//===-- Symtab.cpp ----------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include #include "lldb/Core/Module.h" #include "lldb/Core/RegularExpression.h" #include "lldb/Core/Section.h" #include "lldb/Core/Timer.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Symbol/SymbolContext.h" #include "lldb/Symbol/Symtab.h" #include "lldb/Target/CPPLanguageRuntime.h" #include "lldb/Target/ObjCLanguageRuntime.h" using namespace lldb; using namespace lldb_private; Symtab::Symtab(ObjectFile *objfile) : m_objfile (objfile), m_symbols (), m_file_addr_to_index (), m_name_to_index (), m_mutex (Mutex::eMutexTypeRecursive), m_file_addr_to_index_computed (false), m_name_indexes_computed (false) { } Symtab::~Symtab() { } void Symtab::Reserve(size_t count) { // Clients should grab the mutex from this symbol table and lock it manually // when calling this function to avoid performance issues. m_symbols.reserve (count); } Symbol * Symtab::Resize(size_t count) { // Clients should grab the mutex from this symbol table and lock it manually // when calling this function to avoid performance issues. m_symbols.resize (count); return &m_symbols[0]; } uint32_t Symtab::AddSymbol(const Symbol& symbol) { // Clients should grab the mutex from this symbol table and lock it manually // when calling this function to avoid performance issues. uint32_t symbol_idx = m_symbols.size(); m_name_to_index.Clear(); m_file_addr_to_index.Clear(); m_symbols.push_back(symbol); m_file_addr_to_index_computed = false; m_name_indexes_computed = false; return symbol_idx; } size_t Symtab::GetNumSymbols() const { Mutex::Locker locker (m_mutex); return m_symbols.size(); } void Symtab::Dump (Stream *s, Target *target, SortOrder sort_order) { Mutex::Locker locker (m_mutex); // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); s->Indent(); const FileSpec &file_spec = m_objfile->GetFileSpec(); const char * object_name = NULL; if (m_objfile->GetModule()) object_name = m_objfile->GetModule()->GetObjectName().GetCString(); if (file_spec) s->Printf("Symtab, file = %s%s%s%s, num_symbols = %lu", file_spec.GetPath().c_str(), object_name ? "(" : "", object_name ? object_name : "", object_name ? ")" : "", m_symbols.size()); else s->Printf("Symtab, num_symbols = %lu", m_symbols.size()); if (!m_symbols.empty()) { switch (sort_order) { case eSortOrderNone: { s->PutCString (":\n"); DumpSymbolHeader (s); const_iterator begin = m_symbols.begin(); const_iterator end = m_symbols.end(); for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { s->Indent(); pos->Dump(s, target, std::distance(begin, pos)); } } break; case eSortOrderByName: { // Although we maintain a lookup by exact name map, the table // isn't sorted by name. So we must make the ordered symbol list // up ourselves. s->PutCString (" (sorted by name):\n"); DumpSymbolHeader (s); typedef std::multimap CStringToSymbol; CStringToSymbol name_map; for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); pos != end; ++pos) { const char *name = pos->GetMangled().GetName(Mangled::ePreferDemangled).AsCString(); if (name && name[0]) name_map.insert (std::make_pair(name, &(*pos))); } for (CStringToSymbol::const_iterator pos = name_map.begin(), end = name_map.end(); pos != end; ++pos) { s->Indent(); pos->second->Dump (s, target, pos->second - &m_symbols[0]); } } break; case eSortOrderByAddress: s->PutCString (" (sorted by address):\n"); DumpSymbolHeader (s); if (!m_file_addr_to_index_computed) InitAddressIndexes(); const size_t num_entries = m_file_addr_to_index.GetSize(); for (size_t i=0; iIndent(); const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data; m_symbols[symbol_idx].Dump(s, target, symbol_idx); } break; } } } void Symtab::Dump(Stream *s, Target *target, std::vector& indexes) const { Mutex::Locker locker (m_mutex); const size_t num_symbols = GetNumSymbols(); //s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); s->Indent(); s->Printf("Symtab %lu symbol indexes (%lu symbols total):\n", indexes.size(), m_symbols.size()); s->IndentMore(); if (!indexes.empty()) { std::vector::const_iterator pos; std::vector::const_iterator end = indexes.end(); DumpSymbolHeader (s); for (pos = indexes.begin(); pos != end; ++pos) { size_t idx = *pos; if (idx < num_symbols) { s->Indent(); m_symbols[idx].Dump(s, target, idx); } } } s->IndentLess (); } void Symtab::DumpSymbolHeader (Stream *s) { s->Indent(" Debug symbol\n"); s->Indent(" |Synthetic symbol\n"); s->Indent(" ||Externally Visible\n"); s->Indent(" |||\n"); s->Indent("Index UserID DSX Type File Address/Value Load Address Size Flags Name\n"); s->Indent("------- ------ --- ------------ ------------------ ------------------ ------------------ ---------- ----------------------------------\n"); } static int CompareSymbolID (const void *key, const void *p) { const user_id_t match_uid = *(user_id_t*) key; const user_id_t symbol_uid = ((Symbol *)p)->GetID(); if (match_uid < symbol_uid) return -1; if (match_uid > symbol_uid) return 1; return 0; } Symbol * Symtab::FindSymbolByID (lldb::user_id_t symbol_uid) const { Mutex::Locker locker (m_mutex); Symbol *symbol = (Symbol*)::bsearch (&symbol_uid, &m_symbols[0], m_symbols.size(), (uint8_t *)&m_symbols[1] - (uint8_t *)&m_symbols[0], CompareSymbolID); return symbol; } Symbol * Symtab::SymbolAtIndex(size_t idx) { // Clients should grab the mutex from this symbol table and lock it manually // when calling this function to avoid performance issues. if (idx < m_symbols.size()) return &m_symbols[idx]; return NULL; } const Symbol * Symtab::SymbolAtIndex(size_t idx) const { // Clients should grab the mutex from this symbol table and lock it manually // when calling this function to avoid performance issues. if (idx < m_symbols.size()) return &m_symbols[idx]; return NULL; } //---------------------------------------------------------------------- // InitNameIndexes //---------------------------------------------------------------------- void Symtab::InitNameIndexes() { // Protected function, no need to lock mutex... if (!m_name_indexes_computed) { m_name_indexes_computed = true; Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__); // Create the name index vector to be able to quickly search by name const size_t num_symbols = m_symbols.size(); #if 1 m_name_to_index.Reserve (num_symbols); #else // TODO: benchmark this to see if we save any memory. Otherwise we // will always keep the memory reserved in the vector unless we pull // some STL swap magic and then recopy... uint32_t actual_count = 0; for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); pos != end; ++pos) { const Mangled &mangled = pos->GetMangled(); if (mangled.GetMangledName()) ++actual_count; if (mangled.GetDemangledName()) ++actual_count; } m_name_to_index.Reserve (actual_count); #endif NameToIndexMap::Entry entry; // The "const char *" in "class_contexts" must come from a ConstString::GetCString() std::set class_contexts; UniqueCStringMap mangled_name_to_index; std::vector symbol_contexts(num_symbols, NULL); for (entry.value = 0; entry.valueIsTrampoline()) continue; const Mangled &mangled = symbol->GetMangled(); entry.cstring = mangled.GetMangledName().GetCString(); if (entry.cstring && entry.cstring[0]) { m_name_to_index.Append (entry); const SymbolType symbol_type = symbol->GetType(); if (symbol_type == eSymbolTypeCode || symbol_type == eSymbolTypeResolver) { if (entry.cstring[0] == '_' && entry.cstring[1] == 'Z' && (entry.cstring[2] != 'T' && // avoid virtual table, VTT structure, typeinfo structure, and typeinfo name entry.cstring[2] != 'G' && // avoid guard variables entry.cstring[2] != 'Z')) // named local entities (if we eventually handle eSymbolTypeData, we will want this back) { CPPLanguageRuntime::MethodName cxx_method (mangled.GetDemangledName()); entry.cstring = ConstString(cxx_method.GetBasename()).GetCString(); if (entry.cstring && entry.cstring[0]) { // ConstString objects permanently store the string in the pool so calling // GetCString() on the value gets us a const char * that will never go away const char *const_context = ConstString(cxx_method.GetContext()).GetCString(); if (entry.cstring[0] == '~' || !cxx_method.GetQualifiers().empty()) { // The first character of the demangled basename is '~' which // means we have a class destructor. We can use this information // to help us know