/* * AMD 10Gb Ethernet driver * * Copyright (c) 2020 Advanced Micro Devices, Inc. * * This file is available to you under your choice of the following two * licenses: * * License 1: GPLv2 * * This file is free software; you may copy, redistribute and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or (at * your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * This file incorporates work covered by the following copyright and * permission notice: * The Synopsys DWC ETHER XGMAC Software Driver and documentation * (hereinafter "Software") is an unsupported proprietary work of Synopsys, * Inc. unless otherwise expressly agreed to in writing between Synopsys * and you. * * The Software IS NOT an item of Licensed Software or Licensed Product * under any End User Software License Agreement or Agreement for Licensed * Product with Synopsys or any supplement thereto. Permission is hereby * granted, free of charge, to any person obtaining a copy of this software * annotated with this license and the Software, to deal in the Software * without restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished * to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * * License 2: Modified BSD * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Advanced Micro Devices, Inc. nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * This file incorporates work covered by the following copyright and * permission notice: * The Synopsys DWC ETHER XGMAC Software Driver and documentation * (hereinafter "Software") is an unsupported proprietary work of Synopsys, * Inc. unless otherwise expressly agreed to in writing between Synopsys * and you. * * The Software IS NOT an item of Licensed Software or Licensed Product * under any End User Software License Agreement or Agreement for Licensed * Product with Synopsys or any supplement thereto. Permission is hereby * granted, free of charge, to any person obtaining a copy of this software * annotated with this license and the Software, to deal in the Software * without restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished * to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "xgbe.h" #include "xgbe-common.h" struct mtx xgbe_phy_comm_lock; #define XGBE_PHY_PORT_SPEED_100 BIT(0) #define XGBE_PHY_PORT_SPEED_1000 BIT(1) #define XGBE_PHY_PORT_SPEED_2500 BIT(2) #define XGBE_PHY_PORT_SPEED_10000 BIT(3) #define XGBE_MUTEX_RELEASE 0x80000000 #define XGBE_SFP_DIRECT 7 #define GPIO_MASK_WIDTH 4 /* I2C target addresses */ #define XGBE_SFP_SERIAL_ID_ADDRESS 0x50 #define XGBE_SFP_DIAG_INFO_ADDRESS 0x51 #define XGBE_SFP_PHY_ADDRESS 0x56 #define XGBE_GPIO_ADDRESS_PCA9555 0x20 /* SFP sideband signal indicators */ #define XGBE_GPIO_NO_TX_FAULT BIT(0) #define XGBE_GPIO_NO_RATE_SELECT BIT(1) #define XGBE_GPIO_NO_MOD_ABSENT BIT(2) #define XGBE_GPIO_NO_RX_LOS BIT(3) /* Rate-change complete wait/retry count */ #define XGBE_RATECHANGE_COUNT 500 /* CDR delay values for KR support (in usec) */ #define XGBE_CDR_DELAY_INIT 10000 #define XGBE_CDR_DELAY_INC 10000 #define XGBE_CDR_DELAY_MAX 100000 /* RRC frequency during link status check */ #define XGBE_RRC_FREQUENCY 10 enum xgbe_port_mode { XGBE_PORT_MODE_RSVD = 0, XGBE_PORT_MODE_BACKPLANE, XGBE_PORT_MODE_BACKPLANE_2500, XGBE_PORT_MODE_1000BASE_T, XGBE_PORT_MODE_1000BASE_X, XGBE_PORT_MODE_NBASE_T, XGBE_PORT_MODE_10GBASE_T, XGBE_PORT_MODE_10GBASE_R, XGBE_PORT_MODE_SFP, XGBE_PORT_MODE_MAX, }; enum xgbe_conn_type { XGBE_CONN_TYPE_NONE = 0, XGBE_CONN_TYPE_SFP, XGBE_CONN_TYPE_MDIO, XGBE_CONN_TYPE_RSVD1, XGBE_CONN_TYPE_BACKPLANE, XGBE_CONN_TYPE_MAX, }; /* SFP/SFP+ related definitions */ enum xgbe_sfp_comm { XGBE_SFP_COMM_DIRECT = 0, XGBE_SFP_COMM_PCA9545, }; enum xgbe_sfp_cable { XGBE_SFP_CABLE_UNKNOWN = 0, XGBE_SFP_CABLE_ACTIVE, XGBE_SFP_CABLE_PASSIVE, }; enum xgbe_sfp_base { XGBE_SFP_BASE_UNKNOWN = 0, XGBE_SFP_BASE_1000_T, XGBE_SFP_BASE_1000_SX, XGBE_SFP_BASE_1000_LX, XGBE_SFP_BASE_1000_CX, XGBE_SFP_BASE_10000_SR, XGBE_SFP_BASE_10000_LR, XGBE_SFP_BASE_10000_LRM, XGBE_SFP_BASE_10000_ER, XGBE_SFP_BASE_10000_CR, }; enum xgbe_sfp_speed { XGBE_SFP_SPEED_UNKNOWN = 0, XGBE_SFP_SPEED_100_1000, XGBE_SFP_SPEED_1000, XGBE_SFP_SPEED_10000, }; /* SFP Serial ID Base ID values relative to an offset of 0 */ #define XGBE_SFP_BASE_ID 0 #define XGBE_SFP_ID_SFP 0x03 #define XGBE_SFP_BASE_EXT_ID 1 #define XGBE_SFP_EXT_ID_SFP 0x04 #define XGBE_SFP_BASE_CV 2 #define XGBE_SFP_BASE_CV_CP 0x21 #define XGBE_SFP_BASE_10GBE_CC 3 #define XGBE_SFP_BASE_10GBE_CC_SR BIT(4) #define XGBE_SFP_BASE_10GBE_CC_LR BIT(5) #define XGBE_SFP_BASE_10GBE_CC_LRM BIT(6) #define XGBE_SFP_BASE_10GBE_CC_ER BIT(7) #define XGBE_SFP_BASE_1GBE_CC 6 #define XGBE_SFP_BASE_1GBE_CC_SX BIT(0) #define XGBE_SFP_BASE_1GBE_CC_LX BIT(1) #define XGBE_SFP_BASE_1GBE_CC_CX BIT(2) #define XGBE_SFP_BASE_1GBE_CC_T BIT(3) #define XGBE_SFP_BASE_CABLE 8 #define XGBE_SFP_BASE_CABLE_PASSIVE BIT(2) #define XGBE_SFP_BASE_CABLE_ACTIVE BIT(3) #define XGBE_SFP_BASE_BR 12 #define XGBE_SFP_BASE_BR_1GBE_MIN 0x0a #define XGBE_SFP_BASE_BR_1GBE_MAX 0x0d #define XGBE_SFP_BASE_BR_10GBE_MIN 0x64 #define XGBE_SFP_BASE_BR_10GBE_MAX 0x68 #define XGBE_SFP_BASE_CU_CABLE_LEN 18 #define XGBE_SFP_BASE_VENDOR_NAME 20 #define XGBE_SFP_BASE_VENDOR_NAME_LEN 16 #define XGBE_SFP_BASE_VENDOR_PN 40 #define XGBE_SFP_BASE_VENDOR_PN_LEN 16 #define XGBE_SFP_BASE_VENDOR_REV 56 #define XGBE_SFP_BASE_VENDOR_REV_LEN 4 #define XGBE_SFP_BASE_CC 63 /* SFP Serial ID Extended ID values relative to an offset of 64 */ #define XGBE_SFP_BASE_VENDOR_SN 4 #define XGBE_SFP_BASE_VENDOR_SN_LEN 16 #define XGBE_SFP_EXTD_OPT1 1 #define XGBE_SFP_EXTD_OPT1_RX_LOS BIT(1) #define XGBE_SFP_EXTD_OPT1_TX_FAULT BIT(3) #define XGBE_SFP_EXTD_DIAG 28 #define XGBE_SFP_EXTD_DIAG_ADDR_CHANGE BIT(2) #define XGBE_SFP_EXTD_SFF_8472 30 #define XGBE_SFP_EXTD_CC 31 struct xgbe_sfp_eeprom { uint8_t base[64]; uint8_t extd[32]; uint8_t vendor[32]; }; #define XGBE_SFP_DIAGS_SUPPORTED(_x) \ ((_x)->extd[XGBE_SFP_EXTD_SFF_8472] && \ !((_x)->extd[XGBE_SFP_EXTD_DIAG] & XGBE_SFP_EXTD_DIAG_ADDR_CHANGE)) #define XGBE_SFP_EEPROM_BASE_LEN 256 #define XGBE_SFP_EEPROM_DIAG_LEN 256 #define XGBE_SFP_EEPROM_MAX (XGBE_SFP_EEPROM_BASE_LEN + \ XGBE_SFP_EEPROM_DIAG_LEN) #define XGBE_BEL_FUSE_VENDOR "BEL-FUSE " #define XGBE_BEL_FUSE_PARTNO "1GBT-SFP06 " struct xgbe_sfp_ascii { union { char vendor[XGBE_SFP_BASE_VENDOR_NAME_LEN + 1]; char partno[XGBE_SFP_BASE_VENDOR_PN_LEN + 1]; char rev[XGBE_SFP_BASE_VENDOR_REV_LEN + 1]; char serno[XGBE_SFP_BASE_VENDOR_SN_LEN + 1]; } u; }; /* MDIO PHY reset types */ enum xgbe_mdio_reset { XGBE_MDIO_RESET_NONE = 0, XGBE_MDIO_RESET_I2C_GPIO, XGBE_MDIO_RESET_INT_GPIO, XGBE_MDIO_RESET_MAX, }; /* Re-driver related definitions */ enum xgbe_phy_redrv_if { XGBE_PHY_REDRV_IF_MDIO = 0, XGBE_PHY_REDRV_IF_I2C, XGBE_PHY_REDRV_IF_MAX, }; enum xgbe_phy_redrv_model { XGBE_PHY_REDRV_MODEL_4223 = 0, XGBE_PHY_REDRV_MODEL_4227, XGBE_PHY_REDRV_MODEL_MAX, }; enum xgbe_phy_redrv_mode { XGBE_PHY_REDRV_MODE_CX = 5, XGBE_PHY_REDRV_MODE_SR = 9, }; #define XGBE_PHY_REDRV_MODE_REG 0x12b0 /* PHY related configuration information */ struct xgbe_phy_data { enum xgbe_port_mode port_mode; unsigned int port_id; unsigned int port_speeds; enum xgbe_conn_type conn_type; enum xgbe_mode cur_mode; enum xgbe_mode start_mode; unsigned int rrc_count; unsigned int mdio_addr; /* SFP Support */ enum xgbe_sfp_comm sfp_comm; unsigned int sfp_mux_address; unsigned int sfp_mux_channel; unsigned int sfp_gpio_address; unsigned int sfp_gpio_mask; unsigned int sfp_gpio_inputs; unsigned int sfp_gpio_rx_los; unsigned int sfp_gpio_tx_fault; unsigned int sfp_gpio_mod_absent; unsigned int sfp_gpio_rate_select; unsigned int sfp_rx_los; unsigned int sfp_tx_fault; unsigned int sfp_mod_absent; unsigned int sfp_changed; unsigned int sfp_phy_avail; unsigned int sfp_cable_len; enum xgbe_sfp_base sfp_base; enum xgbe_sfp_cable sfp_cable; enum xgbe_sfp_speed sfp_speed; struct xgbe_sfp_eeprom sfp_eeprom; /* External PHY support */ enum xgbe_mdio_mode phydev_mode; uint32_t phy_id; int phydev; enum xgbe_mdio_reset mdio_reset; unsigned int mdio_reset_addr; unsigned int mdio_reset_gpio; /* Re-driver support */ unsigned int redrv; unsigned int redrv_if; unsigned int redrv_addr; unsigned int redrv_lane; unsigned int redrv_model; /* KR AN support */ unsigned int phy_cdr_notrack; unsigned int phy_cdr_delay; uint8_t port_sfp_inputs; }; static enum xgbe_an_mode xgbe_phy_an_mode(struct xgbe_prv_data *pdata); static int xgbe_phy_reset(struct xgbe_prv_data *pdata); static int xgbe_phy_i2c_xfer(struct xgbe_prv_data *pdata, struct xgbe_i2c_op *i2c_op) { return (pdata->i2c_if.i2c_xfer(pdata, i2c_op)); } static int xgbe_phy_redrv_write(struct xgbe_prv_data *pdata, unsigned int reg, unsigned int val) { struct xgbe_phy_data *phy_data = pdata->phy_data; struct xgbe_i2c_op i2c_op; __be16 *redrv_val; uint8_t redrv_data[5], csum; unsigned int i, retry; int ret; /* High byte of register contains read/write indicator */ redrv_data[0] = ((reg >> 8) & 0xff) << 1; redrv_data[1] = reg & 0xff; redrv_val = (__be16 *)&redrv_data[2]; *redrv_val = cpu_to_be16(val); /* Calculate 1 byte checksum */ csum = 0; for (i = 0; i < 4; i++) { csum += redrv_data[i]; if (redrv_data[i] > csum) csum++; } redrv_data[4] = ~csum; retry = 1; again1: i2c_op.cmd = XGBE_I2C_CMD_WRITE; i2c_op.target = phy_data->redrv_addr; i2c_op.len = sizeof(redrv_data); i2c_op.buf = redrv_data; ret = xgbe_phy_i2c_xfer(pdata, &i2c_op); if (ret) { if ((ret == -EAGAIN) && retry--) goto again1; return (ret); } retry = 1; again2: i2c_op.cmd = XGBE_I2C_CMD_READ; i2c_op.target = phy_data->redrv_addr; i2c_op.len = 1; i2c_op.buf = redrv_data; ret = xgbe_phy_i2c_xfer(pdata, &i2c_op); if (ret) { if ((ret == -EAGAIN) && retry--) goto again2; return (ret); } if (redrv_data[0] != 0xff) { axgbe_error("Redriver write checksum error\n"); ret = -EIO; } return (ret); } static int xgbe_phy_i2c_write(struct xgbe_prv_data *pdata, unsigned int target, void *val, unsigned int val_len) { struct xgbe_i2c_op i2c_op; int retry, ret; retry = 1; again: /* Write the specfied register */ i2c_op.cmd = XGBE_I2C_CMD_WRITE; i2c_op.target = target; i2c_op.len = val_len; i2c_op.buf = val; ret = xgbe_phy_i2c_xfer(pdata, &i2c_op); if ((ret == -EAGAIN) && retry--) goto again; return (ret); } static int xgbe_phy_i2c_read(struct xgbe_prv_data *pdata, unsigned int target, void *reg, unsigned int reg_len, void *val, unsigned int val_len) { struct xgbe_i2c_op i2c_op; int retry, ret; axgbe_printf(3, "%s: target 0x%x reg_len %d val_len %d\n", __func__, target, reg_len, val_len); retry = 1; again1: /* Set the specified register to read */ i2c_op.cmd = XGBE_I2C_CMD_WRITE; i2c_op.target = target; i2c_op.len = reg_len; i2c_op.buf = reg; ret = xgbe_phy_i2c_xfer(pdata, &i2c_op); axgbe_printf(3, "%s: ret1 %d retry %d\n", __func__, ret, retry); if (ret) { if ((ret == -EAGAIN) && retry--) goto again1; return (ret); } retry = 1; again2: /* Read the specfied register */ i2c_op.cmd = XGBE_I2C_CMD_READ; i2c_op.target = target; i2c_op.len = val_len; i2c_op.buf = val; ret = xgbe_phy_i2c_xfer(pdata, &i2c_op); axgbe_printf(3, "%s: ret2 %d retry %d\n", __func__, ret, retry); if ((ret == -EAGAIN) && retry--) goto again2; return (ret); } static int xgbe_phy_sfp_put_mux(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; struct xgbe_i2c_op i2c_op; uint8_t mux_channel; if (phy_data->sfp_comm == XGBE_SFP_COMM_DIRECT) return (0); /* Select no mux channels */ mux_channel = 0; i2c_op.cmd = XGBE_I2C_CMD_WRITE; i2c_op.target = phy_data->sfp_mux_address; i2c_op.len = sizeof(mux_channel); i2c_op.buf = &mux_channel; return (xgbe_phy_i2c_xfer(pdata, &i2c_op)); } static int xgbe_phy_sfp_get_mux(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; struct xgbe_i2c_op i2c_op; uint8_t mux_channel; if (phy_data->sfp_comm == XGBE_SFP_COMM_DIRECT) return (0); /* Select desired mux channel */ mux_channel = 1 << phy_data->sfp_mux_channel; i2c_op.cmd = XGBE_I2C_CMD_WRITE; i2c_op.target = phy_data->sfp_mux_address; i2c_op.len = sizeof(mux_channel); i2c_op.buf = &mux_channel; return (xgbe_phy_i2c_xfer(pdata, &i2c_op)); } static void xgbe_phy_put_comm_ownership(struct xgbe_prv_data *pdata) { mtx_unlock(&xgbe_phy_comm_lock); } static int xgbe_phy_get_comm_ownership(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; unsigned long timeout; unsigned int mutex_id; /* The I2C and MDIO/GPIO bus is multiplexed between multiple devices, * the driver needs to take the software mutex and then the hardware * mutexes before being able to use the busses. */ mtx_lock(&xgbe_phy_comm_lock); /* Clear the mutexes */ XP_IOWRITE(pdata, XP_I2C_MUTEX, XGBE_MUTEX_RELEASE); XP_IOWRITE(pdata, XP_MDIO_MUTEX, XGBE_MUTEX_RELEASE); /* Mutex formats are the same for I2C and MDIO/GPIO */ mutex_id = 0; XP_SET_BITS(mutex_id, XP_I2C_MUTEX, ID, phy_data->port_id); XP_SET_BITS(mutex_id, XP_I2C_MUTEX, ACTIVE, 1); timeout = ticks + (5 * hz); while (ticks < timeout) { /* Must be all zeroes in order to obtain the mutex */ if (XP_IOREAD(pdata, XP_I2C_MUTEX) || XP_IOREAD(pdata, XP_MDIO_MUTEX)) { DELAY(200); continue; } /* Obtain the mutex */ XP_IOWRITE(pdata, XP_I2C_MUTEX, mutex_id); XP_IOWRITE(pdata, XP_MDIO_MUTEX, mutex_id); return (0); } mtx_unlock(&xgbe_phy_comm_lock); axgbe_error("unable to obtain hardware mutexes\n"); return (-ETIMEDOUT); } static int xgbe_phy_mdio_mii_write(struct xgbe_prv_data *pdata, int addr, int reg, uint16_t val) { struct xgbe_phy_data *phy_data = pdata->phy_data; if (reg & MII_ADDR_C45) { if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL45) return (-ENOTSUP); } else { if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL22) return (-ENOTSUP); } return (pdata->hw_if.write_ext_mii_regs(pdata, addr, reg, val)); } static int xgbe_phy_i2c_mii_write(struct xgbe_prv_data *pdata, int reg, uint16_t val) { __be16 *mii_val; uint8_t mii_data[3]; int ret; ret = xgbe_phy_sfp_get_mux(pdata); if (ret) return (ret); mii_data[0] = reg & 0xff; mii_val = (__be16 *)&mii_data[1]; *mii_val = cpu_to_be16(val); ret = xgbe_phy_i2c_write(pdata, XGBE_SFP_PHY_ADDRESS, mii_data, sizeof(mii_data)); xgbe_phy_sfp_put_mux(pdata); return (ret); } int xgbe_phy_mii_write(struct xgbe_prv_data *pdata, int addr, int reg, uint16_t val) { struct xgbe_phy_data *phy_data = pdata->phy_data; int ret; axgbe_printf(3, "%s: addr %d reg %d val %#x\n", __func__, addr, reg, val); ret = xgbe_phy_get_comm_ownership(pdata); if (ret) return (ret); if (phy_data->conn_type == XGBE_CONN_TYPE_SFP) ret = xgbe_phy_i2c_mii_write(pdata, reg, val); else if (phy_data->conn_type & XGBE_CONN_TYPE_MDIO) ret = xgbe_phy_mdio_mii_write(pdata, addr, reg, val); else ret = -ENOTSUP; xgbe_phy_put_comm_ownership(pdata); return (ret); } static int xgbe_phy_mdio_mii_read(struct xgbe_prv_data *pdata, int addr, int reg) { struct xgbe_phy_data *phy_data = pdata->phy_data; if (reg & MII_ADDR_C45) { if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL45) return (-ENOTSUP); } else { if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL22) return (-ENOTSUP); } return (pdata->hw_if.read_ext_mii_regs(pdata, addr, reg)); } static int xgbe_phy_i2c_mii_read(struct xgbe_prv_data *pdata, int reg) { __be16 mii_val; uint8_t mii_reg; int ret; ret = xgbe_phy_sfp_get_mux(pdata); if (ret) return (ret); mii_reg = reg; ret = xgbe_phy_i2c_read(pdata, XGBE_SFP_PHY_ADDRESS, &mii_reg, sizeof(mii_reg), &mii_val, sizeof(mii_val)); if (!ret) ret = be16_to_cpu(mii_val); xgbe_phy_sfp_put_mux(pdata); return (ret); } int xgbe_phy_mii_read(struct xgbe_prv_data *pdata, int addr, int reg) { struct xgbe_phy_data *phy_data = pdata->phy_data; int ret; axgbe_printf(3, "%s: addr %d reg %d\n", __func__, addr, reg); ret = xgbe_phy_get_comm_ownership(pdata); if (ret) return (ret); if (phy_data->conn_type == XGBE_CONN_TYPE_SFP) ret = xgbe_phy_i2c_mii_read(pdata, reg); else if (phy_data->conn_type & XGBE_CONN_TYPE_MDIO) ret = xgbe_phy_mdio_mii_read(pdata, addr, reg); else ret = -ENOTSUP; xgbe_phy_put_comm_ownership(pdata); return (ret); } static void xgbe_phy_sfp_phy_settings(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; if (!phy_data->sfp_mod_absent && !phy_data->sfp_changed) return; XGBE_ZERO_SUP(&pdata->phy); if (phy_data->sfp_mod_absent) { pdata->phy.speed = SPEED_UNKNOWN; pdata->phy.duplex = DUPLEX_UNKNOWN; pdata->phy.autoneg = AUTONEG_ENABLE; pdata->phy.pause_autoneg = AUTONEG_ENABLE; XGBE_SET_SUP(&pdata->phy, Autoneg); XGBE_SET_SUP(&pdata->phy, Pause); XGBE_SET_SUP(&pdata->phy, Asym_Pause); XGBE_SET_SUP(&pdata->phy, TP); XGBE_SET_SUP(&pdata->phy, FIBRE); XGBE_LM_COPY(&pdata->phy, advertising, &pdata->phy, supported); return; } switch (phy_data->sfp_base) { case XGBE_SFP_BASE_1000_T: case XGBE_SFP_BASE_1000_SX: case XGBE_SFP_BASE_1000_LX: case XGBE_SFP_BASE_1000_CX: pdata->phy.speed = SPEED_UNKNOWN; pdata->phy.duplex = DUPLEX_UNKNOWN; pdata->phy.autoneg = AUTONEG_ENABLE; pdata->phy.pause_autoneg = AUTONEG_ENABLE; XGBE_SET_SUP(&pdata->phy, Autoneg); XGBE_SET_SUP(&pdata->phy, Pause); XGBE_SET_SUP(&pdata->phy, Asym_Pause); if (phy_data->sfp_base == XGBE_SFP_BASE_1000_T) { if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) XGBE_SET_SUP(&pdata->phy, 100baseT_Full); if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) XGBE_SET_SUP(&pdata->phy, 1000baseT_Full); } else { if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) XGBE_SET_SUP(&pdata->phy, 1000baseX_Full); } break; case XGBE_SFP_BASE_10000_SR: case XGBE_SFP_BASE_10000_LR: case XGBE_SFP_BASE_10000_LRM: case XGBE_SFP_BASE_10000_ER: case XGBE_SFP_BASE_10000_CR: pdata->phy.speed = SPEED_10000; pdata->phy.duplex = DUPLEX_FULL; pdata->phy.autoneg = AUTONEG_DISABLE; pdata->phy.pause_autoneg = AUTONEG_DISABLE; if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) { switch (phy_data->sfp_base) { case XGBE_SFP_BASE_10000_SR: XGBE_SET_SUP(&pdata->phy, 10000baseSR_Full); break; case XGBE_SFP_BASE_10000_LR: XGBE_SET_SUP(&pdata->phy, 10000baseLR_Full); break; case XGBE_SFP_BASE_10000_LRM: XGBE_SET_SUP(&pdata->phy, 10000baseLRM_Full); break; case XGBE_SFP_BASE_10000_ER: XGBE_SET_SUP(&pdata->phy, 10000baseER_Full); break; case XGBE_SFP_BASE_10000_CR: XGBE_SET_SUP(&pdata->phy, 10000baseCR_Full); break; default: break; } } break; default: pdata->phy.speed = SPEED_UNKNOWN; pdata->phy.duplex = DUPLEX_UNKNOWN; pdata->phy.autoneg = AUTONEG_DISABLE; pdata->phy.pause_autoneg = AUTONEG_DISABLE; break; } switch (phy_data->sfp_base) { case XGBE_SFP_BASE_1000_T: case XGBE_SFP_BASE_1000_CX: case XGBE_SFP_BASE_10000_CR: XGBE_SET_SUP(&pdata->phy, TP); break; default: XGBE_SET_SUP(&pdata->phy, FIBRE); break; } XGBE_LM_COPY(&pdata->phy, advertising, &pdata->phy, supported); axgbe_printf(1, "%s: link speed %d spf_base 0x%x pause_autoneg %d " "advert 0x%x support 0x%x\n", __func__, pdata->phy.speed, phy_data->sfp_base, pdata->phy.pause_autoneg, pdata->phy.advertising, pdata->phy.supported); } static bool xgbe_phy_sfp_bit_rate(struct xgbe_sfp_eeprom *sfp_eeprom, enum xgbe_sfp_speed sfp_speed) { uint8_t *sfp_base, min, max; sfp_base = sfp_eeprom->base; switch (sfp_speed) { case XGBE_SFP_SPEED_1000: min = XGBE_SFP_BASE_BR_1GBE_MIN; max = XGBE_SFP_BASE_BR_1GBE_MAX; break; case XGBE_SFP_SPEED_10000: min = XGBE_SFP_BASE_BR_10GBE_MIN; max = XGBE_SFP_BASE_BR_10GBE_MAX; break; default: return (false); } return ((sfp_base[XGBE_SFP_BASE_BR] >= min) && (sfp_base[XGBE_SFP_BASE_BR] <= max)); } static void xgbe_phy_free_phy_device(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; if (phy_data->phydev) phy_data->phydev = 0; } static bool xgbe_phy_finisar_phy_quirks(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; unsigned int phy_id = phy_data->phy_id; if (phy_data->port_mode != XGBE_PORT_MODE_SFP) return (false); if ((phy_id & 0xfffffff0) != 0x01ff0cc0) return (false); /* Enable Base-T AN */ xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x16, 0x0001); xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x00, 0x9140); xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x16, 0x0000); /* Enable SGMII at 100Base-T/1000Base-T Full Duplex */ xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x1b, 0x9084); xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x09, 0x0e00); xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x00, 0x8140); xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x04, 0x0d01); xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x00, 0x9140); axgbe_printf(3, "Finisar PHY quirk in place\n"); return (true); } static bool xgbe_phy_belfuse_phy_quirks(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; struct xgbe_sfp_eeprom *sfp_eeprom = &phy_data->sfp_eeprom; unsigned int phy_id = phy_data->phy_id; int reg; if (phy_data->port_mode != XGBE_PORT_MODE_SFP) return (false); if (memcmp(&sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_NAME], XGBE_BEL_FUSE_VENDOR, XGBE_SFP_BASE_VENDOR_NAME_LEN)) return (false); /* For Bel-Fuse, use the extra AN flag */ pdata->an_again = 1; if (memcmp(&sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_PN], XGBE_BEL_FUSE_PARTNO, XGBE_SFP_BASE_VENDOR_PN_LEN)) return (false); if ((phy_id & 0xfffffff0) != 0x03625d10) return (false); /* Disable RGMII mode */ xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x18, 0x7007); reg = xgbe_phy_mii_read(pdata, phy_data->mdio_addr, 0x18); xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x18, reg & ~0x0080); /* Enable fiber register bank */ xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x1c, 0x7c00); reg = xgbe_phy_mii_read(pdata, phy_data->mdio_addr, 0x1c); reg &= 0x03ff; reg &= ~0x0001; xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x1c, 0x8000 | 0x7c00 | reg | 0x0001); /* Power down SerDes */ reg = xgbe_phy_mii_read(pdata, phy_data->mdio_addr, 0x00); xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x00, reg | 0x00800); /* Configure SGMII-to-Copper mode */ xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x1c, 0x7c00); reg = xgbe_phy_mii_read(pdata, phy_data->mdio_addr, 0x1c); reg &= 0x03ff; reg &= ~0x0006; xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x1c, 0x8000 | 0x7c00 | reg | 0x0004); /* Power up SerDes */ reg = xgbe_phy_mii_read(pdata, phy_data->mdio_addr, 0x00); xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x00, reg & ~0x00800); /* Enable copper register bank */ xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x1c, 0x7c00); reg = xgbe_phy_mii_read(pdata, phy_data->mdio_addr, 0x1c); reg &= 0x03ff; reg &= ~0x0001; xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x1c, 0x8000 | 0x7c00 | reg); /* Power up SerDes */ reg = xgbe_phy_mii_read(pdata, phy_data->mdio_addr, 0x00); xgbe_phy_mii_write(pdata, phy_data->mdio_addr, 0x00, reg & ~0x00800); axgbe_printf(3, "BelFuse PHY quirk in place\n"); return (true); } static void xgbe_phy_external_phy_quirks(struct xgbe_prv_data *pdata) { if (xgbe_phy_belfuse_phy_quirks(pdata)) return; if (xgbe_phy_finisar_phy_quirks(pdata)) return; } static int xgbe_get_phy_id(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; uint32_t oui, model, phy_id1, phy_id2; int phy_reg; phy_reg = xgbe_phy_mii_read(pdata, phy_data->mdio_addr, 0x02); if (phy_reg < 0) return (-EIO); phy_id1 = (phy_reg & 0xffff); phy_data->phy_id = (phy_reg & 0xffff) << 16; phy_reg = xgbe_phy_mii_read(pdata, phy_data->mdio_addr, 0x03); if (phy_reg < 0) return (-EIO); phy_id2 = (phy_reg & 0xffff); phy_data->phy_id |= (phy_reg & 0xffff); oui = MII_OUI(phy_id1, phy_id2); model = MII_MODEL(phy_id2); axgbe_printf(2, "%s: phy_id1: 0x%x phy_id2: 0x%x oui: %#x model %#x\n", __func__, phy_id1, phy_id2, oui, model); return (0); } static int xgbe_phy_start_aneg(struct xgbe_prv_data *pdata) { uint16_t ctl = 0; int changed = 0; int ret; if (AUTONEG_ENABLE != pdata->phy.autoneg) { if (SPEED_1000 == pdata->phy.speed) ctl |= BMCR_SPEED1; else if (SPEED_100 == pdata->phy.speed) ctl |= BMCR_SPEED100; if (DUPLEX_FULL == pdata->phy.duplex) ctl |= BMCR_FDX; ret = xgbe_phy_mii_read(pdata, pdata->mdio_addr, MII_BMCR); if (ret) return (ret); ret = xgbe_phy_mii_write(pdata, pdata->mdio_addr, MII_BMCR, (ret & ~(~(BMCR_LOOP | BMCR_ISO | BMCR_PDOWN))) | ctl); } ctl = xgbe_phy_mii_read(pdata, pdata->mdio_addr, MII_BMCR); if (ctl < 0) return (ctl); if (!