/* * Adaptec 274x/284x/294x device driver firmware for Linux and FreeBSD. * * Copyright (c) 1994-2001 Justin T. Gibbs. * Copyright (c) 2000-2001 Adaptec Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. * * $FreeBSD$ */ VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#42 $" PATCH_ARG_LIST = "struct ahd_softc *ahd" #include "aic79xx.reg" #include "scsi_message.h" idle_loop: SET_MODE(M_SCSI, M_SCSI); test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus; test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz idle_loop_checkbus; cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus; /* * ENSELO is cleared by a SELDO, so we must test for SELDO * one last time. */ BEGIN_CRITICAL; test SSTAT0, SELDO jnz select_out; END_CRITICAL; call start_selection; idle_loop_checkbus: BEGIN_CRITICAL; test SSTAT0, SELDO jnz select_out; END_CRITICAL; test SSTAT0, SELDI jnz select_in; test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq; test SCSISIGO, ATNO jz idle_loop_check_nonpackreq; call unexpected_nonpkt_phase_find_ctxt; idle_loop_check_nonpackreq: test SSTAT2, NONPACKREQ jz idle_loop_scsi; call unexpected_nonpkt_phase_find_ctxt; idle_loop_scsi: BEGIN_CRITICAL; test LQISTAT2, LQIGSAVAIL jz idle_loop_service_fifos; /* * We have received good status for this transaction. There may * still be data in our FIFOs draining to the host. Setup * monitoring of the draining process or complete the SCB. */ good_status_IU_done: bmov SCBPTR, GSFIFO, 2; clr SCB_SCSI_STATUS; or SCB_CONTROL, STATUS_RCVD; /* * Since this status did not consume a FIFO, we have to * be a bit more dilligent in how we check for FIFOs pertaining * to this transaction. There are three states that a FIFO still * transferring data may be in. * * 1) Configured and draining to the host, with a pending CLRCHN. * 2) Configured and draining to the host, no pending CLRCHN. * 3) Pending cfg4data, fifo not empty. * * For case 1, we assume that our DMA post of the completed command * will occur after the FIFO finishes draining due to the higher * priority of data FIFO transfers relative to command channel * transfers. * * Case 2 can be detected by noticing that a longjmp is active for the * FIFO and LONGJMP_SCB matches our SCB. In this case, we allow * the routine servicing the FIFO to complete the SCB. * * Case 3 implies either a pending or yet to occur save data * pointers for this same context in the other FIFO. So, if * we detect case 2, we will properly defer the post of the SCB * and achieve the desired result. The pending cfg4data will * notice that status has been received and complete the SCB. */ test SCB_SGPTR, SG_LIST_NULL jz good_status_check_fifos; /* * All segments have been loaded (or no data transfer), so * it is safe to complete the command. Since this was a * cheap command to check for completion, loop to see if * more entries can be removed from the GSFIFO. */ call complete; END_CRITICAL; jmp idle_loop_scsi; BEGIN_CRITICAL; good_status_check_fifos: clc; bmov ARG_1, SCBPTR, 2; SET_MODE(M_DFF0, M_DFF0); call check_fifo; jc idle_loop_service_fifos; SET_MODE(M_DFF1, M_DFF1); call check_fifo; jc idle_loop_service_fifos; SET_MODE(M_SCSI, M_SCSI); call queue_scb_completion; END_CRITICAL; idle_loop_service_fifos: SET_MODE(M_DFF0, M_DFF0); test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo; call longjmp; idle_loop_next_fifo: SET_MODE(M_DFF1, M_DFF1); test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_last_fifo_done; call longjmp; idle_loop_last_fifo_done: call idle_loop_cchan; jmp idle_loop; idle_loop_cchan: SET_MODE(M_CCHAN, M_CCHAN); test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle; test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog; test CCSCBCTL, CCSCBDONE jz return; /* FALLTHROUGH */ scbdma_tohost_done: test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone; /* * A complete SCB upload requires no intervention. * The SCB is already on the COMPLETE_SCB list * and its completion notification will now be * handled just like any other SCB. */ and CCSCBCTL, ~(CCARREN|CCSCBEN) ret; fill_qoutfifo_dmadone: and CCSCBCTL, ~(CCARREN|CCSCBEN); mvi INTSTAT, CMDCMPLT; mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL; bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4; test QOFF_CTLSTA, SDSCB_ROLLOVR jz return; bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4 ret; fetch_new_scb_inprog: test CCSCBCTL, ARRDONE jz return; fetch_new_scb_done: and CCSCBCTL, ~(CCARREN|CCSCBEN); bmov REG0, SCBPTR, 2; /* Update the next SCB address to download. */ bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4; mvi SCB_NEXT[1], SCB_LIST_NULL; mvi SCB_NEXT2[1], SCB_LIST_NULL; /* * SCBs that want to send messages are always * queued independently. This ensures that they * are at the head of the SCB list to select out * to a target and we will see the MK_MESSAGE flag. */ test SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb; shr SINDEX, 3, SCB_SCSIID; and SINDEX, ~0x1; mvi SINDEX[1], (WAITING_SCB_TAILS >> 8); bmov DINDEX, SINDEX, 2; bmov SCBPTR, SINDIR, 2; bmov DINDIR, REG0, 2; cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb; bmov SCB_NEXT, REG0, 2; fetch_new_scb_fini: /* Increment our position in the QINFIFO. */ mov NONE, SNSCB_QOFF ret; first_new_target_scb: cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb; bmov SCBPTR, WAITING_TID_TAIL, 2; bmov SCB_NEXT2, REG0, 2; bmov WAITING_TID_TAIL, REG0, 2; /* Increment our position in the QINFIFO. */ mov NONE, SNSCB_QOFF ret; first_new_scb: bmov WAITING_TID_HEAD, REG0, 2; bmov WAITING_TID_TAIL, REG0, 2; /* Increment our position in the QINFIFO. */ mov NONE, SNSCB_QOFF ret; scbdma_idle: /* * Give precedence to downloading new SCBs to execute * unless select-outs are currently frozen. * XXX Use a timer to prevent completion starvation. */ test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2; BEGIN_CRITICAL; test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb; cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb; cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return; /* FALLTHROUGH */ fill_qoutfifo: /* * Keep track of the SCBs we are dmaing just * in case the DMA fails or is aborted. */ bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2; mvi CCSCBCTL, CCSCBRESET; bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4; bmov CCSCBRAM, COMPLETE_SCB_HEAD, 2; bmov SCBPTR, COMPLETE_SCB_HEAD, 