/*- * Copyright (c) 2012 Ganbold Tsagaankhuu * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__aarch64__) #include "opt_soc.h" #else #include #endif /** * Timer registers addr * */ #define TIMER_IRQ_EN_REG 0x00 #define TIMER_IRQ_ENABLE(x) (1 << x) #define TIMER_IRQ_STA_REG 0x04 #define TIMER_IRQ_PENDING(x) (1 << x) /* * On A10, A13, A20 and A31/A31s 6 timers are available */ #define TIMER_CTRL_REG(x) (0x10 + 0x10 * x) #define TIMER_CTRL_START (1 << 0) #define TIMER_CTRL_AUTORELOAD (1 << 1) #define TIMER_CTRL_CLKSRC_MASK (3 << 2) #define TIMER_CTRL_OSC24M (1 << 2) #define TIMER_CTRL_PRESCALAR_MASK (0x7 << 4) #define TIMER_CTRL_PRESCALAR(x) ((x - 1) << 4) #define TIMER_CTRL_MODE_MASK (1 << 7) #define TIMER_CTRL_MODE_SINGLE (1 << 7) #define TIMER_CTRL_MODE_CONTINUOUS (0 << 7) #define TIMER_INTV_REG(x) (0x14 + 0x10 * x) #define TIMER_CURV_REG(x) (0x18 + 0x10 * x) /* 64 bit counter, available in A10 and A13 */ #define CNT64_CTRL_REG 0xa0 #define CNT64_CTRL_RL_EN 0x02 /* read latch enable */ #define CNT64_LO_REG 0xa4 #define CNT64_HI_REG 0xa8 #define SYS_TIMER_CLKSRC 24000000 /* clock source */ enum a10_timer_type { A10_TIMER = 1, A23_TIMER, }; struct a10_timer_softc { device_t sc_dev; struct resource *res[2]; void *sc_ih; /* interrupt handler */ uint32_t sc_period; uint64_t timer0_freq; struct eventtimer et; enum a10_timer_type type; }; #define timer_read_4(sc, reg) \ bus_read_4(sc->res[A10_TIMER_MEMRES], reg) #define timer_write_4(sc, reg, val) \ bus_write_4(sc->res[A10_TIMER_MEMRES], reg, val) static u_int a10_timer_get_timecount(struct timecounter *); static int a10_timer_timer_start(struct eventtimer *, sbintime_t first, sbintime_t period); static int a10_timer_timer_stop(struct eventtimer *); static uint64_t timer_read_counter64(struct a10_timer_softc *sc); static void a10_timer_eventtimer_setup(struct a10_timer_softc *sc); static void a23_timer_timecounter_setup(struct a10_timer_softc *sc); static u_int a23_timer_get_timecount(struct timecounter *tc); static int a10_timer_irq(void *); static int a10_timer_probe(device_t); static int a10_timer_attach(device_t); #if defined(__arm__) static delay_func a10_timer_delay; #endif static struct timecounter a10_timer_timecounter = { .tc_name = "a10_timer timer0", .tc_get_timecount = a10_timer_get_timecount, .tc_counter_mask = ~0u, .tc_frequency = 0, .tc_quality = 1000, }; static struct timecounter a23_timer_timecounter = { .tc_name = "a10_timer timer0", .tc_get_timecount = a23_timer_get_timecount, .tc_counter_mask = ~0u, .tc_frequency = 0, /* We want it to be selected over the arm generic timecounter */ .tc_quality = 2000, }; #define A10_TIMER_MEMRES 0 #define A10_TIMER_IRQRES 1 static struct resource_spec a10_timer_spec[] = { { SYS_RES_MEMORY, 0, RF_ACTIVE }, { SYS_RES_IRQ, 0, RF_ACTIVE }, { -1, 0 } }; static struct ofw_compat_data compat_data[] = { {"allwinner,sun4i-a10-timer", A10_TIMER}, {"allwinner,sun8i-a23-timer", A23_TIMER}, {NULL, 0}, }; static int a10_timer_probe(device_t dev) { struct a10_timer_softc *sc; #if defined(__arm__) u_int soc_family; #endif sc = device_get_softc(dev); if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0) return (ENXIO); #if defined(__arm__) /* For SoC >= A10 we have the ARM Timecounter/Eventtimer */ soc_family = allwinner_soc_family(); if (soc_family != ALLWINNERSOC_SUN4I && soc_family != ALLWINNERSOC_SUN5I) return (ENXIO); #endif device_set_desc(dev, "Allwinner