/*- * Copyright (c) 2000 Orion Hodson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHERIN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THEPOSSIBILITY OF * SUCH DAMAGE. */ /* * This driver exists largely as a result of other people's efforts. * Much of register handling is based on NetBSD CMI8x38 audio driver * by Takuya Shiozaki . Chen-Li Tien * clarified points regarding the DMA related * registers and the 8738 mixer devices. His Linux driver was also a * useful reference point. * * TODO: MIDI * * SPDIF contributed by Gerhard Gonter . * * This card/code does not always manage to sample at 44100 - actual * rate drifts slightly between recordings (usually 0-3%). No * differences visible in register dumps between times that work and * those that don't. */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_snd.h" #endif #include #include #include #include #include #include #include #include "mixer_if.h" #include "mpufoi_if.h" SND_DECLARE_FILE("$FreeBSD$"); /* Supported chip ID's */ #define CMI8338A_PCI_ID 0x010013f6 #define CMI8338B_PCI_ID 0x010113f6 #define CMI8738_PCI_ID 0x011113f6 #define CMI8738B_PCI_ID 0x011213f6 #define CMI120_USB_ID 0x01030d8c /* Buffer size max is 64k for permitted DMA boundaries */ #define CMI_DEFAULT_BUFSZ 16384 /* Interrupts per length of buffer */ #define CMI_INTR_PER_BUFFER 2 /* Clarify meaning of named defines in cmireg.h */ #define CMPCI_REG_DMA0_MAX_SAMPLES CMPCI_REG_DMA0_BYTES #define CMPCI_REG_DMA0_INTR_SAMPLES CMPCI_REG_DMA0_SAMPLES #define CMPCI_REG_DMA1_MAX_SAMPLES CMPCI_REG_DMA1_BYTES #define CMPCI_REG_DMA1_INTR_SAMPLES CMPCI_REG_DMA1_SAMPLES /* Our indication of custom mixer control */ #define CMPCI_NON_SB16_CONTROL 0xff /* Debugging macro's */ #undef DEB #ifndef DEB #define DEB(x) /* x */ #endif /* DEB */ #ifndef DEBMIX #define DEBMIX(x) /* x */ #endif /* DEBMIX */ /* ------------------------------------------------------------------------- */ /* Structures */ struct sc_info; struct sc_chinfo { struct sc_info *parent; struct pcm_channel *channel; struct snd_dbuf *buffer; u_int32_t fmt, spd, phys_buf, bps; u_int32_t dma_active:1, dma_was_active:1; int dir; }; struct sc_info { device_t dev; bus_space_tag_t st; bus_space_handle_t sh; bus_dma_tag_t parent_dmat; struct resource *reg, *irq; int regid, irqid; void *ih; struct mtx *lock; int spdif_enabled; unsigned int bufsz; struct sc_chinfo pch, rch; struct mpu401 *mpu; mpu401_intr_t *mpu_intr; struct resource *mpu_reg; int mpu_regid; bus_space_tag_t mpu_bt; bus_space_handle_t mpu_bh; }; /* Channel caps */ static u_int32_t cmi_fmt[] = { SND_FORMAT(AFMT_U8, 1, 0), SND_FORMAT(AFMT_U8, 2, 0), SND_FORMAT(AFMT_S16_LE, 1, 0), SND_FORMAT(AFMT_S16_LE, 2, 0), 0 }; static struct pcmchan_caps cmi_caps = {5512, 48000, cmi_fmt, 0}; /* ------------------------------------------------------------------------- */ /* Register Utilities */ static u_int32_t cmi_rd(struct sc_info *sc, int regno, int size) { switch (size) { case 