2; jmp fill_qoutfifo_first_entry; fill_qoutfifo_loop: bmov CCSCBRAM, SCB_NEXT_COMPLETE, 2; bmov SCBPTR, SCB_NEXT_COMPLETE, 2; fill_qoutfifo_first_entry: mov NONE, SDSCB_QOFF; cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done; cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done; test QOFF_CTLSTA, SDSCB_ROLLOVR jz fill_qoutfifo_loop; fill_qoutfifo_done: mov SCBHCNT, CCSCBADDR; mvi CCSCBCTL, CCSCBEN|CCSCBRESET; bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2; mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret; fetch_new_scb: bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4; mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb; dma_complete_scb: bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2; bmov SCBHADDR, SCB_BUSADDR, 4; mvi CCARREN|CCSCBEN|CCSCBRESET call dma_scb; /* * Now that we've started the DMA, push us onto * the normal completion queue to have our SCBID * posted to the kernel. */ bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2; bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; END_CRITICAL; /* * Either post or fetch an SCB from host memory. The caller * is responsible for polling for transfer completion. * * Prerequisits: Mode == M_CCHAN * SINDEX contains CCSCBCTL flags * SCBHADDR set to Host SCB address * SCBPTR set to SCB src location on "push" operations */ SET_SRC_MODE M_CCHAN; SET_DST_MODE M_CCHAN; dma_scb: mvi SCBHCNT, SCB_TRANSFER_SIZE; mov CCSCBCTL, SINDEX; or SEQ_FLAGS2, SCB_DMA ret; BEGIN_CRITICAL; setjmp_setscb: bmov LONGJMP_SCB, SCBPTR, 2; setjmp: bmov LONGJMP_ADDR, STACK, 2 ret; setjmp_inline: bmov LONGJMP_ADDR, STACK, 2; longjmp: bmov STACK, LONGJMP_ADDR, 2 ret; END_CRITICAL; /************************ Packetized LongJmp Routines *************************/ /* * Must disable interrupts when setting the mode pointer * register as an interrupt occurring mid update will * fail to store the new mode value for restoration on * an iret. */ set_mode_work_around: mvi SEQINTCTL, INTVEC1DSL; mov MODE_PTR, SINDEX; clr SEQINTCTL ret; SET_SRC_MODE M_SCSI; SET_DST_MODE M_SCSI; start_selection: BEGIN_CRITICAL; if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { /* * Razor #494 * Rev A hardware fails to update LAST/CURR/NEXTSCB * correctly after a packetized selection in several * situations: * * 1) If only one command existed in the the queue, the * LAST/CURR/NEXTSCB are unchanged. * * 2) In a non QAS, protocol allowed phase change, * the queue is shifted 1 too far. LASTSCB is * the last SCB that was correctly processed. * * 3) In the QAS case, if the full list of commands * was successfully sent, NEXTSCB is NULL and neither * CURRSCB nor LASTSCB can be trusted. We must * manually walk the list counting MAXCMDCNT elements * to find the last SCB that was sent correctly. * * To simplify the workaround for this bug in SELDO * handling, we initialize LASTSCB prior to enabling * selection so we can rely on it even for case #1 above. */ bmov LASTSCB, WAITING_TID_HEAD, 2; } bmov CURRSCB, WAITING_TID_HEAD, 2; bmov SCBPTR, WAITING_TID_HEAD, 2; shr SELOID, 4, SCB_SCSIID; /* * If we want to send a message to the device, ensure * we are selecting with atn irregardless of our packetized * agreement. Since SPI4 only allows target reset or PPR * messages if this is a packetized connection, the change * to our negotiation table entry for this selection will * be cleared when the message is acted on. */ test SCB_CONTROL, MK_MESSAGE jz . + 3; mov NEGOADDR, SELOID; or NEGCONOPTS, ENAUTOATNO; or SCSISEQ0, ENSELO ret; END_CRITICAL; /* * Allocate a FIFO for a non-packetized transaction. * For some reason unkown to me, both FIFOs must be free before we * can allocate a FIFO for a non-packetized transaction. This * may be fixed in Rev B. */ allocate_fifo_loop: /* * Do whatever work is required to free a FIFO. */ SET_MODE(M_DFF0, M_DFF0); test LONGJMP_ADDR[1], INVALID_ADDR jnz . + 2; call longjmp; SET_MODE(M_DFF1, M_DFF1); test LONGJMP_ADDR[1], INVALID_ADDR jnz . + 2; call longjmp; SET_MODE(M_SCSI, M_SCSI); allocate_fifo: and A, FIFO0FREE|FIFO1FREE, DFFSTAT; cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop; take_fifo: bmov ARG_1, SCBPTR, 2; or DFFSTAT, CURRFIFO; SET_MODE(M_DFF1, M_DFF1); bmov SCBPTR, ARG_1, 2 ret; /* * We have been reselected as an initiator * or selected as a target. */ SET_SRC_MODE M_SCSI; SET_DST_MODE M_SCSI; select_in: or SXFRCTL0, SPIOEN; and SAVED_SCSIID, SELID_MASK, SELID; and A, OID, IOWNID; or SAVED_SCSIID, A; mvi CLRSINT0, CLRSELDI; jmp ITloop; /* * We have successfully selected out. * * Clear SELDO. * Dequeue all SCBs sent from the waiting queue * Requeue all SCBs *not* sent to the tail of the waiting queue * Take Razor #494 into account for above. * * In Packetized Mode: * Return to the idle loop. Our interrupt handler will take * care of any incoming L_Qs. * * In Non-Packetize Mode: * Continue to our normal state machine. */ SET_SRC_MODE M_SCSI; SET_DST_MODE M_SCSI; select_out: BEGIN_CRITICAL; /* Clear out all SCBs that have been successfully sent. */ if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { /* * For packetized, the LQO manager clears ENSELO on * the assertion of SELDO. If we are non-packetized, * LASTSCB and CURRSCB are acuate. */ test SCSISEQ0, ENSELO jnz use_lastscb; /* * The update is correct for LQOSTAT1 errors. All * but LQOBUSFREE are handled by kernel interrupts. * If we see LQOBUSFREE, return to the idle loop. * Once we are out of the select_out critical section, * the kernel will cleanup the LQOBUSFREE and we will * eventually restart the selection if appropriate. */ test LQOSTAT1, LQOBUSFREE jnz idle_loop; /* * On a phase change oustside of packet boundaries, * LASTSCB points to the currently active SCB context * on the bus. */ test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb; /* * If the hardware has traversed the whole list, NEXTSCB * will be NULL, CURRSCB and LASTSCB cannot be trusted, * but MAXCMDCNT is accurate. If we stop part way through * the list or only had one command to issue, NEXTSCB[1] is * not NULL and LASTSCB is the last command to go out. */ cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb; /* * Brute force walk. */ bmov SCBPTR, WAITING_TID_HEAD, 2; mvi SEQINTCTL, INTVEC1DSL; mvi MODE_PTR, MK_MODE(M_CFG, M_CFG); mov A, MAXCMDCNT; mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI); clr SEQINTCTL; find_lastscb_loop: dec A; test A, 