what is a class and what isn't. if (class_contexts.find(const_context) == class_contexts.end()) class_contexts.insert(const_context); m_method_to_index.Append (entry); } else { if (const_context && const_context[0]) { if (class_contexts.find(const_context) != class_contexts.end()) { // The current decl context is in our "class_contexts" which means // this is a method on a class m_method_to_index.Append (entry); } else { // We don't know if this is a function basename or a method, // so put it into a temporary collection so once we are done // we can look in class_contexts to see if each entry is a class // or just a function and will put any remaining items into // m_method_to_index or m_basename_to_index as needed mangled_name_to_index.Append (entry); symbol_contexts[entry.value] = const_context; } } else { // No context for this function so this has to be a basename m_basename_to_index.Append(entry); } } } } } } entry.cstring = mangled.GetDemangledName().GetCString(); if (entry.cstring && entry.cstring[0]) m_name_to_index.Append (entry); // If the demangled name turns out to be an ObjC name, and // is a category name, add the version without categories to the index too. ObjCLanguageRuntime::MethodName objc_method (entry.cstring, true); if (objc_method.IsValid(true)) { entry.cstring = objc_method.GetSelector().GetCString(); m_selector_to_index.Append (entry); ConstString objc_method_no_category (objc_method.GetFullNameWithoutCategory(true)); if (objc_method_no_category) { entry.cstring = objc_method_no_category.GetCString(); m_name_to_index.Append (entry); } } } size_t count; if (!mangled_name_to_index.IsEmpty()) { count = mangled_name_to_index.GetSize(); for (size_t i=0; iGetMangled(); if (add_demangled) { entry.cstring = mangled.GetDemangledName().GetCString(); if (entry.cstring && entry.cstring[0]) name_to_index_map.Append (entry); } if (add_mangled) { entry.cstring = mangled.GetMangledName().GetCString(); if (entry.cstring && entry.cstring[0]) name_to_index_map.Append (entry); } } } } uint32_t Symtab::AppendSymbolIndexesWithType (SymbolType symbol_type, std::vector& indexes, uint32_t start_idx, uint32_t end_index) const { Mutex::Locker locker (m_mutex); uint32_t prev_size = indexes.size(); const uint32_t count = std::min (m_symbols.size(), end_index); for (uint32_t i = start_idx; i < count; ++i) { if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) indexes.push_back(i); } return indexes.size() - prev_size; } uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue (SymbolType symbol_type, uint32_t flags_value, std::vector& indexes, uint32_t start_idx, uint32_t end_index) const { Mutex::Locker locker (m_mutex); uint32_t prev_size = indexes.size(); const uint32_t count = std::min (m_symbols.size(), end_index); for (uint32_t i = start_idx; i < count; ++i) { if ((symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) && m_symbols[i].GetFlags() == flags_value) indexes.push_back(i); } return indexes.size() - prev_size; } uint32_t Symtab::AppendSymbolIndexesWithType (SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector& indexes, uint32_t start_idx, uint32_t end_index) const { Mutex::Locker locker (m_mutex); uint32_t prev_size = indexes.size(); const uint32_t count = std::min (m_symbols.size(), end_index); for (uint32_t i = start_idx; i < count; ++i) { if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) { if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) indexes.push_back(i); } } return indexes.size() - prev_size; } uint32_t Symtab::GetIndexForSymbol (const Symbol *symbol) const { const Symbol *first_symbol = &m_symbols[0]; if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size()) return symbol - first_symbol; return UINT32_MAX; } struct SymbolSortInfo { const bool sort_by_load_addr; const Symbol *symbols; }; namespace { struct SymbolIndexComparator { const std::vector& symbols; std::vector &addr_cache; // Getting from the symbol to the Address to the File Address involves some work. // Since there are potentially many symbols here, and we're using this for sorting so // we're going to be computing the address many times, cache that in