceType()); return CompilerType(); } CompilerType ClangASTContext::CreateTypedefType( const CompilerType &type, const char *typedef_name, const CompilerDeclContext &compiler_decl_ctx) { if (type && typedef_name && typedef_name[0]) { ClangASTContext *ast = llvm::dyn_cast(type.GetTypeSystem()); if (!ast) return CompilerType(); clang::ASTContext *clang_ast = ast->getASTContext(); clang::QualType qual_type(ClangUtil::GetQualType(type)); clang::DeclContext *decl_ctx = ClangASTContext::DeclContextGetAsDeclContext(compiler_decl_ctx); if (decl_ctx == nullptr) decl_ctx = ast->getASTContext()->getTranslationUnitDecl(); clang::TypedefDecl *decl = clang::TypedefDecl::Create( *clang_ast, decl_ctx, clang::SourceLocation(), clang::SourceLocation(), &clang_ast->Idents.get(typedef_name), clang_ast->getTrivialTypeSourceInfo(qual_type)); decl->setAccess(clang::AS_public); // TODO respect proper access specifier // Get a uniqued clang::QualType for the typedef decl type return CompilerType(clang_ast, clang_ast->getTypedefType(decl)); } return CompilerType(); } CompilerType ClangASTContext::GetPointeeType(lldb::opaque_compiler_type_t type) { if (type) { clang::QualType qual_type(GetQualType(type)); return CompilerType(getASTContext(), qual_type.getTypePtr()->getPointeeType()); } return CompilerType(); } CompilerType ClangASTContext::GetPointerType(lldb::opaque_compiler_type_t type) { if (type) { clang::QualType qual_type(GetQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::ObjCObject: case clang::Type::ObjCInterface: return CompilerType(getASTContext(), getASTContext()->getObjCObjectPointerType(qual_type)); default: return CompilerType(getASTContext(), getASTContext()->getPointerType(qual_type)); } } return CompilerType(); } CompilerType ClangASTContext::GetLValueReferenceType(lldb::opaque_compiler_type_t type) { if (type) return CompilerType(this, getASTContext() ->getLValueReferenceType(GetQualType(type)) .getAsOpaquePtr()); else return CompilerType(); } CompilerType ClangASTContext::GetRValueReferenceType(lldb::opaque_compiler_type_t type) { if (type) return CompilerType(this, getASTContext() ->getRValueReferenceType(GetQualType(type)) .getAsOpaquePtr()); else return CompilerType(); } CompilerType ClangASTContext::AddConstModifier(lldb::opaque_compiler_type_t type) { if (type) { clang::QualType result(GetQualType(type)); result.addConst(); return CompilerType(this, result.getAsOpaquePtr()); } return CompilerType(); } CompilerType ClangASTContext::AddVolatileModifier(lldb::opaque_compiler_type_t type) { if (type) { clang::QualType result(GetQualType(type)); result.addVolatile(); return CompilerType(this, result.getAsOpaquePtr()); } return CompilerType(); } CompilerType ClangASTContext::AddRestrictModifier(lldb::opaque_compiler_type_t type) { if (type) { clang::QualType result(GetQualType(type)); result.addRestrict(); return CompilerType(this, result.getAsOpaquePtr()); } return CompilerType(); } CompilerType ClangASTContext::CreateTypedef(lldb::opaque_compiler_type_t type, const char *typedef_name, const CompilerDeclContext &compiler_decl_ctx) { if (type) { clang::ASTContext *clang_ast = getASTContext(); clang::QualType qual_type(GetQualType(type)); clang::DeclContext *decl_ctx = ClangASTContext::DeclContextGetAsDeclContext(compiler_decl_ctx); if (decl_ctx == nullptr) decl_ctx = getASTContext()->getTranslationUnitDecl(); clang::TypedefDecl *decl = clang::TypedefDecl::Create( *clang_ast, decl_ctx, clang::SourceLocation(), clang::SourceLocation(), &clang_ast->Idents.get(typedef_name), clang_ast->getTrivialTypeSourceInfo(qual_type)); clang::TagDecl *tdecl = nullptr; if (!qual_type.isNull()) { if (const clang::RecordType *rt = qual_type->getAs()) tdecl = rt->getDecl(); if (const clang::EnumType *et = qual_type->getAs()) tdecl = et->getDecl(); } // Check whether this declaration is an anonymous struct, union, or enum, // hidden behind a typedef. If so, we // try to check whether we have a typedef tag to attach to the original // record declaration if (tdecl && !tdecl->getIdentifier() && !tdecl->getTypedefNameForAnonDecl()) tdecl->setTypedefNameForAnonDecl(decl); decl->setAccess(clang::AS_public); // TODO respect proper access specifier // Get a uniqued clang::QualType for the typedef decl type return CompilerType(this, clang_ast->getTypedefType(decl).getAsOpaquePtr()); } return CompilerType(); } CompilerType ClangASTContext::GetTypedefedType(lldb::opaque_compiler_type_t type) { if (type) { const clang::TypedefType *typedef_type = llvm::dyn_cast(GetQualType(type)); if (typedef_type) return CompilerType(getASTContext(), typedef_type->getDecl()->getUnderlyingType()); } return CompilerType(); } //---------------------------------------------------------------------- // Create related types using the current type's AST //---------------------------------------------------------------------- CompilerType ClangASTContext::GetBasicTypeFromAST(lldb::BasicType basic_type) { return ClangASTContext::GetBasicType(getASTContext(), basic_type); } //---------------------------------------------------------------------- // Exploring the type //---------------------------------------------------------------------- uint64_t ClangASTContext::GetBitSize(lldb::opaque_compiler_type_t type, ExecutionContextScope *exe_scope) { if (GetCompleteType(type)) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) return getASTContext()->getTypeSize(qual_type); else return 0; break; case clang::Type::ObjCInterface: case clang::Type::ObjCObject: { ExecutionContext exe_ctx(exe_scope); Process *process = exe_ctx.GetProcessPtr(); if (process) { ObjCLanguageRuntime *objc_runtime = process->GetObjCLanguageRuntime(); if (objc_runtime) { uint64_t bit_size = 0; if (objc_runtime->GetTypeBitSize( CompilerType(getASTContext(), qual_type), bit_size)) return bit_size; } } else { static bool g_printed = false; if (!g_printed) { StreamString s; DumpTypeDescription(type, &s); llvm::outs() << "warning: trying to determine the size of type "; llvm::outs() << s.GetString() << "\n"; llvm::outs() << "without a valid ExecutionContext. this is not " "reliable. please file a bug against LLDB.\n"; llvm::outs() << "backtrace:\n"; llvm::sys::PrintStackTrace(llvm::outs()); llvm::outs() << "\n"; g_printed = true; } } } LLVM_FALLTHROUGH; default: const uint32_t bit_size = getASTContext()->getTypeSize(qual_type); if (bit_size == 0) { if (qual_type->isIncompleteArrayType()) return getASTContext()->getTypeSize( qual_type->getArrayElementTypeNoTypeQual() ->getCanonicalTypeUnqualified()); } if (qual_type->isObjCObjectOrInterfaceType()) return bit_size + getASTContext()->getTypeSize( getASTContext()->ObjCBuiltinClassTy); return bit_size; } } return 0; } size_t ClangASTContext::GetTypeBitAlign(lldb::opaque_compiler_type_t type) { if (GetCompleteType(type)) return getASTContext()->getTypeAlign(GetQualType(type)); return 0; } lldb::Encoding ClangASTContext::GetEncoding(lldb::opaque_compiler_type_t type, uint64_t &count) { if (!type) return lldb::eEncodingInvalid; count = 1; clang::QualType qual_type(GetCanonicalQualType(type)); switch (qual_type->getTypeClass()) { case clang::Type::UnaryTransform: break; case clang::Type::FunctionNoProto: case clang::Type::FunctionProto: break; case clang::Type::IncompleteArray: case clang::Type::VariableArray: break; case clang::Type::ConstantArray: break; case clang::Type::ExtVector: case clang::Type::Vector: // TODO: Set this to more than one??? break; case clang::Type::Builtin: switch (llvm::cast(qual_type)->getKind()) { case clang::BuiltinType::Void: break; case clang::BuiltinType::Bool: case clang::BuiltinType::Char_S: case clang::BuiltinType::SChar: case clang::BuiltinType::WChar_S: case clang::BuiltinType::Char16: case clang::BuiltinType::Char32: case clang::BuiltinType::Short: case clang::BuiltinType::Int: case clang::BuiltinType::Long: case clang::BuiltinType::LongLong: case clang::BuiltinType::Int128: return lldb::eEncodingSint; case clang::BuiltinType::Char_U: case clang::BuiltinType::UChar: case clang::BuiltinType::WChar_U: case clang::BuiltinType::UShort: case clang::BuiltinType::UInt: case clang::BuiltinType::ULong: case clang::BuiltinType::ULongLong: case clang::BuiltinType::UInt128: return lldb::eEncodingUint; case clang::BuiltinType::Half: case clang::BuiltinType::Float: case clang::BuiltinType::Float128: case clang::BuiltinType::Double: case clang::BuiltinType::LongDouble: return lldb::eEncodingIEEE754; case clang::BuiltinType::ObjCClass: case clang::BuiltinType::ObjCId: case clang::BuiltinType::ObjCSel: return lldb::eEncodingUint; case clang::BuiltinType::NullPtr: return lldb::eEncodingUint; case clang::BuiltinType::Kind::ARCUnbridgedCast: case clang::BuiltinType::Kind::BoundMember: case clang::BuiltinType::Kind::BuiltinFn: case clang::BuiltinType::Kind::Dependent: case clang::BuiltinType::Kind::OCLClkEvent: case clang::BuiltinType::Kind::OCLEvent: case clang::BuiltinType::Kind::OCLImage1dRO: case clang::BuiltinType::Kind::OCLImage1dWO: case clang::BuiltinType::Kind::OCLImage1dRW: case clang::BuiltinType::Kind::OCLImage1dArrayRO: case clang::BuiltinType::Kind::OCLImage1dArrayWO: case clang::BuiltinType::Kind::OCLImage1dArrayRW: case clang::BuiltinType::Kind::OCLImage1dBufferRO: case clang::BuiltinType::Kind::OCLImage1dBufferWO: case clang::BuiltinType::Kind::OCLImage1dBufferRW: case clang::BuiltinType::Kind::OCLImage2dRO: case clang::BuiltinType::Kind::OCLImage2dWO: case clang::BuiltinType::Kind::OCLImage2dRW: case clang::BuiltinType::Kind::OCLImage2dArrayRO: case clang::BuiltinType::Kind::OCLImage2dArrayWO: case clang::BuiltinType::Kind::OCLImage2dArrayRW: case clang::BuiltinType::Kind::OCLImage2dArrayDepthRO: case clang::BuiltinType::Kind::OCLImage2dArrayDepthWO: case clang::BuiltinType::Kind::OCLImage2dArrayDepthRW: case clang::BuiltinType::Kind::OCLImage2dArrayMSAARO: case clang::BuiltinType::Kind::OCLImage2dArrayMSAAWO: case clang::BuiltinType::Kind::OCLImage2dArrayMSAARW: case clang::BuiltinType::Kind::OCLImage2dArrayMSAADepthRO: case clang::BuiltinType::Kind::OCLImage2dArrayMSAADepthWO: case clang::BuiltinType::Kind::OCLImage2dArrayMSAADepthRW: case clang::BuiltinType::Kind::OCLImage2dDepthRO: case clang::BuiltinType::Kind::OCLImage2dDepthWO: case clang::BuiltinType::Kind::OCLImage2dDepthRW: case clang::BuiltinType::Kind::OCLImage2dMSAARO: case clang::BuiltinType::Kind::OCLImage2dMSAAWO: case clang::BuiltinType::Kind::OCLImage2dMSAARW: case clang::BuiltinType::Kind::OCLImage2dMSAADepthRO: case clang::BuiltinType::Kind::OCLImage2dMSAADepthWO: case clang::BuiltinType::Kind::OCLImage2dMSAADepthRW: case clang::BuiltinType::Kind::OCLImage3dRO: case clang::BuiltinType::Kind::OCLImage3dWO: case clang::BuiltinType::Kind::OCLImage3dRW: case clang::BuiltinType::Kind::OCLQueue: case clang::BuiltinType::Kind::OCLNDRange: case clang::BuiltinType::Kind::OCLReserveID: case clang::BuiltinType::Kind::OCLSampler: case clang::BuiltinType::Kind::OMPArraySection: case clang::BuiltinType::Kind::Overload: case clang::BuiltinType::Kind::PseudoObject: case clang::BuiltinType::Kind::UnknownAny: break; } break; // All pointer types are represented as unsigned integer encodings. // We may nee to add a eEncodingPointer if we ever need to know the // difference case clang::Type::ObjCObjectPointer: case clang::Type::BlockPointer: case clang::Type::Pointer: case clang::Type::LValueReference: case clang::Type::RValueReference: case clang::Type::MemberPointer: return lldb::eEncodingUint; case clang::Type::Complex: { lldb::Encoding encoding = lldb::eEncodingIEEE754; if (qual_type->isComplexType()) encoding = lldb::eEncodingIEEE754; else { const clang::ComplexType *complex_type = qual_type->getAsComplexIntegerType(); if (complex_type) encoding = CompilerType(getASTContext(), complex_type->getElementType()) .GetEncoding(count); else encoding = lldb::eEncodingSint; } count = 2; return encoding; } case clang::Type::ObjCInterface: break; case clang::Type::Record: break; case clang::Type::Enum: return lldb::eEncodingSint; case clang::Type::Typedef: return CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetEncoding(count); case clang::Type::Auto: return CompilerType( getASTContext(), llvm::cast(qual_type)->getDeducedType()) .GetEncoding(count); case clang::Type::Elaborated: return CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetEncoding(count); case clang::Type::Paren: return CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetEncoding(count); case clang::Type::DependentSizedArray: case clang::Type::DependentSizedExtVector: case clang::Type::UnresolvedUsing: case clang::Type::Attributed: case clang::Type::TemplateTypeParm: case clang::Type::SubstTemplateTypeParm: case clang::Type::SubstTemplateTypeParmPack: case clang::Type::InjectedClassName: case clang::Type::DependentName: case clang::Type::DependentTemplateSpecialization: case clang::Type::PackExpansion: case clang::Type::ObjCObject: case clang::Type::TypeOfExpr: case clang::Type::TypeOf: case clang::Type::Decltype: case clang::Type::TemplateSpecialization: case clang::Type::Atomic: case clang::Type::Adjusted: case clang::Type::Pipe: break; // pointer type decayed from an array or function type. case clang::Type::Decayed: break; case clang::Type::ObjCTypeParam: break; } count = 0; return lldb::eEncodingInvalid; } lldb::Format ClangASTContext::GetFormat(lldb::opaque_compiler_type_t type) { if (!type) return lldb::eFormatDefault; clang::QualType qual_type(GetCanonicalQualType(type)); switch (qual_type->getTypeClass()) { case clang::Type::UnaryTransform: break; case clang::Type::FunctionNoProto: case clang::Type::FunctionProto: break; case clang::Type::IncompleteArray: case clang::Type::VariableArray: break; case clang::Type::ConstantArray: return lldb::eFormatVoid; // no value case clang::Type::ExtVector: case clang::Type::Vector: break; case clang::Type::Builtin: switch (llvm::cast(qual_type)->getKind()) { // default: assert(0 && "Unknown builtin type!"); case clang::BuiltinType::UnknownAny: case clang::BuiltinType::Void: case clang::BuiltinType::BoundMember: break; case clang::BuiltinType::Bool: return lldb::eFormatBoolean; case clang::BuiltinType::Char_S: case clang::BuiltinType::SChar: case clang::BuiltinType::WChar_S: case clang::BuiltinType::Char_U: case clang::BuiltinType::UChar: case clang::BuiltinType::WChar_U: return lldb::eFormatChar; case clang::BuiltinType::Char16: return lldb::eFormatUnicode16; case clang::BuiltinType::Char32: return lldb::eFormatUnicode32; case clang::BuiltinType::UShort: return lldb::eFormatUnsigned; case clang::BuiltinType::Short: return lldb::eFormatDecimal; case clang::BuiltinType::UInt: return lldb::eFormatUnsigned; case clang::BuiltinType::Int: return lldb::eFormatDecimal; case clang::BuiltinType::ULong: return lldb::eFormatUnsigned; case clang::BuiltinType::Long: return lldb::eFormatDecimal; case clang::BuiltinType::ULongLong: return lldb::eFormatUnsigned; case clang::BuiltinType::LongLong: return lldb::eFormatDecimal; case clang::BuiltinType::UInt128: return lldb::eFormatUnsigned; case clang::BuiltinType::Int128: return lldb::eFormatDecimal; case clang::BuiltinType::Half: case clang::BuiltinType::Float: case clang::BuiltinType::Double: case clang::BuiltinType::LongDouble: return lldb::eFormatFloat; default: return lldb::eFormatHex; } break; case clang::Type::ObjCObjectPointer: return lldb::eFormatHex; case clang::Type::BlockPointer: return lldb::eFormatHex; case clang::Type::Pointer: return lldb::eFormatHex; case clang::Type::LValueReference: case clang::Type::RValueReference: return lldb::eFormatHex; case clang::Type::MemberPointer: break; case clang::Type::Complex: { if (qual_type->isComplexType()) return lldb::eFormatComplex; else return lldb::eFormatComplexInteger; } case clang::Type::ObjCInterface: break; case clang::Type::Record: break; case clang::Type::Enum: return lldb::eFormatEnum; case clang::Type::Typedef: return CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetFormat(); case clang::Type::Auto: return CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetFormat(); case clang::Type::Paren: return CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetFormat(); case clang::Type::Elaborated: return CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetFormat(); case clang::Type::DependentSizedArray: case clang::Type::DependentSizedExtVector: case clang::Type::UnresolvedUsing: case clang::Type::Attributed: case clang::Type::TemplateTypeParm: case clang::Type::SubstTemplateTypeParm: case clang::Type::SubstTemplateTypeParmPack: case clang::Type::InjectedClassName: case clang::Type::DependentName: case clang::Type::DependentTemplateSpecialization: case clang::Type::PackExpansion: case clang::Type::ObjCObject: case clang::Type::TypeOfExpr: case clang::Type::TypeOf: case clang::Type::Decltype: case clang::Type::TemplateSpecialization: case clang::Type::Atomic: case clang::Type::Adjusted: case clang::Type::Pipe: break; // pointer type decayed from an array or function type. case clang::Type::Decayed: break; case clang::Type::ObjCTypeParam: break; } // We don't know hot to display this type... return lldb::eFormatBytes; } static bool ObjCDeclHasIVars(clang::ObjCInterfaceDecl *class_interface_decl, bool check_superclass) { while (class_interface_decl) { if (class_interface_decl->ivar_size() > 0) return true; if (check_superclass) class_interface_decl = class_interface_decl->getSuperClass(); else break; } return false; } uint32_t ClangASTContext::GetNumChildren(lldb::opaque_compiler_type_t type, bool omit_empty_base_classes) { if (!type) return 0; uint32_t num_children = 0; clang::QualType qual_type(GetQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Builtin: switch (llvm::cast(qual_type)->getKind()) { case clang::BuiltinType::ObjCId: // child is Class case clang::BuiltinType::ObjCClass: // child is Class num_children = 1; break; default: break; } break; case clang::Type::Complex: return 0; case clang::Type::Record: if (GetCompleteQualType(getASTContext(), qual_type)) { const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); assert(record_decl); const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); if (cxx_record_decl) { if (omit_empty_base_classes) { // Check each base classes to see if it or any of its // base classes contain any fields. This can help // limit the noise in variable views by not having to // show base classes that contain no members. clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end; for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end(); base_class != base_class_end; ++base_class) { const clang::CXXRecordDecl *base_class_decl = llvm::cast( base_class->getType() ->getAs() ->getDecl()); // Skip empty base classes if (ClangASTContext::RecordHasFields(base_class_decl) == false) continue; num_children++; } } else { // Include all base classes num_children += cxx_record_decl->getNumBases(); } } clang::RecordDecl::field_iterator field, field_end; for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field) ++num_children; } break; case clang::Type::ObjCObject: case clang::Type::ObjCInterface: if (GetCompleteQualType(getASTContext(), qual_type)) { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); assert(objc_class_type); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) { clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass(); if (superclass_interface_decl) { if (omit_empty_base_classes) { if (ObjCDeclHasIVars(superclass_interface_decl, true)) ++num_children; } else ++num_children; } num_children += class_interface_decl->ivar_size(); } } } break; case clang::Type::ObjCObjectPointer: { const clang::ObjCObjectPointerType *pointer_type = llvm::cast(qual_type.getTypePtr()); clang::QualType pointee_type = pointer_type->getPointeeType(); uint32_t num_pointee_children = CompilerType(getASTContext(), pointee_type) .GetNumChildren(omit_empty_base_classes); // If this type points to a simple type, then it has 1 child if (num_pointee_children == 0) num_children = 1; else num_children = num_pointee_children; } break; case clang::Type::Vector: case clang::Type::ExtVector: num_children = llvm::cast(qual_type.getTypePtr())->getNumElements(); break; case clang::Type::ConstantArray: num_children = llvm::cast(qual_type.getTypePtr()) ->getSize() .getLimitedValue(); break; case clang::Type::Pointer: { const clang::PointerType *pointer_type = llvm::cast(qual_type.getTypePtr()); clang::QualType pointee_type(pointer_type->getPointeeType()); uint32_t num_pointee_children = CompilerType(getASTContext(), pointee_type) .GetNumChildren(omit_empty_base_classes); if (num_pointee_children == 0) { // We have a pointer to a pointee type that claims it has no children. // We will want to look at num_children = GetNumPointeeChildren(pointee_type); } else num_children = num_pointee_children; } break; case clang::Type::LValueReference: case clang::Type::RValueReference: { const clang::ReferenceType *reference_type = llvm::cast(qual_type.getTypePtr()); clang::QualType pointee_type = reference_type->getPointeeType(); uint32_t num_pointee_children = CompilerType(getASTContext(), pointee_type) .GetNumChildren(omit_empty_base_classes); // If this type points to a simple type, then it has 1 child if (num_pointee_children == 0) num_children = 1; else num_children = num_pointee_children; } break; case clang::Type::Typedef: num_children = CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetNumChildren(omit_empty_base_classes); break; case clang::Type::Auto: num_children = CompilerType(getASTContext(), llvm::cast(qual_type)->getDeducedType()) .GetNumChildren(omit_empty_base_classes); break; case clang::Type::Elaborated: num_children = CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetNumChildren(omit_empty_base_classes); break; case clang::Type::Paren: num_children = CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetNumChildren(omit_empty_base_classes); break; default: break; } return num_children; } CompilerType ClangASTContext::GetBuiltinTypeByName(const ConstString &name) { return GetBasicType(GetBasicTypeEnumeration(name)); } lldb::BasicType ClangASTContext::GetBasicTypeEnumeration(lldb::opaque_compiler_type_t type) { if (type) { clang::QualType qual_type(GetQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); if (type_class == clang::Type::Builtin) { switch (llvm::cast(qual_type)->getKind()) { case clang::BuiltinType::Void: return eBasicTypeVoid; case clang::BuiltinType::Bool: return eBasicTypeBool; case clang::BuiltinType::Char_S: return eBasicTypeSignedChar; case clang::BuiltinType::Char_U: return eBasicTypeUnsignedChar; case clang::BuiltinType::Char16: return eBasicTypeChar16; case clang::BuiltinType::Char32: return eBasicTypeChar32; case clang::BuiltinType::UChar: return eBasicTypeUnsignedChar; case clang::BuiltinType::SChar: return eBasicTypeSignedChar; case clang::BuiltinType::WChar_S: return eBasicTypeSignedWChar; case clang::BuiltinType::WChar_U: return eBasicTypeUnsignedWChar; case clang::BuiltinType::Short: return eBasicTypeShort; case clang::BuiltinType::UShort: return eBasicTypeUnsignedShort; case clang::BuiltinType::Int: return eBasicTypeInt; case clang::BuiltinType::UInt: return eBasicTypeUnsignedInt; case clang::BuiltinType::Long: return eBasicTypeLong; case clang::BuiltinType::ULong: return eBasicTypeUnsignedLong; case clang::BuiltinType::LongLong: return eBasicTypeLongLong; case clang::BuiltinType::ULongLong: return eBasicTypeUnsignedLongLong; case clang::BuiltinType::Int128: return eBasicTypeInt128; case clang::BuiltinType::UInt128: return eBasicTypeUnsignedInt128; case clang::BuiltinType::Half: return eBasicTypeHalf; case clang::BuiltinType::Float: return eBasicTypeFloat; case clang::BuiltinType::Double: return eBasicTypeDouble; case clang::BuiltinType::LongDouble: return eBasicTypeLongDouble; case clang::BuiltinType::NullPtr: return eBasicTypeNullPtr; case clang::BuiltinType::ObjCId: return eBasicTypeObjCID; case clang::BuiltinType::ObjCClass: return eBasicTypeObjCClass; case clang::BuiltinType::ObjCSel: return eBasicTypeObjCSel; default: return eBasicTypeOther; } } } return eBasicTypeInvalid; } void ClangASTContext::ForEachEnumerator( lldb::opaque_compiler_type_t type, std::function const &callback) { const clang::EnumType *enum_type = llvm::dyn_cast(GetCanonicalQualType(type)); if (enum_type) { const clang::EnumDecl *enum_decl = enum_type->getDecl(); if (enum_decl) { CompilerType integer_type(this, enum_decl->getIntegerType().getAsOpaquePtr()); clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos; for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos) { ConstString name(enum_pos->getNameAsString().c_str()); if (!callback(integer_type, name, enum_pos->getInitVal())) break; } } } } #pragma mark Aggregate Types uint32_t ClangASTContext::GetNumFields(lldb::opaque_compiler_type_t type) { if (!type) return 0; uint32_t count = 0; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::RecordType *record_type = llvm::dyn_cast(qual_type.getTypePtr()); if (record_type) { clang::RecordDecl *record_decl = record_type->getDecl(); if (record_decl) { uint32_t field_idx = 0; clang::RecordDecl::field_iterator field, field_end; for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field) ++field_idx; count = field_idx; } } } break; case clang::Type::Typedef: count = CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetNumFields(); break; case clang::Type::Auto: count = CompilerType(getASTContext(), llvm::cast(qual_type)->getDeducedType()) .GetNumFields(); break; case clang::Type::Elaborated: count = CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetNumFields(); break; case clang::Type::Paren: count = CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetNumFields(); break; case clang::Type::ObjCObjectPointer: { const clang::ObjCObjectPointerType *objc_class_type = qual_type->getAsObjCInterfacePointerType(); const clang::ObjCInterfaceType *objc_interface_type = objc_class_type->getInterfaceType(); if (objc_interface_type && GetCompleteType((lldb::opaque_compiler_type_t)objc_interface_type)) { clang::ObjCInterfaceDecl *class_interface_decl = objc_interface_type->getDecl(); if (class_interface_decl) { count = class_interface_decl->ivar_size(); } } break; } case clang::Type::ObjCObject: case clang::Type::ObjCInterface: if (GetCompleteType(type)) { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) count = class_interface_decl->ivar_size(); } } break; default: break; } return count; } static lldb::opaque_compiler_type_t GetObjCFieldAtIndex(clang::ASTContext *ast, clang::ObjCInterfaceDecl *class_interface_decl, size_t idx, std::string &name, uint64_t *bit_offset_ptr, uint32_t *bitfield_bit_size_ptr, bool *is_bitfield_ptr) { if (class_interface_decl) { if (idx < (class_interface_decl->ivar_size())) { clang::ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end(); uint32_t ivar_idx = 0; for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos, ++ivar_idx) { if (ivar_idx == idx) { const clang::ObjCIvarDecl *ivar_decl = *ivar_pos; clang::QualType ivar_qual_type(ivar_decl->getType()); name.assign(ivar_decl->getNameAsString()); if (bit_offset_ptr) { const clang::ASTRecordLayout &interface_layout = ast->getASTObjCInterfaceLayout(class_interface_decl); *bit_offset_ptr = interface_layout.getFieldOffset(ivar_idx); } const bool is_bitfield = ivar_pos->isBitField(); if (bitfield_bit_size_ptr) { *bitfield_bit_size_ptr = 0; if (is_bitfield && ast) { clang::Expr *bitfield_bit_size_expr = ivar_pos->getBitWidth(); llvm::APSInt bitfield_apsint; if (bitfield_bit_size_expr && bitfield_bit_size_expr->EvaluateAsInt(bitfield_apsint, *ast)) { *bitfield_bit_size_ptr = bitfield_apsint.getLimitedValue(); } } } if (is_bitfield_ptr) *is_bitfield_ptr = is_bitfield; return ivar_qual_type.getAsOpaquePtr(); } } } } return nullptr; } CompilerType ClangASTContext::GetFieldAtIndex(lldb::opaque_compiler_type_t type, size_t idx, std::string &name, uint64_t *bit_offset_ptr, uint32_t *bitfield_bit_size_ptr, bool *is_bitfield_ptr) { if (!type) return CompilerType(); clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); uint32_t field_idx = 0; clang::RecordDecl::field_iterator field, field_end; for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++field_idx) { if (idx == field_idx) { // Print the member type if requested // Print the member name and equal sign name.assign(field->getNameAsString()); // Figure out the type byte size (field_type_info.first) and // alignment (field_type_info.second) from the AST context. if (bit_offset_ptr) { const clang::ASTRecordLayout &record_layout = getASTContext()->getASTRecordLayout(record_decl); *bit_offset_ptr = record_layout.getFieldOffset(field_idx); } const bool is_bitfield = field->isBitField(); if (bitfield_bit_size_ptr) { *bitfield_bit_size_ptr = 0; if (is_bitfield) { clang::Expr *bitfield_bit_size_expr = field->getBitWidth(); llvm::APSInt bitfield_apsint; if (bitfield_bit_size_expr && bitfield_bit_size_expr->EvaluateAsInt(bitfield_apsint, *getASTContext())) { *bitfield_bit_size_ptr = bitfield_apsint.getLimitedValue(); } } } if (is_bitfield_ptr) *is_bitfield_ptr = is_bitfield; return CompilerType(getASTContext(), field->getType()); } } } break; case clang::Type::ObjCObjectPointer: { const clang::ObjCObjectPointerType *objc_class_type = qual_type->getAsObjCInterfacePointerType(); const clang::ObjCInterfaceType *objc_interface_type = objc_class_type->getInterfaceType(); if (objc_interface_type && GetCompleteType((lldb::opaque_compiler_type_t)objc_interface_type)) { clang::ObjCInterfaceDecl *class_interface_decl = objc_interface_type->getDecl(); if (class_interface_decl) { return CompilerType( this, GetObjCFieldAtIndex(getASTContext(), class_interface_decl, idx, name, bit_offset_ptr, bitfield_bit_size_ptr, is_bitfield_ptr)); } } break; } case clang::Type::ObjCObject: case clang::Type::ObjCInterface: if (GetCompleteType(type)) { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); assert(objc_class_type); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); return CompilerType( this, GetObjCFieldAtIndex(getASTContext(), class_interface_decl, idx, name, bit_offset_ptr, bitfield_bit_size_ptr, is_bitfield_ptr)); } } break; case clang::Type::Typedef: return CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetFieldAtIndex(idx, name, bit_offset_ptr, bitfield_bit_size_ptr, is_bitfield_ptr); case clang::Type::Auto: return CompilerType( getASTContext(), llvm::cast(qual_type)->getDeducedType()) .GetFieldAtIndex(idx, name, bit_offset_ptr, bitfield_bit_size_ptr, is_bitfield_ptr); case clang::Type::Elaborated: return CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetFieldAtIndex(idx, name, bit_offset_ptr, bitfield_bit_size_ptr, is_bitfield_ptr); case clang::Type::Paren: return CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetFieldAtIndex(idx, name, bit_offset_ptr, bitfield_bit_size_ptr, is_bitfield_ptr); default: break; } return CompilerType(); } uint32_t ClangASTContext::GetNumDirectBaseClasses(lldb::opaque_compiler_type_t type) { uint32_t count = 0; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) count = cxx_record_decl->getNumBases(); } break; case clang::Type::ObjCObjectPointer: count = GetPointeeType(type).GetNumDirectBaseClasses(); break; case clang::Type::ObjCObject: if (GetCompleteType(type)) { const clang::ObjCObjectType *objc_class_type = qual_type->getAsObjCQualifiedInterfaceType(); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl && class_interface_decl->getSuperClass()) count = 1; } } break; case clang::Type::ObjCInterface: if (GetCompleteType(type)) { const clang::ObjCInterfaceType *objc_interface_type = qual_type->getAs(); if (objc_interface_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_interface_type->getInterface(); if (class_interface_decl && class_interface_decl->getSuperClass()) count = 1; } } break; case clang::Type::Typedef: count = GetNumDirectBaseClasses(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr()); break; case clang::Type::Auto: count = GetNumDirectBaseClasses(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr()); break; case clang::Type::Elaborated: count = GetNumDirectBaseClasses(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr()); break; case clang::Type::Paren: return GetNumDirectBaseClasses( llvm::cast(qual_type)->desugar().getAsOpaquePtr()); default: break; } return count; } uint32_t ClangASTContext::GetNumVirtualBaseClasses(lldb::opaque_compiler_type_t type) { uint32_t count = 0; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) count = cxx_record_decl->getNumVBases(); } break; case clang::Type::Typedef: count = GetNumVirtualBaseClasses(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr()); break; case clang::Type::Auto: count = GetNumVirtualBaseClasses(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr()); break; case clang::Type::Elaborated: count = GetNumVirtualBaseClasses(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr()); break; case clang::Type::Paren: count = GetNumVirtualBaseClasses( llvm::cast(qual_type)->desugar().getAsOpaquePtr()); break; default: break; } return count; } CompilerType ClangASTContext::GetDirectBaseClassAtIndex( lldb::opaque_compiler_type_t type, size_t idx, uint32_t *bit_offset_ptr) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) { uint32_t curr_idx = 0; clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end; for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end(); base_class != base_class_end; ++base_class, ++curr_idx) { if (curr_idx == idx) { if (bit_offset_ptr) { const clang::ASTRecordLayout &record_layout = getASTContext()->getASTRecordLayout(cxx_record_decl); const clang::CXXRecordDecl *base_class_decl = llvm::cast( base_class->getType() ->getAs() ->getDecl()); if (base_class->isVirtual()) *bit_offset_ptr = record_layout.getVBaseClassOffset(base_class_decl) .getQuantity() * 8; else *bit_offset_ptr = record_layout.getBaseClassOffset(base_class_decl) .getQuantity() * 8; } return CompilerType(this, base_class->getType().getAsOpaquePtr()); } } } } break; case clang::Type::ObjCObjectPointer: return GetPointeeType(type).GetDirectBaseClassAtIndex(idx, bit_offset_ptr); case clang::Type::ObjCObject: if (idx == 0 && GetCompleteType(type)) { const clang::ObjCObjectType *objc_class_type = qual_type->getAsObjCQualifiedInterfaceType(); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) { clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass(); if (superclass_interface_decl) { if (bit_offset_ptr) *bit_offset_ptr = 0; return CompilerType(getASTContext(), getASTContext()->getObjCInterfaceType( superclass_interface_decl)); } } } } break; case clang::Type::ObjCInterface: if (idx == 0 && GetCompleteType(type)) { const clang::ObjCObjectType *objc_interface_type = qual_type->getAs(); if (objc_interface_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_interface_type->getInterface(); if (class_interface_decl) { clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass(); if (superclass_interface_decl) { if (bit_offset_ptr) *bit_offset_ptr = 0; return CompilerType(getASTContext(), getASTContext()->getObjCInterfaceType( superclass_interface_decl)); } } } } break; case clang::Type::Typedef: return GetDirectBaseClassAtIndex(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), idx, bit_offset_ptr); case clang::Type::Auto: return GetDirectBaseClassAtIndex(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), idx, bit_offset_ptr); case clang::Type::Elaborated: return GetDirectBaseClassAtIndex( llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), idx, bit_offset_ptr); case clang::Type::Paren: return GetDirectBaseClassAtIndex( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), idx, bit_offset_ptr); default: break; } return CompilerType(); } CompilerType ClangASTContext::GetVirtualBaseClassAtIndex( lldb::opaque_compiler_type_t type, size_t idx, uint32_t *bit_offset_ptr) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) { uint32_t curr_idx = 0; clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end; for (base_class = cxx_record_decl->vbases_begin(), base_class_end = cxx_record_decl->vbases_end(); base_class != base_class_end; ++base_class, ++curr_idx) { if (curr_idx == idx) { if (bit_offset_ptr) { const clang::ASTRecordLayout &record_layout = getASTContext()->getASTRecordLayout(cxx_record_decl); const clang::CXXRecordDecl *base_class_decl = llvm::cast( base_class->getType() ->getAs() ->getDecl()); *bit_offset_ptr = record_layout.getVBaseClassOffset(base_class_decl) .getQuantity() * 8; } return CompilerType(this, base_class->getType().getAsOpaquePtr()); } } } } break; case clang::Type::Typedef: return GetVirtualBaseClassAtIndex(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), idx, bit_offset_ptr); case clang::Type::Auto: return GetVirtualBaseClassAtIndex(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), idx, bit_offset_ptr); case clang::Type::Elaborated: return GetVirtualBaseClassAtIndex( llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), idx, bit_offset_ptr); case clang::Type::Paren: return GetVirtualBaseClassAtIndex( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), idx, bit_offset_ptr); default: break; } return CompilerType(); } // If a pointer to a pointee type (the