(ctl & BMCR_AUTOEN) || (ctl & BMCR_ISO)) changed = 1; if (changed > 0) { ret = xgbe_phy_mii_read(pdata, pdata->mdio_addr, MII_BMCR); if (ret) return (ret); ret = xgbe_phy_mii_write(pdata, pdata->mdio_addr, MII_BMCR, (ret & ~(BMCR_ISO)) | (BMCR_AUTOEN | BMCR_STARTNEG)); } return (0); } static int xgbe_phy_find_phy_device(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; int ret; axgbe_printf(2, "%s: phydev %d phydev_mode %d sfp_phy_avail %d phy_id " "0x%08x\n", __func__, phy_data->phydev, phy_data->phydev_mode, phy_data->sfp_phy_avail, phy_data->phy_id); /* If we already have a PHY, just return */ if (phy_data->phydev) { axgbe_printf(3, "%s: phy present already\n", __func__); return (0); } /* Clear the extra AN flag */ pdata->an_again = 0; /* Check for the use of an external PHY */ if (phy_data->phydev_mode == XGBE_MDIO_MODE_NONE) { axgbe_printf(3, "%s: phydev_mode %d\n", __func__, phy_data->phydev_mode); return (0); } /* For SFP, only use an external PHY if available */ if ((phy_data->port_mode == XGBE_PORT_MODE_SFP) && !phy_data->sfp_phy_avail) { axgbe_printf(3, "%s: port_mode %d avail %d\n", __func__, phy_data->port_mode, phy_data->sfp_phy_avail); return (0); } /* Set the proper MDIO mode for the PHY */ ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->mdio_addr, phy_data->phydev_mode); if (ret) { axgbe_error("mdio port/clause not compatible (%u/%u) ret %d\n", phy_data->mdio_addr, phy_data->phydev_mode, ret); return (ret); } ret = xgbe_get_phy_id(pdata); if (ret) return (ret); axgbe_printf(2, "Get phy_id 0x%08x\n", phy_data->phy_id); phy_data->phydev = 1; xgbe_phy_external_phy_quirks(pdata); xgbe_phy_start_aneg(pdata); return (0); } static void xgbe_phy_sfp_external_phy(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; int ret; axgbe_printf(3, "%s: sfp_changed: 0x%x\n", __func__, phy_data->sfp_changed); if (!phy_data->sfp_changed) return; phy_data->sfp_phy_avail = 0; if (phy_data->sfp_base != XGBE_SFP_BASE_1000_T) return; /* Check access to the PHY by reading CTRL1 */ ret = xgbe_phy_i2c_mii_read(pdata, MII_BMCR); if (ret < 0) { axgbe_error("%s: ext phy fail %d\n", __func__, ret); return; } /* Successfully accessed the PHY */ phy_data->sfp_phy_avail = 1; axgbe_printf(3, "Successfully accessed External PHY\n"); } static bool xgbe_phy_check_sfp_rx_los(struct xgbe_phy_data *phy_data) { uint8_t *sfp_extd = phy_data->sfp_eeprom.extd; if (!(sfp_extd[XGBE_SFP_EXTD_OPT1] & XGBE_SFP_EXTD_OPT1_RX_LOS)) return (false); if (phy_data->sfp_gpio_mask & XGBE_GPIO_NO_RX_LOS) return (false); if (phy_data->sfp_gpio_inputs & (1 << phy_data->sfp_gpio_rx_los)) return (true); return (false); } static bool xgbe_phy_check_sfp_tx_fault(struct xgbe_phy_data *phy_data) { uint8_t *sfp_extd = phy_data->sfp_eeprom.extd; if (!(sfp_extd[XGBE_SFP_EXTD_OPT1] & XGBE_SFP_EXTD_OPT1_TX_FAULT)) return (false); if (phy_data->sfp_gpio_mask & XGBE_GPIO_NO_TX_FAULT) return (false); if (phy_data->sfp_gpio_inputs & (1 << phy_data->sfp_gpio_tx_fault)) return (true); return (false); } static bool xgbe_phy_check_sfp_mod_absent(struct xgbe_phy_data *phy_data) { if (phy_data->sfp_gpio_mask & XGBE_GPIO_NO_MOD_ABSENT) return (false); if (phy_data->sfp_gpio_inputs & (1 << phy_data->sfp_gpio_mod_absent)) return (true); return (false); } static void xgbe_phy_sfp_parse_eeprom(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; struct xgbe_sfp_eeprom *sfp_eeprom = &phy_data->sfp_eeprom; uint8_t *sfp_base; sfp_base = sfp_eeprom->base; if (sfp_base[XGBE_SFP_BASE_ID] != XGBE_SFP_ID_SFP) { axgbe_error("base id %d\n", sfp_base[XGBE_SFP_BASE_ID]); return; } if (sfp_base[XGBE_SFP_BASE_EXT_ID] != XGBE_SFP_EXT_ID_SFP) { axgbe_error("base id %d\n", sfp_base[XGBE_SFP_BASE_EXT_ID]); return; } /* Update transceiver signals (eeprom extd/options) */ phy_data->sfp_tx_fault = xgbe_phy_check_sfp_tx_fault(phy_data); phy_data->sfp_rx_los = xgbe_phy_check_sfp_rx_los(phy_data); /* Assume ACTIVE cable unless told it is PASSIVE */ if (sfp_base[XGBE_SFP_BASE_CABLE] & XGBE_SFP_BASE_CABLE_PASSIVE) { phy_data->sfp_cable = XGBE_SFP_CABLE_PASSIVE; phy_data->sfp_cable_len = sfp_base[XGBE_SFP_BASE_CU_CABLE_LEN]; } else phy_data->sfp_cable = XGBE_SFP_CABLE_ACTIVE; /* * Determine the type of SFP. Certain 10G SFP+ modules read as * 1000BASE-CX. To prevent 10G DAC cables to be recognized as * 1G, we first check if it is a DAC and the bitrate is 10G. */ if (((sfp_base[XGBE_SFP_BASE_CV] & XGBE_SFP_BASE_CV_CP) || (phy_data->sfp_cable == XGBE_SFP_CABLE_PASSIVE)) && xgbe_phy_sfp_bit_rate(sfp_eeprom, XGBE_SFP_SPEED_10000)) phy_data->sfp_base = XGBE_SFP_BASE_10000_CR; else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_SR) phy_data->sfp_base = XGBE_SFP_BASE_10000_SR; else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_LR) phy_data->sfp_base = XGBE_SFP_BASE_10000_LR; else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_LRM) phy_data->sfp_base = XGBE_SFP_BASE_10000_LRM; else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_ER) phy_data->sfp_base = XGBE_SFP_BASE_10000_ER; else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_SX) phy_data->sfp_base = XGBE_SFP_BASE_1000_SX; else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_LX) phy_data->sfp_base = XGBE_SFP_BASE_1000_LX; else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_CX) phy_data->sfp_base = XGBE_SFP_BASE_1000_CX; else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_T) phy_data->sfp_base = XGBE_SFP_BASE_1000_T; switch (phy_data->sfp_base) { case XGBE_SFP_BASE_1000_T: phy_data->sfp_speed = XGBE_SFP_SPEED_100_1000; break; case XGBE_SFP_BASE_1000_SX: case XGBE_SFP_BASE_1000_LX: case XGBE_SFP_BASE_1000_CX: phy_data->sfp_speed = XGBE_SFP_SPEED_1000; break; case XGBE_SFP_BASE_10000_SR: case XGBE_SFP_BASE_10000_LR: case XGBE_SFP_BASE_10000_LRM: case XGBE_SFP_BASE_10000_ER: case XGBE_SFP_BASE_10000_CR: phy_data->sfp_speed = XGBE_SFP_SPEED_10000; break; default: break; } axgbe_printf(3, "%s: sfp_base: 0x%x sfp_speed: 0x%x sfp_cable: 0x%x " "rx_los 0x%x tx_fault 0x%x\n", __func__, phy_data->sfp_base, phy_data->sfp_speed, phy_data->sfp_cable, phy_data->sfp_rx_los, phy_data->sfp_tx_fault); } static void xgbe_phy_sfp_eeprom_info(struct xgbe_prv_data *pdata, struct xgbe_sfp_eeprom *sfp_eeprom) { struct xgbe_sfp_ascii sfp_ascii; char *sfp_data = (char *)&sfp_ascii; axgbe_printf(3, "SFP detected:\n"); memcpy(sfp_data, &sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_NAME], XGBE_SFP_BASE_VENDOR_NAME_LEN); sfp_data[XGBE_SFP_BASE_VENDOR_NAME_LEN] = '\0'; axgbe_printf(3, " vendor: %s\n", sfp_data); memcpy(sfp_data, &sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_PN], XGBE_SFP_BASE_VENDOR_PN_LEN); sfp_data[XGBE_SFP_BASE_VENDOR_PN_LEN] = '\0'; axgbe_printf(3, " part number: %s\n", sfp_data); memcpy(sfp_data, &sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_REV], XGBE_SFP_BASE_VENDOR_REV_LEN); sfp_data[XGBE_SFP_BASE_VENDOR_REV_LEN] = '\0'; axgbe_printf(3, " revision level: %s\n", sfp_data); memcpy(sfp_data, &sfp_eeprom->extd[XGBE_SFP_BASE_VENDOR_SN], XGBE_SFP_BASE_VENDOR_SN_LEN); sfp_data[XGBE_SFP_BASE_VENDOR_SN_LEN] = '\0'; axgbe_printf(3, " serial number: %s\n", sfp_data); } static bool xgbe_phy_sfp_verify_eeprom(uint8_t cc_in, uint8_t *buf, unsigned int len) { uint8_t cc; for (cc = 0; len; buf++, len--) cc += *buf; return ((cc == cc_in) ? true : false); } static void dump_sfp_eeprom(struct xgbe_prv_data *pdata, uint8_t *sfp_base) { axgbe_printf(3, "sfp_base[XGBE_SFP_BASE_ID] : 0x%04x\n", sfp_base[XGBE_SFP_BASE_ID]); axgbe_printf(3, "sfp_base[XGBE_SFP_BASE_EXT_ID] : 0x%04x\n", sfp_base[XGBE_SFP_BASE_EXT_ID]); axgbe_printf(3, "sfp_base[XGBE_SFP_BASE_CABLE] : 0x%04x\n", sfp_base[XGBE_SFP_BASE_CABLE]); } static int xgbe_phy_sfp_read_eeprom(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; struct xgbe_sfp_eeprom sfp_eeprom, *eeprom; uint8_t eeprom_addr, *base; int ret; ret = xgbe_phy_sfp_get_mux(pdata); if (ret) { axgbe_error("I2C error setting SFP MUX\n"); return (ret); } /* Read the SFP serial ID eeprom */ eeprom_addr = 0; ret = xgbe_phy_i2c_read(pdata, XGBE_SFP_SERIAL_ID_ADDRESS, &eeprom_addr, sizeof(eeprom_addr), &sfp_eeprom, sizeof(sfp_eeprom)); eeprom = &sfp_eeprom; base = eeprom->base; dump_sfp_eeprom(pdata, base); if (ret) { axgbe_error("I2C error reading SFP EEPROM\n"); goto put; } /* Validate the contents read */ if (!xgbe_phy_sfp_verify_eeprom(sfp_eeprom.base[XGBE_SFP_BASE_CC], sfp_eeprom.base, sizeof(sfp_eeprom.base) - 1)) { axgbe_error("verify eeprom base failed\n"); ret = -EINVAL; goto put; } if (!xgbe_phy_sfp_verify_eeprom(sfp_eeprom.extd[XGBE_SFP_EXTD_CC], sfp_eeprom.extd, sizeof(sfp_eeprom.extd) - 1)) { axgbe_error("verify eeprom extd failed\n"); ret = -EINVAL; goto put; } /* Check for an added or changed SFP */ if (memcmp(&phy_data->sfp_eeprom, &sfp_eeprom, sizeof(sfp_eeprom))) { phy_data->sfp_changed = 1; xgbe_phy_sfp_eeprom_info(pdata, &sfp_eeprom); memcpy(&phy_data->sfp_eeprom, &sfp_eeprom, sizeof(sfp_eeprom)); xgbe_phy_free_phy_device(pdata); } else phy_data->sfp_changed = 0; put: xgbe_phy_sfp_put_mux(pdata); return (ret); } static void xgbe_phy_sfp_signals(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; uint8_t gpio_reg, gpio_ports[2]; int ret, prev_sfp_inputs = phy_data->port_sfp_inputs; int shift = GPIO_MASK_WIDTH * (3 - phy_data->port_id); /* Read the input port registers */ axgbe_printf(3, "%s: befor sfp_mod:%d sfp_gpio_address:0x%x\n", __func__, phy_data->sfp_mod_absent, phy_data->sfp_gpio_address); gpio_reg = 0; ret = xgbe_phy_i2c_read(pdata, phy_data->sfp_gpio_address, &gpio_reg, sizeof(gpio_reg), gpio_ports, sizeof(gpio_ports)); if (ret) { axgbe_error("%s: I2C error reading SFP GPIO addr:0x%x\n", __func__, phy_data->sfp_gpio_address); return; } phy_data->sfp_gpio_inputs = (gpio_ports[1] << 8) | gpio_ports[0]; phy_data->port_sfp_inputs = (phy_data->sfp_gpio_inputs >> shift) & 