/* * Copyright (C) 2012-2014 Matteo Landi, Luigi Rizzo, Giuseppe Lettieri. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifdef linux #include "bsd_glue.h" #endif /* linux */ #ifdef __APPLE__ #include "osx_glue.h" #endif /* __APPLE__ */ #ifdef __FreeBSD__ #include /* prerequisite */ __FBSDID("$FreeBSD$"); #include #include #include #include /* vtophys */ #include /* vtophys */ #include /* sockaddrs */ #include #include #include #include #include #include /* bus_dmamap_* */ #endif /* __FreeBSD__ */ #include #include #include "netmap_mem2.h" #define NETMAP_BUF_MAX_NUM 20*4096*2 /* large machine */ #define NETMAP_POOL_MAX_NAMSZ 32 enum { NETMAP_IF_POOL = 0, NETMAP_RING_POOL, NETMAP_BUF_POOL, NETMAP_POOLS_NR }; struct netmap_obj_params { u_int size; u_int num; }; struct netmap_obj_pool { char name[NETMAP_POOL_MAX_NAMSZ]; /* name of the allocator */ /* ---------------------------------------------------*/ /* these are only meaningful if the pool is finalized */ /* (see 'finalized' field in netmap_mem_d) */ u_int objtotal; /* actual total number of objects. */ u_int memtotal; /* actual total memory space */ u_int numclusters; /* actual number of clusters */ u_int objfree; /* number of free objects. */ struct lut_entry *lut; /* virt,phys addresses, objtotal entries */ uint32_t *bitmap; /* one bit per buffer, 1 means free */ uint32_t bitmap_slots; /* number of uint32 entries in bitmap */ /* ---------------------------------------------------*/ /* limits */ u_int objminsize; /* minimum object size */ u_int objmaxsize; /* maximum object size */ u_int nummin; /* minimum number of objects */ u_int nummax; /* maximum number of objects */ /* these are changed only by config */ u_int _objtotal; /* total number of objects */ u_int _objsize; /* object size */ u_int _clustsize; /* cluster size */ u_int _clustentries; /* objects per cluster */ u_int _numclusters; /* number of clusters */ /* requested values */ u_int r_objtotal; u_int r_objsize; }; #define NMA_LOCK_T NM_MTX_T struct netmap_mem_ops { void (*nmd_get_lut)(struct netmap_mem_d *, struct netmap_lut*); int (*nmd_get_info)(struct netmap_mem_d *, u_int *size, u_int *memflags, uint16_t *id); vm_paddr_t (*nmd_ofstophys)(struct netmap_mem_d *, vm_ooffset_t); int (*nmd_config)(struct netmap_mem_d *); int (*nmd_finalize)(struct netmap_mem_d *); void (*nmd_deref)(struct netmap_mem_d *); ssize_t (*nmd_if_offset)(struct netmap_mem_d *, const void *vaddr); void (*nmd_delete)(struct netmap_mem_d *); struct netmap_if * (*nmd_if_new)(struct netmap_adapter *); void (*nmd_if_delete)(struct netmap_adapter *, struct netmap_if *); int (*nmd_rings_create)(struct netmap_adapter *); void (*nmd_rings_delete)(struct netmap_adapter *); }; typedef uint16_t nm_memid_t; struct netmap_mem_d { NMA_LOCK_T nm_mtx; /* protect the allocator */ u_int nm_totalsize; /* shorthand */ u_int flags; #define NETMAP_MEM_FINALIZED 0x1 /* preallocation done */ int lasterr; /* last error for curr config */ int active; /* active users */ int refcount; /* the three allocators */ struct netmap_obj_pool pools[NETMAP_POOLS_NR]; nm_memid_t nm_id; /* allocator identifier */ int nm_grp; /* iommu groupd id */ /* list of all existing allocators, sorted by nm_id */ struct netmap_mem_d *prev, *next; struct netmap_mem_ops *ops; }; #define NMD_DEFCB(t0, name) \ t0 \ netmap_mem_##name(struct netmap_mem_d *nmd) \ { \ return nmd->ops->nmd_##name(nmd); \ } #define NMD_DEFCB1(t0, name, t1) \ t0 \ netmap_mem_##name(struct netmap_mem_d *nmd, t1 a1) \ { \ return nmd->ops->nmd_##name(nmd, a1); \ } #define NMD_DEFCB3(t0, name, t1, t2, t3) \ t0 \ netmap_mem_##name(struct netmap_mem_d *nmd, t1 a1, t2 a2, t3 a3) \ { \ return nmd->ops->nmd_##name(nmd, a1, a2, a3); \ } #define NMD_DEFNACB(t0, name) \ t0 \ netmap_mem_##name(struct netmap_adapter *na) \ { \ return na->nm_mem->ops->nmd_##name(na); \ } #define NMD_DEFNACB1(t0, name, t1) \ t0 \ netmap_mem_##name(struct netmap_adapter *na, t1 a1) \ { \ return na->nm_mem->ops->nmd_##name(na, a1); \ } NMD_DEFCB1(void, get_lut, struct netmap_lut *); NMD_DEFCB3(int, get_info, u_int *, u_int *, uint16_t *); NMD_DEFCB1(vm_paddr_t, ofstophys, vm_ooffset_t); static int netmap_mem_config(struct netmap_mem_d *); NMD_DEFCB(int, config); NMD_DEFCB1(ssize_t, if_offset, const void *); NMD_DEFCB(void, delete); NMD_DEFNACB(struct netmap_if *, if_new); NMD_DEFNACB1(void, if_delete, struct netmap_if *); NMD_DEFNACB(int, rings_create); NMD_DEFNACB(void, rings_delete); static int netmap_mem_map(struct netmap_obj_pool *, struct netmap_adapter *); static int netmap_mem_unmap(struct netmap_obj_pool *, struct netmap_adapter *); static int