0xFF jz found_last_sent_scb; bmov SCBPTR, SCB_NEXT, 2; jmp find_lastscb_loop; use_lastscb: bmov SCBPTR, LASTSCB, 2; found_last_sent_scb: bmov CURRSCB, SCBPTR, 2; curscb_ww_done: } else { /* * Untested - Verify with Rev B. */ bmov SCBPTR, CURRSCB, 2; } /* * Requeue any SCBs not sent, to the tail of the waiting Q. */ cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done; /* * We know that neither the per-TID list nor the list of * TIDs is empty. Use this knowledge to our advantage. */ bmov REG0, SCB_NEXT, 2; bmov SCBPTR, WAITING_TID_TAIL, 2; bmov SCB_NEXT2, REG0, 2; bmov WAITING_TID_TAIL, REG0, 2; jmp select_out_inc_tid_q; select_out_list_done: /* * The whole list made it. Just clear our TID's tail pointer * unless we were queued independently due to our need to * send a message. */ test SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q; shr DINDEX, 3, SCB_SCSIID; /* XXX When we switch to SCB_SELOID, put +1 in addition below. */ or DINDEX, 1; /* Want only the second byte */ mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8); mvi DINDIR, SCB_LIST_NULL; select_out_inc_tid_q: bmov SCBPTR, WAITING_TID_HEAD, 2; bmov WAITING_TID_HEAD, SCB_NEXT2, 2; cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2; mvi WAITING_TID_TAIL[1], SCB_LIST_NULL; bmov SCBPTR, CURRSCB, 2; END_CRITICAL; mvi CLRSINT0, CLRSELDO; test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase; test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase; /* * If this is a packetized connection, return to our * idle_loop and let our interrupt handler deal with * any connection setup/teardown issues. The only * exception is the case of MK_MESSAGE SCBs. In the * A, the LQO manager transitions to LQOSTOP0 even if * we have selected out with ATN asserted and the target * REQs in a non-packet phase. */ if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) { test SCB_CONTROL, MK_MESSAGE jz select_out_no_message; test SCSISIGO, ATNO jnz select_out_non_packetized; select_out_no_message: } test LQOSTAT2, LQOSTOP0 jnz idle_loop; select_out_non_packetized: /* Non packetized request. */ and SCSISEQ0, ~ENSELO; mov SAVED_SCSIID, SCB_SCSIID; mov SAVED_LUN, SCB_LUN; or SXFRCTL0, SPIOEN; /* * As soon as we get a successful selection, the target * should go into the message out phase since we have ATN * asserted. */ mvi MSG_OUT, MSG_IDENTIFYFLAG; mvi SEQ_FLAGS, NO_CDB_SENT; /* * Main loop for information transfer phases. Wait for the * target to assert REQ before checking MSG, C/D and I/O for * the bus phase. */ mesgin_phasemis: ITloop: call phase_lock; mov A, LASTPHASE; test A, ~P_DATAIN_DT jz p_data; cmp A,P_COMMAND je p_command; cmp A,P_MESGOUT je p_mesgout; cmp A,P_STATUS je p_status; cmp A,P_MESGIN je p_mesgin; mvi SEQINTCODE, BAD_PHASE; jmp ITloop; /* Try reading the bus again. */ /* * Command phase. Set up the DMA registers and let 'er rip. */ p_command: SET_SRC_MODE M_DFF1; SET_DST_MODE M_DFF1; test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz p_command_allocate_fifo; /* * Command retry. Free our current FIFO and * re-allocate a FIFO so transfer state is * reset. */ mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; p_command_allocate_fifo: call allocate_fifo; add NONE, -17, SCB_CDB_LEN; jnc p_command_embedded; p_command_from_host: bmov HADDR[0], SCB_CDB_PTR, 11; mvi SG_CACHE_PRE, LAST_SEG; mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); jmp p_command_loop; p_command_embedded: bmov SHCNT[0], SCB_CDB_LEN, 1; bmov SHCNT[1], ALLZEROS, 2; bmov DFDAT, SCB_CDB_STORE, 16; mvi DFCNTRL, SCSIEN; p_command_loop: test DFCNTRL, SCSIEN jnz p_command_loop; /* * DMA Channel automatically disabled. * Don't allow a data phase if the command * was not fully transferred. Make sure that * we clear the IDENTIFY SEEN flag if a retry * falls short too. */ and SEQ_FLAGS, ~NO_CDB_SENT; test SSTAT2, SDONE jnz ITloop; or SEQ_FLAGS, NO_CDB_SENT; jmp ITloop; /* * Status phase. Wait for the data byte to appear, then read it * and store it into the SCB. */ SET_SRC_MODE M_SCSI; SET_DST_MODE M_SCSI; p_status: test SEQ_FLAGS,NOT_IDENTIFIED jz p_status_okay; mvi SEQINTCODE, PROTO_VIOLATION; jmp mesgin_done; p_status_okay: mov SCB_SCSI_STATUS, SCSIDAT; or SCB_CONTROL, STATUS_RCVD; jmp ITloop; /* * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full * indentify message sequence and send it to the target. The host may * override this behavior by setting the MK_MESSAGE bit in the SCB * control byte. This will cause us to interrupt the host and allow * it to handle the message phase completely on its own. If the bit * associated with this target is set, we will also interrupt the host, * thereby allowing it to send a message on the next selection regardless * of the transaction being sent. * * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message. * This is done to allow the host to send messages outside of an identify * sequence while protecting the seqencer from testing the MK_MESSAGE bit * on an SCB that might not be for the current nexus. (For example, a * BDR message in responce to a bad reselection would leave us pointed to * an SCB that doesn't have anything to do with the current target). * * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag, * bus device reset). * * When there are no messages to send, MSG_OUT should be set to MSG_NOOP, * in case the target decides to put us in this phase for some strange * reason. */ p_mesgout_retry: /* Turn on ATN for the retry */ mvi SCSISIGO, ATNO; p_mesgout: mov SINDEX, MSG_OUT; cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host; test SCB_CONTROL,MK_MESSAGE jnz host_message_loop; p_mesgout_identify: or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN; test SCB_CONTROL, DISCENB jnz . + 2; and SINDEX, ~DISCENB; /* * Send a tag message if TAG_ENB is set in the SCB control block. * Use SCB_NONPACKET_TAG as the tag value. */ p_mesgout_tag: test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte; mov SCSIDAT, SINDEX; /* Send the identify message */ call phase_lock; cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL; call phase_lock; cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; mov SCB_NONPACKET_TAG jmp p_mesgout_onebyte; /* * Interrupt the driver, and allow it to handle this message * phase and any required retries. */ p_mesgout_from_host: cmp SINDEX, HOST_MSG jne p_mesgout_onebyte; jmp host_message_loop; p_mesgout_onebyte: mvi