addr_cache. // The array passed in has to be the same size as the symbols array passed into the // member variable symbols, and should be initialized with LLDB_INVALID_ADDRESS. // NOTE: You have to make addr_cache externally and pass it in because std::stable_sort // makes copies of the comparator it is initially passed in, and you end up spending // huge amounts of time copying this array... SymbolIndexComparator(const std::vector& s, std::vector &a) : symbols(s), addr_cache(a) { assert (symbols.size() == addr_cache.size()); } bool operator()(uint32_t index_a, uint32_t index_b) { addr_t value_a = addr_cache[index_a]; if (value_a == LLDB_INVALID_ADDRESS) { value_a = symbols[index_a].GetAddress().GetFileAddress(); addr_cache[index_a] = value_a; } addr_t value_b = addr_cache[index_b]; if (value_b == LLDB_INVALID_ADDRESS) { value_b = symbols[index_b].GetAddress().GetFileAddress(); addr_cache[index_b] = value_b; } if (value_a == value_b) { // The if the values are equal, use the original symbol user ID lldb::user_id_t uid_a = symbols[index_a].GetID(); lldb::user_id_t uid_b = symbols[index_b].GetID(); if (uid_a < uid_b) return true; if (uid_a > uid_b) return false; return false; } else if (value_a < value_b) return true; return false; } }; } void Symtab::SortSymbolIndexesByValue (std::vector& indexes, bool remove_duplicates) const { Mutex::Locker locker (m_mutex); Timer scoped_timer (__PRETTY_FUNCTION__,__PRETTY_FUNCTION__); // No need to sort if we have zero or one items... if (indexes.size() <= 1) return; // Sort the indexes in place using std::stable_sort. // NOTE: The use of std::stable_sort instead of std::sort here is strictly for performance, // not correctness. The indexes vector tends to be "close" to sorted, which the // stable sort handles better. std::vector addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS); SymbolIndexComparator comparator(m_symbols, addr_cache); std::stable_sort(indexes.begin(), indexes.end(), comparator); // Remove any duplicates if requested if (remove_duplicates) std::unique(indexes.begin(), indexes.end()); } uint32_t Symtab::AppendSymbolIndexesWithName (const ConstString& symbol_name, std::vector& indexes) { Mutex::Locker locker (m_mutex); Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__); if (symbol_name) { const char *symbol_cstr = symbol_name.GetCString(); if (!m_name_indexes_computed) InitNameIndexes(); return m_name_to_index.GetValues (symbol_cstr, indexes); } return 0; } uint32_t Symtab::AppendSymbolIndexesWithName (const ConstString& symbol_name, Debug symbol_debug_type, Visibility symbol_visibility, std::vector& indexes) { Mutex::Locker locker (m_mutex); Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__); if (symbol_name) { const size_t old_size = indexes.size(); if (!m_name_indexes_computed) InitNameIndexes(); const char *symbol_cstr = symbol_name.GetCString(); std::vector all_name_indexes; const size_t name_match_count = m_name_to_index.GetValues (symbol_cstr, all_name_indexes); for (size_t i=0; i& indexes) { Mutex::Locker locker (m_mutex); if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) { std::vector::iterator pos = indexes.begin(); while (pos != indexes.end()) { if (symbol_type == eSymbolTypeAny || m_symbols[*pos].GetType() == symbol_type) ++pos; else indexes.erase(pos); } } return indexes.size(); } uint32_t Symtab::AppendSymbolIndexesWithNameAndType (const ConstString& symbol_name, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector& indexes) { Mutex::Locker locker (m_mutex); if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, symbol_visibility, indexes) > 0) { std::vector::iterator pos = indexes.begin(); while (pos != indexes.end()) { if (symbol_type == eSymbolTypeAny || m_symbols[*pos].GetType() == symbol_type) ++pos; else indexes.erase(pos); } } return indexes.size(); } uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType (const RegularExpression ®exp, SymbolType symbol_type, std::vector& indexes) { Mutex::Locker locker (m_mutex); uint32_t prev_size = indexes.size(); uint32_t sym_end = m_symbols.size(); for (uint32_t i = 0; i < sym_end; i++) { if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) { const