1: return bus_space_read_1(sc->st, sc->sh, regno); case 2: return bus_space_read_2(sc->st, sc->sh, regno); case 4: return bus_space_read_4(sc->st, sc->sh, regno); default: DEB(printf("cmi_rd: failed 0x%04x %d\n", regno, size)); return 0xFFFFFFFF; } } static void cmi_wr(struct sc_info *sc, int regno, u_int32_t data, int size) { switch (size) { case 1: bus_space_write_1(sc->st, sc->sh, regno, data); break; case 2: bus_space_write_2(sc->st, sc->sh, regno, data); break; case 4: bus_space_write_4(sc->st, sc->sh, regno, data); break; } } static void cmi_partial_wr4(struct sc_info *sc, int reg, int shift, u_int32_t mask, u_int32_t val) { u_int32_t r; r = cmi_rd(sc, reg, 4); r &= ~(mask << shift); r |= val << shift; cmi_wr(sc, reg, r, 4); } static void cmi_clr4(struct sc_info *sc, int reg, u_int32_t mask) { u_int32_t r; r = cmi_rd(sc, reg, 4); r &= ~mask; cmi_wr(sc, reg, r, 4); } static void cmi_set4(struct sc_info *sc, int reg, u_int32_t mask) { u_int32_t r; r = cmi_rd(sc, reg, 4); r |= mask; cmi_wr(sc, reg, r, 4); } /* ------------------------------------------------------------------------- */ /* Rate Mapping */ static int cmi_rates[] = {5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000}; #define NUM_CMI_RATES (sizeof(cmi_rates)/sizeof(cmi_rates[0])) /* cmpci_rate_to_regvalue returns sampling freq selector for FCR1 * register - reg order is 5k,11k,22k,44k,8k,16k,32k,48k */ static u_int32_t cmpci_rate_to_regvalue(int rate) { int i, r; for(i = 0; i < NUM_CMI_RATES - 1; i++) { if (rate < ((cmi_rates[i] + cmi_rates[i + 1]) / 2)) { break; } } DEB(printf("cmpci_rate_to_regvalue: %d -> %d\n", rate, cmi_rates[i])); r = ((i >> 1) | (i << 2)) & 0x07; return r; } static int cmpci_regvalue_to_rate(u_int32_t r) { int i; i = ((r << 1) | (r >> 2)) & 0x07; DEB(printf("cmpci_regvalue_to_rate: %d -> %d\n", r, i)); return cmi_rates[i]; } /* ------------------------------------------------------------------------- */ /* ADC/DAC control - there are 2 dma channels on 8738, either can be * playback or capture. We use ch0 for playback and ch1 for capture. */ static void cmi_dma_prog(struct sc_info *sc, struct sc_chinfo *ch, u_int32_t base) { u_int32_t s, i, sz; ch->phys_buf = sndbuf_getbufaddr(ch->buffer); cmi_wr(sc, base, ch->phys_buf, 4); sz = (u_int32_t)sndbuf_getsize(ch->buffer); s = sz / ch->bps - 1; cmi_wr(sc, base + 4, s, 2); i = sz / (ch->bps * CMI_INTR_PER_BUFFER) - 1; cmi_wr(sc, base + 6, i, 2); } static void cmi_ch0_start(struct sc_info *sc, struct sc_chinfo *ch) { cmi_dma_prog(sc, ch, CMPCI_REG_DMA0_BASE); cmi_set4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE); cmi_set4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE); ch->dma_active = 1; } static u_int32_t cmi_ch0_stop(struct sc_info *sc, struct sc_chinfo *ch) { u_int32_t r = ch->dma_active; cmi_clr4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE); cmi_clr4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE); cmi_set4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET); cmi_clr4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET); ch->dma_active = 0; return r; } static void cmi_ch1_start(struct sc_info *sc, struct sc_chinfo *ch) { cmi_dma_prog(sc, ch, CMPCI_REG_DMA1_BASE); cmi_set4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE); /* Enable Interrupts */ cmi_set4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE); DEB(printf("cmi_ch1_start: dma prog\n")); ch->dma_active = 1; } static u_int32_t cmi_ch1_stop(struct sc_info *sc, struct sc_chinfo *ch) { u_int32_t r = ch->dma_active; cmi_clr4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE); cmi_clr4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE); cmi_set4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET); cmi_clr4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET); ch->dma_active = 0; return r; } static void cmi_spdif_speed(struct sc_info *sc, int speed) { u_int32_t fcr1, lcr, mcr; if (speed >= 44100) { fcr1 = CMPCI_REG_SPDIF0_ENABLE; lcr = CMPCI_REG_XSPDIF_ENABLE; mcr = (speed == 48000) ? CMPCI_REG_W_SPDIF_48L | CMPCI_REG_SPDIF_48K : 0; } else { fcr1 = mcr = lcr = 0; } cmi_partial_wr4(sc, CMPCI_REG_MISC, 0, CMPCI_REG_W_SPDIF_48L | CMPCI_REG_SPDIF_48K, mcr); cmi_partial_wr4(sc, CMPCI_REG_FUNC_1, 0, CMPCI_REG_SPDIF0_ENABLE, fcr1); cmi_partial_wr4(sc, CMPCI_REG_LEGACY_CTRL, 0, CMPCI_REG_XSPDIF_ENABLE, lcr); } /* ------------------------------------------------------------------------- */ /* Channel Interface implementation */ static void * cmichan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b, struct pcm_channel *c, int dir) { struct sc_info *sc = devinfo; struct sc_chinfo *ch = (dir == PCMDIR_PLAY) ? &sc->pch : &sc->rch; ch->parent = sc; ch->channel = c; ch->bps = 1; ch->fmt = SND_FORMAT(AFMT_U8, 1, 0); ch->spd = DSP_DEFAULT_SPEED; ch->buffer = b; ch->dma_active = 0; if (sndbuf_alloc(ch->buffer, sc->parent_dmat, 0, sc->bufsz) != 0) { DEB(printf("cmichan_init failed\n")); return NULL; } ch->dir = dir; snd_mtxlock(sc->lock); if (ch->dir == PCMDIR_PLAY) { cmi_dma_prog(sc, ch, CMPCI_REG_DMA0_BASE); } else { cmi_dma_prog(sc, ch, CMPCI_REG_DMA1_BASE); } snd_mtxunlock(sc->lock); return ch; } static int cmichan_setformat(kobj_t obj, void *data, u_int32_t format) { struct sc_chinfo *ch = data; struct sc_info *sc = ch->parent; u_int32_t f; if (format & AFMT_S16_LE) { f = CMPCI_REG_FORMAT_16BIT; ch->bps = 2; } else { f = CMPCI_REG_FORMAT_8BIT; ch->bps = 1; } if (AFMT_CHANNEL(format) > 1) { f |= CMPCI_REG_FORMAT_STEREO; ch->bps *= 2; } else { f |= CMPCI_REG_FORMAT_MONO; } snd_mtxlock(sc->lock); if (ch->dir == PCMDIR_PLAY) { cmi_partial_wr4(ch->parent, CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_CH0_FORMAT_SHIFT, CMPCI_REG_CH0_FORMAT_MASK, f); } else { cmi_partial_wr4(ch->parent, CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_CH1_FORMAT_SHIFT, CMPCI_REG_CH1_FORMAT_MASK, f); } snd_mtxunlock(sc->lock); ch->fmt = format; return 