CLRSINT1, CLRATNO; mov SCSIDAT, SINDEX; /* * If the next bus phase after ATN drops is message out, it means * that the target is requesting that the last message(s) be resent. */ call phase_lock; cmp LASTPHASE, P_MESGOUT je p_mesgout_retry; p_mesgout_done: mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */ mov LAST_MSG, MSG_OUT; mvi MSG_OUT, MSG_NOOP; /* No message left */ jmp ITloop; /* * Message in phase. Bytes are read using Automatic PIO mode. */ p_mesgin: /* read the 1st message byte */ mvi ACCUM call inb_first; test A,MSG_IDENTIFYFLAG jnz mesgin_identify; cmp A,MSG_DISCONNECT je mesgin_disconnect; cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs; cmp ALLZEROS,A je mesgin_complete; cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs; cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue; cmp A,MSG_NOOP je mesgin_done; /* * Pushed message loop to allow the kernel to * run it's own message state engine. To avoid an * extra nop instruction after signaling the kernel, * we perform the phase_lock before checking to see * if we should exit the loop and skip the phase_lock * in the ITloop. Performing back to back phase_locks * shouldn't hurt, but why do it twice... */ host_message_loop: call phase_lock; /* Benign the first time through. */ mvi SEQINTCODE, HOST_MSG_LOOP; cmp RETURN_1, EXIT_MSG_LOOP je ITloop; cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3; mov SCSIDAT, RETURN_2; jmp host_message_loop; /* Must be CONT_MSG_LOOP_READ */ mov NONE, SCSIDAT; /* ACK Byte */ jmp host_message_loop; mesgin_ign_wide_residue: shr NEGOADDR, 4, SAVED_SCSIID; test NEGCONOPTS, WIDEXFER jz mesgin_reject; /* Pull the residue byte */ mvi REG0 call inb_next; cmp REG0, 0x01 jne mesgin_reject; test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2; test DATA_COUNT_ODD, 0x1 jz mesgin_done; mvi SEQINTCODE, IGN_WIDE_RES; jmp mesgin_done; mesgin_reject: mvi MSG_MESSAGE_REJECT call mk_mesg; mesgin_done: mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ jmp ITloop; #define INDEX_DISC_LIST_SCB(target, lun) \ mov SCBPTR, lun; \ shr SCBPTR[1], 3, target #define INDEX_DISC_LIST(target, lun) \ INDEX_DISC_LIST_SCB(target, lun); \ and SINDEX, 0x7, target; \ shl SINDEX, 1; \ add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \ mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF) mesgin_identify: /* * Determine whether a target is using tagged or non-tagged * transactions by first looking at the transaction stored in * the per-device, disconnected array. If there is no untagged * transaction for this target this must be an untagged transaction. */ shr SINDEX, 4, SAVED_SCSIID; and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A; INDEX_DISC_LIST(SINDEX, SAVED_LUN); bmov DINDEX, SINDEX, 2; bmov SCBPTR, SINDIR, 2; cmp SCBPTR[1], SCB_LIST_NULL je snoop_tag; test SCB_CONTROL, TAG_ENB jnz snoop_tag; /* Untagged. Setup the SCB. */ bmov REG1, SCB_TAG, 4; /* Save SCB_TAG and SCB_NEXT */ jmp dequeue_first_scb; /* * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message. * If we get one, we use the tag returned to find the proper * SCB. The disconnected list contains any outstanding tagged transactions * where SCB_TAG != SCB_NONPACKET_TAG or SCB_NONPACKET_TAG + 256. * After receiving the tag, look for the SCB at SCB locations tag and * tag + 256. If those SCBs do not match, traverse the disconnected * list until we find the correct SCB. */ snoop_tag: if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { or SEQ_FLAGS, 0x80; } mov NONE, SCSIDAT; /* ACK Identify MSG */ call phase_lock; if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { or SEQ_FLAGS, 0x1; } cmp LASTPHASE, P_MESGIN jne not_found_ITloop; if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { or SEQ_FLAGS, 0x2; } cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found; get_tag: /* Save diconnected list head. */ bmov REG0, SCBPTR, 2; clr SCBPTR[1]; mvi SCBPTR call inb_next; /* tag value */ mov REG1, SCBPTR; verify_scb: mov A, REG1; cmp SCB_NONPACKET_TAG, A jne verify_other_scb; mov A, SAVED_SCSIID; cmp SCB_SCSIID, A jne verify_other_scb; mov A, SAVED_LUN; cmp SCB_LUN, A je setup_SCB; verify_other_scb: xor SCBPTR[1], 1; test SCBPTR[1], 0xFF jnz verify_scb; search_disc_list: /* Restore disconnected list head. */ bmov SCBPTR, REG0, 2; mvi REG0[1], SCB_LIST_NULL; mov A, REG1; search_disc_list_loop: cmp SCB_NONPACKET_TAG, A je dequeue_scb; bmov REG0, SCBPTR, 2; bmov SCBPTR, SCB_NEXT, 2; cmp SCBPTR[1], SCB_LIST_NULL jne search_disc_list_loop; jmp not_found; dequeue_scb: bmov REG1, SCB_TAG, 4; /* Save SCB_TAG and SCB_NEXT */ cmp REG0[1], SCB_LIST_NULL jne dequeue_intermediate_SCB; dequeue_first_scb: shr SINDEX, 4, SAVED_SCSIID; INDEX_DISC_LIST_SCB(SINDEX, SAVED_LUN); /* Update list head. */ bmov DINDIR, REG2, 2; jmp dequeue_restore; dequeue_intermediate_SCB: bmov SCBPTR, REG0, 2; bmov SCB_NEXT, REG2, 2; dequeue_restore: bmov SCBPTR, REG1, 2; /* * Ensure that the SCB the tag points to is for * an SCB transaction to the reconnecting target. */ setup_SCB: if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { or SEQ_FLAGS, 0x10; } test SCB_CONTROL,DISCONNECTED jz not_found; and SCB_CONTROL,~DISCONNECTED; clr SEQ_FLAGS; /* make note of IDENTIFY */ test SCB_SGPTR, SG_LIST_NULL jnz . + 2; call allocate_fifo; /* mvi SEQINTCODE, PRINT_RESIDUALS; */ /* See if the host wants to send a message upon reconnection */ test SCB_CONTROL, MK_MESSAGE jz mesgin_done; mvi HOST_MSG call mk_mesg; jmp mesgin_done; not_found: mvi SEQINTCODE, NO_MATCH; jmp mesgin_done; not_found_ITloop: mvi SEQINTCODE, NO_MATCH; jmp ITloop; /* * We received a "command complete" message. Put the SCB on the complete * queue and trigger a completion interrupt via the idle loop. Before doing * so, check to see if there * is a residual or the status byte is something other than STATUS_GOOD (0). * In either of these conditions, we upload the SCB back to the host so it can * process this information. In the case of a non zero status byte, we * additionally interrupt the kernel driver synchronously, allowing it to * decide if sense should be retrieved. If the kernel driver wishes to request * sense, it will fill the kernel SCB with a request sense command, requeue * it to the QINFIFO and tell us not to post to the QOUTFIFO by setting * RETURN_1 to SEND_SENSE. */ mesgin_complete: /* * If ATN is raised, we still want to give the target a message. * Perhaps