/*- * Copyright (c) 1992 Terrence R. Lambert. * Copyright (c) 1982, 1987, 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91 * $Id: machdep.c,v 1.135 1995/07/29 11:38:52 bde Exp $ */ #include "npx.h" #include "isa.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SYSVSHM #include #endif #ifdef SYSVMSG #include #endif #ifdef SYSVSEM #include #endif #include #include #include #include #include #include #include #include /* XXX correctly declaring all the netisr's is painful. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ether.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void identifycpu(void); static void initcpu(void); char machine[] = "i386"; char cpu_model[128]; struct kern_devconf kdc_cpu0 = { 0, 0, 0, /* filled in by dev_attach */ "cpu", 0, { MDDT_CPU }, 0, 0, 0, CPU_EXTERNALLEN, 0, /* CPU has no parent */ 0, /* no parentdata */ DC_BUSY, /* the CPU is always busy */ cpu_model, /* no sense in duplication */ DC_CLS_CPU /* class */ }; #ifndef PANIC_REBOOT_WAIT_TIME #define PANIC_REBOOT_WAIT_TIME 15 /* default to 15 seconds */ #endif #ifdef BOUNCE_BUFFERS extern char *bouncememory; extern int maxbkva; #ifdef BOUNCEPAGES int bouncepages = BOUNCEPAGES; #else int bouncepages = 0; #endif #endif /* BOUNCE_BUFFERS */ extern int freebufspace; int msgbufmapped = 0; /* set when safe to use msgbuf */ int _udatasel, _ucodesel; /* * Machine-dependent startup code */ int boothowto = 0, bootverbose = 0, Maxmem = 0, badpages = 0, physmem = 0; long dumplo; extern int bootdev; int biosmem; vm_offset_t phys_avail[10]; /* must be 2 less so 0 0 can signal end of chunks */ #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2) int cpu_class; void dumpsys __P((void)); void setup_netisrs __P((struct linker_set *)); /* XXX declare elsewhere */ vm_offset_t buffer_sva, buffer_eva; vm_offset_t clean_sva, clean_eva; vm_offset_t pager_sva, pager_eva; extern struct linker_set netisr_set; #define offsetof(type, member) ((size_t)(&((type *)0)->member)) void cpu_startup() { register unsigned i; register caddr_t v; vm_offset_t maxaddr; vm_size_t size = 0; int firstaddr, indx; vm_offset_t minaddr; if (boothowto & RB_VERBOSE) bootverbose++; /* * Initialize error message buffer (at end of core). */ /* avail_end was pre-decremented in init_386() to compensate */ for (i = 0; i < btoc(sizeof (struct msgbuf)); i++) pmap_enter(pmap_kernel(), (vm_offset_t)msgbufp, avail_end + i * NBPG, VM_PROT_ALL, TRUE); msgbufmapped = 1; /* * Good {morning,afternoon,evening,night}. */ printf(version); startrtclock(); identifycpu(); /* * Display any holes after the first chunk of extended memory. */ if (badpages != 0) { int indx = 1; /* * XXX skip reporting ISA hole & unmanaged kernel memory */ if (phys_avail[0] == PAGE_SIZE) indx += 2; printf("Physical memory hole(s):\n"); for (; phys_avail[indx + 1] != 0; indx += 2) { int size = phys_avail[indx + 1] - phys_avail[indx]; printf("0x%08x - 0x%08x, %d bytes (%d pages)\n", phys_avail[indx], phys_avail[indx + 1] - 1, size, size / PAGE_SIZE); } } /* * Quickly wire in netisrs. */ setup_netisrs(&netisr_set); /* #ifdef ISDN DONET(isdnintr, NETISR_ISDN); #endif */ /* * Allocate space for system data structures. * The first available kernel virtual address is in "v". * As pages of kernel virtual memory are allocated, "v" is incremented. * As pages of memory are allocated and cleared, * "firstaddr" is incremented. * An index into the kernel page table corresponding to the * virtual memory address maintained in "v" is kept in "mapaddr". */ /* * Make two passes. The first pass calculates how much memory is * needed and allocates it. The second pass assigns virtual * addresses to the various data structures. */ firstaddr = 0; again: v = (caddr_t)firstaddr; #define valloc(name, type, num) \ (name) = (type *)v; v = (caddr_t)((name)+(num)) #define valloclim(name, type, num, lim) \ (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num))) valloc(callout, struct callout, ncallout); #ifdef SYSVSHM valloc(shmsegs, struct shmid_ds, shminfo.shmmni); #endif #ifdef SYSVSEM valloc(sema, struct semid_ds, seminfo.semmni); valloc(sem, struct sem, seminfo.semmns); /* This is pretty disgusting! */ valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int)); #endif #ifdef SYSVMSG valloc(msgpool, char, msginfo.msgmax); valloc(msgmaps, struct msgmap, msginfo.msgseg); valloc(msghdrs, struct msg, msginfo.msgtql); valloc(msqids, struct msqid_ds, msginfo.msgmni); #endif if (nbuf == 0) { nbuf = 30; if( physmem > 1024) nbuf += min((physmem - 1024) / 12, 1024); } nswbuf = min(nbuf, 128); valloc(swbuf, struct buf, nswbuf); valloc(buf, struct buf, nbuf); #ifdef BOUNCE_BUFFERS /* * If there is more than 16MB of memory, allocate some bounce buffers */ if (Maxmem > 4096) { if (bouncepages == 0) { bouncepages = 64; bouncepages += ((Maxmem - 4096) / 2048) * 32; } v = (caddr_t)((vm_offset_t)((vm_offset_t)v + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1)); valloc(bouncememory, char, bouncepages * PAGE_SIZE); } #endif /* * End of first pass, size has been calculated so allocate