0; } static u_int32_t cmichan_setspeed(kobj_t obj, void *data, u_int32_t speed) { struct sc_chinfo *ch = data; struct sc_info *sc = ch->parent; u_int32_t r, rsp; r = cmpci_rate_to_regvalue(speed); snd_mtxlock(sc->lock); if (ch->dir == PCMDIR_PLAY) { if (speed < 44100) { /* disable if req before rate change */ cmi_spdif_speed(ch->parent, speed); } cmi_partial_wr4(ch->parent, CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT, CMPCI_REG_DAC_FS_MASK, r); if (speed >= 44100 && ch->parent->spdif_enabled) { /* enable if req after rate change */ cmi_spdif_speed(ch->parent, speed); } rsp = cmi_rd(ch->parent, CMPCI_REG_FUNC_1, 4); rsp >>= CMPCI_REG_DAC_FS_SHIFT; rsp &= CMPCI_REG_DAC_FS_MASK; } else { cmi_partial_wr4(ch->parent, CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT, CMPCI_REG_ADC_FS_MASK, r); rsp = cmi_rd(ch->parent, CMPCI_REG_FUNC_1, 4); rsp >>= CMPCI_REG_ADC_FS_SHIFT; rsp &= CMPCI_REG_ADC_FS_MASK; } snd_mtxunlock(sc->lock); ch->spd = cmpci_regvalue_to_rate(r); DEB(printf("cmichan_setspeed (%s) %d -> %d (%d)\n", (ch->dir == PCMDIR_PLAY) ? "play" : "rec", speed, ch->spd, cmpci_regvalue_to_rate(rsp))); return ch->spd; } static u_int32_t cmichan_setblocksize(kobj_t obj, void *data, u_int32_t blocksize) { struct sc_chinfo *ch = data; struct sc_info *sc = ch->parent; /* user has requested interrupts every blocksize bytes */ if (blocksize > sc->bufsz / CMI_INTR_PER_BUFFER) { blocksize = sc->bufsz / CMI_INTR_PER_BUFFER; } sndbuf_resize(ch->buffer, CMI_INTR_PER_BUFFER, blocksize); return blocksize; } static int cmichan_trigger(kobj_t obj, void *data, int go) { struct sc_chinfo *ch = data; struct sc_info *sc = ch->parent; if (!PCMTRIG_COMMON(go)) return 0; snd_mtxlock(sc->lock); if (ch->dir == PCMDIR_PLAY) { switch(go) { case PCMTRIG_START: cmi_ch0_start(sc, ch); break; case PCMTRIG_STOP: case PCMTRIG_ABORT: cmi_ch0_stop(sc, ch); break; } } else { switch(go) { case PCMTRIG_START: cmi_ch1_start(sc, ch); break; case PCMTRIG_STOP: case PCMTRIG_ABORT: cmi_ch1_stop(sc, ch); break; } } snd_mtxunlock(sc->lock); return 0; } static u_int32_t cmichan_getptr(kobj_t obj, void *data) { struct sc_chinfo *ch = data; struct sc_info *sc = ch->parent; u_int32_t physptr, bufptr, sz; snd_mtxlock(sc->lock); if (ch->dir == PCMDIR_PLAY) { physptr = cmi_rd(sc, CMPCI_REG_DMA0_BASE, 4); } else { physptr = cmi_rd(sc, CMPCI_REG_DMA1_BASE, 4); } snd_mtxunlock(sc->lock); sz = sndbuf_getsize(ch->buffer); bufptr = (physptr - ch->phys_buf + sz - ch->bps) % sz; return bufptr; } static void cmi_intr(void *data) { struct sc_info *sc = data; u_int32_t intrstat; u_int32_t toclear; snd_mtxlock(sc->lock); intrstat = cmi_rd(sc, CMPCI_REG_INTR_STATUS, 4); if ((intrstat & CMPCI_REG_ANY_INTR) != 0) { toclear = 0; if (intrstat & CMPCI_REG_CH0_INTR) { toclear |= CMPCI_REG_CH0_INTR_ENABLE; //cmi_clr4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE); } if (intrstat & CMPCI_REG_CH1_INTR) { toclear |= CMPCI_REG_CH1_INTR_ENABLE; //cmi_clr4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE); } if (toclear) { cmi_clr4(sc, CMPCI_REG_INTR_CTRL, toclear); snd_mtxunlock(sc->lock); /* Signal interrupts to channel */ if (intrstat & CMPCI_REG_CH0_INTR) { chn_intr(sc->pch.channel); } if (intrstat & CMPCI_REG_CH1_INTR) { chn_intr(sc->rch.channel); } snd_mtxlock(sc->lock); cmi_set4(sc, CMPCI_REG_INTR_CTRL, toclear); } } if(sc->mpu_intr) { (sc->mpu_intr)(sc->mpu); } snd_mtxunlock(sc->lock); return; } static struct pcmchan_caps * cmichan_getcaps(kobj_t obj, void *data) { return &cmi_caps; } static kobj_method_t cmichan_methods[] = { KOBJMETHOD(channel_init, cmichan_init), KOBJMETHOD(channel_setformat, cmichan_setformat), KOBJMETHOD(channel_setspeed, cmichan_setspeed), KOBJMETHOD(channel_setblocksize, cmichan_setblocksize), KOBJMETHOD(channel_trigger, cmichan_trigger), KOBJMETHOD(channel_getptr, cmichan_getptr), KOBJMETHOD(channel_getcaps, cmichan_getcaps), KOBJMETHOD_END }; CHANNEL_DECLARE(cmichan); /* ------------------------------------------------------------------------- */ /* Mixer - sb16 with kinks */ static void cmimix_wr(struct sc_info *sc, u_int8_t port, u_int8_t val) { cmi_wr(sc, CMPCI_REG_SBADDR, port, 1); cmi_wr(sc, CMPCI_REG_SBDATA, val, 1); } static u_int8_t cmimix_rd(struct sc_info *sc, u_int8_t port) { cmi_wr(sc, CMPCI_REG_SBADDR, port, 1); return (u_int8_t)cmi_rd(sc, CMPCI_REG_SBDATA, 1); } struct sb16props { u_int8_t rreg; /* right reg chan register */ u_int8_t stereo:1; /* (no explanation needed, honest) */ u_int8_t rec:1; /* recording source */ u_int8_t bits:3; /* num bits to represent maximum gain rep */ u_int8_t oselect; /* output select mask */ u_int8_t iselect; /* right input select mask */ } static const cmt[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_SYNTH] = {CMPCI_SB16_MIXER_FM_R, 1, 1, 5, CMPCI_SB16_SW_FM, CMPCI_SB16_MIXER_FM_SRC_R}, [SOUND_MIXER_CD] = {CMPCI_SB16_MIXER_CDDA_R, 1, 1, 5, CMPCI_SB16_SW_CD, CMPCI_SB16_MIXER_CD_SRC_R}, [SOUND_MIXER_LINE] = {CMPCI_SB16_MIXER_LINE_R, 1, 1, 5, CMPCI_SB16_SW_LINE, CMPCI_SB16_MIXER_LINE_SRC_R}, [SOUND_MIXER_MIC] = {CMPCI_SB16_MIXER_MIC, 0, 1, 5, CMPCI_SB16_SW_MIC, CMPCI_SB16_MIXER_MIC_SRC}, [SOUND_MIXER_SPEAKER] = {CMPCI_SB16_MIXER_SPEAKER, 0, 0, 2, 0, 0}, [SOUND_MIXER_PCM] = {CMPCI_SB16_MIXER_VOICE_R, 1, 0, 5, 0, 0}, [SOUND_MIXER_VOLUME] = {CMPCI_SB16_MIXER_MASTER_R, 1, 0, 5, 0, 0}, /* These controls are not implemented in CMI8738, but maybe at a future date. They are not documented in C-Media documentation, though appear in other drivers for future h/w (ALSA, Linux, NetBSD). */ [SOUND_MIXER_IGAIN] = {CMPCI_SB16_MIXER_INGAIN_R, 1, 0, 2, 0, 0}, [SOUND_MIXER_OGAIN] = {CMPCI_SB16_MIXER_OUTGAIN_R, 1, 0, 2, 0, 0}, [SOUND_MIXER_BASS] = {CMPCI_SB16_MIXER_BASS_R, 1, 0, 4, 0, 0}, [SOUND_MIXER_TREBLE] = {CMPCI_SB16_MIXER_TREBLE_R, 1, 0, 4, 0, 0}, /* The mic pre-amp is implemented with non-SB16 compatible registers. */ [SOUND_MIXER_MONITOR] = {CMPCI_NON_SB16_CONTROL, 0, 