//===-- Symtab.cpp ----------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include #include #include "Plugins/Language/CPlusPlus/CPlusPlusLanguage.h" #include "Plugins/Language/ObjC/ObjCLanguage.h" #include "lldb/Core/Module.h" #include "lldb/Core/Section.h" #include "lldb/Core/STLUtils.h" #include "lldb/Core/Timer.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Symbol/Symbol.h" #include "lldb/Symbol/SymbolContext.h" #include "lldb/Symbol/Symtab.h" #include "lldb/Utility/RegularExpression.h" #include "lldb/Utility/Stream.h" using namespace lldb; using namespace lldb_private; Symtab::Symtab(ObjectFile *objfile) : m_objfile(objfile), m_symbols(), m_file_addr_to_index(), m_name_to_index(), m_mutex(), m_file_addr_to_index_computed(false), m_name_indexes_computed(false) {} Symtab::~Symtab() {} void Symtab::Reserve(size_t count) { // Clients should grab the mutex from this symbol table and lock it manually // when calling this function to avoid performance issues. m_symbols.reserve(count); } Symbol *Symtab::Resize(size_t count) { // Clients should grab the mutex from this symbol table and lock it manually // when calling this function to avoid performance issues. m_symbols.resize(count); return m_symbols.empty() ? nullptr : &m_symbols[0]; } uint32_t Symtab::AddSymbol(const Symbol &symbol) { // Clients should grab the mutex from this symbol table and lock it manually // when calling this function to avoid performance issues. uint32_t symbol_idx = m_symbols.size(); m_name_to_index.Clear(); m_file_addr_to_index.Clear(); m_symbols.push_back(symbol); m_file_addr_to_index_computed = false; m_name_indexes_computed = false; return symbol_idx; } size_t Symtab::GetNumSymbols() const { std::lock_guard guard(m_mutex); return m_symbols.size(); } void Symtab::SectionFileAddressesChanged() { m_name_to_index.Clear(); m_file_addr_to_index_computed = false; } void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order) { std::lock_guard guard(m_mutex); // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); s->Indent(); const FileSpec &file_spec = m_objfile->GetFileSpec(); const char *object_name = nullptr; if (m_objfile->GetModule()) object_name = m_objfile->GetModule()->GetObjectName().GetCString(); if (file_spec) s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64, file_spec.GetPath().c_str(), object_name ? "(" : "", object_name ? object_name : "", object_name ? ")" : "", (uint64_t)m_symbols.size()); else s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size()); if (!m_symbols.empty()) { switch (sort_order) { case eSortOrderNone: { s->PutCString(":\n"); DumpSymbolHeader(s); const_iterator begin = m_symbols.begin(); const_iterator end = m_symbols.end(); for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { s->Indent(); pos->Dump(s, target, std::distance(begin, pos)); } } break; case eSortOrderByName: { // Although we maintain a lookup by exact name map, the table // isn't sorted by name. So we must make the ordered symbol list // up ourselves. s->PutCString(" (sorted by name):\n"); DumpSymbolHeader(s); typedef std::multimap CStringToSymbol; CStringToSymbol name_map; for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); pos != end; ++pos) { const char *name = pos->GetName().AsCString(); if (name && name[0]) name_map.insert(std::make_pair(name, &(*pos))); } for (CStringToSymbol::const_iterator pos = name_map.begin(), end = name_map.end(); pos != end; ++pos) { s->Indent(); pos->second->Dump(s, target, pos->second - &m_symbols[0]); } } break; case eSortOrderByAddress: s->PutCString(" (sorted by address):\n"); DumpSymbolHeader(s); if (!m_file_addr_to_index_computed) InitAddressIndexes(); const size_t num_entries = m_file_addr_to_index.GetSize(); for (size_t i = 0; i < num_entries; ++i) { s->Indent(); const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data; m_symbols[symbol_idx].Dump(s, target, symbol_idx); } break; } } } void Symtab::Dump(Stream *s, Target *target, std::vector &indexes) const { std::lock_guard guard(m_mutex); const size_t num_symbols = GetNumSymbols(); // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); s->Indent(); s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n", (uint64_t)indexes.size(), (uint64_t)m_symbols.size()); s->IndentMore(); if (!indexes.empty()) { std::vector::const_iterator pos; std::vector::const_iterator end = indexes.end(); DumpSymbolHeader(s); for (pos = indexes.begin(); pos != end; ++pos) { size_t idx = *pos; if (idx < num_symbols) { s->Indent(); m_symbols[idx].Dump(s, target, idx); } } } s->IndentLess(); } void Symtab::DumpSymbolHeader(Stream *s) { s->Indent(" Debug symbol\n"); s->Indent(" |Synthetic symbol\n"); s->Indent(" ||Externally Visible\n"); s->Indent(" |||\n"); s->Indent("Index UserID DSX Type File Address/Value Load " "Address Size Flags Name\n"); s->Indent("------- ------ --- --------------- ------------------ " "------------------ ------------------ ---------- " "----------------------------------\n"); } static int CompareSymbolID(const void *key, const void *p) { const user_id_t match_uid = *(const user_id_t *)key; const user_id_t symbol_uid = ((const Symbol *)p)->GetID(); if (match_uid < symbol_uid) return -1; if (match_uid > symbol_uid) return 1; return 0; } Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const { std::lock_guard guard(m_mutex); Symbol *symbol = (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(), sizeof(m_symbols[0]), CompareSymbolID); return symbol; } Symbol *Symtab::SymbolAtIndex(size_t idx) { // Clients should grab the mutex from this symbol table and lock it manually // when calling this function to avoid performance issues. if (idx < m_symbols.size()) return &m_symbols[idx]; return nullptr; } const Symbol *Symtab::SymbolAtIndex(size_t idx) const { // Clients should grab the mutex from this symbol table and lock it manually // when calling this function to avoid performance issues. if (idx < m_symbols.size()) return &m_symbols[idx]; return nullptr; } //---------------------------------------------------------------------- // InitNameIndexes //---------------------------------------------------------------------- void Symtab::InitNameIndexes() { // Protected function, no need to lock mutex... if (!m_name_indexes_computed) { m_name_indexes_computed = true; Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); // Create the name index vector to be able to quickly search by name const size_t num_symbols = m_symbols.size(); #if 1 m_name_to_index.Reserve(num_symbols); #else // TODO: benchmark this to see if we save any memory. Otherwise we // will always keep the memory reserved in the vector unless we pull // some STL swap magic and then recopy... uint32_t actual_count = 0; for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); pos != end; ++pos) { const Mangled &mangled = pos->GetMangled(); if (mangled.GetMangledName()) ++actual_count; if (mangled.GetDemangledName()) ++actual_count; } m_name_to_index.Reserve(actual_count); #endif NameToIndexMap::Entry entry; // The "const char *" in "class_contexts" must come from a // ConstString::GetCString() std::set class_contexts; UniqueCStringMap mangled_name_to_index; std::vector symbol_contexts(num_symbols, nullptr); for (entry.value = 0; entry.value < num_symbols; ++entry.value) { const Symbol *symbol = &m_symbols[entry.value]; // Don't let trampolines get into the lookup by name map // If we ever need the trampoline symbols to be searchable by name // we can remove this and then possibly add a new bool to any of the // Symtab functions that lookup symbols by name to indicate if they // want trampolines. if (symbol->IsTrampoline()) continue; const Mangled &mangled = symbol->GetMangled(); entry.cstring = mangled.GetMangledName(); if (entry.cstring) { m_name_to_index.Append(entry); if (symbol->ContainsLinkerAnnotations()) { // If the symbol has linker annotations, also add the version without // the annotations. entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations( entry.cstring.GetStringRef())); m_name_to_index.Append(entry); } const SymbolType symbol_type = symbol->GetType(); if (symbol_type == eSymbolTypeCode || symbol_type == eSymbolTypeResolver) { llvm::StringRef entry_ref(entry.cstring.GetStringRef()); if (entry_ref[0] == '_' && entry_ref[1] == 'Z' && (entry_ref[2] != 'T' && // avoid virtual table, VTT structure, // typeinfo structure, and typeinfo // name entry_ref[2] != 'G' && // avoid guard variables entry_ref[2] != 'Z')) // named local entities (if we // eventually handle eSymbolTypeData, // we will want this back) { CPlusPlusLanguage::MethodName cxx_method( mangled.GetDemangledName(lldb::eLanguageTypeC_plus_plus)); entry.cstring = ConstString(cxx_method.GetBasename()); if (entry.cstring) { // ConstString objects permanently store the string in the pool so // calling // GetCString() on the value gets us a const char * that will // never go away const char *const_context = ConstString(cxx_method.GetContext()).GetCString(); entry_ref = entry.cstring.GetStringRef(); if (entry_ref[0] == '~' || !cxx_method.GetQualifiers().empty()) { // The first character of the demangled basename is '~' which // means we have a class destructor. We can use this information // to help us know what is a class and what isn't. if (class_contexts.find(const_context) == class_contexts.end()) class_contexts.insert(const_context); m_method_to_index.Append(entry); } else { if (const_context && const_context[0]) { if (class_contexts.find(const_context) != class_contexts.end()) { // The current decl context is in our "class_contexts" which // means // this is a method on a class m_method_to_index.Append(entry); } else { // We don't know if this is a function basename or a method, // so put it into a temporary collection so once we are done // we can look in class_contexts to see if each entry is a // class // or just a function and will put any remaining items into // m_method_to_index or m_basename_to_index as needed mangled_name_to_index.Append(entry); symbol_contexts[entry.value] = const_context; } } else { // No context for this function so this has to be a basename m_basename_to_index.Append(entry); // If there is no context (no namespaces or class scopes that // come before the function name) then this also could be a // fullname. if (cxx_method.GetContext().empty()) m_name_to_index.Append(entry); } } } } } } entry.cstring = mangled.GetDemangledName(symbol->GetLanguage()); if (entry.cstring) { m_name_to_index.Append(entry); if (symbol->ContainsLinkerAnnotations()) { // If the symbol has linker annotations, also add the version without // the annotations. entry.cstring = ConstString(m_objfile->StripLinkerSymbolAnnotations( entry.cstring.GetStringRef())); m_name_to_index.Append(entry); } } // If the demangled name turns out to be an ObjC name, and // is a category name, add the version without categories to the index // too. ObjCLanguage::MethodName objc_method(entry.cstring.GetStringRef(), true); if (objc_method.IsValid(true)) { entry.cstring = objc_method.GetSelector(); m_selector_to_index.Append(entry); ConstString objc_method_no_category( objc_method.GetFullNameWithoutCategory(true)); if (objc_method_no_category) { entry.cstring = objc_method_no_category; m_name_to_index.Append(entry); } } } size_t count; if (!mangled_name_to_index.IsEmpty()) { count = mangled_name_to_index.GetSize(); for (size_t i = 0; i < count; ++i) { if (mangled_name_to_index.GetValueAtIndex(i, entry.value)) { entry.cstring = mangled_name_to_index.GetCStringAtIndex(i); if (symbol_contexts[entry.value] && class_contexts.find(symbol_contexts[entry.value]) != class_contexts.end()) { m_method_to_index.Append(entry); } else { // If we got here, we have something that had a context (was inside // a namespace or class) // yet we don't know if the entry m_method_to_index.Append(entry); m_basename_to_index.Append(entry); } } } } m_name_to_index.Sort(); m_name_to_index.SizeToFit(); m_selector_to_index.Sort(); m_selector_to_index.SizeToFit(); m_basename_to_index.Sort(); m_basename_to_index.SizeToFit(); m_method_to_index.Sort(); m_method_to_index.SizeToFit(); // static StreamFile a ("/tmp/a.txt"); // // count = m_basename_to_index.GetSize(); // if (count) // { // for (size_t i=0; i guard(m_mutex); InitNameIndexes(); } void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes, bool add_demangled, bool add_mangled, NameToIndexMap &name_to_index_map) const { if (add_demangled || add_mangled) { Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); std::lock_guard guard(m_mutex); // Create the name index vector to be able to quickly search by name NameToIndexMap::Entry entry; const size_t num_indexes = indexes.size(); for (size_t i = 0; i < num_indexes; ++i) { entry.value = indexes[i]; assert(i < m_symbols.size()); const Symbol *symbol = &m_symbols[entry.value]; const Mangled &mangled = symbol->GetMangled(); if (add_demangled) { entry.cstring = mangled.GetDemangledName(symbol->GetLanguage()); if (entry.cstring) name_to_index_map.Append(entry); } if (add_mangled) { entry.cstring = mangled.GetMangledName(); if (entry.cstring) name_to_index_map.Append(entry); } } } } uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, std::vector &indexes, uint32_t start_idx, uint32_t end_index) const { std::lock_guard guard(m_mutex); uint32_t prev_size = indexes.size(); const uint32_t count = std::min(m_symbols.size(), end_index); for (uint32_t i = start_idx; i < count; ++i) { if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) indexes.push_back(i); } return indexes.size() - prev_size; } uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue( SymbolType symbol_type, uint32_t flags_value, std::vector &indexes, uint32_t start_idx, uint32_t end_index) const { std::lock_guard guard(m_mutex); uint32_t prev_size = indexes.size(); const uint32_t count = std::min(m_symbols.size(), end_index); for (uint32_t i = start_idx; i < count; ++i) { if ((symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) && m_symbols[i].GetFlags() == flags_value) indexes.push_back(i); } return indexes.size() - prev_size; } uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector &indexes, uint32_t start_idx, uint32_t end_index) const { std::lock_guard guard(m_mutex); uint32_t prev_size = indexes.size(); const uint32_t count = std::min(m_symbols.size(), end_index); for (uint32_t i = start_idx; i < count; ++i) { if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) { if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) indexes.push_back(i); } } return indexes.size() - prev_size; } uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const { if (!m_symbols.empty()) { const Symbol *first_symbol = &m_symbols[0]; if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size()) return symbol - first_symbol; } return UINT32_MAX; } struct SymbolSortInfo { const bool sort_by_load_addr; const Symbol *symbols; }; namespace { struct SymbolIndexComparator { const std::vector &symbols; std::vector &addr_cache; // Getting from the symbol to the Address to the File Address involves some // work. // Since there are potentially many symbols here, and we're using this for // sorting so // we're going to be computing the address many times, cache that in // addr_cache. // The array passed in has to be the same size as the symbols array passed // into the // member variable symbols, and should be initialized with // LLDB_INVALID_ADDRESS. // NOTE: You have to make addr_cache externally and pass it in because // std::stable_sort // makes copies of the comparator it is initially passed in, and you end up // spending // huge amounts of time copying this array... SymbolIndexComparator(const std::vector &s, std::vector &a) : symbols(s), addr_cache(a) { assert(symbols.size() == addr_cache.size()); } bool operator()(uint32_t index_a, uint32_t index_b) { addr_t value_a = addr_cache[index_a]; if (value_a == LLDB_INVALID_ADDRESS) { value_a = symbols[index_a].GetAddressRef().GetFileAddress(); addr_cache[index_a] = value_a; } addr_t value_b = addr_cache[index_b]; if (value_b == LLDB_INVALID_ADDRESS) { value_b = symbols[index_b].GetAddressRef().GetFileAddress(); addr_cache[index_b] = value_b; } if (value_a == value_b) { // The if the