/*- * Copyright (c) 2005-2008 Pawel Jakub Dawidek * Copyright (c) 2010 Konstantin Belousov * Copyright (c) 2014,2016 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by John-Mark Gurney * under sponsorship of the FreeBSD Foundation and * Rubicon Communications, LLC (Netgate). * * This software was developed by Andrew Turner under * sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * This is based on the aesni code. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct armv8_crypto_softc { int dieing; int32_t cid; struct rwlock lock; }; static struct mtx *ctx_mtx; static struct fpu_kern_ctx **ctx_vfp; #define AQUIRE_CTX(i, ctx) \ do { \ (i) = PCPU_GET(cpuid); \ mtx_lock(&ctx_mtx[(i)]); \ (ctx) = ctx_vfp[(i)]; \ } while (0) #define RELEASE_CTX(i, ctx) \ do { \ mtx_unlock(&ctx_mtx[(i)]); \ (i) = -1; \ (ctx) = NULL; \ } while (0) static int armv8_crypto_cipher_process(struct armv8_crypto_session *, struct cryptodesc *, struct cryptop *); MALLOC_DEFINE(M_ARMV8_CRYPTO, "armv8_crypto", "ARMv8 Crypto Data"); static void armv8_crypto_identify(driver_t *drv, device_t parent) { /* NB: order 10 is so we get attached after h/w devices */ if (device_find_child(parent, "armv8crypto", -1) == NULL && BUS_ADD_CHILD(parent, 10, "armv8crypto", -1) == 0) panic("ARMv8 crypto: could not attach"); } static int armv8_crypto_probe(device_t dev) { uint64_t reg; int ret = ENXIO; reg = READ_SPECIALREG(id_aa64isar0_el1); switch (ID_AA64ISAR0_AES(reg)) { case ID_AA64ISAR0_AES_BASE: case ID_AA64ISAR0_AES_PMULL: ret = 0; break; case ID_AA64ISAR0_AES_NONE: device_printf(dev, "CPU lacks AES instructions"); break; } device_set_desc_copy(dev, "AES-CBC"); /* TODO: Check more fields as we support more features */ return (ret); } static int armv8_crypto_attach(device_t dev) { struct armv8_crypto_softc *sc; int i; sc = device_get_softc(dev); sc->dieing = 0; sc->cid = crypto_get_driverid(dev, sizeof(struct armv8_crypto_session), CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SYNC); if (sc->cid < 0) { device_printf(dev, "Could not get crypto driver id.\n"); return (ENOMEM); } rw_init(&sc->lock, "armv8crypto"); ctx_mtx = malloc(sizeof(*ctx_mtx) * (mp_maxid + 1), M_ARMV8_CRYPTO, M_WAITOK|M_ZERO); ctx_vfp = malloc(sizeof(*ctx_vfp) * (mp_maxid + 1), M_ARMV8_CRYPTO, M_WAITOK|M_ZERO); CPU_FOREACH(i) { ctx_vfp[i] = fpu_kern_alloc_ctx(0); mtx_init(&ctx_mtx[i], "armv8cryptoctx", NULL, MTX_DEF|MTX_NEW); } crypto_register(sc->cid, CRYPTO_AES_CBC, 0, 0); return (0); } static int armv8_crypto_detach(device_t dev) { struct armv8_crypto_softc *sc; int i; sc = device_get_softc(dev); rw_wlock(&sc->lock); sc->dieing = 1; rw_wunlock(&sc->lock); crypto_unregister_all(sc->cid); rw_destroy(&sc->lock); CPU_FOREACH(i) { if (ctx_vfp[i] != NULL) { mtx_destroy(&ctx_mtx[i]); fpu_kern_free_ctx(ctx_vfp[i]); } ctx_vfp[i] = NULL; } free(ctx_mtx, M_ARMV8_CRYPTO); ctx_mtx = NULL; free(ctx_vfp, M_ARMV8_CRYPTO); ctx_vfp = NULL; return (0); } static int armv8_crypto_cipher_setup(struct armv8_crypto_session *ses, struct cryptoini *encini) { int i; switch (ses->algo) { case CRYPTO_AES_CBC: switch (encini->cri_klen) { case 128: ses->rounds = AES128_ROUNDS; break; case 192: ses->rounds = AES192_ROUNDS; break; case 256: ses->rounds = AES256_ROUNDS; break; default: CRYPTDEB("invalid CBC/ICM/GCM key length"); return (EINVAL); } break; default: return (EINVAL); } rijndaelKeySetupEnc(ses->enc_schedule, encini->cri_key, encini->cri_klen); rijndaelKeySetupDec(ses->dec_schedule, encini->cri_key, encini->cri_klen); for (i = 0; i < nitems(ses->enc_schedule); i++) { ses->enc_schedule[i] = bswap32(ses->enc_schedule[i]); ses->dec_schedule[i] = bswap32(ses->dec_schedule[i]); } return (0); } static int armv8_crypto_newsession(device_t dev, crypto_session_t cses, struct cryptoini *cri) { struct armv8_crypto_softc *sc; struct armv8_crypto_session *ses; struct cryptoini *encini; int error; if (cri == NULL) { CRYPTDEB("no cri"); return (EINVAL); } sc = device_get_softc(dev); if (sc->dieing) return (EINVAL); ses = NULL; encini = NULL; for (; cri != NULL; cri = cri->cri_next) { switch (cri->cri_alg) { case CRYPTO_AES_CBC: if (encini != NULL) { CRYPTDEB("encini already set"); return (EINVAL); } encini = cri; break; default: CRYPTDEB("unhandled algorithm"); return (EINVAL); } } if (encini == NULL) { CRYPTDEB("no cipher"); return (EINVAL); } rw_wlock(&sc->lock); if (sc->dieing) { rw_wunlock(&sc->lock); return (EINVAL); } ses = crypto_get_driver_session(cses); ses->algo = encini->cri_alg; error = armv8_crypto_cipher_setup(ses, encini); if (error != 0) { CRYPTDEB("setup failed"); return (error); } return (0); } static int armv8_crypto_process(device_t dev, struct cryptop *crp, int hint __unused) { struct cryptodesc *crd, *enccrd; struct armv8_crypto_session *ses; int error; error = 0; enccrd = NULL; /* Sanity check. */ if (crp == NULL) return (EINVAL); if (crp->crp_callback == NULL || crp->crp_desc == NULL) { error = EINVAL; goto out; } for (crd = crp->crp_desc; crd != NULL; crd = crd->crd_next) { switch (crd->crd_alg) { case CRYPTO_AES_CBC: if (enccrd != NULL) { error = EINVAL; goto out; } enccrd = crd; break; default: error = EINVAL; goto out; } } if (enccrd == NULL) { error = EINVAL; goto out; } /* We can only handle full blocks for now */ if ((enccrd->crd_len % AES_BLOCK_LEN) != 0) { error = EINVAL; goto out; } ses = crypto_get_driver_session(crp->crp_session); error = armv8_crypto_cipher_process(ses, enccrd, crp); out: crp->crp_etype = error; crypto_done(crp); return (error); } static uint8_t * armv8_crypto_cipher_alloc(struct cryptodesc *enccrd, struct cryptop *crp, int *allocated) { struct mbuf *m; struct uio *uio; struct iovec *iov; uint8_t *addr; if (crp->crp_flags & CRYPTO_F_IMBUF) { m = (struct mbuf *)crp->crp_buf; if (m->m_next != NULL) goto alloc; addr = mtod(m, uint8_t *); } else if (crp->crp_flags & CRYPTO_F_IOV) { uio = (struct uio *)crp->crp_buf; if (uio->uio_iovcnt != 1) goto alloc; iov = uio->uio_iov; addr = (uint8_t *)iov->iov_base; } else addr = (uint8_t *)crp->crp_buf; *allocated = 0; addr += enccrd->crd_skip; return (addr); alloc: addr = malloc(enccrd->crd_len, M_ARMV8_CRYPTO, M_NOWAIT); if (addr != NULL) { *allocated = 1; crypto_copydata(crp->crp_flags, crp->crp_buf, enccrd->crd_skip, enccrd->crd_len, addr); } else *allocated = 0; return (addr); } static int armv8_crypto_cipher_process(struct armv8_crypto_session *ses, struct cryptodesc *enccrd, struct cryptop *crp) { struct fpu_kern_ctx *ctx; uint8_t *buf; uint8_t iv[AES_BLOCK_LEN]; int allocated, i; int encflag, ivlen; int kt; encflag = (enccrd->crd_flags & CRD_F_ENCRYPT) == CRD_F_ENCRYPT; buf = armv8_crypto_cipher_alloc(enccrd, crp, &allocated); if (buf == NULL) return (ENOMEM); kt = is_fpu_kern_thread(0); if (!kt) { AQUIRE_CTX(i, ctx); fpu_kern_enter(curthread, ctx, FPU_KERN_NORMAL | FPU_KERN_KTHR); } if ((enccrd->crd_flags & CRD_F_KEY_EXPLICIT) != 0) { panic("CRD_F_KEY_EXPLICIT"); } switch (enccrd->crd_alg) { case CRYPTO_AES_CBC: ivlen = AES_BLOCK_LEN; break; } /* Setup iv */ if (encflag) { if ((enccrd->crd_flags & CRD_F_IV_EXPLICIT) != 0) bcopy(enccrd->crd_iv, iv, ivlen); else arc4rand(iv, ivlen, 0); if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) crypto_copyback(crp->crp_flags, crp->crp_buf, enccrd->crd_inject, ivlen, iv); } else { if ((enccrd->crd_flags & CRD_F_IV_EXPLICIT) != 0) bcopy(enccrd->crd_iv, iv, ivlen); else crypto_copydata(crp->crp_flags, crp->crp_buf, enccrd->crd_inject, ivlen, iv); } /* Do work */ switch (ses->algo) { case CRYPTO_AES_CBC: if (encflag) armv8_aes_encrypt_cbc(ses->rounds, ses->enc_schedule, enccrd->crd_len, buf, buf, iv); else armv8_aes_decrypt_cbc(ses->rounds, ses->dec_schedule, enccrd->crd_len, buf, iv); break; } if (allocated) crypto_copyback(crp->crp_flags, crp->crp_buf, enccrd->crd_skip, enccrd->crd_len, buf); if (!kt) { fpu_kern_leave(curthread, ctx); RELEASE_CTX(i, ctx); } if (allocated) { bzero(buf, enccrd->crd_len); free(buf, M_ARMV8_CRYPTO); } return (0); } static device_method_t armv8_crypto_methods[] = { DEVMETHOD(device_identify, armv8_crypto_identify), DEVMETHOD(device_probe, armv8_crypto_probe), DEVMETHOD(device_attach, armv8_crypto_attach), DEVMETHOD(device_detach, armv8_crypto_detach), DEVMETHOD(cryptodev_newsession, armv8_crypto_newsession), DEVMETHOD(cryptodev_process, armv8_crypto_process), DEVMETHOD_END, }; static DEFINE_CLASS_0(armv8crypto, armv8_crypto_driver, armv8_crypto_methods, sizeof(struct armv8_crypto_softc)); static devclass_t armv8_crypto_devclass; DRIVER_MODULE(armv8crypto, nexus, armv8_crypto_driver, armv8_crypto_devclass, 0, 0);