nm_mem_assign_group(struct netmap_mem_d *, struct device *); #define NMA_LOCK_INIT(n) NM_MTX_INIT((n)->nm_mtx) #define NMA_LOCK_DESTROY(n) NM_MTX_DESTROY((n)->nm_mtx) #define NMA_LOCK(n) NM_MTX_LOCK((n)->nm_mtx) #define NMA_UNLOCK(n) NM_MTX_UNLOCK((n)->nm_mtx) #ifdef NM_DEBUG_MEM_PUTGET #define NM_DBG_REFC(nmd, func, line) \ printf("%s:%d mem[%d] -> %d\n", func, line, (nmd)->nm_id, (nmd)->refcount); #else #define NM_DBG_REFC(nmd, func, line) #endif #ifdef NM_DEBUG_MEM_PUTGET void __netmap_mem_get(struct netmap_mem_d *nmd, const char *func, int line) #else void netmap_mem_get(struct netmap_mem_d *nmd) #endif { NMA_LOCK(nmd); nmd->refcount++; NM_DBG_REFC(nmd, func, line); NMA_UNLOCK(nmd); } #ifdef NM_DEBUG_MEM_PUTGET void __netmap_mem_put(struct netmap_mem_d *nmd, const char *func, int line) #else void netmap_mem_put(struct netmap_mem_d *nmd) #endif { int last; NMA_LOCK(nmd); last = (--nmd->refcount == 0); NM_DBG_REFC(nmd, func, line); NMA_UNLOCK(nmd); if (last) netmap_mem_delete(nmd); } int netmap_mem_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na) { if (nm_mem_assign_group(nmd, na->pdev) < 0) { return ENOMEM; } else { nmd->ops->nmd_finalize(nmd); } if (!nmd->lasterr && na->pdev) netmap_mem_map(&nmd->pools[NETMAP_BUF_POOL], na); return nmd->lasterr; } void netmap_mem_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na) { NMA_LOCK(nmd); netmap_mem_unmap(&nmd->pools[NETMAP_BUF_POOL], na); NMA_UNLOCK(nmd); return nmd->ops->nmd_deref(nmd); } /* accessor functions */ static void netmap_mem2_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut) { lut->lut = nmd->pools[NETMAP_BUF_POOL].lut; lut->objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal; lut->objsize = nmd->pools[NETMAP_BUF_POOL]._objsize; } struct netmap_obj_params netmap_params[NETMAP_POOLS_NR] = { [NETMAP_IF_POOL] = { .size = 1024, .num = 100, }, [NETMAP_RING_POOL] = { .size = 9*PAGE_SIZE, .num = 200, }, [NETMAP_BUF_POOL] = { .size = 2048, .num = NETMAP_BUF_MAX_NUM, }, }; struct netmap_obj_params netmap_min_priv_params[NETMAP_POOLS_NR] = { [NETMAP_IF_POOL] = { .size = 1024, .num = 1, }, [NETMAP_RING_POOL] = { .size = 5*PAGE_SIZE, .num = 4, }, [NETMAP_BUF_POOL] = { .size = 2048, .num = 4098, }, }; /* * nm_mem is the memory allocator used for all physical interfaces * running in netmap mode. * Virtual (VALE) ports will have each its own allocator. */ extern struct netmap_mem_ops netmap_mem_global_ops; /* forward */ struct netmap_mem_d nm_mem = { /* Our memory allocator. */ .pools = { [NETMAP_IF_POOL] = { .name = "netmap_if", .objminsize = sizeof(struct netmap_if), .objmaxsize = 4096, .nummin = 10, /* don't be stingy */ .nummax = 10000, /* XXX very large */ }, [NETMAP_RING_POOL] = { .name = "netmap_ring", .objminsize = sizeof(struct netmap_ring), .objmaxsize = 32*PAGE_SIZE, .nummin = 2, .nummax = 1024, }, [NETMAP_BUF_POOL] = { .name = "netmap_buf", .objminsize = 64, .objmaxsize = 65536, .nummin = 4, .nummax = 1000000, /* one million! */ }, }, .nm_id = 1, .nm_grp = -1, .prev = &nm_mem, .next = &nm_mem, .ops = &netmap_mem_global_ops }; struct netmap_mem_d *netmap_last_mem_d = &nm_mem; /* blueprint for the private memory allocators */ extern struct netmap_mem_ops netmap_mem_private_ops; /* forward */ const struct netmap_mem_d nm_blueprint = { .pools = { [NETMAP_IF_POOL] = { .name = "%s_if", .objminsize = sizeof(struct netmap_if), .objmaxsize = 4096, .nummin = 1, .nummax = 100, }, [NETMAP_RING_POOL] = { .name = "%s_ring", .objminsize = sizeof(struct netmap_ring), .objmaxsize = 32*PAGE_SIZE, .nummin = 2, .nummax = 1024, }, [NETMAP_BUF_POOL] = { .name = "%s_buf", .objminsize = 64, .objmaxsize = 65536, .nummin = 4, .nummax = 1000000, /* one million! */ }, }, .flags = NETMAP_MEM_PRIVATE, .ops = &netmap_mem_private_ops }; /* memory allocator related sysctls */ #define STRINGIFY(x) #x #define DECLARE_SYSCTLS(id, name) \ SYSCTL_INT(_dev_netmap, OID_AUTO, name##_size, \ CTLFLAG_RW, &netmap_params[id].size, 0, "Requested size of netmap " STRINGIFY(name) "s"); \ SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_size, \ CTLFLAG_RD, &nm_mem.pools[id]._objsize, 0, "Current size of netmap " STRINGIFY(name) "s"); \ SYSCTL_INT(_dev_netmap, OID_AUTO, name##_num, \ CTLFLAG_RW, &netmap_params[id].num, 0, "Requested number of netmap " STRINGIFY(name) "s"); \ SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_num, \ CTLFLAG_RD, &nm_mem.pools[id].objtotal, 0, "Current number of netmap " STRINGIFY(name) "s"); \ SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_size, \ CTLFLAG_RW, &netmap_min_priv_params[id].size, 0, \ "Default size of private netmap " STRINGIFY(name) "s"); \ SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_num, \ CTLFLAG_RW, &netmap_min_priv_params[id].num, 0, \ "Default number of private netmap " STRINGIFY(name) "s") SYSCTL_DECL(_dev_netmap); DECLARE_SYSCTLS(NETMAP_IF_POOL, if); DECLARE_SYSCTLS(NETMAP_RING_POOL, ring); DECLARE_SYSCTLS(NETMAP_BUF_POOL, buf); static int nm_mem_assign_id(struct netmap_mem_d *nmd) { nm_memid_t id; struct netmap_mem_d *scan = netmap_last_mem_d; int error = ENOMEM; NMA_LOCK(&nm_mem); do { /* we rely on unsigned wrap around */ id = scan->nm_id + 1; if (id == 0) /* reserve 0 as error value */ id = 1; scan = scan->next; if (id != scan->nm_id) { nmd->nm_id = id; nmd->prev = scan->prev; nmd->next = scan; scan->prev->next = nmd; scan->prev = nmd; netmap_last_mem_d = nmd; error = 0; break; } } while (scan != netmap_last_mem_d); NMA_UNLOCK(&nm_mem); return error; } static void nm_mem_release_id(struct netmap_mem_d *nmd) { NMA_LOCK(&nm_mem); nmd->prev->next = nmd->next; nmd->next->prev = nmd->prev; if (netmap_last_mem_d == nmd) netmap_last_mem_d = nmd->prev; nmd->prev = nmd->next = NULL; NMA_UNLOCK(&nm_mem); } static int nm_mem_assign_group(struct netmap_mem_d *nmd, struct device *dev) { int err = 0, id; id = nm_iommu_group_id(dev); if (netmap_verbose) D("iommu_group %d", id); NMA_LOCK(nmd); if (nmd->nm_grp < 0) nmd->nm_grp = id; if (nmd->nm_grp != id) nmd->lasterr = err = ENOMEM; NMA_UNLOCK(nmd); return err; } /* * First, find the allocator that contains the requested offset, * then locate the cluster through a lookup table. */ static vm_paddr_t netmap_mem2_ofstophys(struct netmap_mem_d* nmd, vm_ooffset_t offset) { int i; vm_ooffset_t o = offset; vm_paddr_t pa; struct netmap_obj_pool *p; NMA_LOCK(nmd); p = nmd->pools; for (i = 0; i < NETMAP_POOLS_NR; offset -= p[i].memtotal, i++) { if (offset >= p[i].memtotal) continue; // now lookup the cluster's address pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr) + offset % p[i]._objsize; NMA_UNLOCK(nmd); return pa; } /* this is only in case of errors */ D("invalid ofs 0x%x out of 0x%x 0x%x 0x%x", (u_int)o, p[NETMAP_IF_POOL].memtotal, p[NETMAP_IF_POOL].memtotal + p[NETMAP_RING_POOL].memtotal, p[NETMAP_IF_POOL].memtotal + p[NETMAP_RING_POOL].memtotal + p[NETMAP_BUF_POOL].memtotal); NMA_UNLOCK(nmd); return 0; // XXX bad address } static int netmap_mem2_get_info(struct netmap_mem_d* nmd, u_int* size, u_int *memflags, nm_memid_t *id) { int error = 0; NMA_LOCK(nmd); error = netmap_mem_config(nmd); if (error) goto out; if (size) { if (nmd->flags & NETMAP_MEM_FINALIZED) { *size = nmd->nm_totalsize; } else { int i; *size = 0; for (i = 0; i < NETMAP_POOLS_NR; i++) { struct netmap_obj_pool *p = nmd->pools + i; *size += (p->_numclusters * p->_clustsize); } } } if (memflags) *memflags = nmd->flags; if (id) *id = nmd->nm_id; out: NMA_UNLOCK(nmd); return error; } /* * we store objects by kernel address, need to find the offset * within the pool to export the value to userspace. * Algorithm: scan until we find the cluster, then add the * actual offset in the cluster */ static ssize_t netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr) { int i, k = p->_clustentries, n = p->objtotal; ssize_t ofs = 0; for (i = 0; i < n; i += k, ofs += p->_clustsize) { const char *base = p->lut[i].vaddr; ssize_t relofs = (const char *) vaddr - base; if (relofs < 0 || relofs >= p->_clustsize) continue; ofs = ofs + relofs; ND("%s: return offset %d (cluster %d) for pointer %p", p->name, ofs, i, vaddr); return ofs; } D("address %p is not contained inside any cluster (%s)", vaddr, p->name); return 0; /* An error occurred */ } /* Helper functions which convert virtual addresses to offsets */ #define netmap_if_offset(n, v) \ netmap_obj_offset(&(n)->pools[NETMAP_IF_POOL], (v)) #define netmap_ring_offset(n, v) \ ((n)->pools[NETMAP_IF_POOL].memtotal + \ netmap_obj_offset(&(n)->pools[NETMAP_RING_POOL], (v))) #define netmap_buf_offset(n, v) \ ((n)->pools[NETMAP_IF_POOL].memtotal + \ (n)->pools[NETMAP_RING_POOL].memtotal + \ netmap_obj_offset(&(n)->pools[NETMAP_BUF_POOL], (v))) static ssize_t netmap_mem2_if_offset(struct netmap_mem_d *nmd, const void *addr) { ssize_t v; NMA_LOCK(nmd); v = netmap_if_offset(nmd, addr); NMA_UNLOCK(nmd); return v; } /* * report the index, and use start position as a hint, * otherwise buffer allocation becomes terribly expensive. */ static void * netmap_obj_malloc(struct netmap_obj_pool *p, u_int len, uint32_t *start, uint32_t *index) { uint32_t i = 0; /* index in the bitmap */ uint32_t mask, j; /* slot counter */ void *vaddr = NULL; if (len > p->_objsize) { D("%s request size %d too large", p->name, len); // XXX cannot reduce the size return NULL; } if (p->objfree == 0) { D("no more %s objects", p->name); return NULL; } if (start) i = *start; /* termination is guaranteed by p->free, but better check bounds on i */ while (vaddr == NULL && i < p->bitmap_slots) { uint32_t cur = p->bitmap[i]; if (cur == 0) { /* bitmask is fully used */ i++; continue; } /* locate a slot */ for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1) ; p->bitmap[i] &= ~mask; /* mark object as in use */ p->objfree--; vaddr = p->lut[i * 32 + j].vaddr; if (index) *index = i * 32 + j; } ND("%s allocator: allocated object @ [%d][%d]: vaddr %p", i, j, vaddr); if (start) *start = i; return vaddr; } /* * free by index, not by address. * XXX should we also cleanup the content ? */ static int netmap_obj_free(struct netmap_obj_pool *p, uint32_t j) { uint32_t *ptr, mask; if (j >= p->objtotal) { D("invalid index %u, max %u", j, p->objtotal); return 1; } ptr = &p->bitmap[j / 32]; mask = (1 << (j % 32)); if (*ptr & mask) { D("ouch, double free on buffer %d", j); return 1; } else { *ptr |= mask; p->objfree++; return 0; } } /* * free by address. This is slow but is only used for a few * objects (rings, nifp) */ static void netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr) { u_int i, j, n = p->numclusters; for (i = 0, j = 0; i < n; i++, j += p->_clustentries) { void *base = p->lut[i * p->_clustentries].vaddr; ssize_t relofs = (ssize_t) vaddr - (ssize_t) base; /* Given address, is out of the scope of the current cluster.*/ if (vaddr < base || relofs >= p->_clustsize) continue; j = j + relofs / p->_objsize; /* KASSERT(j != 0, ("Cannot free object 0")); */ netmap_obj_free(p, j); return; } D("address %p is not contained inside any cluster (%s)", vaddr, p->name); } #define netmap_mem_bufsize(n) \ ((n)->pools[NETMAP_BUF_POOL]._objsize) #define netmap_if_malloc(n, len) netmap_obj_malloc(&(n)->pools[NETMAP_IF_POOL], len, NULL, NULL) #define netmap_if_free(n, v) netmap_obj_free_va(&(n)->pools[NETMAP_IF_POOL], (v)) #define netmap_ring_malloc(n, len) netmap_obj_malloc(&(n)->pools[NETMAP_RING_POOL], len, NULL, NULL) #define netmap_ring_free(n, v) netmap_obj_free_va(&(n)->pools[NETMAP_RING_POOL], (v)) #define netmap_buf_malloc(n, _pos, _index) \ netmap_obj_malloc(&(n)->pools[NETMAP_BUF_POOL], netmap_mem_bufsize(n), _pos, _index) #if 0 // XXX unused /* Return the index associated to the given packet buffer */ #define netmap_buf_index(n, v) \ (netmap_obj_offset(&(n)->pools[NETMAP_BUF_POOL], (v)) / NETMAP_BDG_BUF_SIZE(n)) #endif /* * allocate extra buffers in a linked list. * returns the actual number. */ uint32_t netmap_extra_alloc(struct netmap_adapter *na, uint32_t *head, uint32_t n) { struct netmap_mem_d *nmd = na->nm_mem; uint32_t i, pos = 0; /* opaque, scan position in the bitmap */ NMA_LOCK(nmd); *head = 0; /* default, 'null' index ie empty list */ for (i = 0 ; i < n; i++) { uint32_t cur = *head; /* save current head */ uint32_t *p = netmap_buf_malloc(nmd, &pos, head); if (p == NULL) { D("no more buffers after %d of %d", i, n); *head = cur; /* restore */ break; } RD(5, "allocate buffer %d -> %d", *head, cur); *p = cur; /* link to previous head */ } NMA_UNLOCK(nmd); return i; } static void netmap_extra_free(struct netmap_adapter *na, uint32_t head) { struct lut_entry *lut = na->na_lut.lut; struct netmap_mem_d *nmd = na->nm_mem; struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL]; uint32_t i, cur, *buf; D("freeing the extra list"); for (i = 0; head >=2 && head < p->objtotal; i++) { cur = head; buf = lut[head].vaddr; head = *buf; *buf = 0; if (netmap_obj_free(p, cur)) break; } if (head != 0) D("breaking with head %d", head); D("freed %d buffers", i); } /* Return nonzero on error */ static int netmap_new_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n) { struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL]; u_int i = 0; /* slot counter */ uint32_t pos = 0; /* slot in p->bitmap */ uint32_t index = 0; /* buffer index */ for (i = 0; i < n; i++) { void *vaddr = netmap_buf_malloc(nmd, &pos, &index); if (vaddr == NULL) { D("no more buffers after %d of %d", i, n); goto cleanup; } slot[i].buf_idx = index; slot[i].len = p->_objsize; slot[i].flags = 0; } ND("allocated %d buffers, %d available, first at %d", n, p->objfree, pos); return (0); cleanup: while (i > 0) { i--; netmap_obj_free(p, slot[i].buf_idx); } bzero(slot, n * sizeof(slot[0])); return (ENOMEM); } static void netmap_mem_set_ring(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n, uint32_t index) { struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL]; u_int i; for (i = 0; i < n; i++) { slot[i].buf_idx = index; slot[i].len = p->_objsize; slot[i].flags = 0; } } static void netmap_free_buf(struct netmap_mem_d *nmd, uint32_t i) { struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL]; if (i < 2 || i >= p->objtotal) { D("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal); return; } netmap_obj_free(p, i); } static void netmap_free_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n) { u_int i; for (i = 0; i < n; i++) { if (slot[i].buf_idx > 2) netmap_free_buf(nmd, slot[i].buf_idx); } } static void netmap_reset_obj_allocator(struct netmap_obj_pool *p) { if (p == NULL) return; if (p->bitmap) free(p->bitmap, M_NETMAP); p->bitmap = NULL; if (p->lut) { u_int i; size_t sz = p->_clustsize; /* * Free each cluster allocated in * netmap_finalize_obj_allocator(). The cluster start * addresses are stored at multiples of p->_clusterentries * in the lut. */ for (i = 0; i < p->objtotal; i += p->_clustentries) { if (p->lut[i].vaddr) contigfree(p->lut[i].vaddr, sz, M_NETMAP); } bzero(p->lut, sizeof(struct lut_entry) * p->objtotal); #ifdef linux vfree(p->lut); #else free(p->lut, M_NETMAP); #endif } p->lut = NULL; p->objtotal = 0; p->memtotal = 0; p->numclusters = 0; p->objfree = 0; } /* * Free all resources related to an allocator. */ static void netmap_destroy_obj_allocator(struct netmap_obj_pool *p) { if (p == NULL) return; netmap_reset_obj_allocator(p); } /* * We receive a request for objtotal objects, of size objsize each. * Internally we may round up both numbers, as we allocate objects * in small clusters multiple of the page size. * We need to keep track of objtotal and clustentries, * as they are needed when freeing memory. * * XXX note -- userspace needs the buffers to be contiguous, * so we cannot afford gaps at the end of a cluster. */ /* call with NMA_LOCK held */ static int netmap_config_obj_allocator(struct netmap_obj_pool *p, u_int objtotal, u_int objsize) { int i; u_int clustsize; /* the cluster size, multiple of page size */ u_int clustentries; /* how many objects per entry */ /* we store the current request, so we can * detect configuration changes later */ p->r_objtotal = objtotal; p->r_objsize = objsize; #define MAX_CLUSTSIZE (1<<22) // 4 MB #define LINE_ROUND NM_CACHE_ALIGN // 64 if (objsize >= MAX_CLUSTSIZE) { /* we could do it but there is no point */ D("unsupported allocation for %d bytes", objsize); return EINVAL; } /* make sure objsize is a multiple of LINE_ROUND */ i = (objsize & (LINE_ROUND - 1)); if (i) { D("XXX aligning object by %d bytes", LINE_ROUND - i); objsize += LINE_ROUND - i; } if (objsize < p->objminsize || objsize > p->objmaxsize) { D("requested objsize %d out of range [%d, %d]", objsize, p->objminsize, p->objmaxsize); return EINVAL; } if (objtotal < p->nummin || objtotal > p->nummax) { D("requested objtotal %d out of range [%d, %d]", objtotal, p->nummin, p->nummax); return EINVAL; } /* * Compute number of objects using a brute-force approach: * given a max cluster size, * we try to fill it with objects keeping track of the * wasted space to the next page boundary. */ for (clustentries = 0, i = 1;; i++) { u_int delta, used = i * objsize; if (used > MAX_CLUSTSIZE) break; delta = used % PAGE_SIZE; if (delta == 0) { // exact solution clustentries = i; break; } } /* exact solution not found */ if (clustentries == 0) { D("unsupported allocation for %d bytes", objsize); return EINVAL; } /* compute clustsize */ clustsize = clustentries * objsize; if (netmap_verbose) D("objsize %d clustsize %d objects %d", objsize, clustsize, clustentries); /* * The number of clusters is n = ceil(objtotal/clustentries) * objtotal' = n * clustentries */ p->_clustentries = clustentries; p->_clustsize = clustsize; p->_numclusters = (objtotal + clustentries - 1) / clustentries; /* actual values (may be larger than requested) */ p->_objsize = objsize; p->_objtotal = p->_numclusters * clustentries; return 0; } /* call with NMA_LOCK held */ static int netmap_finalize_obj_allocator(struct netmap_obj_pool *p) { int i; /* must be signed */ size_t n; /* optimistically assume we have enough memory */ p->numclusters = p->_numclusters; p->objtotal = p->_objtotal; n = sizeof(struct lut_entry) * p->objtotal; #ifdef linux p->lut = vmalloc(n); #else p->lut = malloc(n, M_NETMAP, M_NOWAIT | M_ZERO); #endif if (p->lut == NULL) { D("Unable to create lookup table (%d bytes) for '%s'", (int)n, p->name); goto clean; } /* Allocate the bitmap */ n = (p->objtotal + 31) / 32; p->bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP, M_NOWAIT | M_ZERO); if (p->bitmap == NULL) { D("Unable to create bitmap (%d entries) for allocator '%s'", (int)n, p->name); goto clean; } p->bitmap_slots = n; /* * Allocate clusters, init