values are equal, use the original symbol user ID lldb::user_id_t uid_a = symbols[index_a].GetID(); lldb::user_id_t uid_b = symbols[index_b].GetID(); if (uid_a < uid_b) return true; if (uid_a > uid_b) return false; return false; } else if (value_a < value_b) return true; return false; } }; } void Symtab::SortSymbolIndexesByValue(std::vector &indexes, bool remove_duplicates) const { std::lock_guard guard(m_mutex); Timer scoped_timer(LLVM_PRETTY_FUNCTION, LLVM_PRETTY_FUNCTION); // No need to sort if we have zero or one items... if (indexes.size() <= 1) return; // Sort the indexes in place using std::stable_sort. // NOTE: The use of std::stable_sort instead of std::sort here is strictly for // performance, // not correctness. The indexes vector tends to be "close" to sorted, which // the // stable sort handles better. std::vector addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS); SymbolIndexComparator comparator(m_symbols, addr_cache); std::stable_sort(indexes.begin(), indexes.end(), comparator); // Remove any duplicates if requested if (remove_duplicates) std::unique(indexes.begin(), indexes.end()); } uint32_t Symtab::AppendSymbolIndexesWithName(const ConstString &symbol_name, std::vector &indexes) { std::lock_guard guard(m_mutex); Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); if (symbol_name) { if (!m_name_indexes_computed) InitNameIndexes(); return m_name_to_index.GetValues(symbol_name, indexes); } return 0; } uint32_t Symtab::AppendSymbolIndexesWithName(const ConstString &symbol_name, Debug symbol_debug_type, Visibility symbol_visibility, std::vector &indexes) { std::lock_guard guard(m_mutex); Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); if (symbol_name) { const size_t old_size = indexes.size(); if (!m_name_indexes_computed) InitNameIndexes(); std::vector all_name_indexes; const size_t name_match_count = m_name_to_index.GetValues(symbol_name, all_name_indexes); for (size_t i = 0; i < name_match_count; ++i) { if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type, symbol_visibility)) indexes.push_back(all_name_indexes[i]); } return indexes.size() - old_size; } return 0; } uint32_t Symtab::AppendSymbolIndexesWithNameAndType(const ConstString &symbol_name, SymbolType symbol_type, std::vector &indexes) { std::lock_guard guard(m_mutex); if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) { std::vector::iterator pos = indexes.begin(); while (pos != indexes.end()) { if (symbol_type == eSymbolTypeAny || m_symbols[*pos].GetType() == symbol_type) ++pos; else pos = indexes.erase(pos); } } return indexes.size(); } uint32_t Symtab::AppendSymbolIndexesWithNameAndType( const ConstString &symbol_name, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector &indexes) { std::lock_guard guard(m_mutex); if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, symbol_visibility, indexes) > 0) { std::vector::iterator pos = indexes.begin(); while (pos != indexes.end()) { if (symbol_type == eSymbolTypeAny || m_symbols[*pos].GetType() == symbol_type) ++pos; else pos = indexes.erase(pos); } } return indexes.size(); } uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( const RegularExpression ®exp, SymbolType symbol_type, std::vector &indexes) { std::lock_guard guard(m_mutex); uint32_t prev_size = indexes.size(); uint32_t sym_end = m_symbols.size(); for (uint32_t i = 0; i < sym_end; i++) { if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) { const char *name = m_symbols[i].GetName().AsCString(); if (name) { if (regexp.Execute(name)) indexes.push_back(i); } } } return indexes.size() - prev_size; } uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( const RegularExpression ®exp, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector &indexes) { std::lock_guard guard(m_mutex); uint32_t prev_size = indexes.size(); uint32_t sym_end = m_symbols.size(); for (uint32_t i = 0; i < sym_end; i++) { if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) { if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility) == false) continue; const char *name = m_symbols[i].GetName().AsCString(); if (name) { if (regexp.Execute(name)) indexes.push_back(i); } } } return indexes.size() - prev_size; } Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, uint32_t &start_idx) { std::lock_guard guard(m_mutex); const size_t count = m_symbols.size(); for (size_t idx = start_idx; idx < count; ++idx) { if (symbol_type == eSymbolTypeAny || m_symbols[idx].GetType() == symbol_type) { if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) { start_idx = idx; return &m_symbols[idx]; } } } return nullptr; } size_t Symtab::FindAllSymbolsWithNameAndType(const ConstString &name, SymbolType symbol_type, std::vector &symbol_indexes) { std::lock_guard guard(m_mutex); Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); // Initialize all of the lookup by name indexes before converting NAME // to a uniqued string NAME_STR below. if (!m_name_indexes_computed) InitNameIndexes(); if (name) { // The string table did have a string that matched, but we need // to check the symbols and match the symbol_type if any was given. AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes); } return symbol_indexes.size(); } size_t Symtab::FindAllSymbolsWithNameAndType( const ConstString &name, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector &symbol_indexes) { std::lock_guard guard(m_mutex); Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); // Initialize all of the lookup by name indexes before converting NAME // to a uniqued string NAME_STR below. if (!m_name_indexes_computed) InitNameIndexes(); if (name) { // The string table did have a string that matched, but we need // to check the symbols and match the symbol_type if any was given. AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, symbol_visibility, symbol_indexes); } return symbol_indexes.size(); } size_t Symtab::FindAllSymbolsMatchingRexExAndType( const RegularExpression ®ex, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility, std::vector &symbol_indexes) { std::lock_guard guard(m_mutex); AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type, symbol_visibility, symbol_indexes); return symbol_indexes.size(); } Symbol *Symtab::FindFirstSymbolWithNameAndType(const ConstString &name, SymbolType symbol_type, Debug symbol_debug_type, Visibility symbol_visibility) { std::lock_guard guard(m_mutex); Timer scoped_timer(LLVM_PRETTY_FUNCTION, "%s", LLVM_PRETTY_FUNCTION); if (!m_name_indexes_computed) InitNameIndexes(); if (name) { std::vector matching_indexes; // The string table did have a string that matched, but we need // to check the symbols and match the symbol_type if any was given. if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, symbol_visibility, matching_indexes)) { std::vector::const_iterator pos, end = matching_indexes.end(); for (pos = matching_indexes.begin(); pos != end; ++pos) { Symbol *symbol = SymbolAtIndex(*pos); if (symbol->Compare(name, symbol_type)) return symbol; } } } return nullptr; } typedef struct { const Symtab *symtab; const addr_t file_addr; Symbol *match_symbol; const uint32_t *match_index_ptr; addr_t match_offset; } SymbolSearchInfo; // Add all the section file start address & size to the RangeVector, // recusively adding any children sections. static void AddSectionsToRangeMap(SectionList *sectlist, RangeVector §ion_ranges) { const int num_sections = sectlist->GetNumSections(0); for (int i = 0; i < num_sections; i++) { SectionSP sect_sp = sectlist->GetSectionAtIndex(i); if (sect_sp) { SectionList &child_sectlist = sect_sp->GetChildren(); // If this section has children, add the children to the RangeVector. // Else add this section to the RangeVector. if (child_sectlist.GetNumSections(0) > 0) { AddSectionsToRangeMap(&child_sectlist, section_ranges); } else { size_t size = sect_sp->GetByteSize(); if (size > 0) { addr_t base_addr = sect_sp->GetFileAddress(); RangeVector::Entry entry; entry.SetRangeBase(base_addr); entry.SetByteSize(size); section_ranges.Append(entry); } } } } } void Symtab::InitAddressIndexes() { // Protected function, no need to