char *name = m_symbols[i].GetMangled().GetName().AsCString(); if (name) { if (regexp.Execute (name)) indexes.push_back(i); } } } return indexes.size() - prev_size; } uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType (const RegularExpression ®exp, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector& indexes) { Mutex::Locker locker (m_mutex); uint32_t prev_size = indexes.size(); uint32_t sym_end = m_symbols.size(); for (uint32_t i = 0; i < sym_end; i++) { if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) { if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility) == false) continue; const char *name = m_symbols[i].GetMangled().GetName().AsCString(); if (name) { if (regexp.Execute (name)) indexes.push_back(i); } } } return indexes.size() - prev_size; } Symbol * Symtab::FindSymbolWithType (SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, uint32_t& start_idx) { Mutex::Locker locker (m_mutex); const size_t count = m_symbols.size(); for (size_t idx = start_idx; idx < count; ++idx) { if (symbol_type == eSymbolTypeAny || m_symbols[idx].GetType() == symbol_type) { if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) { start_idx = idx; return &m_symbols[idx]; } } } return NULL; } size_t Symtab::FindAllSymbolsWithNameAndType (const ConstString &name, SymbolType symbol_type, std::vector& symbol_indexes) { Mutex::Locker locker (m_mutex); Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__); // Initialize all of the lookup by name indexes before converting NAME // to a uniqued string NAME_STR below. if (!m_name_indexes_computed) InitNameIndexes(); if (name) { // The string table did have a string that matched, but we need // to check the symbols and match the symbol_type if any was given. AppendSymbolIndexesWithNameAndType (name, symbol_type, symbol_indexes); } return symbol_indexes.size(); } size_t Symtab::FindAllSymbolsWithNameAndType (const ConstString &name, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector& symbol_indexes) { Mutex::Locker locker (m_mutex); Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__); // Initialize all of the lookup by name indexes before converting NAME // to a uniqued string NAME_STR below. if (!m_name_indexes_computed) InitNameIndexes(); if (name) { // The string table did have a string that matched, but we need // to check the symbols and match the symbol_type if any was given. AppendSymbolIndexesWithNameAndType (name, symbol_type, symbol_debug_type, symbol_visibility, symbol_indexes); } return symbol_indexes.size(); } size_t Symtab::FindAllSymbolsMatchingRexExAndType (const RegularExpression ®ex, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector& symbol_indexes) { Mutex::Locker locker (m_mutex); AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type, symbol_visibility, symbol_indexes); return symbol_indexes.size(); } Symbol * Symtab::FindFirstSymbolWithNameAndType (const ConstString &name, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility) { Mutex::Locker locker (m_mutex); Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__); if (!m_name_indexes_computed) InitNameIndexes(); if (name) { std::vector matching_indexes; // The string table did have a string that matched, but we need // to check the symbols and match the symbol_type if any was given. if (AppendSymbolIndexesWithNameAndType (name, symbol_type, symbol_debug_type, symbol_visibility, matching_indexes)) { std::vector::const_iterator pos, end = matching_indexes.end(); for (pos = matching_indexes.begin(); pos != end; ++pos) { Symbol *symbol = SymbolAtIndex(*pos); if (symbol->Compare(name, symbol_type)) return symbol; } } } return NULL; } typedef struct { const Symtab *symtab; const addr_t file_addr; Symbol *match_symbol; const uint32_t *match_index_ptr; addr_t match_offset; } SymbolSearchInfo; static int SymbolWithFileAddress (SymbolSearchInfo *info, const uint32_t *index_ptr) { const Symbol *curr_symbol = info->symtab->SymbolAtIndex (index_ptr[0]); if (curr_symbol == NULL) return -1; const addr_t info_file_addr = info->file_addr; // lldb::Symbol::GetAddressRangePtr() will only return a non NULL address // range if