there was a parity error on this last message byte. * Either way, the target should take us to message out phase * and then attempt to complete the command again. We should use a * critical section here to guard against a timeout triggering * for this command and setting ATN while we are still processing * the completion. test SCSISIGI, ATNI jnz mesgin_done; */ /* * If the target never sent an identify message but instead went * to mesgin to give an invalid message, let the host abort us. */ test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz . + 3; mvi SEQINTCODE, PROTO_VIOLATION; jmp mesgin_done; /* * If the target never gave us status information, have * the host abort the command. */ test SCB_CONTROL, STATUS_RCVD jz . - 2; /* * See if we attempted to deliver a message but the target ingnored us. */ test SCB_CONTROL, MK_MESSAGE jz . + 2; mvi SEQINTCODE, MKMSG_FAILED; call queue_scb_completion; jmp await_busfree; freeze_queue: /* Cancel any pending select-out. */ test SSTAT0, SELDO jnz . + 2; and SCSISEQ0, ~ENSELO; mov ACCUM_SAVE, A; clr A; add QFREEZE_COUNT, 1; adc QFREEZE_COUNT[1], A; or SEQ_FLAGS2, SELECTOUT_QFROZEN; mov A, ACCUM_SAVE ret; queue_arg1_scb_completion: SET_MODE(M_SCSI, M_SCSI); bmov SCBPTR, ARG_1, 2; queue_scb_completion: test SCB_SCSI_STATUS,0xff jnz bad_status; /* * Check for residuals */ test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */ test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */ test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb; complete: bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; bad_status: cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb; call freeze_queue; upload_scb: bmov SCB_NEXT_COMPLETE, COMPLETE_DMA_SCB_HEAD, 2; bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2; or SCB_SGPTR, SG_STATUS_VALID ret; /* * Is it a disconnect message? Set a flag in the SCB to remind us * and await the bus going free. If this is an untagged transaction * store the SCB id for it in our untagged target table for lookup on * a reselction. */ mesgin_disconnect: /* * If ATN is raised, we still want to give the target a message. * Perhaps there was a parity error on this last message byte * or we want to abort this command. Either way, the target * should take us to message out phase and then attempt to * disconnect again. * XXX - Wait for more testing. test SCSISIGI, ATNI jnz mesgin_done; */ test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz disconnect_allowed; mvi SEQINTCODE, PROTO_VIOLATION; jmp mesgin_done; disconnect_allowed: or SCB_CONTROL,DISCONNECTED; test SCB_CONTROL, TAG_ENB jz queue_disc_scb; mov A, SCB_NONPACKET_TAG; cmp SCBPTR, A je await_busfree; queue_disc_scb: bmov REG0, SCBPTR, 2; shr SINDEX, 4, SCB_SCSIID; INDEX_DISC_LIST(SINDEX, SCB_LUN); bmov DINDEX, SINDEX, 2; bmov REG1, SINDIR, 2; bmov DINDIR, REG0, 2; bmov SCBPTR, REG0, 2; bmov SCB_NEXT, REG1, 2; /* FALLTHROUGH */ await_busfree: and SIMODE1, ~ENBUSFREE; mov NONE, SCSIDAT; /* Ack the last byte */ call clear_target_state; test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz await_busfree_not_m_dff; SET_SRC_MODE M_DFF1; SET_DST_MODE M_DFF1; await_busfree_clrchn: mvi DFFSXFRCTL, CLRCHN; await_busfree_not_m_dff: test SSTAT1,REQINIT|BUSFREE jz .; test SSTAT1, BUSFREE jnz idle_loop; mvi SEQINTCODE, MISSED_BUSFREE; /* * Save data pointers message: * Copying RAM values back to SCB, for Save Data Pointers message, but * only if we've actually been into a data phase to change them. This * protects against bogus data in scratch ram and the residual counts * since they are only initialized when we go into data_in or data_out. * Ack the message as soon as possible. For chips without S/G pipelining, * we can only ack the message after SHADDR has been saved. On these * chips, SHADDR increments with every bus transaction, even PIO. */ SET_SRC_MODE M_DFF1; SET_DST_MODE M_DFF1; mesgin_sdptrs: mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ test SEQ_FLAGS, DPHASE jz ITloop; call save_pointers; jmp ITloop; save_pointers: /* * If we are asked to save our position at the end of the * transfer, just mark us at the end rather than perform a * full save. */ test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full; or SCB_SGPTR, SG_LIST_NULL ret; save_pointers_full: /* * The SCB_DATAPTR becomes the current SHADDR. * All other information comes directly from our residual * state. */ bmov SCB_DATAPTR, SHADDR, 8; bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret; /* * Restore pointers message? Data pointers are recopied from the * SCB anytime we enter a data phase for the first time, so all * we need to do is clear the DPHASE flag and let the data phase * code do the rest. We also reset/reallocate the FIFO to make * sure we have a clean start for the next data phase. */ mesgin_rdptrs: and SEQ_FLAGS, ~DPHASE; test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo; mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; msgin_rdptrs_get_fifo: call allocate_fifo; jmp mesgin_done; clear_target_state: mvi LASTPHASE, P_BUSFREE; /* clear target specific flags */ mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT ret; phase_lock: test SCSIPHASE, 0xFF jz .; phase_lock_latch_phase: and LASTPHASE, PHASE_MASK, SCSISIGI ret; /* * Functions to read data in Automatic PIO mode. * * An ACK is not sent on input from the target until SCSIDATL is read from. * So we wait until SCSIDATL is latched (the usual way), then read the data * byte directly off the bus using SCSIBUSL. When we have pulled the ATN * line, or we just want to acknowledge the byte, then we do a dummy read * from SCISDATL. The SCSI spec guarantees that the target will hold the * data byte on the bus until we send our ACK. * * The assumption here is that these are called in a particular sequence, * and that REQ is already set when inb_first is called. inb_{first,next} * use the same calling convention as inb. */ inb_next: mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ inb_next_wait: /* * If there is a parity error, wait for the kernel to * see the interrupt and prepare our message response * before continuing. */ test SCSIPHASE, 0xFF jz .; inb_next_check_phase: and LASTPHASE, PHASE_MASK, SCSISIGI; cmp LASTPHASE, P_MESGIN jne mesgin_phasemis; inb_first: clr DINDEX[1]; mov DINDEX,SINDEX; mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/ inb_last: mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/ mk_mesg: mvi SCSISIGO, ATNO; mov MSG_OUT,SINDEX ret; SET_SRC_MODE M_DFF1; SET_DST_MODE M_DFF1; disable_ccsgen: test SG_STATE, FETCH_INPROG jz return; clr SG_STATE; disable_ccsgen_fetch_done: clr CCSGCTL ret; toggle_dff_mode: mvi SEQINTCTL, INTVEC1DSL; xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); clr SEQINTCTL ret; data_group_idle_loop: mov SAVED_MODE, MODE_PTR; test SG_STATE, LOADING_NEEDED jz . + 2; call service_fifo; call toggle_dff_mode; test SG_STATE, LOADING_NEEDED jz . + 2; call service_fifo; call idle_loop_cchan; mov SAVED_MODE jmp set_mode_work_around; service_fifo: /* * Do we have any prefetch left??? */ test SG_STATE, SEGS_AVAIL jnz idle_sg_avail; /* * Can this FIFO have access to the S/G cache yet? */ test CCSGCTL, SG_CACHE_AVAIL jz return; /* Did we just finish fetching segs? */ cmp CCSGCTL, CCSGEN|SG_CACHE_AVAIL|CCSGDONE je idle_sgfetch_complete; /* Are we actively fetching segments? */ test CCSGCTL, CCSGEN jnz return; /* * We fetch a "cacheline aligned" and sized amount of data * so we don't end up referencing a non-existant page. * Cacheline aligned is in quotes because the kernel will * set the prefetch amount to a reasonable level if the * cacheline size is unknown. */ mvi SGHCNT, SG_PREFETCH_CNT; and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR; bmov SGHADDR[1], SCB_RESIDUAL_SGPTR[1], 3; mvi CCSGCTL, CCSGEN|SG_CACHE_AVAIL|CCSGRESET; or SG_STATE, FETCH_INPROG ret; idle_sgfetch_complete: /* * Guard against SG_CACHE_AVAIL activating during sg fetch * request in the other FIFO. */ test SG_STATE, FETCH_INPROG jz return; call disable_ccsgen_fetch_done; and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR; mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED; idle_sg_avail: /* Does the hardware have space for another SG entry? */ test DFSTATUS, PRELOAD_AVAIL jz return; if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { bmov HADDR, CCSGRAM, 8; } else { bmov HADDR, CCSGRAM, 4; } bmov HCNT, CCSGRAM, 3; test HCNT[0], 0x1 jz . + 2; xor DATA_COUNT_ODD, 0x1; bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1; if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3]; } if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { /* Skip 4 bytes of pad. */ add CCSGADDR, 4; } sg_advance: clr A; /* add sizeof(struct scatter) */ add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF; adc SCB_RESIDUAL_SGPTR[1],A; adc SCB_RESIDUAL_SGPTR[2],A; adc SCB_RESIDUAL_SGPTR[3],A; mov SINDEX, SCB_RESIDUAL_SGPTR[0]; test DATA_COUNT_ODD, 0x1 jz . + 2; or SINDEX, ODD_SEG; test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3; or SINDEX, LAST_SEG; clr SG_STATE; mov SG_CACHE_PRE, SINDEX; /* * Load the segment. Or in HDMAEN here too * just in case HDMAENACK has not come true * by the time this segment is loaded. If * HDMAENACK is not true, this or will disable * HDMAEN mid-transfer. We do not want to simply * mvi our original settings as SCSIEN automatically * de-asserts and we don't want to accidentally * re-enable it. */ or DFCNTRL, PRELOADEN|HDMAEN; /* * Do we have another segment in the cache? */ add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR; jnc return; and SG_STATE, ~SEGS_AVAIL ret; /* * Initialize the DMA address and counter from the SCB. */ load_first_seg: bmov HADDR, SCB_DATAPTR, 11; and DATA_COUNT_ODD, 0x1, SCB_DATACNT[0]; and REG0, ~SG_FULL_RESID, SCB_SGPTR[0]; test SCB_DATACNT[3], SG_LAST_SEG jz . + 2; or REG0, LAST_SEG; test DATA_COUNT_ODD, 0x1 jz . + 2; or REG0, ODD_SEG; mov SG_CACHE_PRE, REG0; mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); /* * Since we've are entering a data phase, we will * rely on the SCB_RESID* fields. Initialize the * residual and clear the full residual flag. */ and SCB_SGPTR[0], ~SG_FULL_RESID; bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5; /* If we need more S/G elements, tell the idle loop */ test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2; mvi SG_STATE, LOADING_NEEDED ret; clr SG_STATE ret; p_data: test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed; mvi SEQINTCODE, PROTO_VIOLATION; p_data_allowed: test SEQ_FLAGS, DPHASE jz data_phase_initialize; /* * If we re-enter the data phase after going through another * phase, our transfer location has almost certainly been * corrupted by the interveining, non-data, transfers. Ask * the host driver to fix us up based on the transfer residual * unless we already know that we should be bitbucketing. */ test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; mvi SEQINTCODE, PDATA_REINIT; p_data_bitbucket: /* * Turn on `Bit Bucket' mode, wait until the target takes * us to another phase, and then notify the host. */ test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz bitbucket_not_m_dff; /* * Ensure that any FIFO contents are cleared out and the * FIFO free'd prior to starting the BITBUCKET. BITBUCKET * doesn't discard data already in the FIFO. */ mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; SET_MODE(M_SCSI, M_SCSI); bitbucket_not_m_dff: or SXFRCTL1,BITBUCKET; test SCSIPHASE, DATA_PHASE_MASK jnz .; and SXFRCTL1, ~BITBUCKET; SET_MODE(M_DFF1, M_DFF1); mvi SEQINTCODE, DATA_OVERRUN; jmp ITloop; data_phase_initialize: test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; call load_first_seg; data_phase_inbounds: /* We have seen a data phase at least once. */ or SEQ_FLAGS, DPHASE; data_group_dma_loop: /* * The transfer is complete if either the last segment * completes or the target changes phase. Both conditions * will clear SCSIEN. We test SCSIEN twice during our * "idle loop" to avoid long delays before we notice the * SCSIEN transition. */ call data_group_idle_loop; test DFCNTRL, SCSIEN jnz data_group_dma_loop; data_group_dmafinish: /* * The transfer has terminated either due to a phase * change, and/or the completion of the last segment. * We have two goals here. Do as much other work * as possible while the data fifo drains on a read * and respond as quickly as possible to the standard * messages (save data pointers/disconnect and command * complete) that usually follow a data phase. */ call calc_residual; /* * Go ahead and shut down the DMA engine now. */ test DFCNTRL, DIRECTION jnz data_phase_finish; data_group_fifoflush: if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { or DFCNTRL, FIFOFLUSH; } /* * We have enabled the auto-ack feature. This means * that