lock mutex... if (!m_file_addr_to_index_computed && !m_symbols.empty()) { m_file_addr_to_index_computed = true; FileRangeToIndexMap::Entry entry; const_iterator begin = m_symbols.begin(); const_iterator end = m_symbols.end(); for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { if (pos->ValueIsAddress()) { entry.SetRangeBase(pos->GetAddressRef().GetFileAddress()); entry.SetByteSize(pos->GetByteSize()); entry.data = std::distance(begin, pos); m_file_addr_to_index.Append(entry); } } const size_t num_entries = m_file_addr_to_index.GetSize(); if (num_entries > 0) { m_file_addr_to_index.Sort(); // Create a RangeVector with the start & size of all the sections for // this objfile. We'll need to check this for any FileRangeToIndexMap // entries with an uninitialized size, which could potentially be a // large number so reconstituting the weak pointer is busywork when it // is invariant information. SectionList *sectlist = m_objfile->GetSectionList(); RangeVector section_ranges; if (sectlist) { AddSectionsToRangeMap(sectlist, section_ranges); section_ranges.Sort(); } // Iterate through the FileRangeToIndexMap and fill in the size for any // entries that didn't already have a size from the Symbol (e.g. if we // have a plain linker symbol with an address only, instead of debug info // where we get an address and a size and a type, etc.) for (size_t i = 0; i < num_entries; i++) { FileRangeToIndexMap::Entry *entry = m_file_addr_to_index.GetMutableEntryAtIndex(i); if (entry->GetByteSize() == 0) { addr_t curr_base_addr = entry->GetRangeBase(); const RangeVector::Entry *containing_section = section_ranges.FindEntryThatContains(curr_base_addr); // Use the end of the section as the default max size of the symbol addr_t sym_size = 0; if (containing_section) { sym_size = containing_section->GetByteSize() - (entry->GetRangeBase() - containing_section->GetRangeBase()); } for (size_t j = i; j < num_entries; j++) { FileRangeToIndexMap::Entry *next_entry = m_file_addr_to_index.GetMutableEntryAtIndex(j); addr_t next_base_addr = next_entry->GetRangeBase(); if (next_base_addr > curr_base_addr) { addr_t size_to_next_symbol = next_base_addr - curr_base_addr; // Take the difference between this symbol and the next one as its // size, // if it is less than the size of the section. if (sym_size == 0 || size_to_next_symbol < sym_size) { sym_size = size_to_next_symbol; } break; } } if (sym_size > 0) { entry->SetByteSize(sym_size); Symbol &symbol = m_symbols[entry->data]; symbol.SetByteSize(sym_size); symbol.SetSizeIsSynthesized(true); } } } // Sort again in case the range size changes the ordering m_file_addr_to_index.Sort(); } } } void Symtab::CalculateSymbolSizes() { std::lock_guard guard(m_mutex); if (!m_symbols.empty()) { if (!m_file_addr_to_index_computed) InitAddressIndexes(); const size_t num_entries = m_file_addr_to_index.GetSize(); for (size_t i = 0; i < num_entries; ++i) { // The entries in the m_file_addr_to_index have calculated the sizes // already // so we will use this size if we need to. const FileRangeToIndexMap::Entry &entry = m_file_addr_to_index.GetEntryRef(i); Symbol &symbol = m_symbols[entry.data]; // If the symbol size is already valid, no need to do anything if (symbol.GetByteSizeIsValid()) continue; const addr_t range_size = entry.GetByteSize(); if (range_size > 0) { symbol.SetByteSize(range_size); symbol.SetSizeIsSynthesized(true); } } } } Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) { std::lock_guard guard(m_mutex); if (!m_file_addr_to_index_computed) InitAddressIndexes(); const FileRangeToIndexMap::Entry *entry = m_file_addr_to_index.FindEntryStartsAt(file_addr); if (entry) { Symbol *symbol = SymbolAtIndex(entry->data); if (symbol->GetFileAddress() == file_addr) return symbol; } return nullptr; } Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) { std::lock_guard guard(m_mutex); if (!m_file_addr_to_index_computed) InitAddressIndexes(); const FileRangeToIndexMap::Entry *entry = m_file_addr_to_index.FindEntryThatContains(file_addr); if (entry) { Symbol *symbol = SymbolAtIndex(entry->data); if (symbol->ContainsFileAddress(file_addr)) return symbol; } return nullptr; } void Symtab::ForEachSymbolContainingFileAddress( addr_t file_addr, std::function const &callback) { std::lock_guard guard(m_mutex); if (!m_file_addr_to_index_computed) InitAddressIndexes(); std::vector all_addr_indexes; // Get all symbols with file_addr const size_t addr_match_count = m_file_addr_to_index.FindEntryIndexesThatContain(file_addr, all_addr_indexes); for (size_t i = 0; i < addr_match_count; ++i) { Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]); if (symbol->ContainsFileAddress(file_addr)) { if (!callback(symbol)) break; } } } void Symtab::SymbolIndicesToSymbolContextList( std::vector &symbol_indexes, SymbolContextList &sc_list) { // No need to protect this call using m_mutex all other method calls are // already thread safe. const bool merge_symbol_into_function = true; size_t num_indices = symbol_indexes.size(); if (num_indices > 0) { SymbolContext sc; sc.module_sp = m_objfile->GetModule(); for (size_t i = 0; i < num_indices; i++) { sc.symbol = SymbolAtIndex(symbol_indexes[i]); if (sc.symbol) sc_list.AppendIfUnique(sc, merge_symbol_into_function); } } } size_t Symtab::FindFunctionSymbols(const ConstString &name, uint32_t name_type_mask, SymbolContextList &sc_list) { size_t count = 0; std::vector symbol_indexes; // eFunctionNameTypeAuto should be pre-resolved by a call to // Module::LookupInfo::LookupInfo() assert((name_type_mask & eFunctionNameTypeAuto) == 0); if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) { std::vector temp_symbol_indexes; FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes); unsigned temp_symbol_indexes_size = temp_symbol_indexes.size(); if (temp_symbol_indexes_size > 0) { std::lock_guard guard(m_mutex); for (unsigned i = 0; i < temp_symbol_indexes_size; i++) { SymbolContext sym_ctx; sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]); if (sym_ctx.symbol) { switch (sym_ctx.symbol->GetType()) { case eSymbolTypeCode: case eSymbolTypeResolver: case eSymbolTypeReExported: symbol_indexes.push_back(temp_symbol_indexes[i]); break; default: break; } } } } } if (name_type_mask & eFunctionNameTypeBase) { // From mangled names we can't tell what is a basename and what // is a method name, so we just treat them the same if (!m_name_indexes_computed) InitNameIndexes(); if (!m_basename_to_index.IsEmpty()) { const UniqueCStringMap::Entry *match; for (match = m_basename_to_index.FindFirstValueForName(name); match != nullptr; match = m_basename_to_index.FindNextValueForName(match)) { symbol_indexes.push_back(match->value); } } } if (name_type_mask & eFunctionNameTypeMethod) { if (!m_name_indexes_computed) InitNameIndexes(); if (!m_method_to_index.IsEmpty()) { const UniqueCStringMap::Entry *match; for (match = m_method_to_index.FindFirstValueForName(name); match != nullptr; match = m_method_to_index.FindNextValueForName(match)) { symbol_indexes.push_back(match->value); } } } if (name_type_mask & eFunctionNameTypeSelector) { if (!m_name_indexes_computed) InitNameIndexes(); if (!m_selector_to_index.IsEmpty()) { const UniqueCStringMap::Entry *match; for (match = m_selector_to_index.FindFirstValueForName(name); match != nullptr; match = m_selector_to_index.FindNextValueForName(match)) { symbol_indexes.push_back(match->value); } } } if (!symbol_indexes.empty()) { std::sort(symbol_indexes.begin(), symbol_indexes.end()); symbol_indexes.erase( std::unique(symbol_indexes.begin(), symbol_indexes.end()), symbol_indexes.end()); count = symbol_indexes.size(); SymbolIndicesToSymbolContextList(symbol_indexes, sc_list); } return count; } const Symbol *Symtab::GetParent(Symbol *child_symbol) const { uint32_t child_idx = GetIndexForSymbol(child_symbol); if (child_idx != UINT32_MAX && child_idx > 0) { for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) { const Symbol *symbol = SymbolAtIndex(idx); const uint32_t sibling_idx = symbol->GetSiblingIndex(); if (sibling_idx != UINT32_MAX && sibling_idx > child_idx) return symbol; } } return NULL; }