the symbol has a section! if (curr_symbol->ValueIsAddress()) { const addr_t curr_file_addr = curr_symbol->GetAddress().GetFileAddress(); if (info_file_addr < curr_file_addr) return -1; if (info_file_addr > curr_file_addr) return +1; info->match_symbol = const_cast(curr_symbol); info->match_index_ptr = index_ptr; return 0; } return -1; } static int SymbolWithClosestFileAddress (SymbolSearchInfo *info, const uint32_t *index_ptr) { const Symbol *symbol = info->symtab->SymbolAtIndex (index_ptr[0]); if (symbol == NULL) return -1; const addr_t info_file_addr = info->file_addr; if (symbol->ValueIsAddress()) { const addr_t curr_file_addr = symbol->GetAddress().GetFileAddress(); if (info_file_addr < curr_file_addr) return -1; // Since we are finding the closest symbol that is greater than or equal // to 'info->file_addr' we set the symbol here. This will get set // multiple times, but after the search is done it will contain the best // symbol match info->match_symbol = const_cast(symbol); info->match_index_ptr = index_ptr; info->match_offset = info_file_addr - curr_file_addr; if (info_file_addr > curr_file_addr) return +1; return 0; } return -1; } static SymbolSearchInfo FindIndexPtrForSymbolContainingAddress(Symtab* symtab, addr_t file_addr, const uint32_t* indexes, uint32_t num_indexes) { SymbolSearchInfo info = { symtab, file_addr, NULL, NULL, 0 }; ::bsearch (&info, indexes, num_indexes, sizeof(uint32_t), (ComparisonFunction)SymbolWithClosestFileAddress); return info; } void Symtab::InitAddressIndexes() { // Protected function, no need to lock mutex... if (!m_file_addr_to_index_computed && !m_symbols.empty()) { m_file_addr_to_index_computed = true; FileRangeToIndexMap::Entry entry; const_iterator begin = m_symbols.begin(); const_iterator end = m_symbols.end(); for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { if (pos->ValueIsAddress()) { entry.SetRangeBase(pos->GetAddress().GetFileAddress()); entry.SetByteSize(pos->GetByteSize()); entry.data = std::distance(begin, pos); m_file_addr_to_index.Append(entry); } } const size_t num_entries = m_file_addr_to_index.GetSize(); if (num_entries > 0) { m_file_addr_to_index.Sort(); m_file_addr_to_index.CalculateSizesOfZeroByteSizeRanges(); // Now our last symbols might not have had sizes because there // was no subsequent symbol to calculate the size from. If this is // the case, then calculate the size by capping it at the end of the // section in which the symbol resides for (int i = num_entries - 1; i >= 0; --i) { const FileRangeToIndexMap::Entry &entry = m_file_addr_to_index.GetEntryRef(i); // As we iterate backwards, as soon as we find a symbol with a valid // byte size, we are done if (entry.GetByteSize() > 0) break; // Cap the size to the end of the section in which the symbol resides SectionSP section_sp (m_objfile->GetSectionList()->FindSectionContainingFileAddress (entry.GetRangeBase())); if (section_sp) { const lldb::addr_t end_section_file_addr = section_sp->GetFileAddress() + section_sp->GetByteSize(); const lldb::addr_t symbol_file_addr = entry.GetRangeBase(); if (end_section_file_addr > symbol_file_addr) { Symbol &symbol = m_symbols[entry.data]; symbol.SetByteSize(end_section_file_addr - symbol_file_addr); symbol.SetSizeIsSynthesized(true); } } } // Sort again in case the range size changes the ordering m_file_addr_to_index.Sort(); } } } void Symtab::CalculateSymbolSizes () { Mutex::Locker locker (m_mutex); if (!m_symbols.empty()) { if (!m_file_addr_to_index_computed) InitAddressIndexes(); const size_t num_entries = m_file_addr_to_index.GetSize(); for (size_t i = 0; i < num_entries; ++i) { // The entries in the m_file_addr_to_index have calculated the sizes already // so we will use this size if we need to. const FileRangeToIndexMap::Entry &entry = m_file_addr_to_index.GetEntryRef(i); Symbol &symbol = m_symbols[entry.data]; // If the symbol size is already valid, no need to do anything if (symbol.GetByteSizeIsValid()) continue; const addr_t range_size = entry.GetByteSize(); if (range_size > 0) { symbol.SetByteSize(range_size); symbol.SetSizeIsSynthesized(true); } } } } Symbol * Symtab::FindSymbolContainingFileAddress (addr_t