clang_type arg) says that it has no // children, then we either need to trust it, or override it and return a // different result. For example, an "int *" has one child that is an integer, // but a function pointer doesn't have any children. Likewise if a Record type // claims it has no children, then there really is nothing to show. uint32_t ClangASTContext::GetNumPointeeChildren(clang::QualType type) { if (type.isNull()) return 0; clang::QualType qual_type(type.getCanonicalType()); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Builtin: switch (llvm::cast(qual_type)->getKind()) { case clang::BuiltinType::UnknownAny: case clang::BuiltinType::Void: case clang::BuiltinType::NullPtr: case clang::BuiltinType::OCLEvent: case clang::BuiltinType::OCLImage1dRO: case clang::BuiltinType::OCLImage1dWO: case clang::BuiltinType::OCLImage1dRW: case clang::BuiltinType::OCLImage1dArrayRO: case clang::BuiltinType::OCLImage1dArrayWO: case clang::BuiltinType::OCLImage1dArrayRW: case clang::BuiltinType::OCLImage1dBufferRO: case clang::BuiltinType::OCLImage1dBufferWO: case clang::BuiltinType::OCLImage1dBufferRW: case clang::BuiltinType::OCLImage2dRO: case clang::BuiltinType::OCLImage2dWO: case clang::BuiltinType::OCLImage2dRW: case clang::BuiltinType::OCLImage2dArrayRO: case clang::BuiltinType::OCLImage2dArrayWO: case clang::BuiltinType::OCLImage2dArrayRW: case clang::BuiltinType::OCLImage3dRO: case clang::BuiltinType::OCLImage3dWO: case clang::BuiltinType::OCLImage3dRW: case clang::BuiltinType::OCLSampler: return 0; case clang::BuiltinType::Bool: case clang::BuiltinType::Char_U: case clang::BuiltinType::UChar: case clang::BuiltinType::WChar_U: case clang::BuiltinType::Char16: case clang::BuiltinType::Char32: case clang::BuiltinType::UShort: case clang::BuiltinType::UInt: case clang::BuiltinType::ULong: case clang::BuiltinType::ULongLong: case clang::BuiltinType::UInt128: case clang::BuiltinType::Char_S: case clang::BuiltinType::SChar: case clang::BuiltinType::WChar_S: case clang::BuiltinType::Short: case clang::BuiltinType::Int: case clang::BuiltinType::Long: case clang::BuiltinType::LongLong: case clang::BuiltinType::Int128: case clang::BuiltinType::Float: case clang::BuiltinType::Double: case clang::BuiltinType::LongDouble: case clang::BuiltinType::Dependent: case clang::BuiltinType::Overload: case clang::BuiltinType::ObjCId: case clang::BuiltinType::ObjCClass: case clang::BuiltinType::ObjCSel: case clang::BuiltinType::BoundMember: case clang::BuiltinType::Half: case clang::BuiltinType::ARCUnbridgedCast: case clang::BuiltinType::PseudoObject: case clang::BuiltinType::BuiltinFn: case clang::BuiltinType::OMPArraySection: return 1; default: return 0; } break; case clang::Type::Complex: return 1; case clang::Type::Pointer: return 1; case clang::Type::BlockPointer: return 0; // If block pointers don't have debug info, then no children for // them case clang::Type::LValueReference: return 1; case clang::Type::RValueReference: return 1; case clang::Type::MemberPointer: return 0; case clang::Type::ConstantArray: return 0; case clang::Type::IncompleteArray: return 0; case clang::Type::VariableArray: return 0; case clang::Type::DependentSizedArray: return 0; case clang::Type::DependentSizedExtVector: return 0; case clang::Type::Vector: return 0; case clang::Type::ExtVector: return 0; case clang::Type::FunctionProto: return 0; // When we function pointers, they have no children... case clang::Type::FunctionNoProto: return 0; // When we function pointers, they have no children... case clang::Type::UnresolvedUsing: return 0; case clang::Type::Paren: return GetNumPointeeChildren( llvm::cast(qual_type)->desugar()); case clang::Type::Typedef: return GetNumPointeeChildren(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()); case clang::Type::Auto: return GetNumPointeeChildren( llvm::cast(qual_type)->getDeducedType()); case clang::Type::Elaborated: return GetNumPointeeChildren( llvm::cast(qual_type)->getNamedType()); case clang::Type::TypeOfExpr: return 0; case clang::Type::TypeOf: return 0; case clang::Type::Decltype: return 0; case clang::Type::Record: return 0; case clang::Type::Enum: return 1; case clang::Type::TemplateTypeParm: return 1; case clang::Type::SubstTemplateTypeParm: return 1; case clang::Type::TemplateSpecialization: return 1; case clang::Type::InjectedClassName: return 0; case clang::Type::DependentName: return 1; case clang::Type::DependentTemplateSpecialization: return 1; case clang::Type::ObjCObject: return 0; case clang::Type::ObjCInterface: return 0; case clang::Type::ObjCObjectPointer: return 1; default: break; } return 0; } CompilerType ClangASTContext::GetChildCompilerTypeAtIndex( lldb::opaque_compiler_type_t type, ExecutionContext *exe_ctx, size_t idx, bool transparent_pointers, bool omit_empty_base_classes, bool ignore_array_bounds, std::string &child_name, uint32_t &child_byte_size, int32_t &child_byte_offset, uint32_t &child_bitfield_bit_size, uint32_t &child_bitfield_bit_offset, bool &child_is_base_class, bool &child_is_deref_of_parent, ValueObject *valobj, uint64_t &language_flags) { if (!type) return CompilerType(); clang::QualType parent_qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass parent_type_class = parent_qual_type->getTypeClass(); child_bitfield_bit_size = 0; child_bitfield_bit_offset = 0; child_is_base_class = false; language_flags = 0; const bool idx_is_valid = idx < GetNumChildren(type, omit_empty_base_classes); uint32_t bit_offset; switch (parent_type_class) { case clang::Type::Builtin: if (idx_is_valid) { switch (llvm::cast(parent_qual_type)->getKind()) { case clang::BuiltinType::ObjCId: case clang::BuiltinType::ObjCClass: child_name = "isa"; child_byte_size = getASTContext()->getTypeSize(getASTContext()->ObjCBuiltinClassTy) / CHAR_BIT; return CompilerType(getASTContext(), getASTContext()->ObjCBuiltinClassTy); default: break; } } break; case clang::Type::Record: if (idx_is_valid && GetCompleteType(type)) { const clang::RecordType *record_type = llvm::cast(parent_qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); assert(record_decl); const clang::ASTRecordLayout &record_layout = getASTContext()->getASTRecordLayout(record_decl); uint32_t child_idx = 0; const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); if (cxx_record_decl) { // We might have base classes to print out first clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end; for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end(); base_class != base_class_end; ++base_class) { const clang::CXXRecordDecl *base_class_decl = nullptr; // Skip empty base classes if (omit_empty_base_classes) { base_class_decl = llvm::cast( base_class->getType()->getAs()->getDecl()); if (ClangASTContext::RecordHasFields(base_class_decl) == false) continue; } if (idx == child_idx) { if (base_class_decl == nullptr) base_class_decl = llvm::cast( base_class->getType()->getAs()->getDecl()); if (base_class->isVirtual()) { bool handled = false; if (valobj) { Error err; AddressType addr_type = eAddressTypeInvalid; lldb::addr_t vtable_ptr_addr = valobj->GetCPPVTableAddress(addr_type); if (vtable_ptr_addr != LLDB_INVALID_ADDRESS && addr_type == eAddressTypeLoad) { ExecutionContext exe_ctx(valobj->GetExecutionContextRef()); Process *process = exe_ctx.GetProcessPtr(); if (process) { clang::VTableContextBase *vtable_ctx = getASTContext()->getVTableContext(); if (vtable_ctx) { if (vtable_ctx->isMicrosoft()) { clang::MicrosoftVTableContext *msoft_vtable_ctx = static_cast( vtable_ctx); if (vtable_ptr_addr) { const lldb::addr_t vbtable_ptr_addr = vtable_ptr_addr + record_layout.getVBPtrOffset().getQuantity(); const lldb::addr_t vbtable_ptr = process->ReadPointerFromMemory(vbtable_ptr_addr, err); if (vbtable_ptr != LLDB_INVALID_ADDRESS) { // Get the index into the virtual base table. The // index is the index in uint32_t from vbtable_ptr const unsigned vbtable_index = msoft_vtable_ctx->getVBTableIndex( cxx_record_decl, base_class_decl); const lldb::addr_t base_offset_addr = vbtable_ptr + vbtable_index * 4; const uint32_t base_offset = process->ReadUnsignedIntegerFromMemory( base_offset_addr, 4, UINT32_MAX, err); if (base_offset != UINT32_MAX) { handled = true; bit_offset = base_offset * 8; } } } } else { clang::ItaniumVTableContext *itanium_vtable_ctx = static_cast( vtable_ctx); if (vtable_ptr_addr) { const lldb::addr_t vtable_ptr = process->ReadPointerFromMemory(vtable_ptr_addr, err); if (vtable_ptr != LLDB_INVALID_ADDRESS) { clang::CharUnits base_offset_offset = itanium_vtable_ctx->getVirtualBaseOffsetOffset( cxx_record_decl, base_class_decl); const lldb::addr_t base_offset_addr = vtable_ptr + base_offset_offset.getQuantity(); const uint32_t base_offset_size = process->GetAddressByteSize(); const uint64_t base_offset = process->ReadUnsignedIntegerFromMemory( base_offset_addr, base_offset_size, UINT32_MAX, err); if (base_offset < UINT32_MAX) { handled = true; bit_offset = base_offset * 8; } } } } } } } } if (!handled) bit_offset = record_layout.getVBaseClassOffset(base_class_decl) .getQuantity() * 8; } else bit_offset = record_layout.getBaseClassOffset(base_class_decl) .getQuantity() * 8; // Base classes should be a multiple of 8 bits in size child_byte_offset = bit_offset / 8; CompilerType base_class_clang_type(getASTContext(), base_class->getType()); child_name = base_class_clang_type.GetTypeName().AsCString(""); uint64_t base_class_clang_type_bit_size = base_class_clang_type.GetBitSize( exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL); // Base classes bit sizes should be a multiple of 8 bits in size assert(base_class_clang_type_bit_size % 8 == 0); child_byte_size = base_class_clang_type_bit_size / 8; child_is_base_class = true; return base_class_clang_type; } // We don't increment the child index in the for loop since we might // be skipping empty base classes ++child_idx; } } // Make sure index is in range... uint32_t field_idx = 0; clang::RecordDecl::field_iterator field, field_end; for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++field_idx, ++child_idx) { if (idx == child_idx) { // Print the member type if requested // Print the member name and equal sign child_name.assign(field->getNameAsString()); // Figure out the type byte size (field_type_info.first) and // alignment (field_type_info.second) from the AST context. CompilerType field_clang_type(getASTContext(), field->getType()); assert(field_idx < record_layout.getFieldCount()); child_byte_size = field_clang_type.GetByteSize( exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL); const uint32_t child_bit_size = child_byte_size * 8; // Figure out the field offset within the current struct/union/class // type bit_offset = record_layout.getFieldOffset(field_idx); if (ClangASTContext::FieldIsBitfield(getASTContext(), *field, child_bitfield_bit_size)) { child_bitfield_bit_offset = bit_offset % child_bit_size; const uint32_t child_bit_offset = bit_offset - child_bitfield_bit_offset; child_byte_offset = child_bit_offset / 8; } else { child_byte_offset = bit_offset / 8; } return field_clang_type; } } } break; case clang::Type::ObjCObject: case clang::Type::ObjCInterface: if (idx_is_valid && GetCompleteType(type)) { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(parent_qual_type.getTypePtr()); assert(objc_class_type); if (objc_class_type) { uint32_t child_idx = 0; clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) { const clang::ASTRecordLayout &interface_layout = getASTContext()->getASTObjCInterfaceLayout(class_interface_decl); clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass(); if (superclass_interface_decl) { if (omit_empty_base_classes) { CompilerType base_class_clang_type( getASTContext(), getASTContext()->getObjCInterfaceType( superclass_interface_decl)); if (base_class_clang_type.GetNumChildren( omit_empty_base_classes) > 0) { if (idx == 0) { clang::QualType ivar_qual_type( getASTContext()->getObjCInterfaceType( superclass_interface_decl)); child_name.assign( superclass_interface_decl->getNameAsString()); clang::TypeInfo ivar_type_info = getASTContext()->getTypeInfo(ivar_qual_type.getTypePtr()); child_byte_size = ivar_type_info.Width / 8; child_byte_offset = 0; child_is_base_class = true; return CompilerType(getASTContext(), ivar_qual_type); } ++child_idx; } } else ++child_idx; } const uint32_t superclass_idx = child_idx; if (idx < (child_idx + class_interface_decl->ivar_size())) { clang::ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end(); for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos) { if (child_idx == idx) { clang::ObjCIvarDecl *ivar_decl = *ivar_pos; clang::QualType ivar_qual_type(ivar_decl->getType()); child_name.assign(ivar_decl->getNameAsString()); clang::TypeInfo ivar_type_info = getASTContext()->getTypeInfo(ivar_qual_type.getTypePtr()); child_byte_size = ivar_type_info.Width / 8; // Figure out the field offset within the current // struct/union/class type // For ObjC objects, we can't trust the bit offset we get from // the Clang AST, since // that doesn't account for the space taken up by unbacked // properties, or from // the changing size of base classes that are newer than this // class. // So if we have a process around that we can ask about this // object, do so. child_byte_offset = LLDB_INVALID_IVAR_OFFSET; Process *process = nullptr; if (exe_ctx) process = exe_ctx->GetProcessPtr(); if (process) { ObjCLanguageRuntime *objc_runtime = process->GetObjCLanguageRuntime(); if (objc_runtime != nullptr) { CompilerType parent_ast_type(getASTContext(), parent_qual_type); child_byte_offset = objc_runtime->GetByteOffsetForIvar( parent_ast_type, ivar_decl->getNameAsString().c_str()); } } // Setting this to UINT32_MAX to make sure we don't compute it // twice... bit_offset = UINT32_MAX; if (child_byte_offset == static_cast(LLDB_INVALID_IVAR_OFFSET)) { bit_offset = interface_layout.getFieldOffset(child_idx - superclass_idx); child_byte_offset = bit_offset / 8; } // Note, the ObjC Ivar Byte offset is just that, it doesn't // account for the bit offset // of a bitfield within its containing object. So regardless of // where we get the byte // offset from, we still need to get the bit offset for // bitfields from the layout. if (ClangASTContext::FieldIsBitfield(getASTContext(), ivar_decl, child_bitfield_bit_size)) { if (bit_offset == UINT32_MAX) bit_offset = interface_layout.getFieldOffset( child_idx - superclass_idx); child_bitfield_bit_offset = bit_offset % 8; } return CompilerType(getASTContext(), ivar_qual_type); } ++child_idx; } } } } } break; case clang::Type::ObjCObjectPointer: if (idx_is_valid) { CompilerType pointee_clang_type(GetPointeeType(type)); if (transparent_pointers && pointee_clang_type.IsAggregateType()) { child_is_deref_of_parent = false; bool tmp_child_is_deref_of_parent = false; return pointee_clang_type.GetChildCompilerTypeAtIndex( exe_ctx, idx, transparent_pointers, omit_empty_base_classes, ignore_array_bounds, child_name, child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, tmp_child_is_deref_of_parent, valobj, language_flags); } else { child_is_deref_of_parent = true; const char *parent_name = valobj ? valobj->GetName().GetCString() : NULL; if (parent_name) { child_name.assign(1, '*'); child_name += parent_name; } // We have a pointer to an simple type if (idx == 0 && pointee_clang_type.GetCompleteType()) { child_byte_size = pointee_clang_type.GetByteSize( exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL); child_byte_offset = 0; return pointee_clang_type; } } } break; case clang::Type::Vector: case clang::Type::ExtVector: if (idx_is_valid) { const clang::VectorType *array = llvm::cast(parent_qual_type.getTypePtr()); if (array) { CompilerType element_type(getASTContext(), array->getElementType()); if (element_type.GetCompleteType()) { char element_name[64]; ::snprintf(element_name, sizeof(element_name), "[%" PRIu64 "]", static_cast(idx)); child_name.assign(element_name); child_byte_size = element_type.GetByteSize( exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL); child_byte_offset = (int32_t)idx * (int32_t)child_byte_size; return element_type; } } } break; case clang::Type::ConstantArray: case clang::Type::IncompleteArray: if (ignore_array_bounds || idx_is_valid) { const clang::ArrayType *array = GetQualType(type)->getAsArrayTypeUnsafe(); if (array) { CompilerType element_type(getASTContext(), array->getElementType()); if (element_type.GetCompleteType()) { child_name = llvm::formatv("[{0}]", idx); child_byte_size = element_type.GetByteSize( exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL); child_byte_offset = (int32_t)idx * (int32_t)child_byte_size; return element_type; } } } break; case clang::Type::Pointer: { CompilerType pointee_clang_type(GetPointeeType(type)); // Don't dereference "void *" pointers if (pointee_clang_type.IsVoidType()) return CompilerType(); if (transparent_pointers && pointee_clang_type.IsAggregateType()) { child_is_deref_of_parent = false; bool tmp_child_is_deref_of_parent = false; return pointee_clang_type.GetChildCompilerTypeAtIndex( exe_ctx, idx, transparent_pointers, omit_empty_base_classes, ignore_array_bounds, child_name, child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, tmp_child_is_deref_of_parent, valobj, language_flags); } else { child_is_deref_of_parent = true; const char *parent_name = valobj ? valobj->GetName().GetCString() : NULL; if (parent_name) { child_name.assign(1, '*'); child_name += parent_name; } // We have a pointer to an simple type if (idx == 0) { child_byte_size = pointee_clang_type.GetByteSize( exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL); child_byte_offset = 0; return pointee_clang_type; } } break; } case clang::Type::LValueReference: case clang::Type::RValueReference: if (idx_is_valid) { const clang::ReferenceType *reference_type = llvm::cast(parent_qual_type.getTypePtr()); CompilerType pointee_clang_type(getASTContext(), reference_type->getPointeeType()); if (transparent_pointers && pointee_clang_type.IsAggregateType()) { child_is_deref_of_parent = false; bool tmp_child_is_deref_of_parent = false; return pointee_clang_type.GetChildCompilerTypeAtIndex( exe_ctx, idx, transparent_pointers, omit_empty_base_classes, ignore_array_bounds, child_name, child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, tmp_child_is_deref_of_parent, valobj, language_flags); } else { const char *parent_name = valobj ? valobj->GetName().GetCString() : NULL; if (parent_name) { child_name.assign(1, '&'); child_name += parent_name; } // We have a pointer to an simple type if (idx == 0) { child_byte_size = pointee_clang_type.GetByteSize( exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL); child_byte_offset = 0; return pointee_clang_type; } } } break; case clang::Type::Typedef: { CompilerType typedefed_clang_type( getASTContext(), llvm::cast(parent_qual_type) ->getDecl() ->getUnderlyingType()); return typedefed_clang_type.GetChildCompilerTypeAtIndex( exe_ctx, idx, transparent_pointers, omit_empty_base_classes, ignore_array_bounds, child_name, child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, child_is_deref_of_parent, valobj, language_flags); } break; case clang::Type::Auto: { CompilerType elaborated_clang_type( getASTContext(), llvm::cast(parent_qual_type)->getDeducedType()); return elaborated_clang_type.GetChildCompilerTypeAtIndex( exe_ctx, idx, transparent_pointers, omit_empty_base_classes, ignore_array_bounds, child_name, child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, child_is_deref_of_parent, valobj, language_flags); } case clang::Type::Elaborated: { CompilerType elaborated_clang_type( getASTContext(), llvm::cast(parent_qual_type)->getNamedType()); return elaborated_clang_type.GetChildCompilerTypeAtIndex( exe_ctx, idx, transparent_pointers, omit_empty_base_classes, ignore_array_bounds, child_name, child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, child_is_deref_of_parent, valobj, language_flags); } case clang::Type::Paren: { CompilerType paren_clang_type( getASTContext(), llvm::cast(parent_qual_type)->desugar()); return paren_clang_type.GetChildCompilerTypeAtIndex( exe_ctx, idx, transparent_pointers, omit_empty_base_classes, ignore_array_bounds, child_name, child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, child_is_deref_of_parent, valobj, language_flags); } default: break; } return CompilerType(); } static uint32_t GetIndexForRecordBase(const clang::RecordDecl *record_decl, const clang::CXXBaseSpecifier *base_spec, bool omit_empty_base_classes) { uint32_t child_idx = 0; const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); // const char *super_name = record_decl->getNameAsCString(); // const char *base_name = // base_spec->getType()->getAs()->getDecl()->getNameAsCString(); // printf ("GetIndexForRecordChild (%s, %s)\n", super_name, base_name); // if (cxx_record_decl) { clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end; for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end(); base_class != base_class_end; ++base_class) { if (omit_empty_base_classes) { if (BaseSpecifierIsEmpty(base_class)) continue; } // printf ("GetIndexForRecordChild (%s, %s) base[%u] = %s\n", // super_name, base_name, // child_idx, // base_class->getType()->getAs()->getDecl()->getNameAsCString()); // // if (base_class == base_spec) return child_idx; ++child_idx; } } return UINT32_MAX; } static uint32_t GetIndexForRecordChild(const clang::RecordDecl *record_decl, clang::NamedDecl *canonical_decl, bool omit_empty_base_classes) { uint32_t child_idx = ClangASTContext::GetNumBaseClasses( llvm::dyn_cast(record_decl), omit_empty_base_classes); clang::RecordDecl::field_iterator field, field_end; for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++child_idx) { if (field->getCanonicalDecl() == canonical_decl) return child_idx; } return UINT32_MAX; } // Look for a child member (doesn't include base classes, but it does include // their members) in the type hierarchy. Returns an index path into "clang_type" // on how to reach the appropriate member. // // class A // { // public: // int m_a; // int m_b; // }; // // class B // { // }; // // class C : // public B, // public A // { // }; // // If we have a clang type that describes "class C", and we wanted to looked // "m_b" in it: // // With omit_empty_base_classes == false we would get an integer array back // with: // { 1, 1 } // The first index 1 is the child index for "class A" within class C // The second index 1 is the child index for "m_b" within class A // // With omit_empty_base_classes == true we would get an integer array back with: // { 0, 1 } // The first index 0 is the child index for "class A" within class C (since // class B doesn't have any members it doesn't count) // The second index 1 is the child index for "m_b" within class A size_t ClangASTContext::GetIndexOfChildMemberWithName( lldb::opaque_compiler_type_t type, const char *name, bool omit_empty_base_classes, std::vector &child_indexes) { if (type && name && name[0]) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); assert(record_decl); uint32_t child_idx = 0; const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); // Try and find a field that matches NAME clang::RecordDecl::field_iterator field, field_end; llvm::StringRef name_sref(name); for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++child_idx) { llvm::StringRef field_name = field->getName(); if (field_name.empty()) { CompilerType field_type(getASTContext(), field->getType()); child_indexes.push_back(child_idx); if (field_type.GetIndexOfChildMemberWithName( name, omit_empty_base_classes, child_indexes)) return child_indexes.size(); child_indexes.pop_back(); } else if (field_name.equals(name_sref)) { // We have to add on the number of base classes to this index! child_indexes.push_back( child_idx + ClangASTContext::GetNumBaseClasses( cxx_record_decl, omit_empty_base_classes)); return child_indexes.size(); } } if (cxx_record_decl) { const clang::RecordDecl *parent_record_decl = cxx_record_decl; // printf ("parent = %s\n", parent_record_decl->getNameAsCString()); // const Decl *root_cdecl = cxx_record_decl->getCanonicalDecl(); // Didn't find things easily, lets let clang do its thang... clang::IdentifierInfo &ident_ref = getASTContext()->Idents.get(name_sref); clang::DeclarationName decl_name(&ident_ref); clang::CXXBasePaths paths; if (cxx_record_decl->lookupInBases( [decl_name](const clang::CXXBaseSpecifier *specifier, clang::CXXBasePath &path) { return clang::CXXRecordDecl::FindOrdinaryMember( specifier, path, decl_name); }, paths)) { clang::CXXBasePaths::const_paths_iterator path, path_end = paths.end(); for (path = paths.begin(); path != path_end; ++path) { const size_t num_path_elements = path->size(); for (size_t e = 0; e < num_path_elements; ++e) { clang::CXXBasePathElement elem = (*path)[e]; child_idx = GetIndexForRecordBase(parent_record_decl, elem.Base, omit_empty_base_classes); if (child_idx == UINT32_MAX) { child_indexes.clear(); return 0; } else { child_indexes.push_back(child_idx); parent_record_decl = llvm::cast( elem.Base->getType() ->getAs() ->getDecl()); } } for (clang::NamedDecl *path_decl : path->Decls) { child_idx = GetIndexForRecordChild( parent_record_decl, path_decl, omit_empty_base_classes); if (child_idx == UINT32_MAX) { child_indexes.clear(); return 0; } else { child_indexes.push_back(child_idx); } } } return child_indexes.size(); } } } break; case clang::Type::ObjCObject: case clang::Type::ObjCInterface: if (GetCompleteType(type)) { llvm::StringRef name_sref(name); const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); assert(objc_class_type); if (objc_class_type) { uint32_t child_idx = 0; clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) { clang::ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end(); clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass(); for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos, ++child_idx) { const clang::ObjCIvarDecl *ivar_decl = *ivar_pos; if (ivar_decl->getName().equals(name_sref)) { if ((!omit_empty_base_classes && superclass_interface_decl) || (omit_empty_base_classes && ObjCDeclHasIVars(superclass_interface_decl, true))) ++child_idx; child_indexes.push_back(child_idx); return child_indexes.size(); } } if (superclass_interface_decl) { // The super class index is always zero for ObjC classes, // so we push it onto the child indexes in case we find // an ivar in our superclass... child_indexes.push_back(0); CompilerType superclass_clang_type( getASTContext(), getASTContext()->getObjCInterfaceType( superclass_interface_decl)); if (superclass_clang_type.GetIndexOfChildMemberWithName( name, omit_empty_base_classes, child_indexes)) { // We did find an ivar in a superclass so just // return the results! return child_indexes.size(); } // We didn't find an ivar matching "name" in our // superclass, pop the superclass zero index that // we pushed on above. child_indexes.pop_back(); } } } } break; case clang::Type::ObjCObjectPointer: { CompilerType objc_object_clang_type( getASTContext(), llvm::cast(qual_type.getTypePtr()) ->getPointeeType()); return objc_object_clang_type.GetIndexOfChildMemberWithName( name, omit_empty_base_classes, child_indexes); } break; case clang::Type::ConstantArray: { // const clang::ConstantArrayType *array = // llvm::cast(parent_qual_type.getTypePtr()); // const uint64_t element_count = // array->getSize().getLimitedValue(); // // if (idx < element_count) // { // std::pair field_type_info = // ast->getTypeInfo(array->getElementType()); // // char element_name[32]; // ::snprintf (element_name, sizeof (element_name), // "%s[%u]", parent_name ? parent_name : "", idx); // // child_name.assign(element_name); // assert(field_type_info.first % 8 == 0); // child_byte_size = field_type_info.first / 8; // child_byte_offset = idx * child_byte_size; // return array->getElementType().getAsOpaquePtr(); // } } break; // case clang::Type::MemberPointerType: // { // MemberPointerType *mem_ptr_type = // llvm::cast(qual_type.getTypePtr()); // clang::QualType pointee_type = // mem_ptr_type->getPointeeType(); // // if (ClangASTContext::IsAggregateType // (pointee_type.getAsOpaquePtr())) // { // return GetIndexOfChildWithName (ast, // mem_ptr_type->getPointeeType().getAsOpaquePtr(), // name); // } // } // break; // case clang::Type::LValueReference: case clang::Type::RValueReference: { const clang::ReferenceType *reference_type = llvm::cast(qual_type.getTypePtr()); clang::QualType pointee_type(reference_type->getPointeeType()); CompilerType pointee_clang_type(getASTContext(), pointee_type); if (pointee_clang_type.IsAggregateType()) { return pointee_clang_type.GetIndexOfChildMemberWithName( name, omit_empty_base_classes, child_indexes); } } break; case clang::Type::Pointer: { CompilerType pointee_clang_type(GetPointeeType(type)); if (pointee_clang_type.IsAggregateType()) { return pointee_clang_type.GetIndexOfChildMemberWithName( name, omit_empty_base_classes, child_indexes); } } break; case clang::Type::Typedef: return CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetIndexOfChildMemberWithName(name, omit_empty_base_classes, child_indexes); case clang::Type::Auto: return CompilerType( getASTContext(), llvm::cast(qual_type)->getDeducedType()) .GetIndexOfChildMemberWithName(name, omit_empty_base_classes, child_indexes); case clang::Type::Elaborated: return CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetIndexOfChildMemberWithName(name, omit_empty_base_classes, child_indexes); case clang::Type::Paren: return CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetIndexOfChildMemberWithName(name, omit_empty_base_classes, child_indexes); default: break; } } return 0; } // Get the index of the child of "clang_type" whose name matches. This function // doesn't descend into the children, but only looks one level deep and name // matches can include base class names. uint32_t ClangASTContext::GetIndexOfChildWithName(lldb::opaque_compiler_type_t type, const char *name, bool omit_empty_base_classes) { if (type && name && name[0]) { clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); assert(record_decl); uint32_t child_idx = 0; const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); if (cxx_record_decl) { clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end; for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end(); base_class != base_class_end; ++base_class) { // Skip empty base classes clang::CXXRecordDecl *base_class_decl = llvm::cast( base_class->getType() ->getAs() ->getDecl()); if (omit_empty_base_classes && ClangASTContext::RecordHasFields(base_class_decl) == false) continue; CompilerType base_class_clang_type(getASTContext(), base_class->getType()); std::string base_class_type_name( base_class_clang_type.GetTypeName().AsCString("")); if (base_class_type_name.compare(name) == 0) return child_idx; ++child_idx; } } // Try and find a field that matches NAME clang::RecordDecl::field_iterator field, field_end; llvm::StringRef name_sref(name); for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++child_idx) { if (field->getName().equals(name_sref)) return child_idx; } } break; case clang::Type::ObjCObject: case clang::Type::ObjCInterface: if (GetCompleteType(type)) { llvm::StringRef name_sref(name); const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); assert(objc_class_type); if (objc_class_type) { uint32_t child_idx = 0; clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) { clang::ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end(); clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass(); for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos, ++child_idx) { const clang::ObjCIvarDecl *ivar_decl = *ivar_pos; if (ivar_decl->getName().equals(name_sref)) { if ((!omit_empty_base_classes && superclass_interface_decl) || (omit_empty_base_classes && ObjCDeclHasIVars(superclass_interface_decl, true))) ++child_idx; return child_idx; } } if (superclass_interface_decl) { if (superclass_interface_decl->getName().equals(name_sref)) return 0; } } } } break; case clang::Type::ObjCObjectPointer: { CompilerType pointee_clang_type( getASTContext(), llvm::cast(qual_type.getTypePtr()) ->getPointeeType()); return pointee_clang_type.GetIndexOfChildWithName( name, omit_empty_base_classes); } break; case clang::Type::ConstantArray: { // const clang::ConstantArrayType *array = // llvm::cast(parent_qual_type.getTypePtr()); // const uint64_t element_count = // array->getSize().getLimitedValue(); // // if (idx < element_count) // { // std::pair field_type_info = // ast->getTypeInfo(array->getElementType()); // // char element_name[32]; // ::snprintf (element_name, sizeof (element_name), // "%s[%u]", parent_name ? parent_name : "", idx); // // child_name.assign(element_name); // assert(field_type_info.first % 8 == 0); // child_byte_size = field_type_info.first / 8; // child_byte_offset = idx * child_byte_size; // return array->getElementType().getAsOpaquePtr(); // } } break; // case clang::Type::MemberPointerType: // { // MemberPointerType *mem_ptr_type = // llvm::cast(qual_type.getTypePtr()); // clang::QualType pointee_type = // mem_ptr_type->getPointeeType(); // // if (ClangASTContext::IsAggregateType // (pointee_type.getAsOpaquePtr())) // { // return GetIndexOfChildWithName (ast, // mem_ptr_type->getPointeeType().getAsOpaquePtr(), // name); // } // } // break; // case clang::Type::LValueReference: case clang::Type::RValueReference: { const clang::ReferenceType *reference_type = llvm::cast(qual_type.getTypePtr()); CompilerType pointee_type(getASTContext(), reference_type->getPointeeType()); if (pointee_type.IsAggregateType()) { return pointee_type.GetIndexOfChildWithName(name, omit_empty_base_classes); } } break; case clang::Type::Pointer: { const clang::PointerType *pointer_type = llvm::cast(qual_type.getTypePtr()); CompilerType pointee_type(getASTContext(), pointer_type->getPointeeType()); if (pointee_type.IsAggregateType()) { return pointee_type.GetIndexOfChildWithName(name, omit_empty_base_classes); } else { // if (parent_name) // { // child_name.assign(1, '*'); // child_name += parent_name; // } // // // We have a pointer to an simple type // if (idx == 0) // { // std::pair clang_type_info // = ast->getTypeInfo(pointee_type); // assert(clang_type_info.first % 8 == 0); // child_byte_size = clang_type_info.first / 8; // child_byte_offset = 0; // return pointee_type.getAsOpaquePtr(); // } } } break; case clang::Type::Auto: return CompilerType( getASTContext(), llvm::cast(qual_type)->getDeducedType()) .GetIndexOfChildWithName(name, omit_empty_base_classes); case clang::Type::Elaborated: return CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType()) .GetIndexOfChildWithName(name, omit_empty_base_classes); case clang::Type::Paren: return CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .GetIndexOfChildWithName(name, omit_empty_base_classes); case clang::Type::Typedef: return CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType()) .GetIndexOfChildWithName(name, omit_empty_base_classes); default: break; } } return UINT32_MAX; } size_t ClangASTContext::GetNumTemplateArguments(lldb::opaque_compiler_type_t type) { if (!type) return 0; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) { const clang::ClassTemplateSpecializationDecl *template_decl = llvm::dyn_cast( cxx_record_decl); if (template_decl) return template_decl->getTemplateArgs().size(); } } break; case clang::Type::Typedef: return (CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType())) .GetNumTemplateArguments(); case clang::Type::Auto: return (CompilerType( getASTContext(), llvm::cast(qual_type)->getDeducedType())) .GetNumTemplateArguments(); case clang::Type::Elaborated: return (CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType())) .GetNumTemplateArguments(); case clang::Type::Paren: return (CompilerType(getASTContext(), llvm::cast(qual_type)->desugar())) .GetNumTemplateArguments(); default: break; } return 0; } CompilerType ClangASTContext::GetTemplateArgument(lldb::opaque_compiler_type_t type, size_t arg_idx, lldb::TemplateArgumentKind &kind) { if (!type) return CompilerType(); clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) { const clang::ClassTemplateSpecializationDecl *template_decl = llvm::dyn_cast( cxx_record_decl); if (template_decl && arg_idx < template_decl->getTemplateArgs().size()) { const clang::TemplateArgument &template_arg = template_decl->getTemplateArgs()[arg_idx]; switch (template_arg.getKind()) { case clang::TemplateArgument::Null: kind = eTemplateArgumentKindNull; return CompilerType(); case clang::TemplateArgument::Type: kind = eTemplateArgumentKindType; return CompilerType(getASTContext(), template_arg.getAsType()); case clang::TemplateArgument::Declaration: kind = eTemplateArgumentKindDeclaration; return CompilerType(); case clang::TemplateArgument::Integral: kind = eTemplateArgumentKindIntegral; return CompilerType(getASTContext(), template_arg.getIntegralType()); case clang::TemplateArgument::Template: kind = eTemplateArgumentKindTemplate; return CompilerType(); case clang::TemplateArgument::TemplateExpansion: kind = eTemplateArgumentKindTemplateExpansion; return CompilerType(); case