memory */ if (firstaddr == 0) { size = (vm_size_t)(v - firstaddr); firstaddr = (int)kmem_alloc(kernel_map, round_page(size)); if (firstaddr == 0) panic("startup: no room for tables"); goto again; } /* * End of second pass, addresses have been assigned */ if ((vm_size_t)(v - firstaddr) != size) panic("startup: table size inconsistency"); #ifdef BOUNCE_BUFFERS clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva, (nbuf*MAXBSIZE) + (nswbuf*MAXPHYS) + maxbkva + pager_map_size, TRUE); io_map = kmem_suballoc(clean_map, &minaddr, &maxaddr, maxbkva, FALSE); #else clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva, (nbuf*MAXBSIZE) + (nswbuf*MAXPHYS) + pager_map_size, TRUE); #endif buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva, (nbuf*MAXBSIZE), TRUE); pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva, (nswbuf*MAXPHYS) + pager_map_size, TRUE); exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr, (16*ARG_MAX), TRUE); u_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr, (maxproc*UPAGES*PAGE_SIZE), FALSE); /* * Finally, allocate mbuf pool. Since mclrefcnt is an off-size * we use the more space efficient malloc in place of kmem_alloc. */ mclrefcnt = (char *)malloc(nmbclusters+CLBYTES/MCLBYTES, M_MBUF, M_NOWAIT); bzero(mclrefcnt, nmbclusters+CLBYTES/MCLBYTES); mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr, nmbclusters * MCLBYTES, FALSE); /* * Initialize callouts */ callfree = callout; for (i = 1; i < ncallout; i++) callout[i-1].c_next = &callout[i]; if (boothowto & RB_CONFIG) userconfig(); printf("avail memory = %d (%d pages)\n", ptoa(cnt.v_free_count), cnt.v_free_count); #ifdef BOUNCE_BUFFERS /* * init bounce buffers */ vm_bounce_init(); #endif /* * Set up CPU-specific registers, cache, etc. */ initcpu(); /* * Set up buffers, so they can be used to read disk labels. */ bufinit(); vm_pager_bufferinit(); /* * Configure the system. */ configure(); if (bootverbose) { printf("BIOS Geometries:\n"); for (i=0; i < N_BIOS_GEOM; i++) { int j = bootinfo.bi_bios_geom[i]; if (j == 0x4f010f) continue; printf(" %x:%08x", i, j); printf(" %d cyl, %d heads, %d sects\n", j >> 16, (j >> 8) & 0xff, j & 0xff); } printf(" %d accounted for\n", bootinfo.bi_n_bios_used); } } void setup_netisrs(struct linker_set *ls) { int i; const struct netisrtab *nit; for(i = 0; ls->ls_items[i]; i++) { nit = (const struct netisrtab *)ls->ls_items[i]; netisrs[nit->nit_num] = nit->nit_isr; } } struct cpu_nameclass i386_cpus[] = { { "Intel 80286", CPUCLASS_286 }, /* CPU_286 */ { "i386SX", CPUCLASS_386 }, /* CPU_386SX */ { "i386DX", CPUCLASS_386 }, /* CPU_386 */ { "i486SX", CPUCLASS_486 }, /* CPU_486SX */ { "i486DX", CPUCLASS_486 }, /* CPU_486 */ { "Pentium", CPUCLASS_586 }, /* CPU_586 */ { "Cy486DLC", CPUCLASS_486 }, /* CPU_486DLC */ }; static void identifycpu() { printf("CPU: "); if (cpu >= 0 && cpu < (sizeof i386_cpus/sizeof(struct cpu_nameclass))) { cpu_class = i386_cpus[cpu].cpu_class; strncpy(cpu_model, i386_cpus[cpu].cpu_name, sizeof cpu_model); } else { printf("unknown cpu type %d\n", cpu); panic("startup: bad cpu id"); } #if defined(I586_CPU) if(cpu_class == CPUCLASS_586) { calibrate_cyclecounter(); printf("%d-MHz ", pentium_mhz); } #endif #if defined(I486_CPU) || defined(I586_CPU) if (!strcmp(cpu_vendor,"GenuineIntel")) { if ((cpu_id & 0xf00) > 3) { cpu_model[0] = '\0'; switch (cpu_id & 0x3000) { case 0x1000: strcpy(cpu_model, "Overdrive "); break; case 0x2000: strcpy(cpu_model, "Dual "); break; } if ((cpu_id & 0xf00) == 0x400) { strcat(cpu_model, "i486 "); #if defined(I586_CPU) } else if ((cpu_id & 0xf00) == 0x500) { strcat(cpu_model, "Pentium "); #endif } else { strcat(cpu_model, "unknown "); } switch (cpu_id & 0xff0) { case 0x400: strcat(cpu_model, "DX"); break; case 0x410: strcat(cpu_model, "DX"); break; case 0x420: strcat(cpu_model, "SX"); break; case 0x430: strcat(cpu_model, "DX2"); break; case 0x440: strcat(cpu_model, "SL"); break; case 0x450: strcat(cpu_model, "SX2"); break; case 0x470: strcat(cpu_model, "DX2 Write-Back Enhanced"); break; case 0x480: strcat(cpu_model, "DX4"); break; #if defined(I586_CPU) case 0x510: if (pentium_mhz == 60) { strcat(cpu_model, "510\\60"); } else if (pentium_mhz == 66) { strcat(cpu_model, "567\\66"); } else { strcat(cpu_model,"510\\60 or 567\\66"); } break; case 0x520: if (pentium_mhz == 90) { strcat(cpu_model, "735\\90"); } else if (pentium_mhz == 100) { strcat(cpu_model, "815\\100"); } else { strcat(cpu_model,"735\\90 or 815\\100"); } break; #endif } } } #endif printf("%s (", cpu_model); switch(cpu_class) { case CPUCLASS_286: printf("286"); break; #if defined(I386_CPU) case CPUCLASS_386: printf("386"); break; #endif #if defined(I486_CPU) case CPUCLASS_486: printf("486"); break; #endif #if defined(I586_CPU) case CPUCLASS_586: printf("Pentium"); break; #endif default: printf("unknown"); /* will panic below... */ } printf("-class CPU)\n"); #if defined(I486_CPU) || defined(I586_CPU) if(*cpu_vendor) printf(" Origin = \"%s\"",cpu_vendor); if(cpu_id) printf(" Id = 0x%lx",cpu_id); if (!strcmp(cpu_vendor, "GenuineIntel")) { printf(" Stepping=%ld", cpu_id & 0xf); if (cpu_high > 0) { #define FEATUREFMT "\020\001FPU\002VME\003PSE\004MCE\005CX8\006APIC" printf("\n Features=0x%b", cpu_feature, FEATUREFMT); } } /* Avoid ugly blank lines: only print newline when we have to. */ if (*cpu_vendor || cpu_id) printf("\n"); #endif /* * Now that we have told the user what they have, * let them know if that machine type isn't configured. */ switch (cpu_class) { case CPUCLASS_286: /* a 286 should not make it this far, anyway */ #if !defined(I386_CPU) && !defined(I486_CPU) && !defined(I586_CPU) #error This kernel is not configured for one of the supported CPUs #endif #if !defined(I386_CPU) case CPUCLASS_386: #endif #if !defined(I486_CPU) case CPUCLASS_486: #endif #if !defined(I586_CPU) case CPUCLASS_586: #endif panic("CPU class not configured"); default: break; } dev_attach(&kdc_cpu0); } /* * Send an interrupt to process. * * Stack is set up to allow sigcode stored * in u. to call routine, followed by kcall * to sigreturn routine below. After sigreturn * resets the signal mask, the stack, and the * frame pointer, it returns to the user * specified pc, psl. */ void sendsig(catcher, sig, mask, code) sig_t catcher; int sig, mask; unsigned code; { register struct proc *p = curproc; register int *regs; register struct sigframe *fp; struct sigframe sf; struct sigacts *psp = p->p_sigacts; int oonstack; regs = p->p_md.md_regs; oonstack = psp->ps_sigstk.ss_flags & SA_ONSTACK; /* * Allocate and validate space for the signal handler * context. Note that if the stack is in P0 space, the * call to grow() is a nop, and the useracc() check * will fail if the process has not already allocated * the space with a `brk'. */ if ((psp->ps_flags & SAS_ALTSTACK) && (psp->ps_sigstk.ss_flags & SA_ONSTACK) == 0 && (psp->ps_sigonstack & sigmask(sig))) { fp = (struct sigframe *)(psp->ps_sigstk.ss_sp + psp->ps_sigstk.ss_size - sizeof(struct sigframe)); psp->ps_sigstk.ss_flags |= SA_ONSTACK; } else { fp = (struct sigframe *)(regs[tESP] - sizeof(struct sigframe)); } /* * grow() will return FALSE if the fp will not fit inside the stack * and the stack can not be grown. useracc will return FALSE * if access is denied. */ if ((grow(p, (int)fp) == FALSE) || (useracc((caddr_t)fp, sizeof (struct sigframe), B_WRITE) == FALSE)) { /* * Process has trashed its stack; give it an illegal * instruction to halt it in its tracks. */ SIGACTION(p, SIGILL) = SIG_DFL; sig = sigmask(SIGILL); p->p_sigignore &= ~sig; p->p_sigcatch &= ~sig; p->p_sigmask &= ~sig; psignal(p, SIGILL); return; } /* * Build the argument list for the signal handler. */ if (p->p_sysent->sv_sigtbl) { if (sig < p->p_sysent->sv_sigsize) sig = p->p_sysent->sv_sigtbl[sig]; else sig = p->p_sysent->sv_sigsize + 1; } sf.sf_signum = sig; sf.sf_code = code; sf.sf_scp = &fp->sf_sc; sf.sf_addr = (char *) regs[tERR]; sf.sf_handler = catcher; /* save scratch registers */ sf.sf_sc.sc_eax = regs[tEAX]; sf.sf_sc.sc_ebx = regs[tEBX]; sf.sf_sc.sc_ecx = regs[tECX]; sf.sf_sc.sc_edx = regs[tEDX]; sf.sf_sc.sc_esi = regs[tESI]; sf.sf_sc.sc_edi = regs[tEDI]; sf.sf_sc.sc_cs = regs[tCS]; sf.sf_sc.sc_ds = regs[tDS]; sf.sf_sc.sc_ss = regs[tSS]; sf.sf_sc.sc_es = regs[tES]; sf.sf_sc.sc_isp = regs[tISP]; /* * Build the signal context to be used by sigreturn. */ sf.sf_sc.sc_onstack = oonstack; sf.sf_sc.sc_mask = mask; sf.sf_sc.sc_sp = regs[tESP]; sf.sf_sc.sc_fp = regs[tEBP]; sf.sf_sc.sc_pc = regs[tEIP]; sf.sf_sc.sc_ps = regs[tEFLAGS]; /* * Copy the sigframe out to the user's stack. */ if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) { /* * Something is wrong with the stack pointer. * ...Kill the process. */ sigexit(p, SIGILL); }; regs[tESP] = (int)fp; regs[tEIP] = (int)((struct pcb *)kstack)->pcb_sigc; regs[tEFLAGS] &= ~PSL_VM; regs[tCS] = _ucodesel; regs[tDS] = _udatasel; regs[tES] = _udatasel; regs[tSS] = _udatasel; } /* * System call to cleanup state after a signal * has been taken. Reset signal mask and * stack state from context left by sendsig (above). * Return to previous pc and psl as specified by * context left by sendsig. Check carefully to * make sure that the user has not modified the * state to gain improper privileges. */ struct sigreturn_args { struct sigcontext *sigcntxp; }; int sigreturn(p, uap, retval) struct proc *p; struct sigreturn_args *uap; int *retval; { register struct sigcontext *scp; register struct sigframe *fp; register int *regs = p->p_md.md_regs; int eflags; /* * (XXX old comment) regs[tESP] points to the return address. * The user scp pointer is above that. * The return address is faked in the signal trampoline code * for consistency. */ scp = uap->sigcntxp; fp = (struct sigframe *) ((caddr_t)scp - offsetof(struct sigframe, sf_sc)); if (useracc((caddr_t)fp, sizeof (*fp), 0) == 0) return(EINVAL); /* * Don't allow users to change privileged or reserved flags. */ #define EFLAGS_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0) eflags = scp->sc_ps; /* * XXX do allow users to change the privileged flag PSL_RF. The * cpu sets PSL_RF in tf_eflags for