file_addr, const uint32_t* indexes, uint32_t num_indexes) { Mutex::Locker locker (m_mutex); SymbolSearchInfo info = { this, file_addr, NULL, NULL, 0 }; ::bsearch (&info, indexes, num_indexes, sizeof(uint32_t), (ComparisonFunction)SymbolWithClosestFileAddress); if (info.match_symbol) { if (info.match_offset == 0) { // We found an exact match! return info.match_symbol; } const size_t symbol_byte_size = info.match_symbol->GetByteSize(); if (symbol_byte_size == 0) { // We weren't able to find the size of the symbol so lets just go // with that match we found in our search... return info.match_symbol; } // We were able to figure out a symbol size so lets make sure our // offset puts "file_addr" in the symbol's address range. if (info.match_offset < symbol_byte_size) return info.match_symbol; } return NULL; } Symbol * Symtab::FindSymbolContainingFileAddress (addr_t file_addr) { Mutex::Locker locker (m_mutex); if (!m_file_addr_to_index_computed) InitAddressIndexes(); const FileRangeToIndexMap::Entry *entry = m_file_addr_to_index.FindEntryThatContains(file_addr); if (entry) return SymbolAtIndex(entry->data); return NULL; } void Symtab::SymbolIndicesToSymbolContextList (std::vector &symbol_indexes, SymbolContextList &sc_list) { // No need to protect this call using m_mutex all other method calls are // already thread safe. const bool merge_symbol_into_function = true; size_t num_indices = symbol_indexes.size(); if (num_indices > 0) { SymbolContext sc; sc.module_sp = m_objfile->GetModule(); for (size_t i = 0; i < num_indices; i++) { sc.symbol = SymbolAtIndex (symbol_indexes[i]); if (sc.symbol) sc_list.AppendIfUnique(sc, merge_symbol_into_function); } } } size_t Symtab::FindFunctionSymbols (const ConstString &name, uint32_t name_type_mask, SymbolContextList& sc_list) { size_t count = 0; std::vector symbol_indexes; const char *name_cstr = name.GetCString(); // eFunctionNameTypeAuto should be pre-resolved by a call to Module::PrepareForFunctionNameLookup() assert ((name_type_mask & eFunctionNameTypeAuto) == 0); if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) { std::vector temp_symbol_indexes; FindAllSymbolsWithNameAndType (name, eSymbolTypeAny, temp_symbol_indexes); unsigned temp_symbol_indexes_size = temp_symbol_indexes.size(); if (temp_symbol_indexes_size > 0) { Mutex::Locker locker (m_mutex); for (unsigned i = 0; i < temp_symbol_indexes_size; i++) { SymbolContext sym_ctx; sym_ctx.symbol = SymbolAtIndex (temp_symbol_indexes[i]); if (sym_ctx.symbol) { switch (sym_ctx.symbol->GetType()) { case eSymbolTypeCode: case eSymbolTypeResolver: symbol_indexes.push_back(temp_symbol_indexes[i]); break; default: break; } } } } } if (name_type_mask & eFunctionNameTypeBase) { // From mangled names we can't tell what is a basename and what // is a method name, so we just treat them the same if (!m_name_indexes_computed) InitNameIndexes(); if (!m_basename_to_index.IsEmpty()) { const UniqueCStringMap::Entry *match; for (match = m_basename_to_index.FindFirstValueForName(name_cstr); match != NULL; match = m_basename_to_index.FindNextValueForName(match)) { symbol_indexes.push_back(match->value); } } } if (name_type_mask & eFunctionNameTypeMethod) { if (!m_name_indexes_computed) InitNameIndexes(); if (!m_method_to_index.IsEmpty()) { const UniqueCStringMap::Entry *match; for (match = m_method_to_index.FindFirstValueForName(name_cstr); match != NULL; match = m_method_to_index.FindNextValueForName(match)) { symbol_indexes.push_back(match->value); } } } if (name_type_mask & eFunctionNameTypeSelector) { if (!m_name_indexes_computed) InitNameIndexes(); if (!m_selector_to_index.IsEmpty()) { const UniqueCStringMap::Entry *match; for (match = m_selector_to_index.FindFirstValueForName(name_cstr); match != NULL; match = m_selector_to_index.FindNextValueForName(match)) { symbol_indexes.push_back(match->value); } } } if (!symbol_indexes.empty()) { std::sort(symbol_indexes.begin(), symbol_indexes.end()); symbol_indexes.erase(std::unique(symbol_indexes.begin(), symbol_indexes.end()), symbol_indexes.end()); count = symbol_indexes.size(); SymbolIndicesToSymbolContextList (symbol_indexes, sc_list); } return count; }