the controller may have already transferred * some overrun bytes into the data FIFO and acked them * on the bus. The only way to detect this situation is * to wait for LAST_SEG_DONE to come true on a completed * transfer and then test to see if the data FIFO is * non-empty. We know there is more data yet to transfer * if SG_LIST_NULL is not yet set, thus there cannot be * an overrun. */ test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish; test SG_CACHE_SHADOW, LAST_SEG_DONE jz .; test DFSTATUS, FIFOEMP jnz data_phase_finish; /* Overrun */ jmp p_data; data_phase_finish: /* * If the target has left us in data phase, loop through * the dma code again. We will only loop if there is a * data overrun. */ if ((ahd->flags & AHD_TARGETROLE) != 0) { test SSTAT0, TARGET jnz data_phase_done; } if ((ahd->flags & AHD_INITIATORROLE) != 0) { test SSTAT1, REQINIT jz .; test SCSIPHASE, DATA_PHASE_MASK jnz p_data; } data_phase_done: /* Kill off any pending prefetch */ call disable_ccsgen; if ((ahd->flags & AHD_TARGETROLE) != 0) { test SEQ_FLAGS, DPHASE_PENDING jz ITloop; /* and SEQ_FLAGS, ~DPHASE_PENDING; * For data-in phases, wait for any pending acks from the * initiator before changing phase. We only need to * send Ignore Wide Residue messages for data-in phases. test DFCNTRL, DIRECTION jz target_ITloop; test SSTAT1, REQINIT jnz .; test DATA_COUNT_ODD, 0x1 jz target_ITloop; SET_MODE(M_SCSI, M_SCSI); test NEGCONOPTS, WIDEXFER jz target_ITloop; */ /* * Issue an Ignore Wide Residue Message. mvi P_MESGIN|BSYO call change_phase; mvi MSG_IGN_WIDE_RESIDUE call target_outb; mvi 1 call target_outb; jmp target_ITloop; */ } else { jmp ITloop; } /* * We assume that, even though data may still be * transferring to the host, that the SCSI side of * the DMA engine is now in a static state. This * allows us to update our notion of where we are * in this transfer. * * If, by chance, we stopped before being able * to fetch additional segments for this transfer, * yet the last S/G was completely exhausted, * call our idle loop until it is able to load * another segment. This will allow us to immediately * pickup on the next segment on the next data phase. * * If we happened to stop on the last segment, then * our residual information is still correct from * the idle loop and there is no need to perform * any fixups. */ calc_residual: test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg; /* Record if we've consumed all S/G entries */ test MDFFSTAT, SHVALID jz . + 2; bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret; residual_before_last_seg: test MDFFSTAT, SHVALID jnz sgptr_fixup; /* * Can never happen from an interrupt as the packetized * hardware will only interrupt us once SHVALID or * LAST_SEG_DONE. */ call data_group_idle_loop; jmp calc_residual; sgptr_fixup: /* * Fixup the residual next S/G pointer. The S/G preload * feature of the chip allows us to load two elements * in addition to the currently active element. We * store the bottom byte of the next S/G pointer in * the SG_CACHE_PTR register so we can restore the * correct value when the DMA completes. If the next * sg ptr value has advanced to the point where higher * bytes in the address have been affected, fix them * too. */ test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done; test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done; add SCB_RESIDUAL_SGPTR[1], -1; adc SCB_RESIDUAL_SGPTR[2], -1; adc SCB_RESIDUAL_SGPTR[3], -1; sgptr_fixup_done: and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW; clr DATA_COUNT_ODD; test SG_CACHE_SHADOW, ODD_SEG jz . + 2; or DATA_COUNT_ODD, 0x1; clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */ bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; export seq_isr: nop; /* Jumps in the first ISR instruction fail on Rev A. */ test SEQINTSRC, SAVEPTRS jnz saveptr_intr; test SEQINTSRC, CFG4DATA jnz cfg4data_intr; test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr; test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr; mvi SEQINTCODE, INVALID_SEQINT; /* * There are two types of save pointers interrupts: * The first is a snapshot save pointers where the current FIFO is not * active and contains a snapshot of the current poniter information. * This happens between packets in a stream for a single L_Q. Since we * are not performing a pointer save, we can safely clear the channel * so it can be used for other transactions. * * The second case is a save pointers on an active FIFO which occurs * if the target changes to a new L_Q or busfrees/QAS' and the transfer * has a residual. This should occur coincident with a ctxtdone. We * disable the interrupt and allow our active routine to handle the * save. */ saveptr_intr: test DFCNTRL, HDMAENACK jz snapshot_saveptr; and SEQIMODE, ~ENSAVEPTRS; or SEQINTCTL, IRET ret; snapshot_saveptr: mvi DFFSXFRCTL, CLRCHN; or SEQINTCTL, IRET ret; cfg4data_intr: test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun; call load_first_seg; call pkt_handle_xfer; or SEQINTCTL, IRET ret; cfg4istat_intr: call freeze_queue; add NONE, -13, SCB_CDB_LEN; jnc cfg4istat_have_sense_addr; test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr; /* * Host sets up address/count and enables transfer. */ mvi SEQINTCODE, CFG4ISTAT_INTR; jmp cfg4istat_setup_handler; cfg4istat_have_sense_addr: bmov HADDR, SCB_SENSE_BUSADDR, 4; mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8); mvi SG_CACHE_PRE, LAST_SEG; mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN; cfg4istat_setup_handler: /* * Status pkt is transferring to host. * Wait in idle loop for transfer to complete. */ call pkt_handle_status; or SEQINTCTL, IRET ret; /* * See if the target has gone on in this context creating an * overrun condition. For the write case, the hardware cannot * ack bytes until data is provided. So, if the target begins * another packet without changing contexts, implying we are * not sitting on a packet boundary, we are in an overrun * situation. For the read case, the hardware will continue to * ack bytes into the FIFO, and may even ack the last overrun packet * into the FIFO. If the FIFO should become non-empty, we are in * a read overrun case. */ #define check_overrun \ /* Not on a packet boundary. */ \ test MDFFSTAT, DLZERO jz pkt_handle_overrun; \ test DFSTATUS, FIFOEMP jz pkt_handle_overrun pkt_handle_xfer: bmov LONGJMP_SCB, SCBPTR, 2; test