timer"); return (BUS_PROBE_DEFAULT); } static int a10_timer_attach(device_t dev) { struct a10_timer_softc *sc; clk_t clk; int err; sc = device_get_softc(dev); sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data; if (bus_alloc_resources(dev, a10_timer_spec, sc->res)) { device_printf(dev, "could not allocate resources\n"); return (ENXIO); } sc->sc_dev = dev; /* Setup and enable the timer interrupt */ err = bus_setup_intr(dev, sc->res[A10_TIMER_IRQRES], INTR_TYPE_CLK, a10_timer_irq, NULL, sc, &sc->sc_ih); if (err != 0) { bus_release_resources(dev, a10_timer_spec, sc->res); device_printf(dev, "Unable to setup the clock irq handler, " "err = %d\n", err); return (ENXIO); } if (clk_get_by_ofw_index(dev, 0, 0, &clk) != 0) sc->timer0_freq = SYS_TIMER_CLKSRC; else { if (clk_get_freq(clk, &sc->timer0_freq) != 0) { device_printf(dev, "Cannot get clock source frequency\n"); return (ENXIO); } } #if defined(__arm__) a10_timer_eventtimer_setup(sc); arm_set_delay(a10_timer_delay, sc); a10_timer_timecounter.tc_priv = sc; a10_timer_timecounter.tc_frequency = sc->timer0_freq; tc_init(&a10_timer_timecounter); #elif defined(__aarch64__) a23_timer_timecounter_setup(sc); #endif if (bootverbose) { device_printf(sc->sc_dev, "clock: hz=%d stathz = %d\n", hz, stathz); device_printf(sc->sc_dev, "event timer clock frequency %ju\n", sc->timer0_freq); device_printf(sc->sc_dev, "timecounter clock frequency %jd\n", a10_timer_timecounter.tc_frequency); } return (0); } static int a10_timer_irq(void *arg) { struct a10_timer_softc *sc; uint32_t val; sc = (struct a10_timer_softc *)arg; /* Clear interrupt pending bit. */ timer_write_4(sc, TIMER_IRQ_STA_REG, TIMER_IRQ_PENDING(0)); val = timer_read_4(sc, TIMER_CTRL_REG(0)); /* * Disabled autoreload and sc_period > 0 means * timer_start was called with non NULL first value. * Now we will set periodic timer with the given period * value. */ if ((val & (1<<1)) == 0 && sc->sc_period > 0) { /* Update timer */ timer_write_4(sc, TIMER_CURV_REG(0), sc->sc_period); /* Make periodic and enable */ val |= TIMER_CTRL_AUTORELOAD | TIMER_CTRL_START; timer_write_4(sc, TIMER_CTRL_REG(0), val); } if (sc->et.et_active) sc->et.et_event_cb(&sc->et, sc->et.et_arg); return (FILTER_HANDLED); } /* * Event timer function for A10 and A13 */ static void a10_timer_eventtimer_setup(struct a10_timer_softc *sc) { uint32_t val; /* Set clock source to OSC24M, 1 pre-division, continuous mode */ val = timer_read_4(sc, TIMER_CTRL_REG(0)); val &= ~TIMER_CTRL_PRESCALAR_MASK | ~TIMER_CTRL_MODE_MASK | ~TIMER_CTRL_CLKSRC_MASK; val |= TIMER_CTRL_PRESCALAR(1) | TIMER_CTRL_OSC24M; timer_write_4(sc, TIMER_CTRL_REG(0), val); /* Enable timer0 */ val = timer_read_4(sc, TIMER_IRQ_EN_REG); val |= TIMER_IRQ_ENABLE(0); timer_write_4(sc, TIMER_IRQ_EN_REG, val); /* Set desired frequency in event timer and timecounter */ sc->et.et_frequency = sc->timer0_freq; sc->et.et_name = "a10_timer Eventtimer"; sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERIODIC; sc->et.et_quality = 1000; sc->et.et_min_period = (0x00000005LLU << 32) / sc->et.et_frequency; sc->et.et_max_period = (0xfffffffeLLU << 32) / sc->et.et_frequency; sc->et.et_start = a10_timer_timer_start; sc->et.et_stop = a10_timer_timer_stop; sc->et.et_priv = sc; et_register(&sc->et); } static int a10_timer_timer_start(struct eventtimer *et, sbintime_t first, sbintime_t period) { struct a10_timer_softc *sc; uint32_t count; uint32_t val; sc = (struct a10_timer_softc *)et->et_priv; if (period != 0) sc->sc_period = ((uint32_t)et->et_frequency * period) >> 32; else sc->sc_period = 0; if (first != 0) count = ((uint32_t)et->et_frequency * first) >> 32; else count = sc->sc_period; /* Update timer values */ timer_write_4(sc, TIMER_INTV_REG(0), sc->sc_period); timer_write_4(sc, TIMER_CURV_REG(0), count); val = timer_read_4(sc, TIMER_CTRL_REG(0)); if (period != 0) { /* periodic */ val |= TIMER_CTRL_AUTORELOAD; } else { /* oneshot */ val &= ~TIMER_CTRL_AUTORELOAD; } /* Enable timer0 */ val |= TIMER_IRQ_ENABLE(0); timer_write_4(sc, TIMER_CTRL_REG(0), val); return (0); } static int a10_timer_timer_stop(struct eventtimer *et) { struct a10_timer_softc *sc; uint32_t val; sc = (struct a10_timer_softc *)et->et_priv; /* Disable timer0 */ val = timer_read_4(sc, TIMER_CTRL_REG(0)); val &= ~TIMER_CTRL_START; timer_write_4(sc, TIMER_CTRL_REG(0), val); sc->sc_period = 0; return (0); } /* * Timecounter functions for A23 and above */ static void a23_timer_timecounter_setup(struct a10_timer_softc *sc) { uint32_t val; /* Set clock source to OSC24M, 1 pre-division, continuous mode */ val = timer_read_4(sc, TIMER_CTRL_REG(0)); val &= ~TIMER_CTRL_PRESCALAR_MASK | ~TIMER_CTRL_MODE_MASK | ~TIMER_CTRL_CLKSRC_MASK; val |= TIMER_CTRL_PRESCALAR(1) | TIMER_CTRL_OSC24M; timer_write_4(sc, TIMER_CTRL_REG(0), val); /* Set reload value */ timer_write_4(sc, TIMER_INTV_REG(0), ~0); val = timer_read_4(sc, TIMER_INTV_REG(0)); /* Enable timer0 */ val = timer_read_4(sc, TIMER_CTRL_REG(0)); val |= TIMER_CTRL_AUTORELOAD | TIMER_CTRL_START; timer_write_4(sc, TIMER_CTRL_REG(0), val); val = timer_read_4(sc, TIMER_CURV_REG(0)); a23_timer_timecounter.tc_priv = sc; a23_timer_timecounter.tc_frequency = sc->timer0_freq; tc_init(&a23_timer_timecounter); } static u_int a23_timer_get_timecount(struct timecounter *tc) { struct a10_timer_softc *sc; uint32_t val; sc = (struct a10_timer_softc *)tc->tc_priv; if (sc == NULL) return (0); val = timer_read_4(sc, TIMER_CURV_REG(0)); /* Counter count backwards */ return (~0u - val); } /* * Timecounter functions for A10 and A13, using the 64 bits counter */ static uint64_t timer_read_counter64(struct a10_timer_softc *sc) { uint32_t lo, hi; /* Latch counter, wait for it to be ready to read. */ timer_write_4(sc, CNT64_CTRL_REG, CNT64_CTRL_RL_EN); while (timer_read_4(sc, CNT64_CTRL_REG) & CNT64_CTRL_RL_EN) continue; hi = timer_read_4(sc, CNT64_HI_REG); lo = timer_read_4(sc, CNT64_LO_REG); return (((uint64_t)hi << 32) | lo); } #if defined(__arm__) static void a10_timer_delay(int usec, void *arg) { struct a10_timer_softc *sc = arg; uint64_t end, now; now = timer_read_counter64(sc); end = now + (sc->timer0_freq / 1000000) * (usec + 1); while (now < end) now = timer_read_counter64(sc); } #endif static u_int a10_timer_get_timecount(struct timecounter *tc) { if (tc->tc_priv == NULL) return (0); return ((u_int)timer_read_counter64(tc->tc_priv)); } static device_method_t a10_timer_methods[] = { DEVMETHOD(device_probe, a10_timer_probe), DEVMETHOD(device_attach, a10_timer_attach), DEVMETHOD_END }; static driver_t a10_timer_driver = { "a10_timer", a10_timer_methods, sizeof(struct a10_timer_softc), }; static devclass_t a10_timer_devclass; EARLY_DRIVER_MODULE(a10_timer, simplebus, a10_timer_driver, a10_timer_devclass, 0, 0, BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);