1, 4, 0}, }; #define MIXER_GAIN_REG_RTOL(r) (r - 1) static int cmimix_init(struct snd_mixer *m) { struct sc_info *sc = mix_getdevinfo(m); u_int32_t i,v; for(i = v = 0; i < SOUND_MIXER_NRDEVICES; i++) { if (cmt[i].bits) v |= 1 << i; } mix_setdevs(m, v); for(i = v = 0; i < SOUND_MIXER_NRDEVICES; i++) { if (cmt[i].rec) v |= 1 << i; } mix_setrecdevs(m, v); cmimix_wr(sc, CMPCI_SB16_MIXER_RESET, 0); cmimix_wr(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0); cmimix_wr(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0); cmimix_wr(sc, CMPCI_SB16_MIXER_OUTMIX, CMPCI_SB16_SW_CD | CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE); return 0; } static int cmimix_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right) { struct sc_info *sc = mix_getdevinfo(m); u_int32_t r, l, max; u_int8_t v; max = (1 << cmt[dev].bits) - 1; if (cmt[dev].rreg == CMPCI_NON_SB16_CONTROL) { /* For time being this can only be one thing (mic in * mic/aux reg) */ v = cmi_rd(sc, CMPCI_REG_AUX_MIC, 1) & 0xf0; l = left * max / 100; /* 3 bit gain with LSB MICGAIN off(1),on(1) -> 4 bit value */ v |= ((l << 1) | (~l >> 3)) & 0x0f; cmi_wr(sc, CMPCI_REG_AUX_MIC, v, 1); return 0; } l = (left * max / 100) << (8 - cmt[dev].bits); if (cmt[dev].stereo) { r = (right * max / 100) << (8 - cmt[dev].bits); cmimix_wr(sc, MIXER_GAIN_REG_RTOL(cmt[dev].rreg), l); cmimix_wr(sc, cmt[dev].rreg, r); DEBMIX(printf("Mixer stereo write dev %d reg 0x%02x "\ "value 0x%02x:0x%02x\n", dev, MIXER_GAIN_REG_RTOL(cmt[dev].rreg), l, r)); } else { r = l; cmimix_wr(sc, cmt[dev].rreg, l); DEBMIX(printf("Mixer mono write dev %d reg 0x%02x " \ "value 0x%02x:0x%02x\n", dev, cmt[dev].rreg, l, l)); } /* Zero gain does not mute channel from output, but this does... */ v = cmimix_rd(sc, CMPCI_SB16_MIXER_OUTMIX); if (l == 0 && r == 0) { v &= ~cmt[dev].oselect; } else { v |= cmt[dev].oselect; } cmimix_wr(sc, CMPCI_SB16_MIXER_OUTMIX, v); return 0; } static u_int32_t cmimix_setrecsrc(struct snd_mixer *m, u_int32_t src) { struct sc_info *sc = mix_getdevinfo(m); u_int32_t i, ml, sl; ml = sl = 0; for(i = 0; i < SOUND_MIXER_NRDEVICES; i++) { if ((1< */ SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->dev), SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "spdif_enabled", CTLFLAG_RW, &sc->spdif_enabled, 0, "enable SPDIF output at 44.1 kHz and above"); return 0; } /* ------------------------------------------------------------------------- */ static kobj_method_t cmi_mixer_methods[] = { KOBJMETHOD(mixer_init, cmimix_init), KOBJMETHOD(mixer_set, cmimix_set), KOBJMETHOD(mixer_setrecsrc, cmimix_setrecsrc), KOBJMETHOD_END }; MIXER_DECLARE(cmi_mixer); /* * mpu401 functions */ static unsigned char cmi_mread(struct mpu401 *arg, void *sc, int reg) { unsigned int d; d = bus_space_read_1(0,0, 0x330 + reg); /* printf("cmi_mread: reg %x %x\n",reg, d); */ return d; } static void cmi_mwrite(struct mpu401 *arg, void *sc, int reg, unsigned char b) { bus_space_write_1(0,0,0x330 + reg , b); } static int cmi_muninit(struct mpu401 *arg, void *cookie) { struct sc_info *sc = cookie; snd_mtxlock(sc->lock); sc->mpu_intr = 0; sc->mpu = 0; snd_mtxunlock(sc->lock); return 0; } static kobj_method_t cmi_mpu_methods[] = { KOBJMETHOD(mpufoi_read, cmi_mread), KOBJMETHOD(mpufoi_write, cmi_mwrite), KOBJMETHOD(mpufoi_uninit, cmi_muninit), KOBJMETHOD_END }; static DEFINE_CLASS(cmi_mpu, cmi_mpu_methods, 0); static void cmi_midiattach(struct sc_info *sc) { /* const struct { int port,bits; } *p, ports[] = { {0x330,0}, {0x320,1}, {0x310,2}, {0x300,3}, {0,0} } ; Notes, CMPCI_REG_VMPUSEL sets the io port for the mpu. Does anyone know how to bus_space tag? */ cmi_clr4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_UART_ENABLE); cmi_clr4(sc, CMPCI_REG_LEGACY_CTRL, CMPCI_REG_VMPUSEL_MASK << CMPCI_REG_VMPUSEL_SHIFT); cmi_set4(sc, CMPCI_REG_LEGACY_CTRL, 0 << CMPCI_REG_VMPUSEL_SHIFT ); cmi_set4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_UART_ENABLE); sc->mpu = mpu401_init(&cmi_mpu_class, sc, cmi_intr, &sc->mpu_intr); } /* ------------------------------------------------------------------------- */ /* Power and reset */ static void cmi_power(struct sc_info *sc, int state) { switch (state) { case 0: /* full power */ cmi_clr4(sc, CMPCI_REG_MISC, CMPCI_REG_POWER_DOWN); break; default: /* power off */ cmi_set4(sc, CMPCI_REG_MISC, CMPCI_REG_POWER_DOWN); break; } } static int cmi_init(struct sc_info *sc) { /* Effect reset */ cmi_set4(sc, CMPCI_REG_MISC, CMPCI_REG_BUS_AND_DSP_RESET); DELAY(100); cmi_clr4(sc, CMPCI_REG_MISC, CMPCI_REG_BUS_AND_DSP_RESET); /* Disable interrupts and channels */ cmi_clr4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE | CMPCI_REG_CH1_ENABLE); cmi_clr4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE | CMPCI_REG_CH1_INTR_ENABLE); /* Configure DMA channels, ch0 = play, ch1 = capture */ cmi_clr4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); cmi_set4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* Attempt to enable 4 Channel output */ cmi_set4(sc, CMPCI_REG_MISC, CMPCI_REG_N4SPK3D); /* Disable SPDIF1 - not compatible with config */ cmi_clr4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF1_ENABLE); cmi_clr4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP); return 0; } static void cmi_uninit(struct sc_info *sc) { /* Disable interrupts and channels */ cmi_clr4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE | CMPCI_REG_CH1_INTR_ENABLE | CMPCI_REG_TDMA_INTR_ENABLE); cmi_clr4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE | CMPCI_REG_CH1_ENABLE); cmi_clr4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_UART_ENABLE); if( sc->mpu ) sc->mpu_intr = 0; } /* ------------------------------------------------------------------------- */ /* Bus and device registration */ static int cmi_probe(device_t dev) { switch(pci_get_devid(dev)) { case CMI8338A_PCI_ID: device_set_desc(dev, "CMedia CMI8338A"); return BUS_PROBE_DEFAULT; case