0x0F; if (prev_sfp_inputs != phy_data->port_sfp_inputs) axgbe_printf(0, "%s: port_sfp_inputs: 0x%0x\n", __func__, phy_data->port_sfp_inputs); phy_data->sfp_mod_absent = xgbe_phy_check_sfp_mod_absent(phy_data); axgbe_printf(3, "%s: after sfp_mod:%d sfp_gpio_inputs:0x%x\n", __func__, phy_data->sfp_mod_absent, phy_data->sfp_gpio_inputs); } static void xgbe_phy_sfp_mod_absent(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; xgbe_phy_free_phy_device(pdata); phy_data->sfp_mod_absent = 1; phy_data->sfp_phy_avail = 0; memset(&phy_data->sfp_eeprom, 0, sizeof(phy_data->sfp_eeprom)); } static void xgbe_phy_sfp_reset(struct xgbe_phy_data *phy_data) { phy_data->sfp_rx_los = 0; phy_data->sfp_tx_fault = 0; phy_data->sfp_mod_absent = 1; phy_data->sfp_base = XGBE_SFP_BASE_UNKNOWN; phy_data->sfp_cable = XGBE_SFP_CABLE_UNKNOWN; phy_data->sfp_speed = XGBE_SFP_SPEED_UNKNOWN; } static void xgbe_phy_sfp_detect(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; int ret, prev_sfp_state = phy_data->sfp_mod_absent; /* Reset the SFP signals and info */ xgbe_phy_sfp_reset(phy_data); ret = xgbe_phy_get_comm_ownership(pdata); if (ret) return; /* Read the SFP signals and check for module presence */ xgbe_phy_sfp_signals(pdata); if (phy_data->sfp_mod_absent) { if (prev_sfp_state != phy_data->sfp_mod_absent) axgbe_error("%s: mod absent\n", __func__); xgbe_phy_sfp_mod_absent(pdata); goto put; } ret = xgbe_phy_sfp_read_eeprom(pdata); if (ret) { /* Treat any error as if there isn't an SFP plugged in */ axgbe_error("%s: eeprom read failed\n", __func__); xgbe_phy_sfp_reset(phy_data); xgbe_phy_sfp_mod_absent(pdata); goto put; } xgbe_phy_sfp_parse_eeprom(pdata); xgbe_phy_sfp_external_phy(pdata); put: xgbe_phy_sfp_phy_settings(pdata); axgbe_printf(3, "%s: phy speed: 0x%x duplex: 0x%x autoneg: 0x%x " "pause_autoneg: 0x%x\n", __func__, pdata->phy.speed, pdata->phy.duplex, pdata->phy.autoneg, pdata->phy.pause_autoneg); xgbe_phy_put_comm_ownership(pdata); } static int xgbe_phy_module_eeprom(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; uint8_t eeprom_addr, eeprom_data[XGBE_SFP_EEPROM_MAX]; struct xgbe_sfp_eeprom *sfp_eeprom; int ret; if (phy_data->port_mode != XGBE_PORT_MODE_SFP) { ret = -ENXIO; goto done; } if (phy_data->sfp_mod_absent) { ret = -EIO; goto done; } ret = xgbe_phy_get_comm_ownership(pdata); if (ret) { ret = -EIO; goto done; } ret = xgbe_phy_sfp_get_mux(pdata); if (ret) { axgbe_error("I2C error setting SFP MUX\n"); ret = -EIO; goto put_own; } /* Read the SFP serial ID eeprom */ eeprom_addr = 0; ret = xgbe_phy_i2c_read(pdata, XGBE_SFP_SERIAL_ID_ADDRESS, &eeprom_addr, sizeof(eeprom_addr), eeprom_data, XGBE_SFP_EEPROM_BASE_LEN); if (ret) { axgbe_error("I2C error reading SFP EEPROM\n"); ret = -EIO; goto put_mux; } sfp_eeprom = (struct xgbe_sfp_eeprom *)eeprom_data; if (XGBE_SFP_DIAGS_SUPPORTED(sfp_eeprom)) { /* Read the SFP diagnostic eeprom */ eeprom_addr = 0; ret = xgbe_phy_i2c_read(pdata, XGBE_SFP_DIAG_INFO_ADDRESS, &eeprom_addr, sizeof(eeprom_addr), eeprom_data + XGBE_SFP_EEPROM_BASE_LEN, XGBE_SFP_EEPROM_DIAG_LEN); if (ret) { axgbe_error("I2C error reading SFP DIAGS\n"); ret = -EIO; goto put_mux; } } put_mux: xgbe_phy_sfp_put_mux(pdata); put_own: xgbe_phy_put_comm_ownership(pdata); done: return (ret); } static int xgbe_phy_module_info(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; if (phy_data->port_mode != XGBE_PORT_MODE_SFP) return (-ENXIO); if (phy_data->sfp_mod_absent) return (-EIO); return (0); } static void xgbe_phy_phydev_flowctrl(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; pdata->phy.tx_pause = 0; pdata->phy.rx_pause = 0; if (!phy_data->phydev) return; if (pdata->phy.pause) XGBE_SET_LP_ADV(&pdata->phy, Pause); if (pdata->phy.asym_pause) XGBE_SET_LP_ADV(&pdata->phy, Asym_Pause); axgbe_printf(1, "%s: pause tx/rx %d/%d\n", __func__, pdata->phy.tx_pause, pdata->phy.rx_pause); } static enum xgbe_mode xgbe_phy_an37_sgmii_outcome(struct xgbe_prv_data *pdata) { enum xgbe_mode mode; XGBE_SET_LP_ADV(&pdata->phy, Autoneg); XGBE_SET_LP_ADV(&pdata->phy, TP); axgbe_printf(1, "%s: pause_autoneg %d\n", __func__, pdata->phy.pause_autoneg); /* Use external PHY to determine flow control */ if (pdata->phy.pause_autoneg) xgbe_phy_phydev_flowctrl(pdata); switch (pdata->an_status & XGBE_SGMII_AN_LINK_SPEED) { case XGBE_SGMII_AN_LINK_SPEED_100: if (pdata->an_status & XGBE_SGMII_AN_LINK_DUPLEX) { XGBE_SET_LP_ADV(&pdata->phy, 100baseT_Full); mode = XGBE_MODE_SGMII_100; } else { /* Half-duplex not supported */ XGBE_SET_LP_ADV(&pdata->phy, 100baseT_Half); mode = XGBE_MODE_UNKNOWN; } break; case XGBE_SGMII_AN_LINK_SPEED_1000: if (pdata->an_status & XGBE_SGMII_AN_LINK_DUPLEX) { XGBE_SET_LP_ADV(&pdata->phy, 1000baseT_Full); mode = XGBE_MODE_SGMII_1000; } else { /* Half-duplex not supported */ XGBE_SET_LP_ADV(&pdata->phy, 1000baseT_Half); mode = XGBE_MODE_UNKNOWN; } break; default: mode = XGBE_MODE_UNKNOWN; } return (mode); } static enum xgbe_mode xgbe_phy_an37_outcome(struct xgbe_prv_data *pdata) { enum xgbe_mode mode; unsigned int ad_reg, lp_reg; XGBE_SET_LP_ADV(&pdata->phy, Autoneg); XGBE_SET_LP_ADV(&pdata->phy, FIBRE); /* Compare Advertisement and Link Partner register */ ad_reg = XMDIO_READ(pdata, MDIO_MMD_VEND2, MDIO_VEND2_AN_ADVERTISE); lp_reg = XMDIO_READ(pdata, MDIO_MMD_VEND2, MDIO_VEND2_AN_LP_ABILITY); if (lp_reg & 0x100) XGBE_SET_LP_ADV(&pdata->phy, Pause); if (lp_reg & 0x80) XGBE_SET_LP_ADV(&pdata->phy, Asym_Pause); axgbe_printf(1, "%s: pause_autoneg %d ad_reg 0x%x lp_reg 0x%x\n", __func__, pdata->phy.pause_autoneg, ad_reg, lp_reg); if (pdata->phy.pause_autoneg) { /* Set flow control based on auto-negotiation result */ pdata->phy.tx_pause = 0; pdata->phy.rx_pause = 0; if (ad_reg & lp_reg & 0x100) { pdata->phy.tx_pause = 1; pdata->phy.rx_pause = 1; } else if (ad_reg & lp_reg & 0x80) { if (ad_reg & 0x100) pdata->phy.rx_pause = 1; else if (lp_reg & 0x100) pdata->phy.tx_pause = 1; } } axgbe_printf(1, "%s: pause tx/rx %d/%d\n", __func__, pdata->phy.tx_pause, pdata->phy.rx_pause); if (lp_reg & 0x20) XGBE_SET_LP_ADV(&pdata->phy, 1000baseX_Full); /* Half duplex is not supported */ ad_reg &= lp_reg; mode = (ad_reg & 0x20) ? XGBE_MODE_X : XGBE_MODE_UNKNOWN; return (mode); } static enum xgbe_mode xgbe_phy_an73_redrv_outcome(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; enum xgbe_mode mode; unsigned int ad_reg, lp_reg; XGBE_SET_LP_ADV(&pdata->phy, Autoneg); XGBE_SET_LP_ADV(&pdata->phy, Backplane); axgbe_printf(1, "%s: pause_autoneg %d\n", __func__, pdata->phy.pause_autoneg); /* Use external PHY to determine flow control */ if (pdata->phy.pause_autoneg) xgbe_phy_phydev_flowctrl(pdata); /* Compare Advertisement and Link Partner register 2 */ ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1); lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 1); if (lp_reg & 0x80) XGBE_SET_LP_ADV(&pdata->phy, 10000baseKR_Full); if (lp_reg & 0x20) XGBE_SET_LP_ADV(&pdata->phy, 1000baseKX_Full); ad_reg &= lp_reg; if (ad_reg & 0x80) { switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: mode = XGBE_MODE_KR; break; default: mode = XGBE_MODE_SFI; break; } } else if (ad_reg & 0x20) { switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: mode = XGBE_MODE_KX_1000; break; case XGBE_PORT_MODE_1000BASE_X: mode = XGBE_MODE_X; break; case XGBE_PORT_MODE_SFP: switch (phy_data->sfp_base) { case XGBE_SFP_BASE_1000_T: if ((phy_data->phydev) && (pdata->phy.speed == SPEED_100)) mode = XGBE_MODE_SGMII_100; else mode = XGBE_MODE_SGMII_1000; break; case XGBE_SFP_BASE_1000_SX: case XGBE_SFP_BASE_1000_LX: case XGBE_SFP_BASE_1000_CX: default: mode = XGBE_MODE_X; break; } break; default: if ((phy_data->phydev) && (pdata->phy.speed == SPEED_100)) mode = XGBE_MODE_SGMII_100; else mode = XGBE_MODE_SGMII_1000; break; } } else { mode = XGBE_MODE_UNKNOWN; } /* Compare Advertisement and Link Partner register 3 */ ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2); lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 2); if (lp_reg & 0xc000) XGBE_SET_LP_ADV(&pdata->phy, 10000baseR_FEC); return (mode); } static enum xgbe_mode xgbe_phy_an73_outcome(struct xgbe_prv_data *pdata) { enum xgbe_mode mode; unsigned int ad_reg, lp_reg; XGBE_SET_LP_ADV(&pdata->phy, Autoneg); XGBE_SET_LP_ADV(&pdata->phy, Backplane); /* Compare Advertisement and Link Partner register 1 */ ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE); lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA); if (lp_reg & 0x400) XGBE_SET_LP_ADV(&pdata->phy, Pause); if (lp_reg & 0x800) XGBE_SET_LP_ADV(&pdata->phy, Asym_Pause); axgbe_printf(1, "%s: pause_autoneg %d ad_reg 0x%x lp_reg 0x%x\n", __func__, pdata->phy.pause_autoneg, ad_reg, lp_reg); if (pdata->phy.pause_autoneg) { /* Set flow control based on auto-negotiation result */ pdata->phy.tx_pause = 0; pdata->phy.rx_pause = 0; if (ad_reg & lp_reg & 0x400) { pdata->phy.tx_pause = 1; pdata->phy.rx_pause = 1; } else if (ad_reg & lp_reg & 0x800) { if (ad_reg & 0x400) pdata->phy.rx_pause = 1; else if (lp_reg & 0x400) pdata->phy.tx_pause = 1; } } axgbe_printf(1, "%s: pause tx/rx %d/%d\n", __func__, pdata->phy.tx_pause, pdata->phy.rx_pause); /* Compare Advertisement and Link Partner register 2 */ ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1); lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 1); if (lp_reg & 0x80) XGBE_SET_LP_ADV(&pdata->phy, 10000baseKR_Full); if (lp_reg & 0x20) XGBE_SET_LP_ADV(&pdata->phy, 1000baseKX_Full); ad_reg &= lp_reg; if (ad_reg & 0x80) mode = XGBE_MODE_KR; else if (ad_reg & 0x20) mode = XGBE_MODE_KX_1000; else mode = XGBE_MODE_UNKNOWN; /* Compare Advertisement and Link Partner register 3 */ ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2); lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 2); if (lp_reg & 0xc000) XGBE_SET_LP_ADV(&pdata->phy, 10000baseR_FEC); return (mode); } static enum xgbe_mode xgbe_phy_an_outcome(struct xgbe_prv_data *pdata) { switch (pdata->an_mode) { case XGBE_AN_MODE_CL73: return (xgbe_phy_an73_outcome(pdata)); case XGBE_AN_MODE_CL73_REDRV: return (xgbe_phy_an73_redrv_outcome(pdata)); case XGBE_AN_MODE_CL37: return (xgbe_phy_an37_outcome(pdata)); case XGBE_AN_MODE_CL37_SGMII: return (xgbe_phy_an37_sgmii_outcome(pdata)); default: return (XGBE_MODE_UNKNOWN); } } static void xgbe_phy_an_advertising(struct xgbe_prv_data *pdata, struct xgbe_phy *dphy) { struct xgbe_phy_data *phy_data = pdata->phy_data; XGBE_LM_COPY(dphy, advertising, &pdata->phy, advertising); /* Without a re-driver, just return current advertising */ if (!phy_data->redrv) return; /* With the KR re-driver we need to advertise a single speed */ XGBE_CLR_ADV(dphy, 1000baseKX_Full); XGBE_CLR_ADV(dphy, 10000baseKR_Full); /* Advertise FEC support is present */ if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE) XGBE_SET_ADV(dphy, 10000baseR_FEC); switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: XGBE_SET_ADV(dphy, 10000baseKR_Full); break; case XGBE_PORT_MODE_BACKPLANE_2500: XGBE_SET_ADV(dphy, 1000baseKX_Full); break; case XGBE_PORT_MODE_1000BASE_T: case XGBE_PORT_MODE_1000BASE_X: case XGBE_PORT_MODE_NBASE_T: XGBE_SET_ADV(dphy, 1000baseKX_Full); break; case XGBE_PORT_MODE_10GBASE_T: if ((phy_data->phydev) && (pdata->phy.speed == SPEED_10000)) XGBE_SET_ADV(dphy, 10000baseKR_Full); else XGBE_SET_ADV(dphy, 1000baseKX_Full); break; case XGBE_PORT_MODE_10GBASE_R: XGBE_SET_ADV(dphy, 10000baseKR_Full); break; case XGBE_PORT_MODE_SFP: switch (phy_data->sfp_base) { case XGBE_SFP_BASE_1000_T: case XGBE_SFP_BASE_1000_SX: case XGBE_SFP_BASE_1000_LX: case XGBE_SFP_BASE_1000_CX: XGBE_SET_ADV(dphy, 1000baseKX_Full); break; default: XGBE_SET_ADV(dphy, 10000baseKR_Full); break; } break; default: XGBE_SET_ADV(dphy, 10000baseKR_Full); break; } } static int xgbe_phy_an_config(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; int ret; ret = xgbe_phy_find_phy_device(pdata); if (ret) return (ret); axgbe_printf(2, "%s: find_phy_device return %s.\n", __func__, ret ? "Failure" : "Success"); if (!phy_data->phydev) return (0); ret = xgbe_phy_start_aneg(pdata); return (ret); } static enum xgbe_an_mode xgbe_phy_an_sfp_mode(struct xgbe_phy_data *phy_data) { switch (phy_data->sfp_base) { case XGBE_SFP_BASE_1000_T: return (XGBE_AN_MODE_CL37_SGMII); case XGBE_SFP_BASE_1000_SX: case XGBE_SFP_BASE_1000_LX: case XGBE_SFP_BASE_1000_CX: return (XGBE_AN_MODE_CL37); default: return (XGBE_AN_MODE_NONE); } } static enum xgbe_an_mode xgbe_phy_an_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; /* A KR re-driver will always require CL73 AN */ if (phy_data->redrv) return (XGBE_AN_MODE_CL73_REDRV); switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: return (XGBE_AN_MODE_CL73); case XGBE_PORT_MODE_BACKPLANE_2500: return (XGBE_AN_MODE_NONE); case XGBE_PORT_MODE_1000BASE_T: return (XGBE_AN_MODE_CL37_SGMII); case XGBE_PORT_MODE_1000BASE_X: return (XGBE_AN_MODE_CL37); case XGBE_PORT_MODE_NBASE_T: return (XGBE_AN_MODE_CL37_SGMII); case XGBE_PORT_MODE_10GBASE_T: return (XGBE_AN_MODE_CL73); case XGBE_PORT_MODE_10GBASE_R: return (XGBE_AN_MODE_NONE); case XGBE_PORT_MODE_SFP: return (xgbe_phy_an_sfp_mode(phy_data)); default: return (XGBE_AN_MODE_NONE); } } static int xgbe_phy_set_redrv_mode_mdio(struct xgbe_prv_data *pdata, enum xgbe_phy_redrv_mode mode) { struct xgbe_phy_data *phy_data = pdata->phy_data; uint16_t redrv_reg, redrv_val; redrv_reg = XGBE_PHY_REDRV_MODE_REG + (phy_data->redrv_lane * 0x1000); redrv_val = (uint16_t)mode; return (pdata->hw_if.write_ext_mii_regs(pdata, phy_data->redrv_addr, redrv_reg, redrv_val)); } static int xgbe_phy_set_redrv_mode_i2c(struct xgbe_prv_data *pdata, enum xgbe_phy_redrv_mode mode) { struct xgbe_phy_data *phy_data = pdata->phy_data; unsigned int redrv_reg; int ret; /* Calculate the register to write */ redrv_reg = XGBE_PHY_REDRV_MODE_REG + (phy_data->redrv_lane * 0x1000); ret = xgbe_phy_redrv_write(pdata, redrv_reg, mode); return (ret); } static void xgbe_phy_set_redrv_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; enum xgbe_phy_redrv_mode mode; int ret; if (!phy_data->redrv) return; mode = XGBE_PHY_REDRV_MODE_CX; if ((phy_data->port_mode == XGBE_PORT_MODE_SFP) && (phy_data->sfp_base != XGBE_SFP_BASE_1000_CX) && (phy_data->sfp_base != XGBE_SFP_BASE_10000_CR)) mode = XGBE_PHY_REDRV_MODE_SR; ret = xgbe_phy_get_comm_ownership(pdata); if (ret) return; axgbe_printf(2, "%s: redrv_if set: %d\n", __func__, phy_data->redrv_if); if (phy_data->redrv_if) xgbe_phy_set_redrv_mode_i2c(pdata, mode); else xgbe_phy_set_redrv_mode_mdio(pdata, mode); xgbe_phy_put_comm_ownership(pdata); } static void xgbe_phy_perform_ratechange(struct xgbe_prv_data *pdata, unsigned int cmd, unsigned int sub_cmd) { unsigned int s0 = 0; unsigned int wait; /* Log if a previous command did not complete */ if (XP_IOREAD_BITS(pdata, XP_DRIVER_INT_RO, STATUS)) axgbe_error("firmware mailbox not ready for command\n"); /* Construct the command */ XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, cmd); XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, sub_cmd); /* Issue the command */ XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0); XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0); XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1); /* Wait for command to complete */ wait = XGBE_RATECHANGE_COUNT; while (wait--) { if (!XP_IOREAD_BITS(pdata, XP_DRIVER_INT_RO, STATUS)) { axgbe_printf(3, "%s: Rate change done\n", __func__); return; } DELAY(2000); } axgbe_printf(3, "firmware mailbox command did not complete\n"); } static void xgbe_phy_rrc(struct xgbe_prv_data *pdata) { /* Receiver Reset Cycle */ xgbe_phy_perform_ratechange(pdata, 5, 0); axgbe_printf(3, "receiver reset complete\n"); } static void xgbe_phy_power_off(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; /* Power off */ xgbe_phy_perform_ratechange(pdata, 0, 0); phy_data->cur_mode = XGBE_MODE_UNKNOWN; axgbe_printf(3, "phy powered off\n"); } static void xgbe_phy_sfi_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; xgbe_phy_set_redrv_mode(pdata); /* 10G/SFI */ axgbe_printf(3, "%s: cable %d len %d\n", __func__, phy_data->sfp_cable, phy_data->sfp_cable_len); if (phy_data->sfp_cable != XGBE_SFP_CABLE_PASSIVE) xgbe_phy_perform_ratechange(pdata, 3, 0); else { if (phy_data->sfp_cable_len <= 1) xgbe_phy_perform_ratechange(pdata, 3, 1); else if (phy_data->sfp_cable_len <= 3) xgbe_phy_perform_ratechange(pdata, 3, 2); else xgbe_phy_perform_ratechange(pdata, 3, 3); } phy_data->cur_mode = XGBE_MODE_SFI; axgbe_printf(3, "10GbE SFI mode set\n"); } static void xgbe_phy_x_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; xgbe_phy_set_redrv_mode(pdata); /* 1G/X */ xgbe_phy_perform_ratechange(pdata, 1, 3); phy_data->cur_mode = XGBE_MODE_X; axgbe_printf(3, "1GbE X mode set\n"); } static void xgbe_phy_sgmii_1000_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; xgbe_phy_set_redrv_mode(pdata); /* 1G/SGMII */ xgbe_phy_perform_ratechange(pdata, 1, 2); phy_data->cur_mode = XGBE_MODE_SGMII_1000; axgbe_printf(2, "1GbE SGMII mode set\n"); } static void xgbe_phy_sgmii_100_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; xgbe_phy_set_redrv_mode(pdata); /* 100M/SGMII */ xgbe_phy_perform_ratechange(pdata, 1, 1); phy_data->cur_mode = XGBE_MODE_SGMII_100; axgbe_printf(3, "100MbE SGMII mode set\n"); } static void xgbe_phy_kr_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; xgbe_phy_set_redrv_mode(pdata); /* 10G/KR */ xgbe_phy_perform_ratechange(pdata, 4, 0); phy_data->cur_mode = XGBE_MODE_KR; axgbe_printf(3, "10GbE KR mode set\n"); } static void xgbe_phy_kx_2500_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; xgbe_phy_set_redrv_mode(pdata); /* 2.5G/KX */ xgbe_phy_perform_ratechange(pdata, 2, 0); phy_data->cur_mode = XGBE_MODE_KX_2500; axgbe_printf(3, "2.5GbE KX mode set\n"); } static void xgbe_phy_kx_1000_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; xgbe_phy_set_redrv_mode(pdata); /* 1G/KX */ xgbe_phy_perform_ratechange(pdata, 1, 3); phy_data->cur_mode = XGBE_MODE_KX_1000; axgbe_printf(3, "1GbE KX mode set\n"); } static enum xgbe_mode xgbe_phy_cur_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; return (phy_data->cur_mode); } static enum xgbe_mode xgbe_phy_switch_baset_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; /* No switching if not 10GBase-T */ if (phy_data->port_mode != XGBE_PORT_MODE_10GBASE_T) return (xgbe_phy_cur_mode(pdata)); switch (xgbe_phy_cur_mode(pdata)) { case XGBE_MODE_SGMII_100: case XGBE_MODE_SGMII_1000: return (XGBE_MODE_KR); case XGBE_MODE_KR: default: return (XGBE_MODE_SGMII_1000); } } static enum xgbe_mode xgbe_phy_switch_bp_2500_mode(struct xgbe_prv_data *pdata) { return (XGBE_MODE_KX_2500); } static enum xgbe_mode xgbe_phy_switch_bp_mode(struct xgbe_prv_data *pdata) { /* If we are in KR switch to KX, and vice-versa */ switch (xgbe_phy_cur_mode(pdata)) { case XGBE_MODE_KX_1000: return (XGBE_MODE_KR); case XGBE_MODE_KR: default: return (XGBE_MODE_KX_1000); } } static enum xgbe_mode xgbe_phy_switch_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: return (xgbe_phy_switch_bp_mode(pdata)); case XGBE_PORT_MODE_BACKPLANE_2500: return (xgbe_phy_switch_bp_2500_mode(pdata)); case XGBE_PORT_MODE_1000BASE_T: case XGBE_PORT_MODE_NBASE_T: case XGBE_PORT_MODE_10GBASE_T: return (xgbe_phy_switch_baset_mode(pdata)); case XGBE_PORT_MODE_1000BASE_X: case XGBE_PORT_MODE_10GBASE_R: case XGBE_PORT_MODE_SFP: /* No switching, so just return current mode */ return (xgbe_phy_cur_mode(pdata)); default: return (XGBE_MODE_UNKNOWN); } } static enum xgbe_mode xgbe_phy_get_basex_mode(struct xgbe_phy_data *phy_data, int speed) { switch (speed) { case SPEED_1000: return (XGBE_MODE_X); case SPEED_10000: return (XGBE_MODE_KR); default: return (XGBE_MODE_UNKNOWN); } } static enum xgbe_mode xgbe_phy_get_baset_mode(struct xgbe_phy_data *phy_data, int speed) { switch (speed) { case SPEED_100: return (XGBE_MODE_SGMII_100); case SPEED_1000: return (XGBE_MODE_SGMII_1000); case SPEED_2500: return (XGBE_MODE_KX_2500); case SPEED_10000: return (XGBE_MODE_KR); default: return (XGBE_MODE_UNKNOWN); } } static enum xgbe_mode xgbe_phy_get_sfp_mode(struct xgbe_phy_data *phy_data, int speed) { switch (speed) { case SPEED_100: return (XGBE_MODE_SGMII_100); case SPEED_1000: if (phy_data->sfp_base == XGBE_SFP_BASE_1000_T) return (XGBE_MODE_SGMII_1000); else return (XGBE_MODE_X); case SPEED_10000: case SPEED_UNKNOWN: return (XGBE_MODE_SFI); default: return (XGBE_MODE_UNKNOWN); } } static enum xgbe_mode xgbe_phy_get_bp_2500_mode(int speed) { switch (speed) { case SPEED_2500: return (XGBE_MODE_KX_2500); default: return (XGBE_MODE_UNKNOWN); } } static enum xgbe_mode xgbe_phy_get_bp_mode(int speed) { switch (speed) { case SPEED_1000: return (XGBE_MODE_KX_1000); case SPEED_10000: return (XGBE_MODE_KR); default: return (XGBE_MODE_UNKNOWN); } } static enum xgbe_mode xgbe_phy_get_mode(struct xgbe_prv_data *pdata, int speed) { struct xgbe_phy_data *phy_data = pdata->phy_data; switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: return (xgbe_phy_get_bp_mode(speed)); case XGBE_PORT_MODE_BACKPLANE_2500: return (xgbe_phy_get_bp_2500_mode(speed)); case XGBE_PORT_MODE_1000BASE_T: case XGBE_PORT_MODE_NBASE_T: case XGBE_PORT_MODE_10GBASE_T: return (xgbe_phy_get_baset_mode(phy_data, speed)); case XGBE_PORT_MODE_1000BASE_X: case XGBE_PORT_MODE_10GBASE_R: return (xgbe_phy_get_basex_mode(phy_data, speed)); case XGBE_PORT_MODE_SFP: return (xgbe_phy_get_sfp_mode(phy_data, speed)); default: return (XGBE_MODE_UNKNOWN); } } static void xgbe_phy_set_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode) { switch (mode) { case XGBE_MODE_KX_1000: xgbe_phy_kx_1000_mode(pdata); break; case XGBE_MODE_KX_2500: xgbe_phy_kx_2500_mode(pdata); break; case XGBE_MODE_KR: xgbe_phy_kr_mode(pdata); break; case XGBE_MODE_SGMII_100: xgbe_phy_sgmii_100_mode(pdata); break; case XGBE_MODE_SGMII_1000: xgbe_phy_sgmii_1000_mode(pdata); break; case XGBE_MODE_X: xgbe_phy_x_mode(pdata); break; case XGBE_MODE_SFI: xgbe_phy_sfi_mode(pdata); break; default: break; } } static void xgbe_phy_get_type(struct xgbe_prv_data *pdata, struct ifmediareq * ifmr) { struct xgbe_phy_data *phy_data = pdata->phy_data; switch (pdata->phy.speed) { case SPEED_10000: if (phy_data->port_mode == XGBE_PORT_MODE_BACKPLANE) ifmr->ifm_active |= IFM_10G_KR; else if(phy_data->port_mode == XGBE_PORT_MODE_10GBASE_T) ifmr->ifm_active |= IFM_10G_T; else if(phy_data->port_mode == XGBE_PORT_MODE_10GBASE_R) ifmr->ifm_active |= IFM_10G_KR; else if(phy_data->port_mode == XGBE_PORT_MODE_SFP) ifmr->ifm_active |= IFM_10G_SFI; else ifmr->ifm_active |= IFM_OTHER; break; case SPEED_2500: if (phy_data->port_mode == XGBE_PORT_MODE_BACKPLANE_2500) ifmr->ifm_active |= IFM_2500_KX; else ifmr->ifm_active |= IFM_OTHER; break; case SPEED_1000: if (phy_data->port_mode == XGBE_PORT_MODE_BACKPLANE) ifmr->ifm_active |= IFM_1000_KX; else if(phy_data->port_mode == XGBE_PORT_MODE_1000BASE_T) ifmr->ifm_active |= IFM_1000_T; #if 0 else if(phy_data->port_mode == XGBE_PORT_MODE_1000BASE_X) ifmr->ifm_active |= IFM_1000_SX; ifmr->ifm_active |= IFM_1000_LX; ifmr->ifm_active |= IFM_1000_CX; #endif else if(phy_data->port_mode == XGBE_PORT_MODE_SFP) ifmr->ifm_active |= IFM_1000_SGMII; else ifmr->ifm_active |= IFM_OTHER; break; case SPEED_100: if(phy_data->port_mode == XGBE_PORT_MODE_NBASE_T) ifmr->ifm_active |= IFM_100_T; else if(phy_data->port_mode == XGBE_PORT_MODE_SFP) ifmr->ifm_active |= IFM_1000_SGMII; else ifmr->ifm_active |= IFM_OTHER; break; default: ifmr->ifm_active |= IFM_OTHER; axgbe_printf(1, "Unknown mode detected\n"); break; } } static bool xgbe_phy_check_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode, bool advert) { if (pdata->phy.autoneg == AUTONEG_ENABLE) return (advert); else { enum xgbe_mode cur_mode; cur_mode = xgbe_phy_get_mode(pdata, pdata->phy.speed); if (cur_mode == mode) return (true); } return (false); } static bool xgbe_phy_use_basex_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode) { switch (mode) { case XGBE_MODE_X: return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy, 1000baseX_Full))); case XGBE_MODE_KR: return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy, 10000baseKR_Full))); default: return (false); } } static bool xgbe_phy_use_baset_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode) { axgbe_printf(3, "%s: check mode %d\n", __func__, mode); switch (mode) { case XGBE_MODE_SGMII_100: return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy, 100baseT_Full))); case XGBE_MODE_SGMII_1000: return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy, 1000baseT_Full))); case XGBE_MODE_KX_2500: return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy, 2500baseT_Full))); case XGBE_MODE_KR: return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy, 10000baseT_Full))); default: return (false); } } static bool xgbe_phy_use_sfp_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode) { struct xgbe_phy_data *phy_data = pdata->phy_data; switch (mode) { case XGBE_MODE_X: if (phy_data->sfp_base == XGBE_SFP_BASE_1000_T) return (false); return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy, 1000baseX_Full))); case XGBE_MODE_SGMII_100: if (phy_data->sfp_base != XGBE_SFP_BASE_1000_T) return (false); return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy, 100baseT_Full))); case XGBE_MODE_SGMII_1000: if (phy_data->sfp_base != XGBE_SFP_BASE_1000_T) return (false); return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy, 1000baseT_Full))); case XGBE_MODE_SFI: if (phy_data->sfp_mod_absent) return (true); return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy, 10000baseSR_Full) || XGBE_ADV(&pdata->phy, 10000baseLR_Full) || XGBE_ADV(&pdata->phy, 10000baseLRM_Full) || XGBE_ADV(&pdata->phy, 10000baseER_Full) || XGBE_ADV(&pdata->phy, 10000baseCR_Full))); default: return (false); } } static bool xgbe_phy_use_bp_2500_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode) { switch (mode) { case XGBE_MODE_KX_2500: return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy, 2500baseX_Full))); default: return (false); } } static bool xgbe_phy_use_bp_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode) { switch (mode) { case XGBE_MODE_KX_1000: return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy, 1000baseKX_Full))); case XGBE_MODE_KR: return (xgbe_phy_check_mode(pdata, mode, XGBE_ADV(&pdata->phy, 10000baseKR_Full))); default: return (false); } } static bool xgbe_phy_use_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode) { struct xgbe_phy_data *phy_data = pdata->phy_data; switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: return (xgbe_phy_use_bp_mode(pdata, mode)); case XGBE_PORT_MODE_BACKPLANE_2500: return (xgbe_phy_use_bp_2500_mode(pdata, mode)); case XGBE_PORT_MODE_1000BASE_T: axgbe_printf(3, "use_mode %s\n", xgbe_phy_use_baset_mode(pdata, mode) ? "found" : "Not found"); case XGBE_PORT_MODE_NBASE_T: case XGBE_PORT_MODE_10GBASE_T: return (xgbe_phy_use_baset_mode(pdata, mode)); case XGBE_PORT_MODE_1000BASE_X: case XGBE_PORT_MODE_10GBASE_R: return (xgbe_phy_use_basex_mode(pdata, mode)); case XGBE_PORT_MODE_SFP: return (xgbe_phy_use_sfp_mode(pdata, mode)); default: return (false); } } static bool xgbe_phy_valid_speed_basex_mode(struct xgbe_phy_data *phy_data, int speed) { switch (speed) { case SPEED_1000: return (phy_data->port_mode == XGBE_PORT_MODE_1000BASE_X); case SPEED_10000: return (phy_data->port_mode == XGBE_PORT_MODE_10GBASE_R); default: return (false); } } static bool xgbe_phy_valid_speed_baset_mode(struct xgbe_phy_data *phy_data, int speed) { switch (speed) { case SPEED_100: case SPEED_1000: return (true); case SPEED_2500: return (phy_data->port_mode == XGBE_PORT_MODE_NBASE_T); case SPEED_10000: return (phy_data->port_mode == XGBE_PORT_MODE_10GBASE_T); default: return (false); } } static bool xgbe_phy_valid_speed_sfp_mode(struct xgbe_phy_data *phy_data, int speed) { switch (speed) { case SPEED_100: return (phy_data->sfp_speed == XGBE_SFP_SPEED_100_1000); case SPEED_1000: return ((phy_data->sfp_speed == XGBE_SFP_SPEED_100_1000) || (phy_data->sfp_speed == XGBE_SFP_SPEED_1000)); case SPEED_10000: return (phy_data->sfp_speed == XGBE_SFP_SPEED_10000); default: return (false); } } static bool xgbe_phy_valid_speed_bp_2500_mode(int speed) { switch (speed) { case SPEED_2500: return (true); default: return (false); } } static bool xgbe_phy_valid_speed_bp_mode(int speed) { switch (speed) { case SPEED_1000: case SPEED_10000: return (true); default: return (false); } } static bool xgbe_phy_valid_speed(struct xgbe_prv_data *pdata, int speed) { struct xgbe_phy_data *phy_data = pdata->phy_data; switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: return (xgbe_phy_valid_speed_bp_mode(speed)); case XGBE_PORT_MODE_BACKPLANE_2500: return (xgbe_phy_valid_speed_bp_2500_mode(speed)); case XGBE_PORT_MODE_1000BASE_T: case XGBE_PORT_MODE_NBASE_T: case XGBE_PORT_MODE_10GBASE_T: return (xgbe_phy_valid_speed_baset_mode(phy_data, speed)); case XGBE_PORT_MODE_1000BASE_X: case XGBE_PORT_MODE_10GBASE_R: return (xgbe_phy_valid_speed_basex_mode(phy_data, speed)); case XGBE_PORT_MODE_SFP: return (xgbe_phy_valid_speed_sfp_mode(phy_data, speed)); default: return (false); } } static int xgbe_upd_link(struct xgbe_prv_data *pdata) { int reg; axgbe_printf(2, "%s: Link %d\n", __func__, pdata->phy.link); reg = xgbe_phy_mii_read(pdata, pdata->mdio_addr, MII_BMSR); if (reg < 0) return (reg); if ((reg & BMSR_LINK) == 0) pdata->phy.link = 0; else pdata->phy.link = 1; axgbe_printf(2, "Link: %d updated reg %#x\n", pdata->phy.link, reg); return (0); } static int xgbe_phy_read_status(struct xgbe_prv_data *pdata) { int common_adv_gb = 0; int common_adv; int lpagb = 0; int adv, lpa; int ret; ret = xgbe_upd_link(pdata); if (ret) { axgbe_printf(2, "Link Update return %d\n", ret); return (ret); } if (AUTONEG_ENABLE == pdata->phy.autoneg) { if (pdata->phy.supported == SUPPORTED_1000baseT_Half || pdata->phy.supported == SUPPORTED_1000baseT_Full) { lpagb = xgbe_phy_mii_read(pdata, pdata->mdio_addr, MII_100T2SR); if (lpagb < 0) return (lpagb); adv = xgbe_phy_mii_read(pdata, pdata->mdio_addr, MII_100T2CR); if (adv < 0) return (adv); if (lpagb & GTSR_MAN_MS_FLT) { if (adv & GTCR_MAN_MS) axgbe_printf(2, "Master/Slave Resolution " "failed, maybe conflicting manual settings\n"); else axgbe_printf(2, "Master/Slave Resolution failed\n"); return (-ENOLINK); } if (pdata->phy.supported == SUPPORTED_1000baseT_Half) XGBE_SET_ADV(&pdata->phy, 1000baseT_Half); else if (pdata->phy.supported == SUPPORTED_1000baseT_Full) XGBE_SET_ADV(&pdata->phy, 1000baseT_Full); common_adv_gb = lpagb & adv << 2; } lpa = xgbe_phy_mii_read(pdata, pdata->mdio_addr, MII_ANLPAR); if (lpa < 0) return (lpa); if (pdata->phy.supported == SUPPORTED_Autoneg) XGBE_SET_ADV(&pdata->phy, Autoneg); adv = xgbe_phy_mii_read(pdata, pdata->mdio_addr, MII_ANAR); if (adv < 0) return (adv); common_adv = lpa & adv; pdata->phy.speed = SPEED_10; pdata->phy.duplex = DUPLEX_HALF; pdata->phy.pause = 0; pdata->phy.asym_pause = 0; axgbe_printf(2, "%s: lpa %#x adv %#x common_adv_gb %#x " "common_adv %#x\n", __func__, lpa, adv, common_adv_gb, common_adv); if (common_adv_gb & (GTSR_LP_1000TFDX | GTSR_LP_1000THDX)) { axgbe_printf(2, "%s: SPEED 1000\n", __func__); pdata->phy.speed = SPEED_1000; if (common_adv_gb & GTSR_LP_1000TFDX) pdata->phy.duplex = DUPLEX_FULL; } else if (common_adv & (ANLPAR_TX_FD | ANLPAR_TX)) { axgbe_printf(2, "%s: SPEED 100\n", __func__); pdata->phy.speed = SPEED_100; if (common_adv & ANLPAR_TX_FD) pdata->phy.duplex = DUPLEX_FULL; } else if (common_adv & ANLPAR_10_FD) pdata->phy.duplex = DUPLEX_FULL; if (pdata->phy.duplex == DUPLEX_FULL) { pdata->phy.pause = lpa & ANLPAR_FC ? 1 : 0; pdata->phy.asym_pause = lpa & LPA_PAUSE_ASYM ? 1 : 0; } } else { int bmcr = xgbe_phy_mii_read(pdata, pdata->mdio_addr, MII_BMCR); if (bmcr < 0) return (bmcr); if (bmcr & BMCR_FDX) pdata->phy.duplex = DUPLEX_FULL; else pdata->phy.duplex = DUPLEX_HALF; if (bmcr & BMCR_SPEED1) pdata->phy.speed = SPEED_1000; else if (bmcr & BMCR_SPEED100) pdata->phy.speed = SPEED_100; else pdata->phy.speed = SPEED_10; pdata->phy.pause = 0; pdata->phy.asym_pause = 0; axgbe_printf(2, "%s: link speed %#x duplex %#x media %#x " "autoneg %#x\n", __func__, pdata->phy.speed, pdata->phy.duplex, pdata->phy.link, pdata->phy.autoneg); } return (0); } static int xgbe_phy_link_status(struct xgbe_prv_data *pdata, int *an_restart) { struct xgbe_phy_data *phy_data = pdata->phy_data; struct mii_data *mii = NULL; unsigned int reg; int ret; *an_restart = 0; if (phy_data->port_mode == XGBE_PORT_MODE_SFP) { /* Check SFP signals */ axgbe_printf(3, "%s: calling phy detect\n", __func__); xgbe_phy_sfp_detect(pdata); if (phy_data->sfp_changed) { axgbe_printf(1, "%s: SFP changed observed\n", __func__); *an_restart = 1; return (0); } if (phy_data->sfp_mod_absent || phy_data->sfp_rx_los) { axgbe_printf(1, "%s: SFP absent 0x%x & sfp_rx_los 0x%x\n", __func__, phy_data->sfp_mod_absent, phy_data->sfp_rx_los); return (0); } } else { mii = device_get_softc(pdata->axgbe_miibus); mii_tick(mii); ret = xgbe_phy_read_status(pdata); if (ret) { axgbe_printf(2, "Link: Read status returned %d\n", ret); return (ret); } axgbe_printf(2, "%s: link speed %#x duplex %#x media %#x " "autoneg %#x\n", __func__, pdata->phy.speed, pdata->phy.duplex, pdata->phy.link, pdata->phy.autoneg); ret = xgbe_phy_mii_read(pdata, pdata->mdio_addr, MII_BMSR); ret = (ret < 0) ? ret : (ret & BMSR_ACOMP); axgbe_printf(2, "Link: BMCR returned %d\n", ret); if ((pdata->phy.autoneg == AUTONEG_ENABLE) && !ret) return (0); return (pdata->phy.link); } /* Link status is latched low, so read once to clear * and then read again to get current state */ reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1); reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1); axgbe_printf(1, "%s: link_status reg: 0x%x\n", __func__, reg); if (reg & MDIO_STAT1_LSTATUS) return (1); /* No link, attempt a receiver reset cycle */ if (phy_data->rrc_count++ > XGBE_RRC_FREQUENCY) { axgbe_printf(1, "ENTERED RRC: rrc_count: %d\n", phy_data->rrc_count); phy_data->rrc_count = 0; if (pdata->link_workaround) { ret = xgbe_phy_reset(pdata); if (ret) axgbe_error("Error resetting phy\n"); } else xgbe_phy_rrc(pdata); } return (0); } static void xgbe_phy_sfp_gpio_setup(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; phy_data->sfp_gpio_address = XGBE_GPIO_ADDRESS_PCA9555 + XP_GET_BITS(pdata->pp3, XP_PROP_3, GPIO_ADDR); phy_data->sfp_gpio_mask = XP_GET_BITS(pdata->pp3, XP_PROP_3, GPIO_MASK); phy_data->sfp_gpio_rx_los = XP_GET_BITS(pdata->pp3, XP_PROP_3, GPIO_RX_LOS); phy_data->sfp_gpio_tx_fault = XP_GET_BITS(pdata->pp3, XP_PROP_3, GPIO_TX_FAULT); phy_data->sfp_gpio_mod_absent = XP_GET_BITS(pdata->pp3, XP_PROP_3, GPIO_MOD_ABS); phy_data->sfp_gpio_rate_select = XP_GET_BITS(pdata->pp3, XP_PROP_3, GPIO_RATE_SELECT); DBGPR("SFP: gpio_address=%#x\n", phy_data->sfp_gpio_address); DBGPR("SFP: gpio_mask=%#x\n", phy_data->sfp_gpio_mask); DBGPR("SFP: gpio_rx_los=%u\n", phy_data->sfp_gpio_rx_los); DBGPR("SFP: gpio_tx_fault=%u\n", phy_data->sfp_gpio_tx_fault); DBGPR("SFP: gpio_mod_absent=%u\n", phy_data->sfp_gpio_mod_absent); DBGPR("SFP: gpio_rate_select=%u\n", phy_data->sfp_gpio_rate_select); } static void xgbe_phy_sfp_comm_setup(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; unsigned int mux_addr_hi, mux_addr_lo; mux_addr_hi = XP_GET_BITS(pdata->pp4, XP_PROP_4, MUX_ADDR_HI); mux_addr_lo = XP_GET_BITS(pdata->pp4, XP_PROP_4, MUX_ADDR_LO); if (mux_addr_lo == XGBE_SFP_DIRECT) return; phy_data->sfp_comm = XGBE_SFP_COMM_PCA9545; phy_data->sfp_mux_address = (mux_addr_hi << 2) + mux_addr_lo; phy_data->sfp_mux_channel = XP_GET_BITS(pdata->pp4, XP_PROP_4, MUX_CHAN); DBGPR("SFP: mux_address=%#x\n", phy_data->sfp_mux_address); DBGPR("SFP: mux_channel=%u\n", phy_data->sfp_mux_channel); } static void xgbe_phy_sfp_setup(struct xgbe_prv_data *pdata) { xgbe_phy_sfp_comm_setup(pdata); xgbe_phy_sfp_gpio_setup(pdata); } static int xgbe_phy_int_mdio_reset(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; unsigned int ret; ret = pdata->hw_if.set_gpio(pdata, phy_data->mdio_reset_gpio); if (ret) return (ret); ret = pdata->hw_if.clr_gpio(pdata, phy_data->mdio_reset_gpio); return (ret); } static int xgbe_phy_i2c_mdio_reset(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; uint8_t gpio_reg, gpio_ports[2], gpio_data[3]; int ret; /* Read the output port registers */ gpio_reg = 2; ret = xgbe_phy_i2c_read(pdata, phy_data->mdio_reset_addr, &gpio_reg, sizeof(gpio_reg), gpio_ports, sizeof(gpio_ports)); if (ret) return (ret); /* Prepare to write the GPIO data */ gpio_data[0] = 2; gpio_data[1] = gpio_ports[0]; gpio_data[2] = gpio_ports[1]; /* Set the GPIO pin */ if (phy_data->mdio_reset_gpio < 8) gpio_data[1] |= (1 << (phy_data->mdio_reset_gpio % 8)); else gpio_data[2] |= (1 << (phy_data->mdio_reset_gpio % 8)); /* Write the output port registers */ ret = xgbe_phy_i2c_write(pdata, phy_data->mdio_reset_addr, gpio_data, sizeof(gpio_data)); if (ret) return (ret); /* Clear the GPIO pin */ if (phy_data->mdio_reset_gpio < 8) gpio_data[1] &= ~(1 << (phy_data->mdio_reset_gpio % 8)); else gpio_data[2] &= ~(1 << (phy_data->mdio_reset_gpio % 8)); /* Write the output port registers */ ret = xgbe_phy_i2c_write(pdata, phy_data->mdio_reset_addr, gpio_data, sizeof(gpio_data)); return (ret); } static int xgbe_phy_mdio_reset(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; int ret; if (phy_data->conn_type != XGBE_CONN_TYPE_MDIO) return (0); ret = xgbe_phy_get_comm_ownership(pdata); if (ret) return (ret); if (phy_data->mdio_reset == XGBE_MDIO_RESET_I2C_GPIO) ret = xgbe_phy_i2c_mdio_reset(pdata); else if (phy_data->mdio_reset == XGBE_MDIO_RESET_INT_GPIO) ret = xgbe_phy_int_mdio_reset(pdata); xgbe_phy_put_comm_ownership(pdata); return (ret); } static bool xgbe_phy_redrv_error(struct xgbe_phy_data *phy_data) { if (!phy_data->redrv) return (false); if (phy_data->redrv_if >= XGBE_PHY_REDRV_IF_MAX) return (true); switch (phy_data->redrv_model) { case XGBE_PHY_REDRV_MODEL_4223: if (phy_data->redrv_lane > 3) return (true); break; case XGBE_PHY_REDRV_MODEL_4227: if (phy_data->redrv_lane > 1) return (true); break; default: return (true); } return (false); } static int xgbe_phy_mdio_reset_setup(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; if (phy_data->conn_type != XGBE_CONN_TYPE_MDIO) return (0); phy_data->mdio_reset = XP_GET_BITS(pdata->pp3, XP_PROP_3, MDIO_RESET); switch (phy_data->mdio_reset) { case XGBE_MDIO_RESET_NONE: case XGBE_MDIO_RESET_I2C_GPIO: case XGBE_MDIO_RESET_INT_GPIO: break; default: axgbe_error("unsupported MDIO reset (%#x)\n", phy_data->mdio_reset); return (-EINVAL); } if (phy_data->mdio_reset == XGBE_MDIO_RESET_I2C_GPIO) { phy_data->mdio_reset_addr = XGBE_GPIO_ADDRESS_PCA9555 + XP_GET_BITS(pdata->pp3, XP_PROP_3, MDIO_RESET_I2C_ADDR); phy_data->mdio_reset_gpio = XP_GET_BITS(pdata->pp3, XP_PROP_3, MDIO_RESET_I2C_GPIO); } else if (phy_data->mdio_reset == XGBE_MDIO_RESET_INT_GPIO) phy_data->mdio_reset_gpio = XP_GET_BITS(pdata->pp3, XP_PROP_3, MDIO_RESET_INT_GPIO); return (0); } static bool xgbe_phy_port_mode_mismatch(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) || (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000)) return (false); break; case XGBE_PORT_MODE_BACKPLANE_2500: if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_2500) return (false); break; case XGBE_PORT_MODE_1000BASE_T: if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) || (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000)) return (false); break; case XGBE_PORT_MODE_1000BASE_X: if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) return (false); break; case XGBE_PORT_MODE_NBASE_T: if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) || (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) || (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_2500)) return (false); break; case XGBE_PORT_MODE_10GBASE_T: if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) || (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) || (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000)) return (false); break; case XGBE_PORT_MODE_10GBASE_R: if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) return (false); break; case XGBE_PORT_MODE_SFP: if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) || (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) || (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000)) return (false); break; default: break; } return (true); } static bool xgbe_phy_conn_type_mismatch(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: case XGBE_PORT_MODE_BACKPLANE_2500: if (phy_data->conn_type == XGBE_CONN_TYPE_BACKPLANE) return (false); break; case XGBE_PORT_MODE_1000BASE_T: case XGBE_PORT_MODE_1000BASE_X: case XGBE_PORT_MODE_NBASE_T: case XGBE_PORT_MODE_10GBASE_T: case XGBE_PORT_MODE_10GBASE_R: if (phy_data->conn_type == XGBE_CONN_TYPE_MDIO) return (false); break; case XGBE_PORT_MODE_SFP: if (phy_data->conn_type == XGBE_CONN_TYPE_SFP) return (false); break; default: break; } return (true); } static bool xgbe_phy_port_enabled(struct xgbe_prv_data *pdata) { if (!XP_GET_BITS(pdata->pp0, XP_PROP_0, PORT_SPEEDS)) return (false); if (!XP_GET_BITS(pdata->pp0, XP_PROP_0, CONN_TYPE)) return (false); return (true); } static void xgbe_phy_cdr_track(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; axgbe_printf(2, "%s: an_cdr_workaround %d phy_cdr_notrack %d\n", __func__, pdata->sysctl_an_cdr_workaround, phy_data->phy_cdr_notrack); if (!pdata->sysctl_an_cdr_workaround) return; if (!phy_data->phy_cdr_notrack) return; DELAY(phy_data->phy_cdr_delay + 500); XMDIO_WRITE_BITS(pdata, MDIO_MMD_PMAPMD, MDIO_VEND2_PMA_CDR_CONTROL, XGBE_PMA_CDR_TRACK_EN_MASK, XGBE_PMA_CDR_TRACK_EN_ON); phy_data->phy_cdr_notrack = 0; axgbe_printf(2, "CDR TRACK DONE\n"); } static void xgbe_phy_cdr_notrack(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; axgbe_printf(2, "%s: an_cdr_workaround %d phy_cdr_notrack %d\n", __func__, pdata->sysctl_an_cdr_workaround, phy_data->phy_cdr_notrack); if (!pdata->sysctl_an_cdr_workaround) return; if (phy_data->phy_cdr_notrack) return; XMDIO_WRITE_BITS(pdata, MDIO_MMD_PMAPMD, MDIO_VEND2_PMA_CDR_CONTROL, XGBE_PMA_CDR_TRACK_EN_MASK, XGBE_PMA_CDR_TRACK_EN_OFF); xgbe_phy_rrc(pdata); phy_data->phy_cdr_notrack = 1; } static void xgbe_phy_kr_training_post(struct xgbe_prv_data *pdata) { if (!pdata->sysctl_an_cdr_track_early) xgbe_phy_cdr_track(pdata); } static void xgbe_phy_kr_training_pre(struct xgbe_prv_data *pdata) { if (pdata->sysctl_an_cdr_track_early) xgbe_phy_cdr_track(pdata); } static void xgbe_phy_an_post(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; switch (pdata->an_mode) { case XGBE_AN_MODE_CL73: case XGBE_AN_MODE_CL73_REDRV: if (phy_data->cur_mode != XGBE_MODE_KR) break; xgbe_phy_cdr_track(pdata); switch (pdata->an_result) { case XGBE_AN_READY: case XGBE_AN_COMPLETE: break; default: if (phy_data->phy_cdr_delay < XGBE_CDR_DELAY_MAX) phy_data->phy_cdr_delay += XGBE_CDR_DELAY_INC; else phy_data->phy_cdr_delay = XGBE_CDR_DELAY_INIT; break; } break; default: break; } } static void xgbe_phy_an_pre(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; switch (pdata->an_mode) { case XGBE_AN_MODE_CL73: case XGBE_AN_MODE_CL73_REDRV: if (phy_data->cur_mode != XGBE_MODE_KR) break; xgbe_phy_cdr_notrack(pdata); break; default: break; } } static void xgbe_phy_stop(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; /* If we have an external PHY, free it */ xgbe_phy_free_phy_device(pdata); /* Reset SFP data */ xgbe_phy_sfp_reset(phy_data); xgbe_phy_sfp_mod_absent(pdata); /* Reset CDR support */ xgbe_phy_cdr_track(pdata); /* Power off the PHY */ xgbe_phy_power_off(pdata); /* Stop the I2C controller */ pdata->i2c_if.i2c_stop(pdata); } static int xgbe_phy_start(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; int ret; axgbe_printf(2, "%s: redrv %d redrv_if %d start_mode %d\n", __func__, phy_data->redrv, phy_data->redrv_if, phy_data->start_mode); /* Start the I2C controller */ ret = pdata->i2c_if.i2c_start(pdata); if (ret) { axgbe_error("%s: impl i2c start ret %d\n", __func__, ret); return (ret); } /* Set the proper MDIO mode for the re-driver */ if (phy_data->redrv && !phy_data->redrv_if) { ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->redrv_addr, XGBE_MDIO_MODE_CL22); if (ret) { axgbe_error("redriver mdio port not compatible (%u)\n", phy_data->redrv_addr); return (ret); } } /* Start in highest supported mode */ xgbe_phy_set_mode(pdata, phy_data->start_mode); /* Reset CDR support */ xgbe_phy_cdr_track(pdata); /* After starting the I2C controller, we can check for an SFP */ switch (phy_data->port_mode) { case XGBE_PORT_MODE_SFP: axgbe_printf(3, "%s: calling phy detect\n", __func__); xgbe_phy_sfp_detect(pdata); break; default: break; } /* If we have an external PHY, start it */ ret = xgbe_phy_find_phy_device(pdata); if (ret) { axgbe_error("%s: impl find phy dev ret %d\n", __func__, ret); goto err_i2c; } axgbe_printf(3, "%s: impl return success\n", __func__); return (0); err_i2c: pdata->i2c_if.i2c_stop(pdata); return (ret); } static int xgbe_phy_reset(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; enum xgbe_mode cur_mode; int ret; /* Reset by power cycling the PHY */ cur_mode = phy_data->cur_mode; xgbe_phy_power_off(pdata); xgbe_phy_set_mode(pdata, cur_mode); axgbe_printf(3, "%s: mode %d\n", __func__, cur_mode); if (!phy_data->phydev) { axgbe_printf(1, "%s: no phydev\n", __func__); return (0); } /* Reset the external PHY */ ret = xgbe_phy_mdio_reset(pdata); if (ret) { axgbe_error("%s: mdio reset %d\n", __func__, ret); return (ret); } axgbe_printf(3, "%s: return success\n", __func__); return (0); } static void axgbe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct axgbe_if_softc *sc; struct xgbe_prv_data *pdata; struct mii_data *mii; sc = ifp->if_softc; pdata = &sc->pdata; axgbe_printf(2, "%s: Invoked\n", __func__); mtx_lock_spin(&pdata->mdio_mutex); mii = device_get_softc(pdata->axgbe_miibus); axgbe_printf(2, "%s: media_active %#x media_status %#x\n", __func__, mii->mii_media_active, mii->mii_media_status); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; mtx_unlock_spin(&pdata->mdio_mutex); } static int axgbe_ifmedia_upd(struct ifnet *ifp) { struct xgbe_prv_data *pdata; struct axgbe_if_softc *sc; struct mii_data *mii; struct mii_softc *miisc; int ret; sc = ifp->if_softc; pdata = &sc->pdata; axgbe_printf(2, "%s: Invoked\n", __func__); mtx_lock_spin(&pdata->mdio_mutex); mii = device_get_softc(pdata->axgbe_miibus); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); ret = mii_mediachg(mii); mtx_unlock_spin(&pdata->mdio_mutex); return (ret); } static void xgbe_phy_exit(struct xgbe_prv_data *pdata) { if (pdata->axgbe_miibus != NULL) device_delete_child(pdata->dev, pdata->axgbe_miibus); /* free phy_data structure */ free(pdata->phy_data, M_AXGBE); } static int xgbe_phy_init(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data; int ret; /* Initialize the global lock */ if (!mtx_initialized(&xgbe_phy_comm_lock)) mtx_init(&xgbe_phy_comm_lock, "xgbe phy common lock", NULL, MTX_DEF); /* Check if enabled */ if (!xgbe_phy_port_enabled(pdata)) { axgbe_error("device is not enabled\n"); return (-ENODEV); } /* Initialize the I2C controller */ ret = pdata->i2c_if.i2c_init(pdata); if (ret) return (ret); phy_data = malloc(sizeof(*phy_data), M_AXGBE, M_WAITOK | M_ZERO); if (!phy_data) return (-ENOMEM); pdata->phy_data = phy_data; phy_data->port_mode = XP_GET_BITS(pdata->pp0, XP_PROP_0, PORT_MODE); phy_data->port_id = XP_GET_BITS(pdata->pp0, XP_PROP_0, PORT_ID); phy_data->port_speeds = XP_GET_BITS(pdata->pp0, XP_PROP_0, PORT_SPEEDS); phy_data->conn_type = XP_GET_BITS(pdata->pp0, XP_PROP_0, CONN_TYPE); phy_data->mdio_addr = XP_GET_BITS(pdata->pp0, XP_PROP_0, MDIO_ADDR); pdata->mdio_addr = phy_data->mdio_addr; DBGPR("port mode=%u\n", phy_data->port_mode); DBGPR("port id=%u\n", phy_data->port_id); DBGPR("port speeds=%#x\n", phy_data->port_speeds); DBGPR("conn type=%u\n", phy_data->conn_type); DBGPR("mdio addr=%u\n", phy_data->mdio_addr); phy_data->redrv = XP_GET_BITS(pdata->pp4, XP_PROP_4, REDRV_PRESENT); phy_data->redrv_if = XP_GET_BITS(pdata->pp4, XP_PROP_4, REDRV_IF); phy_data->redrv_addr = XP_GET_BITS(pdata->pp4, XP_PROP_4, REDRV_ADDR); phy_data->redrv_lane = XP_GET_BITS(pdata->pp4, XP_PROP_4, REDRV_LANE); phy_data->redrv_model = XP_GET_BITS(pdata->pp4, XP_PROP_4, REDRV_MODEL); if (phy_data->redrv) { DBGPR("redrv present\n"); DBGPR("redrv i/f=%u\n", phy_data->redrv_if); DBGPR("redrv addr=%#x\n", phy_data->redrv_addr); DBGPR("redrv lane=%u\n", phy_data->redrv_lane); DBGPR("redrv model=%u\n", phy_data->redrv_model); } DBGPR("%s: redrv addr=%#x redrv i/f=%u\n", __func__, phy_data->redrv_addr, phy_data->redrv_if); /* Validate the connection requested */ if (xgbe_phy_conn_type_mismatch(pdata)) { axgbe_error("phy mode/connection mismatch " "(%#x/%#x)\n", phy_data->port_mode, phy_data->conn_type); return (-EINVAL); } /* Validate the mode requested */ if (xgbe_phy_port_mode_mismatch(pdata)) { axgbe_error("phy mode/speed mismatch " "(%#x/%#x)\n", phy_data->port_mode, phy_data->port_speeds); return (-EINVAL); } /* Check for and validate MDIO reset support */ ret = xgbe_phy_mdio_reset_setup(pdata); if (ret) { axgbe_error("%s, mdio_reset_setup ret %d\n", __func__, ret); return (ret); } /* Validate the re-driver information */ if (xgbe_phy_redrv_error(phy_data)) { axgbe_error("phy re-driver settings error\n"); return (-EINVAL); } pdata->kr_redrv = phy_data->redrv; /* Indicate current mode is unknown */ phy_data->cur_mode = XGBE_MODE_UNKNOWN; /* Initialize supported features. Current code does not support ethtool */ XGBE_ZERO_SUP(&pdata->phy); DBGPR("%s: port mode %d\n", __func__, phy_data->port_mode); switch (phy_data->port_mode) { /* Backplane support */ case XGBE_PORT_MODE_BACKPLANE: XGBE_SET_SUP(&pdata->phy, Autoneg); XGBE_SET_SUP(&pdata->phy, Pause); XGBE_SET_SUP(&pdata->phy, Asym_Pause); XGBE_SET_SUP(&pdata->phy, Backplane); if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) { XGBE_SET_SUP(&pdata->phy, 1000baseKX_Full); phy_data->start_mode = XGBE_MODE_KX_1000; } if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) { XGBE_SET_SUP(&pdata->phy, 10000baseKR_Full); if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE) XGBE_SET_SUP(&pdata->phy, 10000baseR_FEC); phy_data->start_mode = XGBE_MODE_KR; } phy_data->phydev_mode = XGBE_MDIO_MODE_NONE; break; case XGBE_PORT_MODE_BACKPLANE_2500: XGBE_SET_SUP(&pdata->phy, Pause); XGBE_SET_SUP(&pdata->phy, Asym_Pause); XGBE_SET_SUP(&pdata->phy, Backplane); XGBE_SET_SUP(&pdata->phy, 2500baseX_Full); phy_data->start_mode = XGBE_MODE_KX_2500; phy_data->phydev_mode = XGBE_MDIO_MODE_NONE; break; /* MDIO 1GBase-T support */ case XGBE_PORT_MODE_1000BASE_T: XGBE_SET_SUP(&pdata->phy, Autoneg); XGBE_SET_SUP(&pdata->phy, Pause); XGBE_SET_SUP(&pdata->phy, Asym_Pause); XGBE_SET_SUP(&pdata->phy, TP); if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) { XGBE_SET_SUP(&pdata->phy, 100baseT_Full); phy_data->start_mode = XGBE_MODE_SGMII_100; } if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) { XGBE_SET_SUP(&pdata->phy, 1000baseT_Full); phy_data->start_mode = XGBE_MODE_SGMII_1000; } phy_data->phydev_mode = XGBE_MDIO_MODE_CL22; break; /* MDIO Base-X support */ case XGBE_PORT_MODE_1000BASE_X: XGBE_SET_SUP(&pdata->phy, Autoneg); XGBE_SET_SUP(&pdata->phy, Pause); XGBE_SET_SUP(&pdata->phy, Asym_Pause); XGBE_SET_SUP(&pdata->phy, FIBRE); XGBE_SET_SUP(&pdata->phy, 1000baseX_Full); phy_data->start_mode = XGBE_MODE_X; phy_data->phydev_mode = XGBE_MDIO_MODE_CL22; break; /* MDIO NBase-T support */ case XGBE_PORT_MODE_NBASE_T: XGBE_SET_SUP(&pdata->phy, Autoneg); XGBE_SET_SUP(&pdata->phy, Pause); XGBE_SET_SUP(&pdata->phy, Asym_Pause); XGBE_SET_SUP(&pdata->phy, TP); if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) { XGBE_SET_SUP(&pdata->phy, 100baseT_Full); phy_data->start_mode = XGBE_MODE_SGMII_100; } if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) { XGBE_SET_SUP(&pdata->phy, 1000baseT_Full); phy_data->start_mode = XGBE_MODE_SGMII_1000; } if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_2500) { XGBE_SET_SUP(&pdata->phy, 2500baseT_Full); phy_data->start_mode = XGBE_MODE_KX_2500; } phy_data->phydev_mode = XGBE_MDIO_MODE_CL45; break; /* 10GBase-T support */ case XGBE_PORT_MODE_10GBASE_T: XGBE_SET_SUP(&pdata->phy, Autoneg); XGBE_SET_SUP(&pdata->phy, Pause); XGBE_SET_SUP(&pdata->phy, Asym_Pause); XGBE_SET_SUP(&pdata->phy, TP); if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) { XGBE_SET_SUP(&pdata->phy, 100baseT_Full); phy_data->start_mode = XGBE_MODE_SGMII_100; } if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) { XGBE_SET_SUP(&pdata->phy, 1000baseT_Full); phy_data->start_mode = XGBE_MODE_SGMII_1000; } if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) { XGBE_SET_SUP(&pdata->phy, 10000baseT_Full); phy_data->start_mode = XGBE_MODE_KR; } phy_data->phydev_mode = XGBE_MDIO_MODE_CL45; break; /* 10GBase-R support */ case XGBE_PORT_MODE_10GBASE_R: XGBE_SET_SUP(&pdata->phy, Autoneg); XGBE_SET_SUP(&pdata->phy, Pause); XGBE_SET_SUP(&pdata->phy, Asym_Pause); XGBE_SET_SUP(&pdata->phy, FIBRE); XGBE_SET_SUP(&pdata->phy, 10000baseSR_Full); XGBE_SET_SUP(&pdata->phy, 10000baseLR_Full); XGBE_SET_SUP(&pdata->phy, 10000baseLRM_Full); XGBE_SET_SUP(&pdata->phy, 10000baseER_Full); if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE) XGBE_SET_SUP(&pdata->phy, 10000baseR_FEC); phy_data->start_mode = XGBE_MODE_SFI; phy_data->phydev_mode = XGBE_MDIO_MODE_NONE; break; /* SFP support */ case XGBE_PORT_MODE_SFP: XGBE_SET_SUP(&pdata->phy, Autoneg); XGBE_SET_SUP(&pdata->phy, Pause); XGBE_SET_SUP(&pdata->phy, Asym_Pause); XGBE_SET_SUP(&pdata->phy, TP); XGBE_SET_SUP(&pdata->phy, FIBRE); if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) phy_data->start_mode = XGBE_MODE_SGMII_100; if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) phy_data->start_mode = XGBE_MODE_SGMII_1000; if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) phy_data->start_mode = XGBE_MODE_SFI; phy_data->phydev_mode = XGBE_MDIO_MODE_CL22; xgbe_phy_sfp_setup(pdata); DBGPR("%s: start %d mode %d adv 0x%x\n", __func__, phy_data->start_mode, phy_data->phydev_mode, pdata->phy.advertising); break; default: return (-EINVAL); } axgbe_printf(2, "%s: start %d mode %d adv 0x%x\n", __func__, phy_data->start_mode, phy_data->phydev_mode, pdata->phy.advertising); DBGPR("%s: conn type %d mode %d\n", __func__, phy_data->conn_type, phy_data->phydev_mode); if ((phy_data->conn_type & XGBE_CONN_TYPE_MDIO) && (phy_data->phydev_mode != XGBE_MDIO_MODE_NONE)) { ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->mdio_addr, phy_data->phydev_mode); if (ret) { axgbe_error("mdio port/clause not compatible (%d/%u)\n", phy_data->mdio_addr, phy_data->phydev_mode); return (-EINVAL); } } if (phy_data->redrv && !phy_data->redrv_if) { ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->redrv_addr, XGBE_MDIO_MODE_CL22); if (ret) { axgbe_error("redriver mdio port not compatible (%u)\n", phy_data->redrv_addr); return (-EINVAL); } } phy_data->phy_cdr_delay = XGBE_CDR_DELAY_INIT; if (phy_data->port_mode != XGBE_PORT_MODE_SFP) { ret = mii_attach(pdata->dev, &pdata->axgbe_miibus, pdata->netdev, (ifm_change_cb_t)axgbe_ifmedia_upd, (ifm_stat_cb_t)axgbe_ifmedia_sts, BMSR_DEFCAPMASK, pdata->mdio_addr, MII_OFFSET_ANY, MIIF_FORCEANEG); if (ret){ axgbe_printf(2, "mii attach failed with err=(%d)\n", ret); return (-EINVAL); } } DBGPR("%s: return success\n", __func__); return (0); } void xgbe_init_function_ptrs_phy_v2(struct xgbe_phy_if *phy_if) { struct xgbe_phy_impl_if *phy_impl = &phy_if->phy_impl; phy_impl->init = xgbe_phy_init; phy_impl->exit = xgbe_phy_exit; phy_impl->reset = xgbe_phy_reset; phy_impl->start = xgbe_phy_start; phy_impl->stop = xgbe_phy_stop; phy_impl->link_status = xgbe_phy_link_status; phy_impl->valid_speed = xgbe_phy_valid_speed; phy_impl->use_mode = xgbe_phy_use_mode; phy_impl->set_mode = xgbe_phy_set_mode; phy_impl->get_mode = xgbe_phy_get_mode; phy_impl->switch_mode = xgbe_phy_switch_mode; phy_impl->cur_mode = xgbe_phy_cur_mode; phy_impl->get_type = xgbe_phy_get_type; phy_impl->an_mode = xgbe_phy_an_mode; phy_impl->an_config = xgbe_phy_an_config; phy_impl->an_advertising = xgbe_phy_an_advertising; phy_impl->an_outcome = xgbe_phy_an_outcome; phy_impl->an_pre = xgbe_phy_an_pre; phy_impl->an_post = xgbe_phy_an_post; phy_impl->kr_training_pre = xgbe_phy_kr_training_pre; phy_impl->kr_training_post = xgbe_phy_kr_training_post; phy_impl->module_info = xgbe_phy_module_info; phy_impl->module_eeprom = xgbe_phy_module_eeprom; }