SG_STATE, LOADING_NEEDED jz pkt_last_seg; call setjmp; test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; test SCSISIGO, ATNO jnz . + 2; test SSTAT2, NONPACKREQ jz pkt_service_fifo; /* * Defer handling of this NONPACKREQ until we * can be sure it pertains to this FIFO. SAVEPTRS * will not be asserted if the NONPACKREQ is for us, * so we must simulate it if shaddow is valid. If * shaddow is not valid, keep running this FIFO until we * have satisfied the transfer by loading segments and * waiting for either shaddow valid or last_seg_done. */ test MDFFSTAT, SHVALID jnz pkt_saveptrs; pkt_service_fifo: test SG_STATE, LOADING_NEEDED jnz service_fifo; pkt_last_seg: call setjmp; test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; test SG_CACHE_SHADOW, LAST_SEG_DONE jnz last_pkt_done; test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; test SCSISIGO, ATNO jnz . + 2; test SSTAT2, NONPACKREQ jz return; test MDFFSTAT, SHVALID jnz pkt_saveptrs; jmp return; last_pkt_done: BEGIN_CRITICAL; if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { or DFCNTRL, FIFOFLUSH; } test SCB_CONTROL, STATUS_RCVD jz wait_pkt_end; check_overrun; or SCB_SGPTR, SG_LIST_NULL; /* * I think it is safe to skip the FIFO check. * in this case as LAST_SEG_DONE implies * the other FIFO, if ever active for this transfer, * has completed. */ last_pkt_queue_scb: or LONGJMP_ADDR[1], INVALID_ADDR; bmov ARG_1, SCBPTR, 2; mvi DFFSXFRCTL, CLRCHN; jmp queue_arg1_scb_completion; last_pkt_complete: bmov ARG_1, SCBPTR, 2; mvi DFFSXFRCTL, CLRCHN; check_other_fifo: clc; call toggle_dff_mode; call check_fifo; jnc queue_arg1_scb_completion; return: ret; wait_pkt_end: call setjmp; END_CRITICAL; wait_pkt_end_loop: test SEQINTSRC, CTXTDONE jnz pkt_end; check_overrun; test SSTAT2, NONPACKREQ jz return; test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; pkt_end: BEGIN_CRITICAL; check_overrun; or LONGJMP_ADDR[1], INVALID_ADDR; or SCB_SGPTR, SG_LIST_NULL; test SCB_CONTROL, STATUS_RCVD jnz last_pkt_complete; mvi DFFSXFRCTL, CLRCHN ret; END_CRITICAL; /* * Either a SAVEPTRS interrupt condition is pending for this FIFO * or we have a pending nonpackreq for this FIFO. We differentiate * between the two by capturing the state of the SAVEPTRS interrupt * prior to clearing and handling the common code of these two cases. */ pkt_saveptrs: BEGIN_CRITICAL; if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { or DFCNTRL, FIFOFLUSH; } mov REG0, SEQINTSRC; mvi CLRSEQINTSRC, CLRSAVEPTRS; call calc_residual; call save_pointers; call disable_ccsgen; or SEQIMODE, ENSAVEPTRS; or LONGJMP_ADDR[1], INVALID_ADDR; pkt_saveptrs_check_status: test REG0, SAVEPTRS jz unexpected_nonpkt_phase; test SCB_CONTROL, STATUS_RCVD jz pkt_saveptrs_clrchn; jmp last_pkt_complete; pkt_saveptrs_clrchn: mvi DFFSXFRCTL, CLRCHN ret; END_CRITICAL; check_status_overrun: test SHCNT[2], 0xFF jz status_IU_done; mvi SEQINTCODE, STATUS_OVERRUN; jmp status_IU_done; pkt_handle_status: call setjmp_setscb; test MDFFSTAT, LASTSDONE jnz check_status_overrun; test SEQINTSRC, CTXTDONE jz return; status_IU_done: BEGIN_CRITICAL; if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { or DFCNTRL, FIFOFLUSH; } or LONGJMP_ADDR[1], INVALID_ADDR; mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE; or SCB_CONTROL, STATUS_RCVD; jmp last_pkt_complete; END_CRITICAL; SET_SRC_MODE M_DFF0; SET_DST_MODE M_DFF0; BEGIN_CRITICAL; check_fifo: test LONGJMP_ADDR[1], INVALID_ADDR jnz return; mov A, ARG_2; cmp LONGJMP_SCB[1], A jne return; mov A, ARG_1; cmp LONGJMP_SCB[0], A jne return; stc ret; END_CRITICAL; /* * Nonpackreq is a polled status. It can come true in three situations: * we have received an L_Q, we have sent one or more L_Qs, or there is no * L_Q context associated with this REQ (REQ occurs immediately after a * (re)selection). Routines that know that the context responsible for this * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the * top level idle loop, we exhaust all active contexts prior to determining that * we simply do not have the full I_T_L_Q for this phase. */ unexpected_nonpkt_phase_find_ctxt: /* * This nonpackreq is most likely associated with one of the tags * in a FIFO or an outgoing LQ. Only treat it as an I_T only * nonpackreq if we've cleared out the FIFOs and handled any * pending SELDO. */ SET_SRC_MODE M_SCSI; SET_DST_MODE M_SCSI; and A, FIFO1FREE|FIFO0FREE, DFFSTAT; cmp A, FIFO1FREE|FIFO0FREE jne return; test SSTAT0, SELDO jnz return; mvi SCBPTR[1], SCB_LIST_NULL; unexpected_nonpkt_phase: test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz . + 3; SET_SRC_MODE M_DFF0; SET_DST_MODE M_DFF0; or LONGJMP_ADDR[1], INVALID_ADDR; mvi DFFSXFRCTL, CLRCHN; mvi CLRSINT2, CLRNONPACKREQ; test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase; mvi SEQINTCODE, ENTERING_NONPACK; jmp ITloop; illegal_phase: mvi SEQINTCODE, ILLEGAL_PHASE; jmp ITloop; /* * We have entered an overrun situation. If we have working * BITBUCKET, flip that on and let the hardware eat any overrun * data. Otherwise use an overrun buffer in the host to simulate * BITBUCKET. */ pkt_handle_overrun: mvi SEQINTCODE, CFG4OVERRUN; call freeze_queue; if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) { SET_MODE(M_SCSI, M_SCSI); or SXFRCTL1,BITBUCKET; SET_SRC_MODE M_DFF1; SET_DST_MODE M_DFF1; } else { call load_overrun_buf; mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN); } call setjmp; if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { test DFSTATUS, PKT_PRELOAD_AVAIL jz overrun_load_done; call load_overrun_buf; or DFCNTRL, PRELOADEN; overrun_load_done: } test SEQINTSRC, CTXTDONE jnz pkt_overrun_end; test SSTAT2, NONPACKREQ jz return; pkt_overrun_end: or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID; test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; test SCB_CONTROL, STATUS_RCVD jnz last_pkt_queue_scb; mvi DFFSXFRCTL, CLRCHN ret; if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { load_overrun_buf: /* * Load a dummy segment if preload space is available. */ mov HADDR[0], SHARED_DATA_ADDR; add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1]; mov ACCUM_SAVE, A; clr A; adc HADDR[2], A, SHARED_DATA_ADDR[2]; adc HADDR[3], A, SHARED_DATA_ADDR[3]; mov A, ACCUM_SAVE; bmov HADDR[4], ALLZEROS, 4; /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */ clr HCNT[0]; mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF); clr HCNT[2]; } cfg4icmd_intr: