/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2019 Michal Meloun * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* Rockchip PCIe controller driver */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pcib_if.h" #define ATU_CFG_BUS(x) (((x) & 0x0ff) << 20) #define ATU_CFG_SLOT(x) (((x) & 0x01f) << 15) #define ATU_CFG_FUNC(x) (((x) & 0x007) << 12) #define ATU_CFG_REG(x) (((x) & 0xfff) << 0) #define ATU_TYPE_MEM 0x2 #define ATU_TYPE_IO 0x6 #define ATU_TYPE_CFG0 0xA #define ATU_TYPE_CFG1 0xB #define ATY_TYPE_NOR_MSG 0xC #define ATU_OB_REGIONS 33 #define ATU_OB_REGION_SHIFT 20 #define ATU_OB_REGION_SIZE (1 << ATU_OB_REGION_SHIFT) #define ATU_OB_REGION_0_SIZE (( ATU_OB_REGIONS - 1) * ATU_OB_REGION_SIZE) #define ATU_IB_REGIONS 3 #define PCIE_CLIENT_BASIC_STRAP_CONF 0x000000 #define STRAP_CONF_GEN_2 (1 << 7) #define STRAP_CONF_MODE_RC (1 << 6) #define STRAP_CONF_LANES(n) ((((n) / 2) & 0x3) << 4) #define STRAP_CONF_ARI_EN (1 << 3) #define STRAP_CONF_SR_IOV_EN (1 << 2) #define STRAP_CONF_LINK_TRAIN_EN (1 << 1) #define STRAP_CONF_CONF_EN (1 << 0) #define PCIE_CLIENT_HOT_RESET_CTRL 0x000018 #define HOT_RESET_CTRL_LINK_DOWN_RESET (1 << 1) #define HOT_RESET_CTRL_HOT_RESET_IN (1 << 0) #define PCIE_CLIENT_BASIC_STATUS0 0x000044 #define PCIE_CLIENT_BASIC_STATUS1 0x000048 #define STATUS1_LINK_ST_GET(x) (((x) >> 20) & 0x3) #define STATUS1_LINK_ST_UP 3 #define PCIE_CLIENT_INT_MASK 0x00004C #define PCIE_CLIENT_INT_STATUS 0x000050 #define PCIE_CLIENT_INT_LEGACY_DONE (1 << 15) #define PCIE_CLIENT_INT_MSG (1 << 14) #define PCIE_CLIENT_INT_HOT_RST (1 << 13) #define PCIE_CLIENT_INT_DPA (1 << 12) #define PCIE_CLIENT_INT_FATAL_ERR (1 << 11) #define PCIE_CLIENT_INT_NFATAL_ERR (1 << 10) #define PCIE_CLIENT_INT_CORR_ERR (1 << 9) #define PCIE_CLIENT_INT_INTD (1 << 8) #define PCIE_CLIENT_INT_INTC (1 << 7) #define PCIE_CLIENT_INT_INTB (1 << 6) #define PCIE_CLIENT_INT_INTA (1 << 5) #define PCIE_CLIENT_INT_LOCAL (1 << 4) #define PCIE_CLIENT_INT_UDMA (1 << 3) #define PCIE_CLIENT_INT_PHY (1 << 2) #define PCIE_CLIENT_INT_HOT_PLUG (1 << 1) #define PCIE_CLIENT_INT_PWR_STCG (1 << 0) #define PCIE_CLIENT_INT_LEGACY (PCIE_CLIENT_INT_INTA | \ PCIE_CLIENT_INT_INTB | \ PCIE_CLIENT_INT_INTC | \ PCIE_CLIENT_INT_INTD) #define PCIE_CORE_CTRL0 0x900000 #define CORE_CTRL_LANES_GET(x) (((x) >> 20) & 0x3) #define PCIE_CORE_CTRL1 0x900004 #define PCIE_CORE_CONFIG_VENDOR 0x900044 #define PCIE_CORE_INT_STATUS 0x90020c #define PCIE_CORE_INT_PRFPE (1 << 0) #define PCIE_CORE_INT_CRFPE (1 << 1) #define PCIE_CORE_INT_RRPE (1 << 2) #define PCIE_CORE_INT_PRFO (1 << 3) #define PCIE_CORE_INT_CRFO (1 << 4) #define PCIE_CORE_INT_RT (1 << 5) #define PCIE_CORE_INT_RTR (1 << 6) #define PCIE_CORE_INT_PE (1 << 7) #define PCIE_CORE_INT_MTR (1 << 8) #define PCIE_CORE_INT_UCR (1 << 9) #define PCIE_CORE_INT_FCE (1 << 10) #define PCIE_CORE_INT_CT (1 << 11) #define PCIE_CORE_INT_UTC (1 << 18) #define PCIE_CORE_INT_MMVC (1 << 19) #define PCIE_CORE_INT_MASK 0x900210 #define PCIE_CORE_PHY_FUNC_CONF 0x9002C0 #define PCIE_CORE_RC_BAR_CONF 0x900300 #define PCIE_RC_CONFIG_STD_BASE 0x800000 #define PCIE_RC_CONFIG_PRIV_BASE 0xA00000 #define PCIE_RC_CONFIG_DCSR 0xA000C8 #define PCIE_RC_CONFIG_DCSR_MPS_MASK (0x7 << 5) #define PCIE_RC_CONFIG_DCSR_MPS_128 (0 << 5) #define PCIE_RC_CONFIG_DCSR_MPS_256 (1 << 5) #define PCIE_RC_CONFIG_LINK_CAP 0xA00CC #define PCIE_RC_CONFIG_LINK_CAP_L0S (1 << 10) #define PCIE_RC_CONFIG_LCS 0xA000D0 #define PCIE_RC_CONFIG_THP_CAP 0xA00274 #define PCIE_RC_CONFIG_THP_CAP_NEXT_MASK 0xFFF00000 #define PCIE_CORE_OB_ADDR0(n) (0xC00000 + 0x20 * (n) + 0x00) #define PCIE_CORE_OB_ADDR1(n) (0xC00000 + 0x20 * (n) + 0x04) #define PCIE_CORE_OB_DESC0(n) (0xC00000 + 0x20 * (n) + 0x08) #define PCIE_CORE_OB_DESC1(n) (0xC00000 + 0x20 * (n) + 0x0C) #define PCIE_CORE_OB_DESC2(n) (0xC00000 + 0x20 * (n) + 0x10) #define PCIE_CORE_OB_DESC3(n) (0xC00000 + 0x20 * (n) + 0x14) #define PCIE_CORE_IB_ADDR0(n) (0xC00800 + 0x8 * (n) + 0x00) #define PCIE_CORE_IB_ADDR1(n) (0xC00800 + 0x8 * (n) + 0x04) #define PRIV_CFG_RD4(sc, reg) \ (uint32_t)rk_pcie_local_cfg_read(sc, true, reg, 4) #define PRIV_CFG_RD2(sc, reg) \ (uint16_t)rk_pcie_local_cfg_read(sc, true, reg, 2) #define PRIV_CFG_RD1(sc, reg) \ (uint8_t)rk_pcie_local_cfg_read(sc, true, reg, 1) #define PRIV_CFG_WR4(sc, reg, val) \ rk_pcie_local_cfg_write(sc, true, reg, val, 4) #define PRIV_CFG_WR2(sc, reg, val) \ rk_pcie_local_cfg_write(sc, true, reg, val, 2) #define PRIV_CFG_WR1(sc, reg, val) \ rk_pcie_local_cfg_write(sc, true, reg, val, 1) #define APB_WR4(_sc, _r, _v) bus_write_4((_sc)->apb_mem_res, (_r), (_v)) #define APB_RD4(_sc, _r) bus_read_4((_sc)->apb_mem_res, (_r)) #define MAX_LANES 4 #define RK_PCIE_ENABLE_MSI #define RK_PCIE_ENABLE_MSIX struct rk_pcie_softc { struct ofw_pci_softc ofw_pci; /* Must be first */ struct resource *axi_mem_res; struct resource *apb_mem_res; struct resource *client_irq_res; struct resource *legacy_irq_res; struct resource *sys_irq_res; void *client_irq_cookie; void *legacy_irq_cookie; void *sys_irq_cookie; device_t dev; phandle_t node; struct mtx mtx; struct ofw_pci_range mem_range; struct ofw_pci_range pref_mem_range; struct ofw_pci_range io_range; bool coherent; bus_dma_tag_t dmat; int num_lanes; bool link_is_gen2; bool no_l0s; u_int bus_start; u_int bus_end; u_int root_bus; u_int sub_bus; regulator_t supply_12v; regulator_t supply_3v3; regulator_t supply_1v8; regulator_t supply_0v9; hwreset_t hwreset_core; hwreset_t hwreset_mgmt; hwreset_t hwreset_mgmt_sticky; hwreset_t hwreset_pipe; hwreset_t hwreset_pm; hwreset_t hwreset_aclk; hwreset_t hwreset_pclk; clk_t clk_aclk; clk_t clk_aclk_perf; clk_t clk_hclk; clk_t clk_pm; phy_t phys[MAX_LANES]; gpio_pin_t gpio_ep; }; /* Compatible devices. */ static struct ofw_compat_data compat_data[] = { {"rockchip,rk3399-pcie", 1}, {NULL, 0}, }; static uint32_t rk_pcie_local_cfg_read(struct rk_pcie_softc *sc, bool priv, u_int reg, int bytes) { uint32_t val; bus_addr_t base; if (priv) base = PCIE_RC_CONFIG_PRIV_BASE; else base = PCIE_RC_CONFIG_STD_BASE; switch (bytes) { case 4: val = bus_read_4(sc->apb_mem_res, base + reg); break; case 2: val = bus_read_2(sc->apb_mem_res, base + reg); break; case 1: val = bus_read_1(sc->apb_mem_res, base + reg); break; default: val = 0xFFFFFFFF; } return (val); } static void rk_pcie_local_cfg_write(struct rk_pcie_softc *sc, bool priv, u_int reg, uint32_t val, int bytes) { uint32_t val2; bus_addr_t base; if (priv) base = PCIE_RC_CONFIG_PRIV_BASE; else base = PCIE_RC_CONFIG_STD_BASE; switch (bytes) { case 4: bus_write_4(sc->apb_mem_res, base + reg, val); break; case 2: val2 = bus_read_4(sc->apb_mem_res, base + (reg & ~3)); val2 &= ~(0xffff << ((reg & 3) << 3)); val2 |= ((val & 0xffff) << ((reg & 3) << 3)); bus_write_4(sc->apb_mem_res, base + (reg & ~3), val2); break; case 1: val2 = bus_read_4(sc->apb_mem_res, base + (reg & ~3)); val2 &= ~(0xff << ((reg & 3) << 3)); val2 |= ((val & 0xff) << ((reg & 3) << 3)); bus_write_4(sc->apb_mem_res, base + (reg & ~3), val2); break; } } static bool rk_pcie_check_dev(struct rk_pcie_softc *sc, u_int bus, u_int slot, u_int func, u_int reg) { uint32_t val; if (bus < sc->bus_start || bus > sc->bus_end || slot > PCI_SLOTMAX || func > PCI_FUNCMAX || reg > PCIE_REGMAX) return (false); if (bus == sc->root_bus) { /* we have only 1 device with 1 function root port */ if (slot > 0 || func > 0) return (false); return (true); } /* link is needed for accessing non-root busses */ val = APB_RD4(sc, PCIE_CLIENT_BASIC_STATUS1); if (STATUS1_LINK_ST_GET(val) != STATUS1_LINK_ST_UP) return (false); /* only one device can be on first subordinate bus */ if (bus == sc->sub_bus && slot != 0 ) return (false); return (true); } static void rk_pcie_map_out_atu(struct rk_pcie_softc *sc, int idx, int type, int num_bits, uint64_t pa) { uint32_t addr0; uint64_t max_size; /* Check HW constrains */ max_size = idx == 0 ? ATU_OB_REGION_0_SIZE: ATU_OB_REGION_SIZE; KASSERT(idx < ATU_OB_REGIONS, ("Invalid region index: %d\n", idx)); KASSERT(num_bits >= 7 && num_bits <= 63, ("Bit width of region is invalid: %d\n", num_bits)); KASSERT(max_size <= (1ULL << (num_bits + 1)), ("Bit width is invalid for given region[%d]: %d\n", idx, num_bits)); addr0 = (uint32_t)pa & 0xFFFFFF00; addr0 |= num_bits; APB_WR4(sc, PCIE_CORE_OB_ADDR0(idx), addr0); APB_WR4(sc, PCIE_CORE_OB_ADDR1(idx), (uint32_t)(pa >> 32)); APB_WR4(sc, PCIE_CORE_OB_DESC0(idx), 1 << 23 | type); APB_WR4(sc, PCIE_CORE_OB_DESC1(idx), sc->root_bus); /* Readback for sync */ APB_RD4(sc, PCIE_CORE_OB_DESC1(idx)); } static void rk_pcie_map_cfg_atu(struct rk_pcie_softc *sc, int idx, int type) { /* Check HW constrains */ KASSERT(idx < ATU_OB_REGIONS, ("Invalid region index: %d\n", idx)); /* * Config window is only 25 bits width, so we cannot encode full bus * range into it. Remaining bits of bus number should be taken from * DESC1 field. */ APB_WR4(sc, PCIE_CORE_OB_ADDR0(idx), 25 - 1); APB_WR4(sc, PCIE_CORE_OB_ADDR1(idx), 0); APB_WR4(sc, PCIE_CORE_OB_DESC0(idx), 1 << 23 | type); APB_WR4(sc, PCIE_CORE_OB_DESC1(idx), sc->root_bus); /* Readback for sync */ APB_RD4(sc, PCIE_CORE_OB_DESC1(idx)); } static void rk_pcie_map_in_atu(struct rk_pcie_softc *sc, int idx, int num_bits, uint64_t pa) { uint32_t addr0; /* Check HW constrains */ KASSERT(idx < ATU_IB_REGIONS, ("Invalid region index: %d\n", idx)); KASSERT(num_bits >= 7 && num_bits <= 63, ("Bit width of region is invalid: %d\n", num_bits)); addr0 = (uint32_t)pa & 0xFFFFFF00; addr0 |= num_bits; APB_WR4(sc, PCIE_CORE_IB_ADDR0(idx), addr0); APB_WR4(sc, PCIE_CORE_IB_ADDR1(idx), (uint32_t)(pa >> 32)); /* Readback for sync */ APB_RD4(sc, PCIE_CORE_IB_ADDR1(idx)); } static int rk_pcie_decode_ranges(struct rk_pcie_softc *sc, struct ofw_pci_range *ranges, int nranges) { int i; for (i = 0; i < nranges; i++) { if ((ranges[i].pci_hi & OFW_PCI_PHYS_HI_SPACEMASK) == OFW_PCI_PHYS_HI_SPACE_IO) { if (sc->io_range.size != 0) { device_printf(sc->dev, "Duplicated IO range found in DT\n"); return (ENXIO); } sc->io_range = ranges[i]; } if (((ranges[i].pci_hi & OFW_PCI_PHYS_HI_SPACEMASK) == OFW_PCI_PHYS_HI_SPACE_MEM64)) { if (ranges[i].pci_hi & OFW_PCI_PHYS_HI_PREFETCHABLE) { if (sc->pref_mem_range.size != 0) { device_printf(sc->dev, "Duplicated memory range found " "in DT\n"); return (ENXIO); } sc->pref_mem_range = ranges[i]; } else { if (sc->mem_range.size != 0) { device_printf(sc->dev, "Duplicated memory range found " "in DT\n"); return (ENXIO); } sc->mem_range = ranges[i]; } } } if (sc->mem_range.size == 0) { device_printf(sc->dev, " At least memory range should be defined in DT.\n"); return (ENXIO); } return (0); } /*----------------------------------------------------------------------------- * * P C I B I N T E R F A C E */ static uint32_t rk_pcie_read_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg, int bytes) { struct rk_pcie_softc *sc; uint32_t d32, data; uint16_t d16; uint8_t d8; uint64_t addr; int type, ret; sc = device_get_softc(dev); if (!rk_pcie_check_dev(sc, bus, slot, func, reg)) return (0xFFFFFFFFU); if (bus == sc->root_bus) return (rk_pcie_local_cfg_read(sc, false, reg, bytes)); addr = ATU_CFG_BUS(bus) | ATU_CFG_SLOT(slot) | ATU_CFG_FUNC(func) | ATU_CFG_REG(reg); type = bus == sc->sub_bus ? ATU_TYPE_CFG0: ATU_TYPE_CFG1; rk_pcie_map_cfg_atu(sc, 0, type); ret = -1; switch (bytes) { case 1: ret = bus_peek_1(sc->axi_mem_res, addr, &d8); data = d8; break; case 2: ret = bus_peek_2(sc->axi_mem_res, addr, &d16); data = d16; break; case 4: ret = bus_peek_4(sc->axi_mem_res, addr, &d32); data = d32; break; } if (ret != 0) data = 0xFFFFFFFF; return (data); } static void rk_pcie_write_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg, uint32_t val, int bytes) { struct rk_pcie_softc *sc; uint64_t addr; int type; sc = device_get_softc(dev); if (!rk_pcie_check_dev(sc, bus, slot, func, reg)) return; if (bus == sc->root_bus) return (rk_pcie_local_cfg_write(sc, false, reg, val, bytes)); addr = ATU_CFG_BUS(bus) | ATU_CFG_SLOT(slot) | ATU_CFG_FUNC(func) | ATU_CFG_REG(reg); type = bus == sc->sub_bus ? ATU_TYPE_CFG0: ATU_TYPE_CFG1; rk_pcie_map_cfg_atu(sc, 0, type); switch (bytes) { case 1: bus_poke_1(sc->axi_mem_res, addr, (uint8_t)val); break; case 2: bus_poke_2(sc->axi_mem_res, addr, (uint16_t)val); break; case 4: bus_poke_4(sc->axi_mem_res, addr, val); break; default: break; } } #ifdef RK_PCIE_ENABLE_MSI static int rk_pcie_alloc_msi(device_t pci, device_t child, int count, int maxcount, int *irqs) { phandle_t msi_parent; int rv; rv = ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent, NULL); if (rv != 0) return (rv); rv = intr_alloc_msi(pci, child, msi_parent, count, maxcount,irqs); return (rv); } static int rk_pcie_release_msi(device_t pci, device_t child, int count, int *irqs) { phandle_t msi_parent; int rv; rv = ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent, NULL); if (rv != 0) return (rv); rv = intr_release_msi(pci, child, msi_parent, count, irqs); return (rv); } #endif static int rk_pcie_map_msi(device_t pci, device_t child, int irq, uint64_t *addr, uint32_t *data) { phandle_t msi_parent; int rv; rv = ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent, NULL); if (rv != 0) return (rv); rv = intr_map_msi(pci, child, msi_parent, irq, addr, data); return (rv); } #ifdef RK_PCIE_ENABLE_MSIX static int rk_pcie_alloc_msix(device_t pci, device_t child, int *irq) { phandle_t msi_parent; int rv; rv = ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent, NULL); if (rv != 0) return (rv); rv = intr_alloc_msix(pci, child, msi_parent, irq); return (rv); } static int rk_pcie_release_msix(device_t pci, device_t child, int irq) { phandle_t msi_parent; int rv; rv = ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent, NULL); if (rv != 0) return (rv); rv = intr_release_msix(pci, child, msi_parent, irq); return (rv); } #endif static int rk_pcie_get_id(device_t pci, device_t child, enum pci_id_type type, uintptr_t *id) { phandle_t node; int rv; uint32_t rid; uint16_t pci_rid; if (type != PCI_ID_MSI) return (pcib_get_id(pci, child, type, id)); node = ofw_bus_get_node(pci); pci_rid = pci_get_rid(child); rv = ofw_bus_msimap(node, pci_rid, NULL, &rid); if (rv != 0) return (rv); *id = rid; return (0); } static int rk_pcie_route_interrupt(device_t bus, device_t dev, int pin) { struct rk_pcie_softc *sc; u_int irq; sc = device_get_softc(bus); irq = intr_map_clone_irq(rman_get_start(sc->legacy_irq_res)); device_printf(bus, "route pin %d for device %d.%d to %u\n", pin, pci_get_slot(dev), pci_get_function(dev), irq); return (irq); } /*----------------------------------------------------------------------------- * * B U S / D E V I C E I N T E R F A C E */ static int rk_pcie_parse_fdt_resources(struct rk_pcie_softc *sc) { int i, rv; char buf[16]; /* Regulators. All are optional. */ rv = regulator_get_by_ofw_property(sc->dev, 0, "vpcie12v-supply", &sc->supply_12v); if (rv != 0 && rv != ENOENT) { device_printf(sc->dev,"Cannot get 'vpcie12' regulator\n"); return (ENXIO); } rv = regulator_get_by_ofw_property(sc->dev, 0, "vpcie3v3-supply", &sc->supply_3v3); if (rv != 0 && rv != ENOENT) { device_printf(sc->dev,"Cannot get 'vpcie3v3' regulator\n"); return (ENXIO); } rv = regulator_get_by_ofw_property(sc->dev, 0, "vpcie1v8-supply", &sc->supply_1v8); if (rv != 0 && rv != ENOENT) { device_printf(sc->dev,"Cannot get 'vpcie1v8' regulator\n"); return (ENXIO); } rv = regulator_get_by_ofw_property(sc->dev, 0, "vpcie0v9-supply", &sc->supply_0v9); if (rv != 0 && rv != ENOENT) { device_printf(sc->dev,"Cannot get 'vpcie0v9' regulator\n"); return (ENXIO); } /* Resets. */ rv = hwreset_get_by_ofw_name(sc->dev, 0, "core", &sc->hwreset_core); if (rv != 0) { device_printf(sc->dev, "Cannot get 'core' reset\n"); return (ENXIO); } rv = hwreset_get_by_ofw_name(sc->dev, 0, "mgmt", &sc->hwreset_mgmt); if (rv != 0) { device_printf(sc->dev, "Cannot get 'mgmt' reset\n"); return (ENXIO); } rv = hwreset_get_by_ofw_name(sc->dev, 0, "mgmt-sticky", &sc->hwreset_mgmt_sticky); if (rv != 0) { device_printf(sc->dev, "Cannot get 'mgmt-sticky' reset\n"); return (ENXIO); } rv = hwreset_get_by_ofw_name(sc->dev, 0, "pipe", &sc->hwreset_pipe); if (rv != 0) { device_printf(sc->dev, "Cannot get 'pipe' reset\n"); return (ENXIO); } rv = hwreset_get_by_ofw_name(sc->dev, 0, "pm", &sc->hwreset_pm); if (rv != 0) { device_printf(sc->dev, "Cannot get 'pm' reset\n"); return (ENXIO); } rv = hwreset_get_by_ofw_name(sc->dev, 0, "aclk", &sc->hwreset_aclk); if (rv != 0) { device_printf(sc->dev, "Cannot get 'aclk' reset\n"); return (ENXIO); } rv = hwreset_get_by_ofw_name(sc->dev, 0, "pclk", &sc->hwreset_pclk); if (rv != 0) { device_printf(sc->dev, "Cannot get 'pclk' reset\n"); return (ENXIO); } /* Clocks. */ rv = clk_get_by_ofw_name(sc->dev, 0, "aclk", &sc->clk_aclk); if (rv != 0) { device_printf(sc->dev, "Cannot get 'aclk' clock\n"); return (ENXIO); } rv = clk_get_by_ofw_name(sc->dev, 0, "aclk-perf", &sc->clk_aclk_perf); if (rv != 0) { device_printf(sc->dev, "Cannot get 'aclk-perf' clock\n"); return (ENXIO); } rv = clk_get_by_ofw_name(sc->dev, 0, "hclk", &sc->clk_hclk); if (rv != 0) { device_printf(sc->dev, "Cannot get 'hclk' clock\n"); return (ENXIO); } rv = clk_get_by_ofw_name(sc->dev, 0, "pm", &sc->clk_pm); if (rv != 0) { device_printf(sc->dev, "Cannot get 'pm' clock\n"); return (ENXIO); } /* Phys. */ for (i = 0; i < MAX_LANES; i++ ) { sprintf (buf, "pcie-phy-%d", i); rv = phy_get_by_ofw_name(sc->dev, 0, buf, sc->phys + i); if (rv != 0) { device_printf(sc->dev, "Cannot get '%s' phy\n", buf); return (ENXIO); } } /* GPIO for PERST#. Optional */ rv = gpio_pin_get_by_ofw_property(sc->dev, sc->node, "ep-gpios", &sc->gpio_ep); if (rv != 0 && rv != ENOENT) { device_printf(sc->dev, "Cannot get 'ep-gpios' gpio\n"); return (ENXIO); } return (0); } static int rk_pcie_enable_resources(struct rk_pcie_softc *sc) { int i, rv; uint32_t val; /* Assert all resets */ rv = hwreset_assert(sc->hwreset_pclk); if (rv != 0) { device_printf(sc->dev, "Cannot assert 'pclk' reset\n"); return (rv); } rv = hwreset_assert(sc->hwreset_aclk); if (rv != 0) { device_printf(sc->dev, "Cannot assert 'aclk' reset\n"); return (rv); } rv = hwreset_assert(sc->hwreset_pm); if (rv != 0) { device_printf(sc->dev, "Cannot assert 'pm' reset\n"); return (rv); } rv = hwreset_assert(sc->hwreset_pipe); if (rv != 0) { device_printf(sc->dev, "Cannot assert 'pipe' reset\n"); return (rv); } rv = hwreset_assert(sc->hwreset_mgmt_sticky); if (rv != 0) { device_printf(sc->dev, "Cannot assert 'mgmt_sticky' reset\n"); return (rv); } rv = hwreset_assert(sc->hwreset_mgmt); if (rv != 0) { device_printf(sc->dev, "Cannot assert 'hmgmt' reset\n"); return (rv); } rv = hwreset_assert(sc->hwreset_core); if (rv != 0) { device_printf(sc->dev, "Cannot assert 'hcore' reset\n"); return (rv); } DELAY(10000); /* Enable clockls */ rv = clk_enable(sc->clk_aclk); if (rv != 0) { device_printf(sc->dev, "Cannot enable 'aclk' clock\n"); return (rv); } rv = clk_enable(sc->clk_aclk_perf); if (rv != 0) { device_printf(sc->dev, "Cannot enable 'aclk_perf' clock\n"); return (rv); } rv = clk_enable(sc->clk_hclk); if (rv != 0) { device_printf(sc->dev, "Cannot enable 'hclk' clock\n"); return (rv); } rv = clk_enable(sc->clk_pm); if (rv != 0) { device_printf(sc->dev, "Cannot enable 'pm' clock\n"); return (rv); } /* Power up regulators */ if (sc->supply_12v != NULL) { rv = regulator_enable(sc->supply_12v); if (rv != 0) { device_printf(sc->dev, "Cannot enable 'vpcie12' regulator\n"); return (rv); } } if (sc->supply_3v3 != NULL) { rv = regulator_enable(sc->supply_3v3); if (rv != 0) { device_printf(sc->dev, "Cannot enable 'vpcie3v3' regulator\n"); return (rv); } } if (sc->supply_1v8 != NULL) { rv = regulator_enable(sc->supply_1v8); if (rv != 0) { device_printf(sc->dev, "Cannot enable 'vpcie1v8' regulator\n"); return (rv); } } if (sc->supply_0v9 != NULL) { rv = regulator_enable(sc->supply_0v9); if (rv != 0) { device_printf(sc->dev, "Cannot enable 'vpcie1v8' regulator\n"); return (rv); } } DELAY(1000); /* Deassert basic resets*/ rv = hwreset_deassert(sc->hwreset_pm); if (rv != 0) { device_printf(sc->dev, "Cannot deassert 'pm' reset\n"); return (rv); } rv = hwreset_deassert(sc->hwreset_aclk); if (rv != 0) { device_printf(sc->dev, "Cannot deassert 'aclk' reset\n"); return (rv); } rv = hwreset_deassert(sc->hwreset_pclk); if (rv != 0) { device_printf(sc->dev, "Cannot deassert 'pclk' reset\n"); return (rv); } /* Set basic PCIe core mode (RC, lanes, gen1 or 2) */ val = STRAP_CONF_GEN_2 << 16 | (sc->link_is_gen2 ? STRAP_CONF_GEN_2: 0); val |= STRAP_CONF_MODE_RC << 16 | STRAP_CONF_MODE_RC; val |= STRAP_CONF_LANES(~0) << 16 | STRAP_CONF_LANES(sc->num_lanes); val |= STRAP_CONF_ARI_EN << 16 | STRAP_CONF_ARI_EN; val |= STRAP_CONF_CONF_EN << 16 | STRAP_CONF_CONF_EN; APB_WR4(sc, PCIE_CLIENT_BASIC_STRAP_CONF, val); for (i = 0; i < MAX_LANES; i++) { rv = phy_enable(sc->phys[i]); if (rv != 0) { device_printf(sc->dev, "Cannot enable phy %d\n", i); return (rv); } } /* Deassert rest of resets - order is important ! */ rv = hwreset_deassert(sc->hwreset_mgmt_sticky); if (rv != 0) { device_printf(sc->dev, "Cannot deassert 'mgmt_sticky' reset\n"); return (rv); } rv = hwreset_deassert(sc->hwreset_core); if (rv != 0) { device_printf(sc->dev, "Cannot deassert 'core' reset\n"); return (rv); } rv = hwreset_deassert(sc->hwreset_mgmt); if (rv != 0) { device_printf(sc->dev, "Cannot deassert 'mgmt' reset\n"); return (rv); } rv = hwreset_deassert(sc->hwreset_pipe); if (rv != 0) { device_printf(sc->dev, "Cannot deassert 'pipe' reset\n"); return (rv); } return (0); } static int rk_pcie_setup_hw(struct rk_pcie_softc *sc) { uint32_t val; int i, rv; /* Assert PERST# if defined */ if (sc->gpio_ep != NULL) { rv = gpio_pin_set_active(sc->gpio_ep, 0); if (rv != 0) { device_printf(sc->dev, "Cannot clear 'gpio-ep' gpio\n"); return (rv); } } rv = rk_pcie_enable_resources(sc); if (rv != 0) return(rv); /* Fix wrong default value for transmited FTS for L0s exit */ val = APB_RD4(sc, PCIE_CORE_CTRL1); val |= 0xFFFF << 8; APB_WR4(sc, PCIE_CORE_CTRL1, val); /* Setup PCIE Link Status & Control register */ val = APB_RD4(sc, PCIE_RC_CONFIG_LCS); val |= PCIEM_LINK_CTL_COMMON_CLOCK; APB_WR4(sc, PCIE_RC_CONFIG_LCS, val); val = APB_RD4(sc, PCIE_RC_CONFIG_LCS); val |= PCIEM_LINK_CTL_RCB; APB_WR4(sc, PCIE_RC_CONFIG_LCS, val); /* Enable training for GEN1 */ APB_WR4(sc, PCIE_CLIENT_BASIC_STRAP_CONF, STRAP_CONF_LINK_TRAIN_EN << 16 | STRAP_CONF_LINK_TRAIN_EN); /* Deassert PERST# if defined */ if (sc->gpio_ep != NULL) { rv = gpio_pin_set_active(sc->gpio_ep, 1); if (rv != 0) { device_printf(sc->dev, "Cannot set 'gpio-ep' gpio\n"); return (rv); } } /* Wait for link */ for (i = 500; i > 0; i--) { val = APB_RD4(sc, PCIE_CLIENT_BASIC_STATUS1); if (STATUS1_LINK_ST_GET(val) == STATUS1_LINK_ST_UP) break; DELAY(1000); } if (i <= 0) { device_printf(sc->dev, "Gen1 link training timeouted: 0x%08X.\n", val); return (0); } if (sc->link_is_gen2) { val = APB_RD4(sc, PCIE_RC_CONFIG_LCS); val |= PCIEM_LINK_CTL_RETRAIN_LINK; APB_WR4(sc, PCIE_RC_CONFIG_LCS, val); /* Wait for link */ for (i = 500; i > 0; i--) { val = APB_RD4(sc, PCIE_CLIENT_BASIC_STATUS1); if (STATUS1_LINK_ST_GET(val) == STATUS1_LINK_ST_UP) break; DELAY(1000); } if (i <= 0) device_printf(sc->dev, "Gen2 link training " "timeouted: 0x%08X.\n", val); } val = APB_RD4(sc, PCIE_CORE_CTRL0); val = CORE_CTRL_LANES_GET(val); if (bootverbose) device_printf(sc->dev, "Link width: %d\n", 1 << val); return (0); } static int rk_pcie_setup_sw(struct rk_pcie_softc *sc) { uint32_t val; int i, region; pcib_bridge_init(sc->dev); /* Setup config registers */ APB_WR4(sc, PCIE_CORE_CONFIG_VENDOR, 0x1D87); /* Rockchip vendor ID*/ PRIV_CFG_WR1(sc, PCIR_CLASS, PCIC_BRIDGE); PRIV_CFG_WR1(sc, PCIR_SUBCLASS, PCIS_BRIDGE_PCI); PRIV_CFG_WR1(sc, PCIR_PRIBUS_1, sc->root_bus); PRIV_CFG_WR1(sc, PCIR_SECBUS_1, sc->sub_bus); PRIV_CFG_WR1(sc, PCIR_SUBBUS_1, sc->bus_end); PRIV_CFG_WR2(sc, PCIR_COMMAND, PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN | PCIM_CMD_SERRESPEN); /* Don't advertise L1 power substate */ val = APB_RD4(sc, PCIE_RC_CONFIG_THP_CAP); val &= ~PCIE_RC_CONFIG_THP_CAP_NEXT_MASK; APB_WR4(sc, PCIE_RC_CONFIG_THP_CAP, val); /* Don't advertise L0s */ if (sc->no_l0s) { val = APB_RD4(sc, PCIE_RC_CONFIG_LINK_CAP); val &= ~PCIE_RC_CONFIG_THP_CAP_NEXT_MASK; APB_WR4(sc, PCIE_RC_CONFIG_LINK_CAP_L0S, val); } /*Adjust maximum payload size*/ val = APB_RD4(sc, PCIE_RC_CONFIG_DCSR); val &= ~PCIE_RC_CONFIG_DCSR_MPS_MASK; val |= PCIE_RC_CONFIG_DCSR_MPS_128; APB_WR4(sc, PCIE_RC_CONFIG_DCSR, val); /* * Prepare IB ATU * map whole address range in 1:1 mappings */ rk_pcie_map_in_atu(sc, 2, 64 - 1, 0); /* Prepare OB ATU */ /* - region 0 (32 MB) is used for config access */ region = 0; rk_pcie_map_out_atu(sc, region++, ATU_TYPE_CFG0, 25 - 1, 0); /* - then map memory (by using 1MB regions */ for (i = 0; i < sc->mem_range.size / ATU_OB_REGION_SIZE; i++) { rk_pcie_map_out_atu(sc, region++, ATU_TYPE_MEM, ATU_OB_REGION_SHIFT - 1, sc->mem_range.pci + ATU_OB_REGION_SIZE * i); } /* - IO space is next, one region typically*/ for (i = 0; i < sc->io_range.size / ATU_OB_REGION_SIZE; i++) { rk_pcie_map_out_atu(sc, region++, ATU_TYPE_IO, ATU_OB_REGION_SHIFT - 1, sc->io_range.pci + ATU_OB_REGION_SIZE * i); } APB_WR4(sc, PCIE_CORE_RC_BAR_CONF, 0); return (0); } static int rk_pcie_sys_irq(void *arg) { struct rk_pcie_softc *sc; uint32_t irq; sc = (struct rk_pcie_softc *)arg; irq = APB_RD4(sc, PCIE_CLIENT_INT_STATUS); if (irq & PCIE_CLIENT_INT_LOCAL) { irq = APB_RD4(sc, PCIE_CORE_INT_STATUS); APB_WR4(sc, PCIE_CORE_INT_STATUS, irq); APB_WR4(sc, PCIE_CLIENT_INT_STATUS, PCIE_CLIENT_INT_LOCAL); device_printf(sc->dev, "'sys' interrupt received: 0x%04X\n", irq); } return (FILTER_HANDLED); } static int rk_pcie_client_irq(void *arg) { struct rk_pcie_softc *sc; uint32_t irq; sc = (struct rk_pcie_softc *)arg; irq = APB_RD4(sc, PCIE_CLIENT_INT_STATUS); /* Clear causes handled by other interrups */ irq &= ~PCIE_CLIENT_INT_LOCAL; irq &= ~PCIE_CLIENT_INT_LEGACY; APB_WR4(sc, PCIE_CLIENT_INT_STATUS, irq); device_printf(sc->dev, "'client' interrupt received: 0x%04X\n", irq); return (FILTER_HANDLED); } static int rk_pcie_legacy_irq(void *arg) { struct rk_pcie_softc *sc; uint32_t irq; sc = (struct rk_pcie_softc *)arg; irq = APB_RD4(sc, PCIE_CLIENT_INT_STATUS); irq &= PCIE_CLIENT_INT_LEGACY; APB_WR4(sc, PCIE_CLIENT_INT_STATUS, irq); /* all legacy interrupt are shared, do nothing */ return (FILTER_STRAY); } static bus_dma_tag_t rk_pcie_get_dma_tag(device_t dev, device_t child) { struct rk_pcie_softc *sc; sc = device_get_softc(dev); return (sc->dmat); } static int rk_pcie_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0) return (ENXIO); device_set_desc(dev, "Rockchip PCIe controller"); return (BUS_PROBE_DEFAULT); } static int rk_pcie_attach(device_t dev) { struct rk_pcie_softc *sc; uint32_t val; int rv, rid, max_speed; sc = device_get_softc(dev); sc->dev = dev; sc->node = ofw_bus_get_node(dev); mtx_init(&sc->mtx, "rk_pcie_mtx", NULL, MTX_DEF); /* XXX Should not be this configurable ? */ sc->bus_start = 0; sc->bus_end = 0x1F; sc->root_bus = sc->bus_start; sc->sub_bus = 1; /* Read FDT properties */ rv = rk_pcie_parse_fdt_resources(sc); if (rv != 0) return (rv); sc->coherent = OF_hasprop(sc->node, "dma-coherent"); sc->no_l0s = OF_hasprop(sc->node, "aspm-no-l0s"); rv = OF_getencprop(sc->node, "num-lanes", &sc->num_lanes, sizeof(sc->num_lanes)); if (rv != sizeof(sc->num_lanes)) sc->num_lanes = 1; if (sc->num_lanes != 1 && sc->num_lanes != 2 && sc->num_lanes != 4) { device_printf(dev, "invalid number of lanes: %d\n",sc->num_lanes); sc->num_lanes = 0; rv = ENXIO; goto out; } rv = OF_getencprop(sc->node, "max-link-speed", &max_speed, sizeof(max_speed)); if (rv != sizeof(max_speed) || max_speed != 1) sc->link_is_gen2 = true; else sc->link_is_gen2 = false; rv = ofw_bus_find_string_index(sc->node, "reg-names", "axi-base", &rid); if (rv != 0) { device_printf(dev, "Cannot get 'axi-base' memory\n"); rv = ENXIO; goto out; } sc->axi_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->axi_mem_res == NULL) { device_printf(dev, "Cannot allocate 'axi-base' (rid: %d)\n", rid); rv = ENXIO; goto out; } rv = ofw_bus_find_string_index(sc->node, "reg-names", "apb-base", &rid); if (rv != 0) { device_printf(dev, "Cannot get 'apb-base' memory\n"); rv = ENXIO; goto out; } sc->apb_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->apb_mem_res == NULL) { device_printf(dev, "Cannot allocate 'apb-base' (rid: %d)\n", rid); rv = ENXIO; goto out; } rv = ofw_bus_find_string_index(sc->node, "interrupt-names", "client", &rid); if (rv != 0) { device_printf(dev, "Cannot get 'client' IRQ\n"); rv = ENXIO; goto out; } sc->client_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | RF_SHAREABLE); if (sc->client_irq_res == NULL) { device_printf(dev, "Cannot allocate 'client' IRQ resource\n"); rv = ENXIO; goto out; } rv = ofw_bus_find_string_index(sc->node, "interrupt-names", "legacy", &rid); if (rv != 0) { device_printf(dev, "Cannot get 'legacy' IRQ\n"); rv = ENXIO; goto out; } sc->legacy_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | RF_SHAREABLE); if (sc->legacy_irq_res == NULL) { device_printf(dev, "Cannot allocate 'legacy' IRQ resource\n"); rv = ENXIO; goto out; } rv = ofw_bus_find_string_index(sc->node, "interrupt-names", "sys", &rid); if (rv != 0) { device_printf(dev, "Cannot get 'sys' IRQ\n"); rv = ENXIO; goto out; } sc->sys_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | RF_SHAREABLE); if (sc->sys_irq_res == NULL) { device_printf(dev, "Cannot allocate 'sys' IRQ resource\n"); rv = ENXIO; goto out; } if (bootverbose) device_printf(dev, "Bus is%s cache-coherent\n", sc->coherent ? "" : " not"); rv = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ 1, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE, /* maxsize */ BUS_SPACE_UNRESTRICTED, /* nsegments */ BUS_SPACE_MAXSIZE, /* maxsegsize */ sc->coherent ? BUS_DMA_COHERENT : 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->dmat); if (rv != 0) goto out; rv = ofw_pci_init(dev); if (rv != 0) goto out; rv = rk_pcie_decode_ranges(sc, sc->ofw_pci.sc_range, sc->ofw_pci.sc_nrange); if (rv != 0) goto out; rv = rk_pcie_setup_hw(sc); if (rv != 0) goto out; rv = rk_pcie_setup_sw(sc); if (rv != 0) goto out; rv = bus_setup_intr(dev, sc->client_irq_res, INTR_TYPE_BIO | INTR_MPSAFE, rk_pcie_client_irq, NULL, sc, &sc->client_irq_cookie); if (rv != 0) { device_printf(dev, "cannot setup client interrupt handler\n"); rv = ENXIO; goto out; } rv = bus_setup_intr(dev, sc->legacy_irq_res, INTR_TYPE_BIO | INTR_MPSAFE, rk_pcie_legacy_irq, NULL, sc, &sc->legacy_irq_cookie); if (rv != 0) { device_printf(dev, "cannot setup client interrupt handler\n"); rv = ENXIO; goto out; } rv = bus_setup_intr(dev, sc->sys_irq_res, INTR_TYPE_BIO | INTR_MPSAFE, rk_pcie_sys_irq, NULL, sc, &sc->sys_irq_cookie); if (rv != 0) { device_printf(dev, "cannot setup client interrupt handler\n"); rv = ENXIO; goto out; } /* Enable interrupts */ val = PCIE_CLIENT_INT_CORR_ERR | PCIE_CLIENT_INT_NFATAL_ERR | PCIE_CLIENT_INT_FATAL_ERR | PCIE_CLIENT_INT_DPA | PCIE_CLIENT_INT_HOT_RST | PCIE_CLIENT_INT_MSG | PCIE_CLIENT_INT_LEGACY_DONE | PCIE_CLIENT_INT_INTA | PCIE_CLIENT_INT_INTB | PCIE_CLIENT_INT_INTC | PCIE_CLIENT_INT_INTD | PCIE_CLIENT_INT_PHY; APB_WR4(sc, PCIE_CLIENT_INT_MASK, (val << 16) & ~val); val = PCIE_CORE_INT_PRFPE | PCIE_CORE_INT_CRFPE | PCIE_CORE_INT_RRPE | PCIE_CORE_INT_CRFO | PCIE_CORE_INT_RT | PCIE_CORE_INT_RTR | PCIE_CORE_INT_PE | PCIE_CORE_INT_MTR | PCIE_CORE_INT_UCR | PCIE_CORE_INT_FCE | PCIE_CORE_INT_CT | PCIE_CORE_INT_UTC | PCIE_CORE_INT_MMVC; APB_WR4(sc, PCIE_CORE_INT_MASK, ~(val)); val = APB_RD4(sc, PCIE_RC_CONFIG_LCS); val |= PCIEM_LINK_CTL_LBMIE | PCIEM_LINK_CTL_LABIE; APB_WR4(sc, PCIE_RC_CONFIG_LCS, val); DELAY(250000); device_add_child(dev, "pci", -1); return (bus_generic_attach(dev)); out: /* XXX Cleanup */ return (rv); } static device_method_t rk_pcie_methods[] = { /* Device interface */ DEVMETHOD(device_probe, rk_pcie_probe), DEVMETHOD(device_attach, rk_pcie_attach), /* Bus interface */ DEVMETHOD(bus_get_dma_tag, rk_pcie_get_dma_tag), /* pcib interface */ DEVMETHOD(pcib_read_config, rk_pcie_read_config), DEVMETHOD(pcib_write_config, rk_pcie_write_config), DEVMETHOD(pcib_route_interrupt, rk_pcie_route_interrupt), #ifdef RK_PCIE_ENABLE_MSI DEVMETHOD(pcib_alloc_msi, rk_pcie_alloc_msi), DEVMETHOD(pcib_release_msi, rk_pcie_release_msi), #endif #ifdef RK_PCIE_ENABLE_MSIX DEVMETHOD(pcib_alloc_msix, rk_pcie_alloc_msix), DEVMETHOD(pcib_release_msix, rk_pcie_release_msix), #endif DEVMETHOD(pcib_map_msi, rk_pcie_map_msi), DEVMETHOD(pcib_get_id, rk_pcie_get_id), /* OFW bus interface */ DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat), DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model), DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name), DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node), DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type), DEVMETHOD_END }; DEFINE_CLASS_1(pcib, rk_pcie_driver, rk_pcie_methods, sizeof(struct rk_pcie_softc), ofw_pci_driver); static devclass_t rk_pcie_devclass; DRIVER_MODULE( rk_pcie, simplebus, rk_pcie_driver, rk_pcie_devclass, NULL, NULL);