pointers and bitmap */ n = p->_clustsize; for (i = 0; i < (int)p->objtotal;) { int lim = i + p->_clustentries; char *clust; clust = contigmalloc(n, M_NETMAP, M_NOWAIT | M_ZERO, (size_t)0, -1UL, PAGE_SIZE, 0); if (clust == NULL) { /* * If we get here, there is a severe memory shortage, * so halve the allocated memory to reclaim some. */ D("Unable to create cluster at %d for '%s' allocator", i, p->name); if (i < 2) /* nothing to halve */ goto out; lim = i / 2; for (i--; i >= lim; i--) { p->bitmap[ (i>>5) ] &= ~( 1 << (i & 31) ); if (i % p->_clustentries == 0 && p->lut[i].vaddr) contigfree(p->lut[i].vaddr, n, M_NETMAP); p->lut[i].vaddr = NULL; } out: p->objtotal = i; /* we may have stopped in the middle of a cluster */ p->numclusters = (i + p->_clustentries - 1) / p->_clustentries; break; } /* * Set bitmap and lut state for all buffers in the current * cluster. * * [i, lim) is the set of buffer indexes that cover the * current cluster. * * 'clust' is really the address of the current buffer in * the current cluster as we index through it with a stride * of p->_objsize. */ for (; i < lim; i++, clust += p->_objsize) { p->bitmap[ (i>>5) ] |= ( 1 << (i & 31) ); p->lut[i].vaddr = clust; p->lut[i].paddr = vtophys(clust); } } p->objfree = p->objtotal; p->memtotal = p->numclusters * p->_clustsize; if (p->objfree == 0) goto clean; if (netmap_verbose) D("Pre-allocated %d clusters (%d/%dKB) for '%s'", p->numclusters, p->_clustsize >> 10, p->memtotal >> 10, p->name); return 0; clean: netmap_reset_obj_allocator(p); return ENOMEM; } /* call with lock held */ static int netmap_memory_config_changed(struct netmap_mem_d *nmd) { int i; for (i = 0; i < NETMAP_POOLS_NR; i++) { if (nmd->pools[i].r_objsize != netmap_params[i].size || nmd->pools[i].r_objtotal != netmap_params[i].num) return 1; } return 0; } static void netmap_mem_reset_all(struct netmap_mem_d *nmd) { int i; if (netmap_verbose) D("resetting %p", nmd); for (i = 0; i < NETMAP_POOLS_NR; i++) { netmap_reset_obj_allocator(&nmd->pools[i]); } nmd->flags &= ~NETMAP_MEM_FINALIZED; } static int netmap_mem_unmap(struct netmap_obj_pool *p, struct netmap_adapter *na) { int i, lim = p->_objtotal; if (na->pdev == NULL) return 0; #ifdef __FreeBSD__ (void)i; (void)lim; D("unsupported on FreeBSD"); #else /* linux */ for (i = 2; i < lim; i++) { netmap_unload_map(na, (bus_dma_tag_t) na->pdev, &p->lut[i].paddr); } #endif /* linux */ return 0; } static int netmap_mem_map(struct netmap_obj_pool *p, struct netmap_adapter *na) { #ifdef __FreeBSD__ D("unsupported on FreeBSD"); #else /* linux */ int i, lim = p->_objtotal; if (na->pdev == NULL) return 0; for (i = 2; i < lim; i++) { netmap_load_map(na, (bus_dma_tag_t) na->pdev, &p->lut[i].paddr, p->lut[i].vaddr); } #endif /* linux */ return 0; } static int netmap_mem_finalize_all(struct netmap_mem_d *nmd) { int i; if (nmd->flags & NETMAP_MEM_FINALIZED) return 0; nmd->lasterr = 0; nmd->nm_totalsize = 0; for (i = 0; i < NETMAP_POOLS_NR; i++) { nmd->lasterr = netmap_finalize_obj_allocator(&nmd->pools[i]); if (nmd->lasterr) goto error; nmd->nm_totalsize += nmd->pools[i].memtotal; } /* buffers 0 and 1 are reserved */ nmd->pools[NETMAP_BUF_POOL].objfree -= 2; nmd->pools[NETMAP_BUF_POOL].bitmap[0] = ~3; nmd->flags |= NETMAP_MEM_FINALIZED; if (netmap_verbose) D("interfaces %d KB, rings %d KB, buffers %d MB", nmd->pools[NETMAP_IF_POOL].memtotal >> 10, nmd->pools[NETMAP_RING_POOL].memtotal >> 10, nmd->pools[NETMAP_BUF_POOL].memtotal >> 20); if (netmap_verbose) D("Free buffers: %d", nmd->pools[NETMAP_BUF_POOL].objfree); return 0; error: netmap_mem_reset_all(nmd); return nmd->lasterr; } static void netmap_mem_private_delete(struct netmap_mem_d *nmd) { if (nmd == NULL) return; if (netmap_verbose) D("deleting %p", nmd); if (nmd->active > 0) D("bug: deleting mem allocator with active=%d!", nmd->active); nm_mem_release_id(nmd); if (netmap_verbose) D("done deleting %p", nmd); NMA_LOCK_DESTROY(nmd); free(nmd, M_DEVBUF); } static int netmap_mem_private_config(struct netmap_mem_d *nmd) { /* nothing to do, we are configured on creation * and configuration never changes thereafter */ return 0; } static int netmap_mem_private_finalize(struct netmap_mem_d *nmd) { int err; NMA_LOCK(nmd); nmd->active++; err = netmap_mem_finalize_all(nmd); NMA_UNLOCK(nmd); return err; } static void netmap_mem_private_deref(struct netmap_mem_d *nmd) { NMA_LOCK(nmd); if (--nmd->active <= 0) netmap_mem_reset_all(nmd); NMA_UNLOCK(nmd); } /* * allocator for private memory */ struct netmap_mem_d * netmap_mem_private_new(const char *name, u_int txr, u_int txd, u_int rxr, u_int rxd, u_int extra_bufs, u_int npipes, int *perr) { struct netmap_mem_d *d = NULL; struct netmap_obj_params p[NETMAP_POOLS_NR]; int i, err; u_int v, maxd; d = malloc(sizeof(struct netmap_mem_d), M_DEVBUF, M_NOWAIT | M_ZERO); if (d == NULL) { err = ENOMEM; goto error; } *d = nm_blueprint; err = nm_mem_assign_id(d); if (err) goto error; /* account for the fake host rings */ txr++; rxr++; /* copy the min values */ for (i = 0; i < NETMAP_POOLS_NR; i++) { p[i] = netmap_min_priv_params[i]; } /* possibly increase them to fit user request */ v = sizeof(struct netmap_if) + sizeof(ssize_t) * (txr + rxr); if (p[NETMAP_IF_POOL].size < v) p[NETMAP_IF_POOL].size = v; v = 2 + 4 * npipes; if (p[NETMAP_IF_POOL].num < v) p[NETMAP_IF_POOL].num = v; maxd = (txd > rxd) ? txd : rxd; v = sizeof(struct netmap_ring) + sizeof(struct netmap_slot) * maxd; if (p[NETMAP_RING_POOL].size < v) p[NETMAP_RING_POOL].size = v; /* each pipe endpoint needs two tx rings (1 normal + 1 host, fake) * and two rx rings (again, 1 normal and 1 fake host) */ v = txr + rxr + 8 * npipes; if (p[NETMAP_RING_POOL].num < v) p[NETMAP_RING_POOL].num = v; /* for each pipe we only need the buffers for the 4 "real" rings. * On the other end, the pipe ring dimension may be different from * the parent port ring dimension. As a compromise, we allocate twice the * space actually needed if the pipe rings were the same size as the parent rings */ v = (4 * npipes + rxr) * rxd + (4 * npipes + txr) * txd + 2 + extra_bufs; /* the +2 is for the tx and rx fake buffers (indices 0 and 1) */ if (p[NETMAP_BUF_POOL].num < v) p[NETMAP_BUF_POOL].num = v; if (netmap_verbose) D("req if %d*%d ring %d*%d buf %d*%d", p[NETMAP_IF_POOL].num, p[NETMAP_IF_POOL].size, p[NETMAP_RING_POOL].num, p[NETMAP_RING_POOL].size, p[NETMAP_BUF_POOL].num, p[NETMAP_BUF_POOL].size); for (i = 0; i < NETMAP_POOLS_NR; i++) { snprintf(d->pools[i].name, NETMAP_POOL_MAX_NAMSZ, nm_blueprint.pools[i].name, name); err = netmap_config_obj_allocator(&d->pools[i], p[i].num, p[i].size); if (err) goto error; } d->flags &= ~NETMAP_MEM_FINALIZED; NMA_LOCK_INIT(d); return d; error: netmap_mem_private_delete(d); if (perr) *perr = err; return NULL; } /* call with lock held */ static int netmap_mem_global_config(struct netmap_mem_d *nmd) { int i; if (nmd->active) /* already in use, we cannot change the configuration */ goto out; if (!netmap_memory_config_changed(nmd)) goto out; ND("reconfiguring"); if (nmd->flags & NETMAP_MEM_FINALIZED) { /* reset previous allocation */ for (i = 0; i < NETMAP_POOLS_NR; i++) { netmap_reset_obj_allocator(&nmd->pools[i]); } nmd->flags &= ~NETMAP_MEM_FINALIZED; } for (i = 0; i < NETMAP_POOLS_NR; i++) { nmd->lasterr = netmap_config_obj_allocator(&nmd->pools[i], netmap_params[i].num, netmap_params[i].size); if (nmd->lasterr) goto out; } out: return nmd->lasterr; } static int netmap_mem_global_finalize(struct netmap_mem_d *nmd) { int err; /* update configuration if changed */ if (netmap_mem_global_config(nmd)) goto out; nmd->active++; if (nmd->flags & NETMAP_MEM_FINALIZED) { /* may happen if config is not changed */ ND("nothing to do"); goto out; } if (netmap_mem_finalize_all(nmd)) goto out; nmd->lasterr = 0; out: if (nmd->lasterr) nmd->active--; err = nmd->lasterr; return err; } static void netmap_mem_global_delete(struct netmap_mem_d *nmd) { int i; for (i = 0; i < NETMAP_POOLS_NR; i++) { netmap_destroy_obj_allocator(&nm_mem.pools[i]); } NMA_LOCK_DESTROY(&nm_mem); } int netmap_mem_init(void) { NMA_LOCK_INIT(&nm_mem); netmap_mem_get(&nm_mem); return (0); } void netmap_mem_fini(void) { netmap_mem_put(&nm_mem); } static void netmap_free_rings(struct netmap_adapter *na) { enum txrx t; for_rx_tx(t) { u_int i; for (i = 0; i < netmap_real_rings(na, t); i++) { struct netmap_kring *kring = &NMR(na, t)[i]; struct netmap_ring *ring = kring->ring; if (ring == NULL) continue; netmap_free_bufs(na->nm_mem, ring->slot, kring->nkr_num_slots); netmap_ring_free(na->nm_mem, ring); kring->ring = NULL; } } } /* call with NMA_LOCK held * * * Allocate netmap rings and buffers for this card * The rings are contiguous, but have variable size. * The kring array must follow the layout described * in netmap_krings_create(). */ static int netmap_mem2_rings_create(struct netmap_adapter *na) { enum txrx t; NMA_LOCK(na->nm_mem); for_rx_tx(t) { u_int i; for (i = 0; i <= nma_get_nrings(na, t); i++) { struct netmap_kring *kring = &NMR(na, t)[i]; struct netmap_ring *ring = kring->ring; u_int len, ndesc; if (ring) { ND("%s already created", kring->name); continue; /* already created by somebody else */ } ndesc = kring->nkr_num_slots; len = sizeof(struct netmap_ring) + ndesc * sizeof(struct netmap_slot); ring = netmap_ring_malloc(na->nm_mem, len); if (ring == NULL) { D("Cannot allocate %s_ring", nm_txrx2str(t)); goto cleanup; } ND("txring at %p", ring); kring->ring = ring; *(uint32_t *)(uintptr_t)&ring->num_slots = ndesc; *(int64_t *)(uintptr_t)&ring->buf_ofs = (na->nm_mem->pools[NETMAP_IF_POOL].memtotal + na->nm_mem->pools[NETMAP_RING_POOL].memtotal) - netmap_ring_offset(na->nm_mem, ring); /* copy values from kring */ ring->head = kring->rhead; ring->cur = kring->rcur; ring->tail = kring->rtail; *(uint16_t *)(uintptr_t)&ring->nr_buf_size = netmap_mem_bufsize(na->nm_mem); ND("%s h %d c %d t %d", kring->name, ring->head, ring->cur, ring->tail); ND("initializing slots for %s_ring", nm_txrx2str(txrx)); if (i != nma_get_nrings(na, t) || (na->na_flags & NAF_HOST_RINGS)) { /* this is a real ring */ if (netmap_new_bufs(na->nm_mem, ring->slot, ndesc)) { D("Cannot allocate buffers for %s_ring", nm_txrx2str(t)); goto cleanup; } } else { /* this is a fake ring, set all indices to 0 */ netmap_mem_set_ring(na->nm_mem, ring->slot, ndesc, 0); } /* ring info */ *(uint16_t *)(uintptr_t)&ring->ringid = kring->ring_id; *(uint16_t *)(uintptr_t)&ring->dir = kring->tx; } } NMA_UNLOCK(na->nm_mem); return 0; cleanup: netmap_free_rings(na); NMA_UNLOCK(na->nm_mem); return ENOMEM; } static void netmap_mem2_rings_delete(struct netmap_adapter *na) { /* last instance, release bufs and rings */ NMA_LOCK(na->nm_mem); netmap_free_rings(na); NMA_UNLOCK(na->nm_mem); } /* call with NMA_LOCK held */ /* * Allocate the per-fd structure netmap_if. * * We assume that the configuration stored in na * (number of tx/rx rings and descs) does not change while * the interface is in netmap mode. */ static struct netmap_if * netmap_mem2_if_new(struct netmap_adapter *na) { struct netmap_if *nifp; ssize_t base; /* handy for relative offsets between rings and nifp */ u_int i, len, n[NR_TXRX], ntot; enum txrx t; ntot = 0; for_rx_tx(t) { /* account for the (eventually fake) host rings */ n[t] = nma_get_nrings(na, t) + 1; ntot += n[t]; } /* * the descriptor is followed inline by an array of offsets * to the tx and rx rings in the shared memory region. */ NMA_LOCK(na->nm_mem); len = sizeof(struct netmap_if) + (ntot * sizeof(ssize_t)); nifp = netmap_if_malloc(na->nm_mem, len); if (nifp == NULL) { NMA_UNLOCK(na->nm_mem); return NULL; } /* initialize base fields -- override const */ *(u_int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings; *(u_int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings; strncpy(nifp->ni_name, na->name, (size_t)IFNAMSIZ); /* * fill the slots for the rx and tx rings. They contain the offset * between the ring and nifp, so the information is usable in * userspace to reach the ring from the nifp. */ base = netmap_if_offset(na->nm_mem, nifp); for (i = 0; i < n[NR_TX]; i++) { *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] = netmap_ring_offset(na->nm_mem, na->tx_rings[i].ring) - base; } for (i = 0; i < n[NR_RX]; i++) { *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n[NR_TX]] = netmap_ring_offset(na->nm_mem, na->rx_rings[i].ring) - base; } NMA_UNLOCK(na->nm_mem); return (nifp); } static void netmap_mem2_if_delete(struct netmap_adapter *na, struct netmap_if *nifp) { if (nifp == NULL) /* nothing to do */ return; NMA_LOCK(na->nm_mem); if (nifp->ni_bufs_head) netmap_extra_free(na, nifp->ni_bufs_head); netmap_if_free(na->nm_mem, nifp); NMA_UNLOCK(na->nm_mem); } static void netmap_mem_global_deref(struct netmap_mem_d *nmd) { nmd->active--; if (!nmd->active) nmd->nm_grp = -1; if (netmap_verbose) D("active = %d", nmd->active); } struct netmap_mem_ops netmap_mem_global_ops = { .nmd_get_lut = netmap_mem2_get_lut, .nmd_get_info = netmap_mem2_get_info, .nmd_ofstophys = netmap_mem2_ofstophys, .nmd_config = netmap_mem_global_config, .nmd_finalize = netmap_mem_global_finalize, .nmd_deref = netmap_mem_global_deref, .nmd_delete = netmap_mem_global_delete, .nmd_if_offset = netmap_mem2_if_offset, .nmd_if_new = netmap_mem2_if_new, .nmd_if_delete = netmap_mem2_if_delete, .nmd_rings_create = netmap_mem2_rings_create, .nmd_rings_delete = netmap_mem2_rings_delete }; struct netmap_mem_ops netmap_mem_private_ops = { .nmd_get_lut = netmap_mem2_get_lut, .nmd_get_info = netmap_mem2_get_info, .nmd_ofstophys = netmap_mem2_ofstophys, .nmd_config = netmap_mem_private_config, .nmd_finalize = netmap_mem_private_finalize, .nmd_deref = netmap_mem_private_deref, .nmd_if_offset = netmap_mem2_if_offset, .nmd_delete = netmap_mem_private_delete, .nmd_if_new = netmap_mem2_if_new, .nmd_if_delete = netmap_mem2_if_delete, .nmd_rings_create = netmap_mem2_rings_create, .nmd_rings_delete = netmap_mem2_rings_delete };