faults. Debuggers should * sometimes set it there too. tf_eflags is kept in the signal * context during signal handling and there is no other place * to remember it, so the PSL_RF bit may be corrupted by the * signal handler without us knowing. Corruption of the PSL_RF * bit at worst causes one more or one less debugger trap, so * allowing it is fairly harmless. */ if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs[tEFLAGS] & ~PSL_RF)) { #ifdef DEBUG printf("sigreturn: eflags = 0x%x\n", eflags); #endif return(EINVAL); } /* * Don't allow users to load a valid privileged %cs. Let the * hardware check for invalid selectors, excess privilege in * other selectors, invalid %eip's and invalid %esp's. */ #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL) if (!CS_SECURE(scp->sc_cs)) { #ifdef DEBUG printf("sigreturn: cs = 0x%x\n", scp->sc_cs); #endif trapsignal(p, SIGBUS, T_PROTFLT); return(EINVAL); } /* restore scratch registers */ regs[tEAX] = scp->sc_eax; regs[tEBX] = scp->sc_ebx; regs[tECX] = scp->sc_ecx; regs[tEDX] = scp->sc_edx; regs[tESI] = scp->sc_esi; regs[tEDI] = scp->sc_edi; regs[tCS] = scp->sc_cs; regs[tDS] = scp->sc_ds; regs[tES] = scp->sc_es; regs[tSS] = scp->sc_ss; regs[tISP] = scp->sc_isp; if (useracc((caddr_t)scp, sizeof (*scp), 0) == 0) return(EINVAL); if (scp->sc_onstack & 01) p->p_sigacts->ps_sigstk.ss_flags |= SA_ONSTACK; else p->p_sigacts->ps_sigstk.ss_flags &= ~SA_ONSTACK; p->p_sigmask = scp->sc_mask &~ (sigmask(SIGKILL)|sigmask(SIGCONT)|sigmask(SIGSTOP)); regs[tEBP] = scp->sc_fp; regs[tESP] = scp->sc_sp; regs[tEIP] = scp->sc_pc; regs[tEFLAGS] = eflags; return(EJUSTRETURN); } /* * a simple function to make the system panic (and dump a vmcore) * in a predictable fashion */ void diediedie() { panic("because you said to!"); } int waittime = -1; struct pcb dumppcb; __dead void boot(howto) int howto; { if (!cold && (howto & RB_NOSYNC) == 0 && waittime < 0) { register struct buf *bp; int iter, nbusy; waittime = 0; printf("\nsyncing disks... "); sync(&proc0, NULL, NULL); for (iter = 0; iter < 20; iter++) { nbusy = 0; for (bp = &buf[nbuf]; --bp >= buf; ) { if ((bp->b_flags & (B_BUSY | B_INVAL)) == B_BUSY) { nbusy++; } } if (nbusy == 0) break; printf("%d ", nbusy); DELAY(40000 * iter); } if (nbusy) { /* * Failed to sync all blocks. Indicate this and don't * unmount filesystems (thus forcing an fsck on reboot). */ printf("giving up\n"); } else { printf("done\n"); /* * Unmount filesystems */ if (panicstr == 0) vfs_unmountall(); } DELAY(100000); /* wait for console output to finish */ dev_shutdownall(FALSE); } splhigh(); if (howto & RB_HALT) { printf("\n"); printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); } else { if (howto & RB_DUMP) { if (!cold) { savectx(&dumppcb, 0); dumppcb.pcb_ptd = rcr3(); dumpsys(); } if (PANIC_REBOOT_WAIT_TIME != 0) { if (PANIC_REBOOT_WAIT_TIME != -1) { int loop; printf("Automatic reboot in %d seconds - press a key on the console to abort\n", PANIC_REBOOT_WAIT_TIME); for (loop = PANIC_REBOOT_WAIT_TIME * 10; loop > 0; --loop) { DELAY(1000 * 100); /* 1/10th second */ if (cncheckc()) /* Did user type a key? */ break; } if (!loop) goto die; } } else { /* zero time specified - reboot NOW */ goto die; } printf("--> Press a key on the console to reboot <--\n"); cngetc(); } } die: printf("Rebooting...\n"); DELAY(1000000); /* wait 1 sec for printf's to complete and be read */ cpu_reset(); for(;;) ; /* NOTREACHED */ } unsigned long dumpmag = 0x8fca0101UL; /* magic number for savecore */ int dumpsize = 0; /* also for savecore */ int dodump = 1; /* * Doadump comes here after turning off memory management and * getting on the dump stack, either when called above, or by * the auto-restart code. */ void dumpsys() { if (!dodump) return; if (dumpdev == NODEV) return; if ((minor(dumpdev)&07) != 1) return; dumpsize = Maxmem; printf("\ndumping to dev %lx, offset %ld\n", dumpdev, dumplo); printf("dump "); switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) { case ENXIO: printf("device bad\n"); break; case EFAULT: printf("device not ready\n"); break; case EINVAL: printf("area improper\n"); break; case EIO: printf("i/o error\n"); break; case EINTR: printf("aborted from console\n"); break; default: printf("succeeded\n"); break; } } static void initcpu() { } /* * Clear registers on exec */ void setregs(p, entry, stack) struct proc *p; u_long entry; u_long stack; { int *regs = p->p_md.md_regs; bzero(regs, sizeof(struct trapframe)); regs[tEIP] = entry; regs[tESP] = stack; regs[tEFLAGS] = PSL_USER | (regs[tEFLAGS] & PSL_T); regs[tSS] = _udatasel; regs[tDS] = _udatasel; regs[tES] = _udatasel; regs[tCS] = _ucodesel; p->p_addr->u_pcb.pcb_flags = 0; /* no fp at all */ load_cr0(rcr0() | CR0_TS); /* start emulating */ #if NNPX > 0 npxinit(__INITIAL_NPXCW__); #endif /* NNPX > 0 */ } /* * machine dependent system variables. */ int cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p) int *name; u_int namelen; void *oldp; size_t *oldlenp; void *newp; size_t newlen; struct proc *p; { dev_t consdev; int error; /* all sysctl names at this level are terminal */ if (namelen != 1) return (ENOTDIR); /* overloaded */ switch (name[0]) { case CPU_CONSDEV: consdev = (cn_tty == NULL ? NODEV : cn_tty->t_dev); return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev, sizeof consdev)); case CPU_ADJKERNTZ: error = sysctl_int(oldp, oldlenp, newp, newlen, &adjkerntz); if (!error && newp) resettodr(); return error; case CPU_DISRTCSET: return (sysctl_int(oldp, oldlenp, newp, newlen, &disable_rtc_set)); case CPU_BOOTINFO: return (sysctl_rdstruct(oldp, oldlenp, newp, &bootinfo, sizeof bootinfo)); default: return (EOPNOTSUPP); } /* NOTREACHED */ } /* * Initialize 386 and configure to run kernel */ /* * Initialize segments & interrupt table */ int currentldt; int _default_ldt; union descriptor gdt[NGDT]; /* global descriptor table */ struct gate_descriptor idt[NIDT]; /* interrupt descriptor table */ union descriptor ldt[NLDT]; /* local descriptor table */ struct i386tss tss, panic_tss; extern struct user *proc0paddr; /* software prototypes -- in more palatable form */ struct soft_segment_descriptor gdt_segs[] = { /* GNULL_SEL 0 Null Descriptor */ { 0x0, /* segment base address */ 0x0, /* length */ 0, /* segment type */ 0, /* segment descriptor priority level */ 0, /* segment descriptor present */ 0, 0, 0, /* default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* GCODE_SEL 1 Code Descriptor for kernel */ { 0x0, /* segment base address */ 0xfffff, /* length - all address space */ SDT_MEMERA, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 1, /* default 32 vs 16 bit size */ 1 /* limit granularity (byte/page units)*/ }, /* GDATA_SEL 2 Data Descriptor for kernel */ { 0x0, /* segment base address */ 0xfffff, /* length - all address space */ SDT_MEMRWA, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 1, /* default 32 vs 16 bit size */ 1 /* limit granularity (byte/page units)*/ }, /* GLDT_SEL 3 LDT Descriptor */ { (int) ldt, /* segment base address */ sizeof(ldt)-1, /* length - all address space */ SDT_SYSLDT, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 0, /* unused - default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* GTGATE_SEL 4 Null Descriptor - Placeholder */ { 0x0, /* segment base address */ 0x0, /* length - all address space */ 0, /* segment type */ 0, /* segment descriptor priority level */ 0, /* segment descriptor present */ 0, 0, 0, /* default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* GPANIC_SEL 5 Panic Tss Descriptor */ { (int) &panic_tss, /* segment base address */ sizeof(tss)-1, /* length - all address space */ SDT_SYS386TSS, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 0, /* unused - default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* GPROC0_SEL 6 Proc 0 Tss Descriptor */ { (int) kstack, /* segment base address */ sizeof(tss)-1, /* length - all address space */ SDT_SYS386TSS, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 0, /* unused - default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* GUSERLDT_SEL 7 User LDT Descriptor per process */ { (int) ldt, /* segment base address */ (512 * sizeof(union descriptor)-1), /* length */ SDT_SYSLDT, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 0, /* unused - default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* GAPMCODE32_SEL 8 APM BIOS 32-bit interface (32bit Code) */ { 0, /* segment base address (overwritten by APM) */ 0xfffff, /* length */ SDT_MEMERA, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 1, /* default 32 vs 16 bit size */ 1 /* limit granularity (byte/page units)*/ }, /* GAPMCODE16_SEL 9 APM BIOS 32-bit interface (16bit Code) */ { 0, /* segment base address (overwritten by APM) */ 0xfffff, /* length */ SDT_MEMERA, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 0, /* default 32 vs 16 bit size */ 1 /* limit granularity (byte/page units)*/ }, /* GAPMDATA_SEL 10 APM BIOS 32-bit interface (Data) */ { 0, /* segment base address (overwritten by APM) */ 0xfffff, /* length */ SDT_MEMRWA, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 1, /* default 32 vs 16 bit size */ 1 /* limit granularity (byte/page units)*/ }, }; struct soft_segment_descriptor ldt_segs[] = { /* Null Descriptor - overwritten by call gate */ { 0x0, /* segment base address */ 0x0, /* length - all address space */ 0, /* segment type */ 0, /* segment descriptor priority level */ 0, /* segment descriptor present */ 0, 0, 0, /* default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* Null Descriptor - overwritten by call gate */ { 0x0, /* segment base address */ 0x0, /* length - all address space */ 0, /* segment type */ 0, /* segment descriptor priority level */ 0, /* segment descriptor present */ 0, 0, 0, /* default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* Null Descriptor - overwritten by call gate */ { 0x0, /* segment base address */ 0x0, /* length - all address space */ 0, /* segment type */ 0, /* segment descriptor priority level */ 0, /* segment descriptor present */ 0, 0, 0, /* default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* Code Descriptor for user */ { 0x0, /* segment base address */ 0xfffff, /* length - all address space */ SDT_MEMERA, /* segment type */ SEL_UPL, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 1, /* default 32 vs 16 bit size */ 1 /* limit granularity (byte/page units)*/ }, /* Data Descriptor for user */ { 0x0, /* segment base address */ 0xfffff, /* length - all address space */ SDT_MEMRWA, /* segment type */ SEL_UPL, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 1, /* default 32 vs 16 bit size */ 1 /* limit granularity (byte/page units)*/ }, }; void setidt(idx, func, typ, dpl) int idx; inthand_t *func; int typ; int dpl; { struct gate_descriptor *ip = idt + idx; ip->gd_looffset = (int)func; ip->gd_selector = 8; ip->gd_stkcpy = 0; ip->gd_xx = 0; ip->gd_type = typ; ip->gd_dpl = dpl; ip->gd_p = 1; ip->gd_hioffset = ((int)func)>>16 ; } #define IDTVEC(name) __CONCAT(X,name) extern inthand_t IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl), IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(dble), IDTVEC(fpusegm), IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot), IDTVEC(page), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align), IDTVEC(syscall); #ifdef COMPAT_LINUX extern inthand_t IDTVEC(linux_syscall); #endif void sdtossd(sd, ssd) struct segment_descriptor *sd; struct soft_segment_descriptor *ssd; { ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase; ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit; ssd->ssd_type = sd->sd_type; ssd->ssd_dpl = sd->sd_dpl; ssd->ssd_p = sd->sd_p; ssd->ssd_def32 = sd->sd_def32; ssd->ssd_gran = sd->sd_gran; } void init386(first) int first; { int x; unsigned biosbasemem, biosextmem; struct gate_descriptor *gdp; int gsel_tss; /* table descriptors - used to load tables by microp */ struct region_descriptor r_gdt, r_idt; int pagesinbase, pagesinext; int target_page, pa_indx; proc0.p_addr = proc0paddr; /* * Initialize the console before we print anything out. */ cninit (); /* * make gdt memory segments, the code segment goes up to end of the * page with etext in it, the data segment goes to the end of * the address space */ /* * XXX text protection is temporarily (?) disabled. The limit was * i386_btop(i386_round_page(etext)) - 1. */ gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1; gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1; for (x = 0; x < NGDT; x++) ssdtosd(&gdt_segs[x], &gdt[x].sd); /* make ldt memory segments */ /* * The data segment limit must not cover the user area because we * don't want the user area to be writable in copyout() etc. (page * level protection is lost in kernel mode on 386's). Also, we * don't want the user area to be writable directly (page level * protection of the user area is not available on 486's with * CR0_WP set, because there is no user-read/kernel-write mode). * * XXX - VM_MAXUSER_ADDRESS is an end address, not a max. And it * should be spelled ...MAX_USER... */ #define VM_END_USER_RW_ADDRESS VM_MAXUSER_ADDRESS /* * The code segment limit has to cover the user area until we move * the signal trampoline out of the user area. This is safe because * the code segment cannot be written to directly. */ #define VM_END_USER_R_ADDRESS (VM_END_USER_RW_ADDRESS + UPAGES * NBPG) ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1; ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1; /* Note. eventually want private ldts per process */ for (x = 0; x < NLDT; x++) ssdtosd(&ldt_segs[x], &ldt[x].sd); /* exceptions */ for (x = 0; x < NIDT; x++) setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL); setidt(0, &IDTVEC(div), SDT_SYS386TGT, SEL_KPL); setidt(1, &IDTVEC(dbg), SDT_SYS386TGT, SEL_KPL); setidt(2, &IDTVEC(nmi), SDT_SYS386TGT, SEL_KPL); setidt(3, &IDTVEC(bpt), SDT_SYS386TGT, SEL_UPL); setidt(4, &IDTVEC(ofl), SDT_SYS386TGT, SEL_UPL); setidt(5, &IDTVEC(bnd), SDT_SYS386TGT, SEL_KPL); setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL); setidt(7, &IDTVEC(dna), SDT_SYS386TGT, SEL_KPL); setidt(8, &IDTVEC(dble), SDT_SYS386TGT, SEL_KPL); setidt(9, &IDTVEC(fpusegm), SDT_SYS386TGT, SEL_KPL); setidt(10, &IDTVEC(tss), SDT_SYS386TGT, SEL_KPL); setidt(11, &IDTVEC(missing), SDT_SYS386TGT, SEL_KPL); setidt(12, &IDTVEC(stk), SDT_SYS386TGT, SEL_KPL); setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL); setidt(14, &IDTVEC(page), SDT_SYS386TGT, SEL_KPL); setidt(15, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL); setidt(16, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL); setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL); #ifdef COMPAT_LINUX setidt(0x80, &IDTVEC(linux_syscall), SDT_SYS386TGT, SEL_UPL); #endif #include "isa.h" #if NISA >0 isa_defaultirq(); #endif r_gdt.rd_limit = sizeof(gdt) - 1; r_gdt.rd_base = (int) gdt; lgdt(&r_gdt); r_idt.rd_limit = sizeof(idt) - 1; r_idt.rd_base = (int) idt; lidt(&r_idt); _default_ldt = GSEL(GLDT_SEL, SEL_KPL); lldt(_default_ldt); currentldt = _default_ldt; #ifdef DDB kdb_init(); if (boothowto & RB_KDB) Debugger("Boot flags requested debugger"); #endif /* Use BIOS values stored in RTC CMOS RAM, since probing * breaks certain 386 AT relics. */ biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8); biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8); /* * Print a warning if the official BIOS interface disagrees * with the hackish interface used above. Eventually only * the official interface should be used. */ if (bootinfo.bi_memsizes_valid) { if (bootinfo.bi_basemem != biosbasemem) printf("BIOS basemem (%ldK) != RTC basemem (%dK)\n", bootinfo.bi_basemem, biosbasemem); if (bootinfo.bi_extmem != biosextmem) printf("BIOS extmem (%ldK) != RTC extmem (%dK)\n", bootinfo.bi_extmem, biosextmem); } /* * If BIOS tells us that it has more than 640k in the basemem, * don't believe it - set it to 640k. */ if (biosbasemem > 640) biosbasemem = 640; /* * Some 386 machines might give us a bogus number for extended * mem. If this happens, stop now. */ #ifndef LARGEMEM if (biosextmem > 65536) { panic("extended memory beyond limit of 64MB"); /* NOTREACHED */ } #endif pagesinbase = biosbasemem * 1024 / NBPG; pagesinext = biosextmem * 1024 / NBPG; /* * Special hack for chipsets that still remap the 384k hole when * there's 16MB of memory - this really confuses people that * are trying to use bus mastering ISA controllers with the * "16MB limit"; they only have 16MB, but the remapping puts * them beyond the limit. */ /* * If extended memory is between 15-16MB (16-17MB phys address range), * chop it to 15MB. */ if ((pagesinext > 3840) && (pagesinext < 4096)) pagesinext = 3840; /* * Maxmem isn't the "maximum memory", it's one larger than the * highest page of of the physical address space. It */ Maxmem = pagesinext + 0x100000/PAGE_SIZE; #ifdef MAXMEM Maxmem = MAXMEM/4; #endif /* call pmap initialization to make new kernel address space */ pmap_bootstrap (first, 0); /* * Size up each available chunk of physical memory. */ /* * We currently don't bother testing base memory. * XXX ...but we probably should. */ pa_indx = 0; badpages = 0; if (pagesinbase > 1) { phys_avail[pa_indx++] = PAGE_SIZE; /* skip first page of memory */ phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */ physmem = pagesinbase - 1; } else { /* point at first chunk end */ pa_indx++; } for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) { int tmp, page_bad = FALSE; /* * map page into kernel: valid, read/write, non-cacheable */ *(int *)CMAP1 = PG_V | PG_KW | PG_N | target_page; pmap_update(); tmp = *(int *)CADDR1; /* * Test for alternating 1's and 0's */ *(int *)CADDR1 = 0xaaaaaaaa; if (*(int *)CADDR1 != 0xaaaaaaaa) { page_bad = TRUE; } /* * Test for alternating 0's and 1's */ *(int *)CADDR1 = 0x55555555; if (*(int *)CADDR1 != 0x55555555) { page_bad = TRUE; } /* * Test for all 1's */ *(int *)CADDR1 = 0xffffffff; if (*(int *)CADDR1 != 0xffffffff) { page_bad = TRUE; } /* * Test for all 0's */ *(int *)CADDR1 = 0x0; if (*(int *)CADDR1 != 0x0) { /* * test of page failed */ page_bad = TRUE; } /* * Restore original value. */ *(int *)CADDR1 = tmp; /* * Adjust array of valid/good pages. */ if (page_bad == FALSE) { /* * If this good page is a continuation of the * previous set of good pages, then just increase * the end pointer. Otherwise start a new chunk. * Note that "end" points one higher than end, * making the range >= start and < end. */ if (phys_avail[pa_indx] == target_page) { phys_avail[pa_indx] += PAGE_SIZE; } else { pa_indx++; if (pa_indx == PHYS_AVAIL_ARRAY_END) { printf("Too many holes in the physical address space, giving up\n"); pa_indx--; break; } phys_avail[pa_indx++] = target_page; /* start */ phys_avail[pa_indx] = target_page + PAGE_SIZE; /* end */ } physmem++; } else { badpages++; page_bad = FALSE; } } *(int *)CMAP1 = 0; pmap_update(); /* * XXX * The last chunk must contain at leat one page plus the message * buffer to avoid complicating other code (message buffer address * calculation, etc.). */ while (phys_avail[pa_indx - 1] + PAGE_SIZE + round_page(sizeof(struct msgbuf)) >= phys_avail[pa_indx]) { physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]); phys_avail[pa_indx--] = 0; phys_avail[pa_indx--] = 0; } Maxmem = atop(phys_avail[pa_indx]); /* Trim off space for the message buffer. */ phys_avail[pa_indx] -= round_page(sizeof(struct msgbuf)); avail_end = phys_avail[pa_indx]; /* now running on new page tables, configured,and u/iom is accessible */ /* make a initial tss so microp can get interrupt stack on syscall! */ proc0.p_addr->u_pcb.pcb_tss.tss_esp0 = (int) kstack + UPAGES*NBPG; proc0.p_addr->u_pcb.pcb_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ; gsel_tss = GSEL(GPROC0_SEL, SEL_KPL); ((struct i386tss *)gdt_segs[GPROC0_SEL].ssd_base)->tss_ioopt = (sizeof(tss))<<16; ltr(gsel_tss); /* make a call gate to reenter kernel with */ gdp = &ldt[LSYS5CALLS_SEL].gd; x = (int) &IDTVEC(syscall); gdp->gd_looffset = x++; gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL); gdp->gd_stkcpy = 1; gdp->gd_type = SDT_SYS386CGT; gdp->gd_dpl = SEL_UPL; gdp->gd_p = 1; gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16; /* transfer to user mode */ _ucodesel = LSEL(LUCODE_SEL, SEL_UPL); _udatasel = LSEL(LUDATA_SEL, SEL_UPL); /* setup proc 0's pcb */ bcopy(&sigcode, proc0.p_addr->u_pcb.pcb_sigc, szsigcode); proc0.p_addr->u_pcb.pcb_flags = 0; proc0.p_addr->u_pcb.pcb_ptd = IdlePTD; } /* * The registers are in the frame; the frame is in the user area of * the process in question; when the process is active, the registers * are in "the kernel stack"; when it's not, they're still there, but * things get flipped around. So, since p->p_md.md_regs is the whole address * of the register set, take its offset from the kernel stack, and * index into the user block. Don't you just *love* virtual memory? * (I'm starting to think seymour is right...) */ #define TF_REGP(p) ((struct trapframe *) \ ((char *)(p)->p_addr \ + ((char *)(p)->p_md.md_regs - kstack))) int ptrace_set_pc(p, addr) struct proc *p; unsigned int addr; { TF_REGP(p)->tf_eip = addr; return (0); } int ptrace_single_step(p) struct proc *p; { TF_REGP(p)->tf_eflags |= PSL_T; return (0); } int ptrace_getregs(p, addr) struct proc *p; unsigned int *addr; { int error; struct reg regs; error = fill_regs(p, ®s); if (error) return (error); return (copyout(®s, addr, sizeof regs)); } int ptrace_setregs(p, addr) struct proc *p; unsigned int *addr; { int error; struct reg regs; error = copyin(addr, ®s, sizeof regs); if (error) return (error); return (set_regs(p, ®s)); } int ptrace_write_u(p, off, data) struct proc *p; vm_offset_t off; int data; { struct trapframe frame_copy; vm_offset_t min; struct trapframe *tp; /* * Privileged kernel state is scattered all over the user area. * Only allow write access to parts of regs and to fpregs. */ min = (char *)p->p_md.md_regs - kstack; if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) { tp = TF_REGP(p); frame_copy = *tp; *(int *)((char *)&frame_copy + (off - min)) = data; if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) || !CS_SECURE(frame_copy.tf_cs)) return (EINVAL); *(int*)((char *)p->p_addr + off) = data; return (0); } min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu); if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) { *(int*)((char *)p->p_addr + off) = data; return (0); } return (EFAULT); } int fill_regs(p, regs) struct proc *p; struct reg *regs; { struct trapframe *tp; tp = TF_REGP(p); regs->r_es = tp->tf_es; regs->r_ds = tp->tf_ds; regs->r_edi = tp->tf_edi; regs->r_esi = tp->tf_esi; regs->r_ebp = tp->tf_ebp; regs->r_ebx = tp->tf_ebx; regs->r_edx = tp->tf_edx; regs->r_ecx = tp->tf_ecx; regs->r_eax = tp->tf_eax; regs->r_eip = tp->tf_eip; regs->r_cs = tp->tf_cs; regs->r_eflags = tp->tf_eflags; regs->r_esp = tp->tf_esp; regs->r_ss = tp->tf_ss; return (0); } int set_regs(p, regs) struct proc *p; struct reg *regs; { struct trapframe *tp; tp = TF_REGP(p); if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) || !CS_SECURE(regs->r_cs)) return (EINVAL); tp->tf_es = regs->r_es; tp->tf_ds = regs->r_ds; tp->tf_edi = regs->r_edi; tp->tf_esi = regs->r_esi; tp->tf_ebp = regs->r_ebp; tp->tf_ebx = regs->r_ebx; tp->tf_edx = regs->r_edx; tp->tf_ecx = regs->r_ecx; tp->tf_eax = regs->r_eax; tp->tf_eip = regs->r_eip; tp->tf_cs = regs->r_cs; tp->tf_eflags = regs->r_eflags; tp->tf_esp = regs->r_esp; tp->tf_ss = regs->r_ss; return (0); } #ifndef DDB void Debugger(const char *msg) { printf("Debugger(\"%s\") called.\n", msg); } #endif /* no DDB */ #include #define b_cylin b_resid /* * Determine the size of the transfer, and make sure it is * within the boundaries of the partition. Adjust transfer * if needed, and signal errors or early completion. */ int bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel) { struct partition *p = lp->d_partitions + dkpart(bp->b_dev); int labelsect = lp->d_partitions[0].p_offset; int maxsz = p->p_size, sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT; /* overwriting disk label ? */ /* XXX should also protect bootstrap in first 8K */ if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect && #if LABELSECTOR != 0 bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect && #endif (bp->b_flags & B_READ) == 0 && wlabel == 0) { bp->b_error = EROFS; goto bad; } #if defined(DOSBBSECTOR) && defined(notyet) /* overwriting master boot record? */ if (bp->b_blkno + p->p_offset <= DOSBBSECTOR && (bp->b_flags & B_READ) == 0 && wlabel == 0) { bp->b_error = EROFS; goto bad; } #endif /* beyond partition? */ if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) { /* if exactly at end of disk, return an EOF */ if (bp->b_blkno == maxsz) { bp->b_resid = bp->b_bcount; return(0); } /* or truncate if part of it fits */ sz = maxsz - bp->b_blkno; if (sz <= 0) { bp->b_error = EINVAL; goto bad; } bp->b_bcount = sz << DEV_BSHIFT; } /* calculate cylinder for disksort to order transfers with */ bp->b_pblkno = bp->b_blkno + p->p_offset; bp->b_cylin = bp->b_pblkno / lp->d_secpercyl; return(1); bad: bp->b_flags |= B_ERROR; return(-1); } int disk_externalize(int drive, void *userp, size_t *maxlen) { if(*maxlen < sizeof drive) { return ENOMEM; } *maxlen -= sizeof drive; return copyout(&drive, userp, sizeof drive); }