clang::TemplateArgument::Expression: kind = eTemplateArgumentKindExpression; return CompilerType(); case clang::TemplateArgument::Pack: kind = eTemplateArgumentKindPack; return CompilerType(); default: llvm_unreachable("Unhandled clang::TemplateArgument::ArgKind"); } } } } break; case clang::Type::Typedef: return (CompilerType(getASTContext(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType())) .GetTemplateArgument(arg_idx, kind); case clang::Type::Auto: return (CompilerType( getASTContext(), llvm::cast(qual_type)->getDeducedType())) .GetTemplateArgument(arg_idx, kind); case clang::Type::Elaborated: return (CompilerType( getASTContext(), llvm::cast(qual_type)->getNamedType())) .GetTemplateArgument(arg_idx, kind); case clang::Type::Paren: return (CompilerType(getASTContext(), llvm::cast(qual_type)->desugar())) .GetTemplateArgument(arg_idx, kind); default: break; } kind = eTemplateArgumentKindNull; return CompilerType(); } CompilerType ClangASTContext::GetTypeForFormatters(void *type) { if (type) return ClangUtil::RemoveFastQualifiers(CompilerType(this, type)); return CompilerType(); } clang::EnumDecl *ClangASTContext::GetAsEnumDecl(const CompilerType &type) { const clang::EnumType *enutype = llvm::dyn_cast(ClangUtil::GetCanonicalQualType(type)); if (enutype) return enutype->getDecl(); return NULL; } clang::RecordDecl *ClangASTContext::GetAsRecordDecl(const CompilerType &type) { const clang::RecordType *record_type = llvm::dyn_cast(ClangUtil::GetCanonicalQualType(type)); if (record_type) return record_type->getDecl(); return nullptr; } clang::TagDecl *ClangASTContext::GetAsTagDecl(const CompilerType &type) { clang::QualType qual_type = ClangUtil::GetCanonicalQualType(type); if (qual_type.isNull()) return nullptr; else return qual_type->getAsTagDecl(); } clang::CXXRecordDecl * ClangASTContext::GetAsCXXRecordDecl(lldb::opaque_compiler_type_t type) { return GetCanonicalQualType(type)->getAsCXXRecordDecl(); } clang::ObjCInterfaceDecl * ClangASTContext::GetAsObjCInterfaceDecl(const CompilerType &type) { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast( ClangUtil::GetCanonicalQualType(type)); if (objc_class_type) return objc_class_type->getInterface(); return nullptr; } clang::FieldDecl *ClangASTContext::AddFieldToRecordType( const CompilerType &type, const char *name, const CompilerType &field_clang_type, AccessType access, uint32_t bitfield_bit_size) { if (!type.IsValid() || !field_clang_type.IsValid()) return nullptr; ClangASTContext *ast = llvm::dyn_cast_or_null(type.GetTypeSystem()); if (!ast) return nullptr; clang::ASTContext *clang_ast = ast->getASTContext(); clang::FieldDecl *field = nullptr; clang::Expr *bit_width = nullptr; if (bitfield_bit_size != 0) { llvm::APInt bitfield_bit_size_apint( clang_ast->getTypeSize(clang_ast->IntTy), bitfield_bit_size); bit_width = new (*clang_ast) clang::IntegerLiteral(*clang_ast, bitfield_bit_size_apint, clang_ast->IntTy, clang::SourceLocation()); } clang::RecordDecl *record_decl = ast->GetAsRecordDecl(type); if (record_decl) { field = clang::FieldDecl::Create( *clang_ast, record_decl, clang::SourceLocation(), clang::SourceLocation(), name ? &clang_ast->Idents.get(name) : nullptr, // Identifier ClangUtil::GetQualType(field_clang_type), // Field type nullptr, // TInfo * bit_width, // BitWidth false, // Mutable clang::ICIS_NoInit); // HasInit if (!name) { // Determine whether this field corresponds to an anonymous // struct or union. if (const clang::TagType *TagT = field->getType()->getAs()) { if (clang::RecordDecl *Rec = llvm::dyn_cast(TagT->getDecl())) if (!Rec->getDeclName()) { Rec->setAnonymousStructOrUnion(true); field->setImplicit(); } } } if (field) { field->setAccess( ClangASTContext::ConvertAccessTypeToAccessSpecifier(access)); record_decl->addDecl(field); #ifdef LLDB_CONFIGURATION_DEBUG VerifyDecl(field); #endif } } else { clang::ObjCInterfaceDecl *class_interface_decl = ast->GetAsObjCInterfaceDecl(type); if (class_interface_decl) { const bool is_synthesized = false; field_clang_type.GetCompleteType(); field = clang::ObjCIvarDecl::Create( *clang_ast, class_interface_decl, clang::SourceLocation(), clang::SourceLocation(), name ? &clang_ast->Idents.get(name) : nullptr, // Identifier ClangUtil::GetQualType(field_clang_type), // Field type nullptr, // TypeSourceInfo * ConvertAccessTypeToObjCIvarAccessControl(access), bit_width, is_synthesized); if (field) { class_interface_decl->addDecl(field); #ifdef LLDB_CONFIGURATION_DEBUG VerifyDecl(field); #endif } } } return field; } void ClangASTContext::BuildIndirectFields(const CompilerType &type) { if (!type) return; ClangASTContext *ast = llvm::dyn_cast(type.GetTypeSystem()); if (!ast) return; clang::RecordDecl *record_decl = ast->GetAsRecordDecl(type); if (!record_decl) return; typedef llvm::SmallVector IndirectFieldVector; IndirectFieldVector indirect_fields; clang::RecordDecl::field_iterator field_pos; clang::RecordDecl::field_iterator field_end_pos = record_decl->field_end(); clang::RecordDecl::field_iterator last_field_pos = field_end_pos; for (field_pos = record_decl->field_begin(); field_pos != field_end_pos; last_field_pos = field_pos++) { if (field_pos->isAnonymousStructOrUnion()) { clang::QualType field_qual_type = field_pos->getType(); const clang::RecordType *field_record_type = field_qual_type->getAs(); if (!field_record_type) continue; clang::RecordDecl *field_record_decl = field_record_type->getDecl(); if (!field_record_decl) continue; for (clang::RecordDecl::decl_iterator di = field_record_decl->decls_begin(), de = field_record_decl->decls_end(); di != de; ++di) { if (clang::FieldDecl *nested_field_decl = llvm::dyn_cast(*di)) { clang::NamedDecl **chain = new (*ast->getASTContext()) clang::NamedDecl *[2]; chain[0] = *field_pos; chain[1] = nested_field_decl; clang::IndirectFieldDecl *indirect_field = clang::IndirectFieldDecl::Create( *ast->getASTContext(), record_decl, clang::SourceLocation(), nested_field_decl->getIdentifier(), nested_field_decl->getType(), {chain, 2}); indirect_field->setImplicit(); indirect_field->setAccess(ClangASTContext::UnifyAccessSpecifiers( field_pos->getAccess(), nested_field_decl->getAccess())); indirect_fields.push_back(indirect_field); } else if (clang::IndirectFieldDecl *nested_indirect_field_decl = llvm::dyn_cast(*di)) { size_t nested_chain_size = nested_indirect_field_decl->getChainingSize(); clang::NamedDecl **chain = new (*ast->getASTContext()) clang::NamedDecl *[nested_chain_size + 1]; chain[0] = *field_pos; int chain_index = 1; for (clang::IndirectFieldDecl::chain_iterator nci = nested_indirect_field_decl->chain_begin(), nce = nested_indirect_field_decl->chain_end(); nci < nce; ++nci) { chain[chain_index] = *nci; chain_index++; } clang::IndirectFieldDecl *indirect_field = clang::IndirectFieldDecl::Create( *ast->getASTContext(), record_decl, clang::SourceLocation(), nested_indirect_field_decl->getIdentifier(), nested_indirect_field_decl->getType(), {chain, nested_chain_size + 1}); indirect_field->setImplicit(); indirect_field->setAccess(ClangASTContext::UnifyAccessSpecifiers( field_pos->getAccess(), nested_indirect_field_decl->getAccess())); indirect_fields.push_back(indirect_field); } } } } // Check the last field to see if it has an incomplete array type as its // last member and if it does, the tell the record decl about it if (last_field_pos != field_end_pos) { if (last_field_pos->getType()->isIncompleteArrayType()) record_decl->hasFlexibleArrayMember(); } for (IndirectFieldVector::iterator ifi = indirect_fields.begin(), ife = indirect_fields.end(); ifi < ife; ++ifi) { record_decl->addDecl(*ifi); } } void ClangASTContext::SetIsPacked(const CompilerType &type) { if (type) { ClangASTContext *ast = llvm::dyn_cast(type.GetTypeSystem()); if (ast) { clang::RecordDecl *record_decl = GetAsRecordDecl(type); if (!record_decl) return; record_decl->addAttr( clang::PackedAttr::CreateImplicit(*ast->getASTContext())); } } } clang::VarDecl *ClangASTContext::AddVariableToRecordType( const CompilerType &type, const char *name, const CompilerType &var_type, AccessType access) { clang::VarDecl *var_decl = nullptr; if (!type.IsValid() || !var_type.IsValid()) return nullptr; ClangASTContext *ast = llvm::dyn_cast(type.GetTypeSystem()); if (!ast) return nullptr; clang::RecordDecl *record_decl = ast->GetAsRecordDecl(type); if (record_decl) { var_decl = clang::VarDecl::Create( *ast->getASTContext(), // ASTContext & record_decl, // DeclContext * clang::SourceLocation(), // clang::SourceLocation StartLoc clang::SourceLocation(), // clang::SourceLocation IdLoc name ? &ast->getASTContext()->Idents.get(name) : nullptr, // clang::IdentifierInfo * ClangUtil::GetQualType(var_type), // Variable clang::QualType nullptr, // TypeSourceInfo * clang::SC_Static); // StorageClass if (var_decl) { var_decl->setAccess( ClangASTContext::ConvertAccessTypeToAccessSpecifier(access)); record_decl->addDecl(var_decl); #ifdef LLDB_CONFIGURATION_DEBUG VerifyDecl(var_decl); #endif } } return var_decl; } clang::CXXMethodDecl *ClangASTContext::AddMethodToCXXRecordType( lldb::opaque_compiler_type_t type, const char *name, const CompilerType &method_clang_type, lldb::AccessType access, bool is_virtual, bool is_static, bool is_inline, bool is_explicit, bool is_attr_used, bool is_artificial) { if (!type || !method_clang_type.IsValid() || name == nullptr || name[0] == '\0') return nullptr; clang::QualType record_qual_type(GetCanonicalQualType(type)); clang::CXXRecordDecl *cxx_record_decl = record_qual_type->getAsCXXRecordDecl(); if (cxx_record_decl == nullptr) return nullptr; clang::QualType method_qual_type(ClangUtil::GetQualType(method_clang_type)); clang::CXXMethodDecl *cxx_method_decl = nullptr; clang::DeclarationName decl_name(&getASTContext()->Idents.get(name)); const clang::FunctionType *function_type = llvm::dyn_cast(method_qual_type.getTypePtr()); if (function_type == nullptr) return nullptr; const clang::FunctionProtoType *method_function_prototype( llvm::dyn_cast(function_type)); if (!method_function_prototype) return nullptr; unsigned int num_params = method_function_prototype->getNumParams(); clang::CXXDestructorDecl *cxx_dtor_decl(nullptr); clang::CXXConstructorDecl *cxx_ctor_decl(nullptr); if (is_artificial) return nullptr; // skip everything artificial if (name[0] == '~') { cxx_dtor_decl = clang::CXXDestructorDecl::Create( *getASTContext(), cxx_record_decl, clang::SourceLocation(), clang::DeclarationNameInfo( getASTContext()->DeclarationNames.getCXXDestructorName( getASTContext()->getCanonicalType(record_qual_type)), clang::SourceLocation()), method_qual_type, nullptr, is_inline, is_artificial); cxx_method_decl = cxx_dtor_decl; } else if (decl_name == cxx_record_decl->getDeclName()) { cxx_ctor_decl = clang::CXXConstructorDecl::Create( *getASTContext(), cxx_record_decl, clang::SourceLocation(), clang::DeclarationNameInfo( getASTContext()->DeclarationNames.getCXXConstructorName( getASTContext()->getCanonicalType(record_qual_type)), clang::SourceLocation()), method_qual_type, nullptr, // TypeSourceInfo * is_explicit, is_inline, is_artificial, false /*is_constexpr*/); cxx_method_decl = cxx_ctor_decl; } else { clang::StorageClass SC = is_static ? clang::SC_Static : clang::SC_None; clang::OverloadedOperatorKind op_kind = clang::NUM_OVERLOADED_OPERATORS; if (IsOperator(name, op_kind)) { if (op_kind != clang::NUM_OVERLOADED_OPERATORS) { // Check the number of operator parameters. Sometimes we have // seen bad DWARF that doesn't correctly describe operators and // if we try to create a method and add it to the class, clang // will assert and crash, so we need to make sure things are // acceptable. const bool is_method = true; if (!ClangASTContext::CheckOverloadedOperatorKindParameterCount( is_method, op_kind, num_params)) return nullptr; cxx_method_decl = clang::CXXMethodDecl::Create( *getASTContext(), cxx_record_decl, clang::SourceLocation(), clang::DeclarationNameInfo( getASTContext()->DeclarationNames.getCXXOperatorName(op_kind), clang::SourceLocation()), method_qual_type, nullptr, // TypeSourceInfo * SC, is_inline, false /*is_constexpr*/, clang::SourceLocation()); } else if (num_params == 0) { // Conversion operators don't take params... cxx_method_decl = clang::CXXConversionDecl::Create( *getASTContext(), cxx_record_decl, clang::SourceLocation(), clang::DeclarationNameInfo( getASTContext()->DeclarationNames.getCXXConversionFunctionName( getASTContext()->getCanonicalType( function_type->getReturnType())), clang::SourceLocation()), method_qual_type, nullptr, // TypeSourceInfo * is_inline, is_explicit, false /*is_constexpr*/, clang::SourceLocation()); } } if (cxx_method_decl == nullptr) { cxx_method_decl = clang::CXXMethodDecl::Create( *getASTContext(), cxx_record_decl, clang::SourceLocation(), clang::DeclarationNameInfo(decl_name, clang::SourceLocation()), method_qual_type, nullptr, // TypeSourceInfo * SC, is_inline, false /*is_constexpr*/, clang::SourceLocation()); } } clang::AccessSpecifier access_specifier = ClangASTContext::ConvertAccessTypeToAccessSpecifier(access); cxx_method_decl->setAccess(access_specifier); cxx_method_decl->setVirtualAsWritten(is_virtual); if (is_attr_used) cxx_method_decl->addAttr(clang::UsedAttr::CreateImplicit(*getASTContext())); // Populate the method decl with parameter decls llvm::SmallVector params; for (unsigned param_index = 0; param_index < num_params; ++param_index) { params.push_back(clang::ParmVarDecl::Create( *getASTContext(), cxx_method_decl, clang::SourceLocation(), clang::SourceLocation(), nullptr, // anonymous method_function_prototype->getParamType(param_index), nullptr, clang::SC_None, nullptr)); } cxx_method_decl->setParams(llvm::ArrayRef(params)); cxx_record_decl->addDecl(cxx_method_decl); // Sometimes the debug info will mention a constructor (default/copy/move), // destructor, or assignment operator (copy/move) but there won't be any // version of this in the code. So we check if the function was artificially // generated and if it is trivial and this lets the compiler/backend know // that it can inline the IR for these when it needs to and we can avoid a // "missing function" error when running expressions. if (is_artificial) { if (cxx_ctor_decl && ((cxx_ctor_decl->isDefaultConstructor() && cxx_record_decl->hasTrivialDefaultConstructor()) || (cxx_ctor_decl->isCopyConstructor() && cxx_record_decl->hasTrivialCopyConstructor()) || (cxx_ctor_decl->isMoveConstructor() && cxx_record_decl->hasTrivialMoveConstructor()))) { cxx_ctor_decl->setDefaulted(); cxx_ctor_decl->setTrivial(true); } else if (cxx_dtor_decl) { if (cxx_record_decl->hasTrivialDestructor()) { cxx_dtor_decl->setDefaulted(); cxx_dtor_decl->setTrivial(true); } } else if ((cxx_method_decl->isCopyAssignmentOperator() && cxx_record_decl->hasTrivialCopyAssignment()) || (cxx_method_decl->isMoveAssignmentOperator() && cxx_record_decl->hasTrivialMoveAssignment())) { cxx_method_decl->setDefaulted(); cxx_method_decl->setTrivial(true); } } #ifdef LLDB_CONFIGURATION_DEBUG VerifyDecl(cxx_method_decl); #endif // printf ("decl->isPolymorphic() = %i\n", // cxx_record_decl->isPolymorphic()); // printf ("decl->isAggregate() = %i\n", // cxx_record_decl->isAggregate()); // printf ("decl->isPOD() = %i\n", // cxx_record_decl->isPOD()); // printf ("decl->isEmpty() = %i\n", // cxx_record_decl->isEmpty()); // printf ("decl->isAbstract() = %i\n", // cxx_record_decl->isAbstract()); // printf ("decl->hasTrivialConstructor() = %i\n", // cxx_record_decl->hasTrivialConstructor()); // printf ("decl->hasTrivialCopyConstructor() = %i\n", // cxx_record_decl->hasTrivialCopyConstructor()); // printf ("decl->hasTrivialCopyAssignment() = %i\n", // cxx_record_decl->hasTrivialCopyAssignment()); // printf ("decl->hasTrivialDestructor() = %i\n", // cxx_record_decl->hasTrivialDestructor()); return cxx_method_decl; } #pragma mark C++ Base Classes clang::CXXBaseSpecifier * ClangASTContext::CreateBaseClassSpecifier(lldb::opaque_compiler_type_t type, AccessType access, bool is_virtual, bool base_of_class) { if (type) return new clang::CXXBaseSpecifier( clang::SourceRange(), is_virtual, base_of_class, ClangASTContext::ConvertAccessTypeToAccessSpecifier(access), getASTContext()->getTrivialTypeSourceInfo(GetQualType(type)), clang::SourceLocation()); return nullptr; } void ClangASTContext::DeleteBaseClassSpecifiers( clang::CXXBaseSpecifier **base_classes, unsigned num_base_classes) { for (unsigned i = 0; i < num_base_classes; ++i) { delete base_classes[i]; base_classes[i] = nullptr; } } bool ClangASTContext::SetBaseClassesForClassType( lldb::opaque_compiler_type_t type, clang::CXXBaseSpecifier const *const *base_classes, unsigned num_base_classes) { if (type) { clang::CXXRecordDecl *cxx_record_decl = GetAsCXXRecordDecl(type); if (cxx_record_decl) { cxx_record_decl->setBases(base_classes, num_base_classes); return true; } } return false; } bool ClangASTContext::SetObjCSuperClass( const CompilerType &type, const CompilerType &superclass_clang_type) { ClangASTContext *ast = llvm::dyn_cast_or_null(type.GetTypeSystem()); if (!ast) return false; clang::ASTContext *clang_ast = ast->getASTContext(); if (type && superclass_clang_type.IsValid() && superclass_clang_type.GetTypeSystem() == type.GetTypeSystem()) { clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl(type); clang::ObjCInterfaceDecl *super_interface_decl = GetAsObjCInterfaceDecl(superclass_clang_type); if (class_interface_decl && super_interface_decl) { class_interface_decl->setSuperClass(clang_ast->getTrivialTypeSourceInfo( clang_ast->getObjCInterfaceType(super_interface_decl))); return true; } } return false; } bool ClangASTContext::AddObjCClassProperty( const CompilerType &type, const char *property_name, const CompilerType &property_clang_type, clang::ObjCIvarDecl *ivar_decl, const char *property_setter_name, const char *property_getter_name, uint32_t property_attributes, ClangASTMetadata *metadata) { if (!type || !property_clang_type.IsValid() || property_name == nullptr || property_name[0] == '\0') return false; ClangASTContext *ast = llvm::dyn_cast(type.GetTypeSystem()); if (!ast) return false; clang::ASTContext *clang_ast = ast->getASTContext(); clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl(type); if (class_interface_decl) { CompilerType property_clang_type_to_access; if (property_clang_type.IsValid()) property_clang_type_to_access = property_clang_type; else if (ivar_decl) property_clang_type_to_access = CompilerType(clang_ast, ivar_decl->getType()); if (class_interface_decl && property_clang_type_to_access.IsValid()) { clang::TypeSourceInfo *prop_type_source; if (ivar_decl) prop_type_source = clang_ast->getTrivialTypeSourceInfo(ivar_decl->getType()); else prop_type_source = clang_ast->getTrivialTypeSourceInfo( ClangUtil::GetQualType(property_clang_type)); clang::ObjCPropertyDecl *property_decl = clang::ObjCPropertyDecl::Create( *clang_ast, class_interface_decl, clang::SourceLocation(), // Source Location &clang_ast->Idents.get(property_name), clang::SourceLocation(), // Source Location for AT clang::SourceLocation(), // Source location for ( ivar_decl ? ivar_decl->getType() : ClangUtil::GetQualType(property_clang_type), prop_type_source); if (property_decl) { if (metadata) ClangASTContext::SetMetadata(clang_ast, property_decl, *metadata); class_interface_decl->addDecl(property_decl); clang::Selector setter_sel, getter_sel; if (property_setter_name != nullptr) { std::string property_setter_no_colon( property_setter_name, strlen(property_setter_name) - 1); clang::IdentifierInfo *setter_ident = &clang_ast->Idents.get(property_setter_no_colon); setter_sel = clang_ast->Selectors.getSelector(1, &setter_ident); } else if (!(property_attributes & DW_APPLE_PROPERTY_readonly)) { std::string setter_sel_string("set"); setter_sel_string.push_back(::toupper(property_name[0])); setter_sel_string.append(&property_name[1]); clang::IdentifierInfo *setter_ident = &clang_ast->Idents.get(setter_sel_string); setter_sel = clang_ast->Selectors.getSelector(1, &setter_ident); } property_decl->setSetterName(setter_sel); property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_setter); if (property_getter_name != nullptr) { clang::IdentifierInfo *getter_ident = &clang_ast->Idents.get(property_getter_name); getter_sel = clang_ast->Selectors.getSelector(0, &getter_ident); } else { clang::IdentifierInfo *getter_ident = &clang_ast->Idents.get(property_name); getter_sel = clang_ast->Selectors.getSelector(0, &getter_ident); } property_decl->setGetterName(getter_sel); property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_getter); if (ivar_decl) property_decl->setPropertyIvarDecl(ivar_decl); if (property_attributes & DW_APPLE_PROPERTY_readonly) property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_readonly); if (property_attributes & DW_APPLE_PROPERTY_readwrite) property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_readwrite); if (property_attributes & DW_APPLE_PROPERTY_assign) property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_assign); if (property_attributes & DW_APPLE_PROPERTY_retain) property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_retain); if (property_attributes & DW_APPLE_PROPERTY_copy) property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_copy); if (property_attributes & DW_APPLE_PROPERTY_nonatomic) property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_nonatomic); if (property_attributes & clang::ObjCPropertyDecl::OBJC_PR_nullability) property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_nullability); if (property_attributes & clang::ObjCPropertyDecl::OBJC_PR_null_resettable) property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_null_resettable); if (property_attributes & clang::ObjCPropertyDecl::OBJC_PR_class) property_decl->setPropertyAttributes( clang::ObjCPropertyDecl::OBJC_PR_class); const bool isInstance = (property_attributes & clang::ObjCPropertyDecl::OBJC_PR_class) == 0; if (!getter_sel.isNull() && !(isInstance ? class_interface_decl->lookupInstanceMethod(getter_sel) : class_interface_decl->lookupClassMethod(getter_sel))) { const bool isVariadic = false; const bool isSynthesized = false; const bool isImplicitlyDeclared = true; const bool isDefined = false; const clang::ObjCMethodDecl::ImplementationControl impControl = clang::ObjCMethodDecl::None; const bool HasRelatedResultType = false; clang::ObjCMethodDecl *getter = clang::ObjCMethodDecl::Create( *clang_ast, clang::SourceLocation(), clang::SourceLocation(), getter_sel, ClangUtil::GetQualType(property_clang_type_to_access), nullptr, class_interface_decl, isInstance, isVariadic, isSynthesized, isImplicitlyDeclared, isDefined, impControl, HasRelatedResultType); if (getter && metadata) ClangASTContext::SetMetadata(clang_ast, getter, *metadata); if (getter) { getter->setMethodParams(*clang_ast, llvm::ArrayRef(), llvm::ArrayRef()); class_interface_decl->addDecl(getter); } } if (!setter_sel.isNull() && !(isInstance ? class_interface_decl->lookupInstanceMethod(setter_sel) : class_interface_decl->lookupClassMethod(setter_sel))) { clang::QualType result_type = clang_ast->VoidTy; const bool isVariadic = false; const bool isSynthesized = false; const bool isImplicitlyDeclared = true; const bool isDefined = false; const clang::ObjCMethodDecl::ImplementationControl impControl = clang::ObjCMethodDecl::None; const bool HasRelatedResultType = false; clang::ObjCMethodDecl *setter = clang::ObjCMethodDecl::Create( *clang_ast, clang::SourceLocation(), clang::SourceLocation(), setter_sel, result_type, nullptr, class_interface_decl, isInstance, isVariadic, isSynthesized, isImplicitlyDeclared, isDefined, impControl, HasRelatedResultType); if (setter && metadata) ClangASTContext::SetMetadata(clang_ast, setter, *metadata); llvm::SmallVector params; params.push_back(clang::ParmVarDecl::Create( *clang_ast, setter, clang::SourceLocation(), clang::SourceLocation(), nullptr, // anonymous ClangUtil::GetQualType(property_clang_type_to_access), nullptr, clang::SC_Auto, nullptr)); if (setter) { setter->setMethodParams( *clang_ast, llvm::ArrayRef(params), llvm::ArrayRef()); class_interface_decl->addDecl(setter); } } return true; } } } return false; } bool ClangASTContext::IsObjCClassTypeAndHasIVars(const CompilerType &type, bool check_superclass) { clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl(type); if (class_interface_decl) return ObjCDeclHasIVars(class_interface_decl, check_superclass); return false; } clang::ObjCMethodDecl *ClangASTContext::AddMethodToObjCObjectType( const CompilerType &type, const char *name, // the full symbol name as seen in the symbol table // (lldb::opaque_compiler_type_t type, "-[NString // stringWithCString:]") const CompilerType &method_clang_type, lldb::AccessType access, bool is_artificial, bool is_variadic) { if (!type || !method_clang_type.IsValid()) return nullptr; clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl(type); if (class_interface_decl == nullptr) return nullptr; ClangASTContext *lldb_ast = llvm::dyn_cast(type.GetTypeSystem()); if (lldb_ast == nullptr) return nullptr; clang::ASTContext *ast = lldb_ast->getASTContext(); const char *selector_start = ::strchr(name, ' '); if (selector_start == nullptr) return nullptr; selector_start++; llvm::SmallVector selector_idents; size_t len = 0; const char *start; // printf ("name = '%s'\n", name); unsigned num_selectors_with_args = 0; for (start = selector_start; start && *start != '\0' && *start != ']'; start += len) { len = ::strcspn(start, ":]"); bool has_arg = (start[len] == ':'); if (has_arg) ++num_selectors_with_args; selector_idents.push_back(&ast->Idents.get(llvm::StringRef(start, len))); if (has_arg) len += 1; } if (selector_idents.size() == 0) return nullptr; clang::Selector method_selector = ast->Selectors.getSelector( num_selectors_with_args ? selector_idents.size() : 0, selector_idents.data()); clang::QualType method_qual_type(ClangUtil::GetQualType(method_clang_type)); // Populate the method decl with parameter decls const clang::Type *method_type(method_qual_type.getTypePtr()); if (method_type == nullptr) return nullptr; const clang::FunctionProtoType *method_function_prototype( llvm::dyn_cast(method_type)); if (!method_function_prototype) return nullptr; bool is_synthesized = false; bool is_defined = false; clang::ObjCMethodDecl::ImplementationControl imp_control = clang::ObjCMethodDecl::None; const unsigned num_args = method_function_prototype->getNumParams(); if (num_args != num_selectors_with_args) return nullptr; // some debug information is corrupt. We are not going to // deal with it. clang::ObjCMethodDecl *objc_method_decl = clang::ObjCMethodDecl::Create( *ast, clang::SourceLocation(), // beginLoc, clang::SourceLocation(), // endLoc, method_selector, method_function_prototype->getReturnType(), nullptr, // TypeSourceInfo *ResultTInfo, ClangASTContext::GetASTContext(ast)->GetDeclContextForType( ClangUtil::GetQualType(type)), name[0] == '-', is_variadic, is_synthesized, true, // is_implicitly_declared; we force this to true because we don't // have source locations is_defined, imp_control, false /*has_related_result_type*/); if (objc_method_decl == nullptr) return nullptr; if (num_args > 0) { llvm::SmallVector params; for (unsigned param_index = 0; param_index < num_args; ++param_index) { params.push_back(clang::ParmVarDecl::Create( *ast, objc_method_decl, clang::SourceLocation(), clang::SourceLocation(), nullptr, // anonymous method_function_prototype->getParamType(param_index), nullptr, clang::SC_Auto, nullptr)); } objc_method_decl->setMethodParams( *ast, llvm::ArrayRef(params), llvm::ArrayRef()); } class_interface_decl->addDecl(objc_method_decl); #ifdef LLDB_CONFIGURATION_DEBUG VerifyDecl(objc_method_decl); #endif return objc_method_decl; } bool ClangASTContext::GetHasExternalStorage(const CompilerType &type) { if (ClangUtil::IsClangType(type)) return false; clang::QualType qual_type(ClangUtil::GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: { clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) return cxx_record_decl->hasExternalLexicalStorage() || cxx_record_decl->hasExternalVisibleStorage(); } break; case clang::Type::Enum: { clang::EnumDecl *enum_decl = llvm::cast(qual_type)->getDecl(); if (enum_decl) return enum_decl->hasExternalLexicalStorage() || enum_decl->hasExternalVisibleStorage(); } break; case clang::Type::ObjCObject: case clang::Type::ObjCInterface: { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); assert(objc_class_type); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) return class_interface_decl->hasExternalLexicalStorage() || class_interface_decl->hasExternalVisibleStorage(); } } break; case clang::Type::Typedef: return GetHasExternalStorage(CompilerType( type.GetTypeSystem(), llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr())); case clang::Type::Auto: return GetHasExternalStorage(CompilerType( type.GetTypeSystem(), llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr())); case clang::Type::Elaborated: return GetHasExternalStorage(CompilerType( type.GetTypeSystem(), llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr())); case clang::Type::Paren: return GetHasExternalStorage(CompilerType( type.GetTypeSystem(), llvm::cast(qual_type)->desugar().getAsOpaquePtr())); default: break; } return false; } bool ClangASTContext::SetHasExternalStorage(lldb::opaque_compiler_type_t type, bool has_extern) { if (!type) return false; clang::QualType qual_type(GetCanonicalQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: { clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) { cxx_record_decl->setHasExternalLexicalStorage(has_extern); cxx_record_decl->setHasExternalVisibleStorage(has_extern); return true; } } break; case clang::Type::Enum: { clang::EnumDecl *enum_decl = llvm::cast(qual_type)->getDecl(); if (enum_decl) { enum_decl->setHasExternalLexicalStorage(has_extern); enum_decl->setHasExternalVisibleStorage(has_extern); return true; } } break; case clang::Type::ObjCObject: case clang::Type::ObjCInterface: { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); assert(objc_class_type); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) { class_interface_decl->setHasExternalLexicalStorage(has_extern); class_interface_decl->setHasExternalVisibleStorage(has_extern); return true; } } } break; case clang::Type::Typedef: return SetHasExternalStorage(llvm::cast(qual_type) ->getDecl() ->getUnderlyingType() .getAsOpaquePtr(), has_extern); case clang::Type::Auto: return SetHasExternalStorage(llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr(), has_extern); case clang::Type::Elaborated: return SetHasExternalStorage(llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr(), has_extern); case clang::Type::Paren: return SetHasExternalStorage( llvm::cast(qual_type)->desugar().getAsOpaquePtr(), has_extern); default: break; } return false; } #pragma mark TagDecl bool ClangASTContext::StartTagDeclarationDefinition(const CompilerType &type) { clang::QualType qual_type(ClangUtil::GetQualType(type)); if (!qual_type.isNull()) { const clang::TagType *tag_type = qual_type->getAs(); if (tag_type) { clang::TagDecl *tag_decl = tag_type->getDecl(); if (tag_decl) { tag_decl->startDefinition(); return true; } } const clang::ObjCObjectType *object_type = qual_type->getAs(); if (object_type) { clang::ObjCInterfaceDecl *interface_decl = object_type->getInterface(); if (interface_decl) { interface_decl->startDefinition(); return true; } } } return false; } bool ClangASTContext::CompleteTagDeclarationDefinition( const CompilerType &type) { clang::QualType qual_type(ClangUtil::GetQualType(type)); if (!qual_type.isNull()) { // Make sure we use the same methodology as // ClangASTContext::StartTagDeclarationDefinition() // as to how we start/end the definition. Previously we were calling const clang::TagType *tag_type = qual_type->getAs(); if (tag_type) { clang::TagDecl *tag_decl = tag_type->getDecl(); if (tag_decl) { clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast_or_null(tag_decl); if (cxx_record_decl) { if (!cxx_record_decl->isCompleteDefinition()) cxx_record_decl->completeDefinition(); cxx_record_decl->setHasLoadedFieldsFromExternalStorage(true); cxx_record_decl->setHasExternalLexicalStorage(false); cxx_record_decl->setHasExternalVisibleStorage(false); return true; } } } const clang::EnumType *enutype = qual_type->getAs(); if (enutype) { clang::EnumDecl *enum_decl = enutype->getDecl(); if (enum_decl) { if (!enum_decl->isCompleteDefinition()) { ClangASTContext *lldb_ast = llvm::dyn_cast(type.GetTypeSystem()); if (lldb_ast == nullptr) return false; clang::ASTContext *ast = lldb_ast->getASTContext(); /// TODO This really needs to be fixed. QualType integer_type(enum_decl->getIntegerType()); if (!integer_type.isNull()) { unsigned NumPositiveBits = 1; unsigned NumNegativeBits = 0; clang::QualType promotion_qual_type; // If the enum integer type is less than an integer in bit width, // then we must promote it to an integer size. if (ast->getTypeSize(enum_decl->getIntegerType()) < ast->getTypeSize(ast->IntTy)) { if (enum_decl->getIntegerType()->isSignedIntegerType()) promotion_qual_type = ast->IntTy; else promotion_qual_type = ast->UnsignedIntTy; } else promotion_qual_type = enum_decl->getIntegerType(); enum_decl->completeDefinition(enum_decl->getIntegerType(), promotion_qual_type, NumPositiveBits, NumNegativeBits); } } return true; } } } return false; } bool ClangASTContext::AddEnumerationValueToEnumerationType( lldb::opaque_compiler_type_t type, const CompilerType &enumerator_clang_type, const Declaration &decl, const char *name, int64_t enum_value, uint32_t enum_value_bit_size) { if (type && enumerator_clang_type.IsValid() && name && name[0]) { clang::QualType enum_qual_type(GetCanonicalQualType(type)); bool is_signed = false; enumerator_clang_type.IsIntegerType(is_signed); const clang::Type *clang_type = enum_qual_type.getTypePtr(); if (clang_type) { const clang::EnumType *enutype = llvm::dyn_cast(clang_type); if (enutype) { llvm::APSInt enum_llvm_apsint(enum_value_bit_size, is_signed); enum_llvm_apsint = enum_value; clang::EnumConstantDecl *enumerator_decl = clang::EnumConstantDecl::Create( *getASTContext(), enutype->getDecl(), clang::SourceLocation(), name ? &getASTContext()->Idents.get(name) : nullptr, // Identifier ClangUtil::GetQualType(enumerator_clang_type), nullptr, enum_llvm_apsint); if (enumerator_decl) { enutype->getDecl()->addDecl(enumerator_decl); #ifdef LLDB_CONFIGURATION_DEBUG VerifyDecl(enumerator_decl); #endif return true; } } } } return false; } CompilerType ClangASTContext::GetEnumerationIntegerType(lldb::opaque_compiler_type_t type) { clang::QualType enum_qual_type(GetCanonicalQualType(type)); const clang::Type *clang_type = enum_qual_type.getTypePtr(); if (clang_type) { const clang::EnumType *enutype = llvm::dyn_cast(clang_type); if (enutype) { clang::EnumDecl *enum_decl = enutype->getDecl(); if (enum_decl) return CompilerType(getASTContext(), enum_decl->getIntegerType()); } } return CompilerType(); } CompilerType ClangASTContext::CreateMemberPointerType(const CompilerType &type, const CompilerType &pointee_type) { if (type && pointee_type.IsValid() && type.GetTypeSystem() == pointee_type.GetTypeSystem()) { ClangASTContext *ast = llvm::dyn_cast(type.GetTypeSystem()); if (!ast) return CompilerType(); return CompilerType(ast->getASTContext(), ast->getASTContext()->getMemberPointerType( ClangUtil::GetQualType(pointee_type), ClangUtil::GetQualType(type).getTypePtr())); } return CompilerType(); } size_t ClangASTContext::ConvertStringToFloatValue(lldb::opaque_compiler_type_t type, const char *s, uint8_t *dst, size_t dst_size) { if (type) { clang::QualType qual_type(GetCanonicalQualType(type)); uint32_t count = 0; bool is_complex = false; if (IsFloatingPointType(type, count, is_complex)) { // TODO: handle complex and vector types if (count != 1) return false; llvm::StringRef s_sref(s); llvm::APFloat ap_float(getASTContext()->getFloatTypeSemantics(qual_type), s_sref); const uint64_t bit_size = getASTContext()->getTypeSize(qual_type); const uint64_t byte_size = bit_size / 8; if (dst_size >= byte_size) { Scalar scalar = ap_float.bitcastToAPInt().zextOrTrunc( llvm::NextPowerOf2(byte_size) * 8); lldb_private::Error get_data_error; if (scalar.GetAsMemoryData(dst, byte_size, lldb_private::endian::InlHostByteOrder(), get_data_error)) return byte_size; } } } return 0; } //---------------------------------------------------------------------- // Dumping types //---------------------------------------------------------------------- #define DEPTH_INCREMENT 2 void ClangASTContext::DumpValue( lldb::opaque_compiler_type_t type, ExecutionContext *exe_ctx, Stream *s, lldb::Format format, const lldb_private::DataExtractor &data, lldb::offset_t data_byte_offset, size_t data_byte_size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset, bool show_types, bool show_summary, bool verbose, uint32_t depth) { if (!type) return; clang::QualType qual_type(GetQualType(type)); switch (qual_type->getTypeClass()) { case clang::Type::Record: if (GetCompleteType(type)) { const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); assert(record_decl); uint32_t field_bit_offset = 0; uint32_t field_byte_offset = 0; const clang::ASTRecordLayout &record_layout = getASTContext()->getASTRecordLayout(record_decl); uint32_t child_idx = 0; const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); if (cxx_record_decl) { // We might have base classes to print out first clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end; for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end(); base_class != base_class_end; ++base_class) { const clang::CXXRecordDecl *base_class_decl = llvm::cast( base_class->getType()->getAs()->getDecl()); // Skip empty base classes if (verbose == false && ClangASTContext::RecordHasFields(base_class_decl) == false) continue; if (base_class->isVirtual()) field_bit_offset = record_layout.getVBaseClassOffset(base_class_decl) .getQuantity() * 8; else field_bit_offset = record_layout.getBaseClassOffset(base_class_decl) .getQuantity() * 8; field_byte_offset = field_bit_offset / 8; assert(field_bit_offset % 8 == 0); if (child_idx == 0) s->PutChar('{'); else s->PutChar(','); clang::QualType base_class_qual_type = base_class->getType(); std::string base_class_type_name(base_class_qual_type.getAsString()); // Indent and print the base class type name s->Format("\n{0}{1}", llvm::fmt_repeat(" ", depth + DEPTH_INCREMENT), base_class_type_name); clang::TypeInfo base_class_type_info = getASTContext()->getTypeInfo(base_class_qual_type); // Dump the value of the member CompilerType base_clang_type(getASTContext(), base_class_qual_type); base_clang_type.DumpValue( exe_ctx, s, // Stream to dump to base_clang_type .GetFormat(), // The format with which to display the member data, // Data buffer containing all bytes for this type data_byte_offset + field_byte_offset, // Offset into "data" where // to grab value from base_class_type_info.Width / 8, // Size of this type in bytes 0, // Bitfield bit size 0, // Bitfield bit offset show_types, // Boolean indicating if we should show the variable // types show_summary, // Boolean indicating if we should show a summary // for the current type verbose, // Verbose output? depth + DEPTH_INCREMENT); // Scope depth for any types that have // children ++child_idx; } } uint32_t field_idx = 0; clang::RecordDecl::field_iterator field, field_end; for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++field_idx, ++child_idx) { // Print the starting squiggly bracket (if this is the // first member) or comma (for member 2 and beyond) for // the struct/union/class member. if (child_idx == 0) s->PutChar('{'); else s->PutChar(','); // Indent s->Printf("\n%*s", depth + DEPTH_INCREMENT, ""); clang::QualType field_type = field->getType(); // Print the member type if requested // Figure out the type byte size (field_type_info.first) and // alignment (field_type_info.second) from the AST context. clang::TypeInfo field_type_info = getASTContext()->getTypeInfo(field_type); assert(field_idx < record_layout.getFieldCount()); // Figure out the field offset within the current struct/union/class // type field_bit_offset = record_layout.getFieldOffset(field_idx); field_byte_offset = field_bit_offset / 8; uint32_t field_bitfield_bit_size = 0; uint32_t field_bitfield_bit_offset = 0; if (ClangASTContext::FieldIsBitfield(getASTContext(), *field, field_bitfield_bit_size)) field_bitfield_bit_offset = field_bit_offset % 8; if (show_types) { std::string field_type_name(field_type.getAsString()); if (field_bitfield_bit_size > 0) s->Printf("(%s:%u) ", field_type_name.c_str(), field_bitfield_bit_size); else s->Printf("(%s) ", field_type_name.c_str()); } // Print the member name and equal sign s->Printf("%s = ", field->getNameAsString().c_str()); // Dump the value of the member CompilerType field_clang_type(getASTContext(), field_type); field_clang_type.DumpValue( exe_ctx, s, // Stream to dump to field_clang_type .GetFormat(), // The format with which to display the member data, // Data buffer containing all bytes for this type data_byte_offset + field_byte_offset, // Offset into "data" where to // grab value from field_type_info.Width / 8, // Size of this type in bytes field_bitfield_bit_size, // Bitfield bit size field_bitfield_bit_offset, // Bitfield bit offset show_types, // Boolean indicating if we should show the variable // types show_summary, // Boolean indicating if we should show a summary for // the current type verbose, // Verbose output? depth + DEPTH_INCREMENT); // Scope depth for any types that have // children } // Indent the trailing squiggly bracket if (child_idx > 0) s->Printf("\n%*s}", depth, ""); } return; case clang::Type::Enum: if (GetCompleteType(type)) { const clang::EnumType *enutype = llvm::cast(qual_type.getTypePtr()); const clang::EnumDecl *enum_decl = enutype->getDecl(); assert(enum_decl); clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos; lldb::offset_t offset = data_byte_offset; const int64_t enum_value = data.GetMaxU64Bitfield( &offset, data_byte_size, bitfield_bit_size, bitfield_bit_offset); for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos) { if (enum_pos->getInitVal() == enum_value) { s->Printf("%s", enum_pos->getNameAsString().c_str()); return; } } // If we have gotten here we didn't get find the enumerator in the // enum decl, so just print the integer. s->Printf("%" PRIi64, enum_value); } return; case clang::Type::ConstantArray: { const clang::ConstantArrayType *array = llvm::cast(qual_type.getTypePtr()); bool is_array_of_characters = false; clang::QualType element_qual_type = array->getElementType(); const clang::Type *canonical_type = element_qual_type->getCanonicalTypeInternal().getTypePtr(); if (canonical_type) is_array_of_characters = canonical_type->isCharType(); const uint64_t element_count = array->getSize().getLimitedValue(); clang::TypeInfo field_type_info = getASTContext()->getTypeInfo(element_qual_type); uint32_t element_idx = 0; uint32_t element_offset = 0; uint64_t element_byte_size = field_type_info.Width / 8; uint32_t element_stride = element_byte_size; if (is_array_of_characters) { s->PutChar('"'); data.Dump(s, data_byte_offset, lldb::eFormatChar, element_byte_size, element_count, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('"'); return; } else { CompilerType element_clang_type(getASTContext(), element_qual_type); lldb::Format element_format = element_clang_type.GetFormat(); for (element_idx = 0; element_idx < element_count; ++element_idx) { // Print the starting squiggly bracket (if this is the // first member) or comman (for member 2 and beyong) for // the struct/union/class member. if (element_idx == 0) s->PutChar('{'); else s->PutChar(','); // Indent and print the index s->Printf("\n%*s[%u] ", depth + DEPTH_INCREMENT, "", element_idx); // Figure out the field offset within the current struct/union/class // type element_offset = element_idx * element_stride; // Dump the value of the member element_clang_type.DumpValue( exe_ctx, s, // Stream to dump to element_format, // The format with which to display the element data, // Data buffer containing all bytes for this type data_byte_offset + element_offset, // Offset into "data" where to grab value from element_byte_size, // Size of this type in bytes 0, // Bitfield bit size 0, // Bitfield bit offset show_types, // Boolean indicating if we should show the variable // types show_summary, // Boolean indicating if we should show a summary for // the current type verbose, // Verbose output? depth + DEPTH_INCREMENT); // Scope depth for any types that have // children } // Indent the trailing squiggly bracket if (element_idx > 0) s->Printf("\n%*s}", depth, ""); } } return; case clang::Type::Typedef: { clang::QualType typedef_qual_type = llvm::cast(qual_type) ->getDecl() ->getUnderlyingType(); CompilerType typedef_clang_type(getASTContext(), typedef_qual_type); lldb::Format typedef_format = typedef_clang_type.GetFormat(); clang::TypeInfo typedef_type_info = getASTContext()->getTypeInfo(typedef_qual_type); uint64_t typedef_byte_size = typedef_type_info.Width / 8; return typedef_clang_type.DumpValue( exe_ctx, s, // Stream to dump to typedef_format, // The format with which to display the element data, // Data buffer containing all bytes for this type data_byte_offset, // Offset into "data" where to grab value from typedef_byte_size, // Size of this type in bytes bitfield_bit_size, // Bitfield bit size bitfield_bit_offset, // Bitfield bit offset show_types, // Boolean indicating if we should show the variable types show_summary, // Boolean indicating if we should show a summary for the // current type verbose, // Verbose output? depth); // Scope depth for any types that have children } break; case clang::Type::Auto: { clang::QualType elaborated_qual_type = llvm::cast(qual_type)->getDeducedType(); CompilerType elaborated_clang_type(getASTContext(), elaborated_qual_type); lldb::Format elaborated_format = elaborated_clang_type.GetFormat(); clang::TypeInfo elaborated_type_info = getASTContext()->getTypeInfo(elaborated_qual_type); uint64_t elaborated_byte_size = elaborated_type_info.Width / 8; return elaborated_clang_type.DumpValue( exe_ctx, s, // Stream to dump to elaborated_format, // The format with which to display the element data, // Data buffer containing all bytes for this type data_byte_offset, // Offset into "data" where to grab value from elaborated_byte_size, // Size of this type in bytes bitfield_bit_size, // Bitfield bit size bitfield_bit_offset, // Bitfield bit offset show_types, // Boolean indicating if we should show the variable types show_summary, // Boolean indicating if we should show a summary for the // current type verbose, // Verbose output? depth); // Scope depth for any types that have children } break; case clang::Type::Elaborated: { clang::QualType elaborated_qual_type = llvm::cast(qual_type)->getNamedType(); CompilerType elaborated_clang_type(getASTContext(), elaborated_qual_type); lldb::Format elaborated_format = elaborated_clang_type.GetFormat(); clang::TypeInfo elaborated_type_info = getASTContext()->getTypeInfo(elaborated_qual_type); uint64_t elaborated_byte_size = elaborated_type_info.Width / 8; return elaborated_clang_type.DumpValue( exe_ctx, s, // Stream to dump to elaborated_format, // The format with which to display the element data, // Data buffer containing all bytes for this type data_byte_offset, // Offset into "data" where to grab value from elaborated_byte_size, // Size of this type in bytes bitfield_bit_size, // Bitfield bit size bitfield_bit_offset, // Bitfield bit offset show_types, // Boolean indicating if we should show the variable types show_summary, // Boolean indicating if we should show a summary for the // current type verbose, // Verbose output? depth); // Scope depth for any types that have children } break; case clang::Type::Paren: { clang::QualType desugar_qual_type = llvm::cast(qual_type)->desugar(); CompilerType desugar_clang_type(getASTContext(), desugar_qual_type); lldb::Format desugar_format = desugar_clang_type.GetFormat(); clang::TypeInfo desugar_type_info = getASTContext()->getTypeInfo(desugar_qual_type); uint64_t desugar_byte_size = desugar_type_info.Width / 8; return desugar_clang_type.DumpValue( exe_ctx, s, // Stream to dump to desugar_format, // The format with which to display the element data, // Data buffer containing all bytes for this type data_byte_offset, // Offset into "data" where to grab value from desugar_byte_size, // Size of this type in bytes bitfield_bit_size, // Bitfield bit size bitfield_bit_offset, // Bitfield bit offset show_types, // Boolean indicating if we should show the variable types show_summary, // Boolean indicating if we should show a summary for the // current type verbose, // Verbose output? depth); // Scope depth for any types that have children } break; default: // We are down to a scalar type that we just need to display. data.Dump(s, data_byte_offset, format, data_byte_size, 1, UINT32_MAX, LLDB_INVALID_ADDRESS, bitfield_bit_size, bitfield_bit_offset); if (show_summary) DumpSummary(type, exe_ctx, s, data, data_byte_offset, data_byte_size); break; } } bool ClangASTContext::DumpTypeValue( lldb::opaque_compiler_type_t type, Stream *s, lldb::Format format, const lldb_private::DataExtractor &data, lldb::offset_t byte_offset, size_t byte_size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset, ExecutionContextScope *exe_scope) { if (!type) return false; if (IsAggregateType(type)) { return false; } else { clang::QualType qual_type(GetQualType(type)); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Typedef: { clang::QualType typedef_qual_type = llvm::cast(qual_type) ->getDecl() ->getUnderlyingType(); CompilerType typedef_clang_type(getASTContext(), typedef_qual_type); if (format == eFormatDefault) format = typedef_clang_type.GetFormat(); clang::TypeInfo typedef_type_info = getASTContext()->getTypeInfo(typedef_qual_type); uint64_t typedef_byte_size = typedef_type_info.Width / 8; return typedef_clang_type.DumpTypeValue( s, format, // The format with which to display the element data, // Data buffer containing all bytes for this type byte_offset, // Offset into "data" where to grab value from typedef_byte_size, // Size of this type in bytes bitfield_bit_size, // Size in bits of a bitfield value, if zero don't // treat as a bitfield bitfield_bit_offset, // Offset in bits of a bitfield value if // bitfield_bit_size != 0 exe_scope); } break; case clang::Type::Enum: // If our format is enum or default, show the enumeration value as // its enumeration string value, else just display it as requested. if ((format == eFormatEnum || format == eFormatDefault) && GetCompleteType(type)) { const clang::EnumType *enutype = llvm::cast(qual_type.getTypePtr()); const clang::EnumDecl *enum_decl = enutype->getDecl(); assert(enum_decl); clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos; const bool is_signed = qual_type->isSignedIntegerOrEnumerationType(); lldb::offset_t offset = byte_offset; if (is_signed) { const int64_t enum_svalue = data.GetMaxS64Bitfield( &offset, byte_size, bitfield_bit_size, bitfield_bit_offset); for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos) { if (enum_pos->getInitVal().getSExtValue() == enum_svalue) { s->PutCString(enum_pos->getNameAsString()); return true; } } // If we have gotten here we didn't get find the enumerator in the // enum decl, so just print the integer. s->Printf("%" PRIi64, enum_svalue); } else { const uint64_t enum_uvalue = data.GetMaxU64Bitfield( &offset, byte_size, bitfield_bit_size, bitfield_bit_offset); for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos) { if (enum_pos->getInitVal().getZExtValue() == enum_uvalue) { s->PutCString(enum_pos->getNameAsString()); return true; } } // If we have gotten here we didn't get find the enumerator in the // enum decl, so just print the integer. s->Printf("%" PRIu64, enum_uvalue); } return true; } // format was not enum, just fall through and dump the value as // requested.... LLVM_FALLTHROUGH; default: // We are down to a scalar type that we just need to display. { uint32_t item_count = 1; // A few formats, we might need to modify our size and count for // depending // on how we are trying to display the value... switch (format) { default: case eFormatBoolean: case eFormatBinary: case eFormatComplex: case eFormatCString: // NULL terminated C strings case eFormatDecimal: case eFormatEnum: case eFormatHex: case eFormatHexUppercase: case eFormatFloat: case eFormatOctal: case eFormatOSType: case eFormatUnsigned: case eFormatPointer: case eFormatVectorOfChar: case eFormatVectorOfSInt8: case eFormatVectorOfUInt8: case eFormatVectorOfSInt16: case eFormatVectorOfUInt16: case eFormatVectorOfSInt32: case eFormatVectorOfUInt32: case eFormatVectorOfSInt64: case eFormatVectorOfUInt64: case eFormatVectorOfFloat32: case eFormatVectorOfFloat64: case eFormatVectorOfUInt128: break; case eFormatChar: case eFormatCharPrintable: case eFormatCharArray: case eFormatBytes: case eFormatBytesWithASCII: item_count = byte_size; byte_size = 1; break; case eFormatUnicode16: item_count = byte_size / 2; byte_size = 2; break; case eFormatUnicode32: item_count = byte_size / 4; byte_size = 4; break; } return data.Dump(s, byte_offset, format, byte_size, item_count, UINT32_MAX, LLDB_INVALID_ADDRESS, bitfield_bit_size, bitfield_bit_offset, exe_scope); } break; } } return 0; } void ClangASTContext::DumpSummary(lldb::opaque_compiler_type_t type, ExecutionContext *exe_ctx, Stream *s, const lldb_private::DataExtractor &data, lldb::offset_t data_byte_offset, size_t data_byte_size) { uint32_t length = 0; if (IsCStringType(type, length)) { if (exe_ctx) { Process *process = exe_ctx->GetProcessPtr(); if (process) { lldb::offset_t offset = data_byte_offset; lldb::addr_t pointer_address = data.GetMaxU64(&offset, data_byte_size); std::vector buf; if (length > 0) buf.resize(length); else buf.resize(256); lldb_private::DataExtractor cstr_data(&buf.front(), buf.size(), process->GetByteOrder(), 4); buf.back() = '\0'; size_t bytes_read; size_t total_cstr_len = 0; Error error; while ((bytes_read = process->ReadMemory(pointer_address, &buf.front(), buf.size(), error)) > 0) { const size_t len = strlen((const char *)&buf.front()); if (len == 0) break; if (total_cstr_len == 0) s->PutCString(" \""); cstr_data.Dump(s, 0, lldb::eFormatChar, 1, len, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0); total_cstr_len += len; if (len < buf.size()) break; pointer_address += total_cstr_len; } if (total_cstr_len > 0) s->PutChar('"'); } } } } void ClangASTContext::DumpTypeDescription(lldb::opaque_compiler_type_t type) { StreamFile s(stdout, false); DumpTypeDescription(type, &s); ClangASTMetadata *metadata = ClangASTContext::GetMetadata(getASTContext(), type); if (metadata) { metadata->Dump(&s); } } void ClangASTContext::DumpTypeDescription(lldb::opaque_compiler_type_t type, Stream *s) { if (type) { clang::QualType qual_type(GetQualType(type)); llvm::SmallVector buf; llvm::raw_svector_ostream llvm_ostrm(buf); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::ObjCObject: case clang::Type::ObjCInterface: { GetCompleteType(type); const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type.getTypePtr()); assert(objc_class_type); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); if (class_interface_decl) { clang::PrintingPolicy policy = getASTContext()->getPrintingPolicy(); class_interface_decl->print(llvm_ostrm, policy, s->GetIndentLevel()); } } } break; case clang::Type::Typedef: { const clang::TypedefType *typedef_type = qual_type->getAs(); if (typedef_type) { const clang::TypedefNameDecl *typedef_decl = typedef_type->getDecl(); std::string clang_typedef_name( typedef_decl->getQualifiedNameAsString()); if (!clang_typedef_name.empty()) { s->PutCString("typedef "); s->PutCString(clang_typedef_name); } } } break; case clang::Type::Auto: CompilerType(getASTContext(), llvm::cast(qual_type)->getDeducedType()) .DumpTypeDescription(s); return; case clang::Type::Elaborated: CompilerType(getASTContext(), llvm::cast(qual_type)->getNamedType()) .DumpTypeDescription(s); return; case clang::Type::Paren: CompilerType(getASTContext(), llvm::cast(qual_type)->desugar()) .DumpTypeDescription(s); return; case clang::Type::Record: { GetCompleteType(type); const clang::RecordType *record_type = llvm::cast(qual_type.getTypePtr()); const clang::RecordDecl *record_decl = record_type->getDecl(); const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast(record_decl); if (cxx_record_decl) cxx_record_decl->print(llvm_ostrm, getASTContext()->getPrintingPolicy(), s->GetIndentLevel()); else record_decl->print(llvm_ostrm, getASTContext()->getPrintingPolicy(), s->GetIndentLevel()); } break; default: { const clang::TagType *tag_type = llvm::dyn_cast(qual_type.getTypePtr()); if (tag_type) { clang::TagDecl *tag_decl = tag_type->getDecl(); if (tag_decl) tag_decl->print(llvm_ostrm, 0); } else { std::string clang_type_name(qual_type.getAsString()); if (!clang_type_name.empty()) s->PutCString(clang_type_name); } } } if (buf.size() > 0) { s->Write(buf.data(), buf.size()); } } } void ClangASTContext::DumpTypeName(const CompilerType &type) { if (ClangUtil::IsClangType(type)) { clang::QualType qual_type( ClangUtil::GetCanonicalQualType(ClangUtil::RemoveFastQualifiers(type))); const clang::Type::TypeClass type_class = qual_type->getTypeClass(); switch (type_class) { case clang::Type::Record: { const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl(); if (cxx_record_decl) printf("class %s", cxx_record_decl->getName().str().c_str()); } break; case clang::Type::Enum: { clang::EnumDecl *enum_decl = llvm::cast(qual_type)->getDecl(); if (enum_decl) { printf("enum %s", enum_decl->getName().str().c_str()); } } break; case clang::Type::ObjCObject: case clang::Type::ObjCInterface: { const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast(qual_type); if (objc_class_type) { clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface(); // We currently can't complete objective C types through the newly added // ASTContext // because it only supports TagDecl objects right now... if (class_interface_decl) printf("@class %s", class_interface_decl->getName().str().c_str()); } } break; case clang::Type::Typedef: printf("typedef %s", llvm::cast(qual_type) ->getDecl() ->getName() .str() .c_str()); break; case clang::Type::Auto: printf("auto "); return DumpTypeName(CompilerType(type.GetTypeSystem(), llvm::cast(qual_type) ->getDeducedType() .getAsOpaquePtr())); case clang::Type::Elaborated: printf("elaborated "); return DumpTypeName(CompilerType( type.GetTypeSystem(), llvm::cast(qual_type) ->getNamedType() .getAsOpaquePtr())); case clang::Type::Paren: printf("paren "); return DumpTypeName(CompilerType( type.GetTypeSystem(), llvm::cast(qual_type)->desugar().getAsOpaquePtr())); default: printf("ClangASTContext::DumpTypeName() type_class = %u", type_class); break; } } } clang::ClassTemplateDecl *ClangASTContext::ParseClassTemplateDecl( clang::DeclContext *decl_ctx, lldb::AccessType access_type, const char *parent_name, int tag_decl_kind, const ClangASTContext::TemplateParameterInfos &template_param_infos) { if (template_param_infos.IsValid()) { std::string template_basename(parent_name); template_basename.erase(template_basename.find('<')); return CreateClassTemplateDecl(decl_ctx, access_type, template_basename.c_str(), tag_decl_kind, template_param_infos); } return NULL; } void ClangASTContext::CompleteTagDecl(void *baton, clang::TagDecl *decl) { ClangASTContext *ast = (ClangASTContext *)baton; SymbolFile *sym_file = ast->GetSymbolFile(); if (sym_file) { CompilerType clang_type = GetTypeForDecl(decl); if (clang_type) sym_file->CompleteType(clang_type); } } void ClangASTContext::CompleteObjCInterfaceDecl( void *baton, clang::ObjCInterfaceDecl *decl) { ClangASTContext *ast = (ClangASTContext *)baton; SymbolFile *sym_file = ast->GetSymbolFile(); if (sym_file) { CompilerType clang_type = GetTypeForDecl(decl); if (clang_type) sym_file->CompleteType(clang_type); } } DWARFASTParser *ClangASTContext::GetDWARFParser() { if (!m_dwarf_ast_parser_ap) m_dwarf_ast_parser_ap.reset(new DWARFASTParserClang(*this)); return m_dwarf_ast_parser_ap.get(); } PDBASTParser *ClangASTContext::GetPDBParser() { if (!m_pdb_ast_parser_ap) m_pdb_ast_parser_ap.reset(new PDBASTParser(*this)); return m_pdb_ast_parser_ap.get(); } bool ClangASTContext::LayoutRecordType( void *baton, const clang::RecordDecl *record_decl, uint64_t &bit_size, uint64_t &alignment, llvm::DenseMap &field_offsets, llvm::DenseMap &base_offsets, llvm::DenseMap &vbase_offsets) { ClangASTContext *ast = (ClangASTContext *)baton; DWARFASTParserClang *dwarf_ast_parser = (DWARFASTParserClang *)ast->GetDWARFParser(); return dwarf_ast_parser->GetClangASTImporter().LayoutRecordType( record_decl, bit_size, alignment, field_offsets, base_offsets, vbase_offsets); } //---------------------------------------------------------------------- // CompilerDecl override functions //---------------------------------------------------------------------- ConstString ClangASTContext::DeclGetName(void *opaque_decl) { if (opaque_decl) { clang::NamedDecl *nd = llvm::dyn_cast((clang::Decl *)opaque_decl); if (nd != nullptr) return ConstString(nd->getDeclName().getAsString()); } return ConstString(); } ConstString ClangASTContext::DeclGetMangledName(void *opaque_decl) { if (opaque_decl) { clang::NamedDecl *nd = llvm::dyn_cast((clang::Decl *)opaque_decl); if (nd != nullptr && !llvm::isa(nd)) { clang::MangleContext *mc = getMangleContext(); if (mc && mc->shouldMangleCXXName(nd)) { llvm::SmallVector buf; llvm::raw_svector_ostream llvm_ostrm(buf); if (llvm::isa(nd)) { mc->mangleCXXCtor(llvm::dyn_cast(nd), Ctor_Complete, llvm_ostrm); } else if (llvm::isa(nd)) { mc->mangleCXXDtor(llvm::dyn_cast(nd), Dtor_Complete, llvm_ostrm); } else { mc->mangleName(nd, llvm_ostrm); } if (buf.size() > 0) return ConstString(buf.data(), buf.size()); } } } return ConstString(); } CompilerDeclContext ClangASTContext::DeclGetDeclContext(void *opaque_decl) { if (opaque_decl) return CompilerDeclContext(this, ((clang::Decl *)opaque_decl)->getDeclContext()); else return CompilerDeclContext(); } CompilerType ClangASTContext::DeclGetFunctionReturnType(void *opaque_decl) { if (clang::FunctionDecl *func_decl = llvm::dyn_cast((clang::Decl *)opaque_decl)) return CompilerType(this, func_decl->getReturnType().getAsOpaquePtr()); if (clang::ObjCMethodDecl *objc_method = llvm::dyn_cast((clang::Decl *)opaque_decl)) return CompilerType(this, objc_method->getReturnType().getAsOpaquePtr()); else return CompilerType(); } size_t ClangASTContext::DeclGetFunctionNumArguments(void *opaque_decl) { if (clang::FunctionDecl *func_decl = llvm::dyn_cast((clang::Decl *)opaque_decl)) return func_decl->param_size(); if (clang::ObjCMethodDecl *objc_method = llvm::dyn_cast((clang::Decl *)opaque_decl)) return objc_method->param_size(); else return 0; } CompilerType ClangASTContext::DeclGetFunctionArgumentType(void *opaque_decl, size_t idx) { if (clang::FunctionDecl *func_decl = llvm::dyn_cast((clang::Decl *)opaque_decl)) { if (idx < func_decl->param_size()) { ParmVarDecl *var_decl = func_decl->getParamDecl(idx); if (var_decl) return CompilerType(this, var_decl->getOriginalType().getAsOpaquePtr()); } } else if (clang::ObjCMethodDecl *objc_method = llvm::dyn_cast( (clang::Decl *)opaque_decl)) { if (idx < objc_method->param_size()) return CompilerType( this, objc_method->parameters()[idx]->getOriginalType().getAsOpaquePtr()); } return CompilerType(); } //---------------------------------------------------------------------- // CompilerDeclContext functions //---------------------------------------------------------------------- std::vector ClangASTContext::DeclContextFindDeclByName( void *opaque_decl_ctx, ConstString name, const bool ignore_using_decls) { std::vector found_decls; if (opaque_decl_ctx) { DeclContext *root_decl_ctx = (DeclContext *)opaque_decl_ctx; std::set searched; std::multimap search_queue; SymbolFile *symbol_file = GetSymbolFile(); for (clang::DeclContext *decl_context = root_decl_ctx; decl_context != nullptr && found_decls.empty(); decl_context = decl_context->getParent()) { search_queue.insert(std::make_pair(decl_context, decl_context)); for (auto it = search_queue.find(decl_context); it != search_queue.end(); it++) { if (!searched.insert(it->second).second) continue; symbol_file->ParseDeclsForContext( CompilerDeclContext(this, it->second)); for (clang::Decl *child : it->second->decls()) { if (clang::UsingDirectiveDecl *ud = llvm::dyn_cast(child)) { if (ignore_using_decls) continue; clang::DeclContext *from = ud->getCommonAncestor(); if (searched.find(ud->getNominatedNamespace()) == searched.end()) search_queue.insert( std::make_pair(from, ud->getNominatedNamespace())); } else if (clang::UsingDecl *ud = llvm::dyn_cast(child)) { if (ignore_using_decls) continue; for (clang::UsingShadowDecl *usd : ud->shadows()) { clang::Decl *target = usd->getTargetDecl(); if (clang::NamedDecl *nd = llvm::dyn_cast(target)) { IdentifierInfo *ii = nd->getIdentifier(); if (ii != nullptr && ii->getName().equals(name.AsCString(nullptr))) found_decls.push_back(CompilerDecl(this, nd)); } } } else if (clang::NamedDecl *nd = llvm::dyn_cast(child)) { IdentifierInfo *ii = nd->getIdentifier(); if (ii != nullptr && ii->getName().equals(name.AsCString(nullptr))) found_decls.push_back(CompilerDecl(this, nd)); } } } } } return found_decls; } // Look for child_decl_ctx's lookup scope in frame_decl_ctx and its parents, // and return the number of levels it took to find it, or // LLDB_INVALID_DECL_LEVEL // if not found. If the decl was imported via a using declaration, its name // and/or // type, if set, will be used to check that the decl found in the scope is a // match. // // The optional name is required by languages (like C++) to handle using // declarations // like: // // void poo(); // namespace ns { // void foo(); // void goo(); // } // void bar() { // using ns::foo; // // CountDeclLevels returns 0 for 'foo', 1 for 'poo', and // // LLDB_INVALID_DECL_LEVEL for 'goo'. // } // // The optional type is useful in the case that there's a specific overload // that we're looking for that might otherwise be shadowed, like: // // void foo(int); // namespace ns { // void foo(); // } // void bar() { // using ns::foo; // // CountDeclLevels returns 0 for { 'foo', void() }, // // 1 for { 'foo', void(int) }, and // // LLDB_INVALID_DECL_LEVEL for { 'foo', void(int, int) }. // } // // NOTE: Because file statics are at the TranslationUnit along with globals, a // function at file scope will return the same level as a function at global // scope. // Ideally we'd like to treat the file scope as an additional scope just below // the // global scope. More work needs to be done to recognise that, if the decl // we're // trying to look up is static, we should compare its source file with that of // the // current scope and return a lower number for it. uint32_t ClangASTContext::CountDeclLevels(clang::DeclContext *frame_decl_ctx, clang::DeclContext *child_decl_ctx, ConstString *child_name, CompilerType *child_type) { if (frame_decl_ctx) { std::set searched; std::multimap search_queue; SymbolFile *symbol_file = GetSymbolFile(); // Get the lookup scope for the decl we're trying to find. clang::DeclContext *parent_decl_ctx = child_decl_ctx->getParent(); // Look for it in our scope's decl context and its parents. uint32_t level = 0; for (clang::DeclContext *decl_ctx = frame_decl_ctx; decl_ctx != nullptr; decl_ctx = decl_ctx->getParent()) { if (!decl_ctx->isLookupContext()) continue; if (decl_ctx == parent_decl_ctx) // Found it! return level; search_queue.insert(std::make_pair(decl_ctx, decl_ctx)); for (auto it = search_queue.find(decl_ctx); it != search_queue.end(); it++) { if (searched.find(it->second) != searched.end()) continue; // Currently DWARF has one shared translation unit for all Decls at top // level, so this // would erroneously find using statements anywhere. So don't look at // the top-level // translation unit. // TODO fix this and add a testcase that depends on it. if (llvm::isa(it->second)) continue; searched.insert(it->second); symbol_file->ParseDeclsForContext( CompilerDeclContext(this, it->second)); for (clang::Decl *child : it->second->decls()) { if (clang::UsingDirectiveDecl *ud = llvm::dyn_cast(child)) { clang::DeclContext *ns = ud->getNominatedNamespace(); if (ns == parent_decl_ctx) // Found it! return level; clang::DeclContext *from = ud->getCommonAncestor(); if (searched.find(ns) == searched.end()) search_queue.insert(std::make_pair(from, ns)); } else if (child_name) { if (clang::UsingDecl *ud = llvm::dyn_cast(child)) { for (clang::UsingShadowDecl *usd : ud->shadows()) { clang::Decl *target = usd->getTargetDecl(); clang::NamedDecl *nd = llvm::dyn_cast(target); if (!nd) continue; // Check names. IdentifierInfo *ii = nd->getIdentifier(); if (ii == nullptr || !ii->getName().equals(child_name->AsCString(nullptr))) continue; // Check types, if one was provided. if (child_type) { CompilerType clang_type = ClangASTContext::GetTypeForDecl(nd); if (!AreTypesSame(clang_type, *child_type, /*ignore_qualifiers=*/true)) continue; } // Found it! return level; } } } } } ++level; } } return LLDB_INVALID_DECL_LEVEL; } bool ClangASTContext::DeclContextIsStructUnionOrClass(void *opaque_decl_ctx) { if (opaque_decl_ctx) return ((clang::DeclContext *)opaque_decl_ctx)->isRecord(); else return false; } ConstString ClangASTContext::DeclContextGetName(void *opaque_decl_ctx) { if (opaque_decl_ctx) { clang::NamedDecl *named_decl = llvm::dyn_cast((clang::DeclContext *)opaque_decl_ctx); if (named_decl) return ConstString(named_decl->getName()); } return ConstString(); } ConstString ClangASTContext::DeclContextGetScopeQualifiedName(void *opaque_decl_ctx) { if (opaque_decl_ctx) { clang::NamedDecl *named_decl = llvm::dyn_cast((clang::DeclContext *)opaque_decl_ctx); if (named_decl) return ConstString( llvm::StringRef(named_decl->getQualifiedNameAsString())); } return ConstString(); } bool ClangASTContext::DeclContextIsClassMethod( void *opaque_decl_ctx, lldb::LanguageType *language_ptr, bool *is_instance_method_ptr, ConstString *language_object_name_ptr) { if (opaque_decl_ctx) { clang::DeclContext *decl_ctx = (clang::DeclContext *)opaque_decl_ctx; if (ObjCMethodDecl *objc_method = llvm::dyn_cast(decl_ctx)) { if (is_instance_method_ptr) *is_instance_method_ptr = objc_method->isInstanceMethod(); if (language_ptr) *language_ptr = eLanguageTypeObjC; if (language_object_name_ptr) language_object_name_ptr->SetCString("self"); return true; } else if (CXXMethodDecl *cxx_method = llvm::dyn_cast(decl_ctx)) { if (is_instance_method_ptr) *is_instance_method_ptr = cxx_method->isInstance(); if (language_ptr) *language_ptr = eLanguageTypeC_plus_plus; if (language_object_name_ptr) language_object_name_ptr->SetCString("this"); return true; } else if (clang::FunctionDecl *function_decl = llvm::dyn_cast(decl_ctx)) { ClangASTMetadata *metadata = GetMetadata(&decl_ctx->getParentASTContext(), function_decl); if (metadata && metadata->HasObjectPtr()) { if (is_instance_method_ptr) *is_instance_method_ptr = true; if (language_ptr) *language_ptr = eLanguageTypeObjC; if (language_object_name_ptr) language_object_name_ptr->SetCString(metadata->GetObjectPtrName()); return true; } } } return false; } clang::DeclContext * ClangASTContext::DeclContextGetAsDeclContext(const CompilerDeclContext &dc) { if (dc.IsClang()) return (clang::DeclContext *)dc.GetOpaqueDeclContext(); return nullptr; } ObjCMethodDecl * ClangASTContext::DeclContextGetAsObjCMethodDecl(const CompilerDeclContext &dc) { if (dc.IsClang()) return llvm::dyn_cast( (clang::DeclContext *)dc.GetOpaqueDeclContext()); return nullptr; } CXXMethodDecl * ClangASTContext::DeclContextGetAsCXXMethodDecl(const CompilerDeclContext &dc) { if (dc.IsClang()) return llvm::dyn_cast( (clang::DeclContext *)dc.GetOpaqueDeclContext()); return nullptr; } clang::FunctionDecl * ClangASTContext::DeclContextGetAsFunctionDecl(const CompilerDeclContext &dc) { if (dc.IsClang()) return llvm::dyn_cast( (clang::DeclContext *)dc.GetOpaqueDeclContext()); return nullptr; } clang::NamespaceDecl * ClangASTContext::DeclContextGetAsNamespaceDecl(const CompilerDeclContext &dc) { if (dc.IsClang()) return llvm::dyn_cast( (clang::DeclContext *)dc.GetOpaqueDeclContext()); return nullptr; } ClangASTMetadata * ClangASTContext::DeclContextGetMetaData(const CompilerDeclContext &dc, const void *object) { clang::ASTContext *ast = DeclContextGetClangASTContext(dc); if (ast) return ClangASTContext::GetMetadata(ast, object); return nullptr; } clang::ASTContext * ClangASTContext::DeclContextGetClangASTContext(const CompilerDeclContext &dc) { ClangASTContext *ast = llvm::dyn_cast_or_null(dc.GetTypeSystem()); if (ast) return ast->getASTContext(); return nullptr; } ClangASTContextForExpressions::ClangASTContextForExpressions(Target &target) : ClangASTContext(target.GetArchitecture().GetTriple().getTriple().c_str()), m_target_wp(target.shared_from_this()), m_persistent_variables(new ClangPersistentVariables) {} UserExpression *ClangASTContextForExpressions::GetUserExpression( llvm::StringRef expr, llvm::StringRef prefix, lldb::LanguageType language, Expression::ResultType desired_type, const EvaluateExpressionOptions &options) { TargetSP target_sp = m_target_wp.lock(); if (!target_sp) return nullptr; return new ClangUserExpression(*target_sp.get(), expr, prefix, language, desired_type, options); } FunctionCaller *ClangASTContextForExpressions::GetFunctionCaller( const CompilerType &return_type, const Address &function_address, const ValueList &arg_value_list, const char *name) { TargetSP target_sp = m_target_wp.lock(); if (!target_sp) return nullptr; Process *process = target_sp->GetProcessSP().get(); if (!process) return nullptr; return new ClangFunctionCaller(*process, return_type, function_address, arg_value_list, name); } UtilityFunction * ClangASTContextForExpressions::GetUtilityFunction(const char *text, const char *name) { TargetSP target_sp = m_target_wp.lock(); if (!target_sp) return nullptr; return new ClangUtilityFunction(*target_sp.get(), text, name); } PersistentExpressionState * ClangASTContextForExpressions::GetPersistentExpressionState() { return m_persistent_variables.get(); }