CMI8338B_PCI_ID: device_set_desc(dev, "CMedia CMI8338B"); return BUS_PROBE_DEFAULT; case CMI8738_PCI_ID: device_set_desc(dev, "CMedia CMI8738"); return BUS_PROBE_DEFAULT; case CMI8738B_PCI_ID: device_set_desc(dev, "CMedia CMI8738B"); return BUS_PROBE_DEFAULT; case CMI120_USB_ID: device_set_desc(dev, "CMedia CMI120"); return BUS_PROBE_DEFAULT; default: return ENXIO; } } static int cmi_attach(device_t dev) { struct sc_info *sc; u_int32_t data; char status[SND_STATUSLEN]; sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO); sc->lock = snd_mtxcreate(device_get_nameunit(dev), "snd_cmi softc"); data = pci_read_config(dev, PCIR_COMMAND, 2); data |= (PCIM_CMD_PORTEN|PCIM_CMD_BUSMASTEREN); pci_write_config(dev, PCIR_COMMAND, data, 2); data = pci_read_config(dev, PCIR_COMMAND, 2); sc->dev = dev; sc->regid = PCIR_BAR(0); sc->reg = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &sc->regid, RF_ACTIVE); if (!sc->reg) { device_printf(dev, "cmi_attach: Cannot allocate bus resource\n"); goto bad; } sc->st = rman_get_bustag(sc->reg); sc->sh = rman_get_bushandle(sc->reg); if (0) cmi_midiattach(sc); sc->irqid = 0; sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irqid, RF_ACTIVE | RF_SHAREABLE); if (!sc->irq || snd_setup_intr(dev, sc->irq, INTR_MPSAFE, cmi_intr, sc, &sc->ih)) { device_printf(dev, "cmi_attach: Unable to map interrupt\n"); goto bad; } sc->bufsz = pcm_getbuffersize(dev, 4096, CMI_DEFAULT_BUFSZ, 65536); if (bus_dma_tag_create(/*parent*/bus_get_dma_tag(dev), /*alignment*/2, /*boundary*/0, /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, /*highaddr*/BUS_SPACE_MAXADDR, /*filter*/NULL, /*filterarg*/NULL, /*maxsize*/sc->bufsz, /*nsegments*/1, /*maxsegz*/0x3ffff, /*flags*/0, /*lockfunc*/NULL, /*lockfunc*/NULL, &sc->parent_dmat) != 0) { device_printf(dev, "cmi_attach: Unable to create dma tag\n"); goto bad; } cmi_power(sc, 0); if (cmi_init(sc)) goto bad; if (mixer_init(dev, &cmi_mixer_class, sc)) goto bad; if (pcm_register(dev, sc, 1, 1)) goto bad; cmi_initsys(sc); pcm_addchan(dev, PCMDIR_PLAY, &cmichan_class, sc); pcm_addchan(dev, PCMDIR_REC, &cmichan_class, sc); snprintf(status, SND_STATUSLEN, "at io 0x%lx irq %ld %s", rman_get_start(sc->reg), rman_get_start(sc->irq),PCM_KLDSTRING(snd_cmi)); pcm_setstatus(dev, status); DEB(printf("cmi_attach: succeeded\n")); return 0; bad: if (sc->parent_dmat) bus_dma_tag_destroy(sc->parent_dmat); if (sc->ih) bus_teardown_intr(dev, sc->irq, sc->ih); if (sc->irq) bus_release_resource(dev, SYS_RES_IRQ, sc->irqid, sc->irq); if (sc->reg) bus_release_resource(dev, SYS_RES_IOPORT, sc->regid, sc->reg); if (sc->lock) snd_mtxfree(sc->lock); if (sc) free(sc, M_DEVBUF); return ENXIO; } static int cmi_detach(device_t dev) { struct sc_info *sc; int r; r = pcm_unregister(dev); if (r) return r; sc = pcm_getdevinfo(dev); cmi_uninit(sc); cmi_power(sc, 3); bus_dma_tag_destroy(sc->parent_dmat); bus_teardown_intr(dev, sc->irq, sc->ih); bus_release_resource(dev, SYS_RES_IRQ, sc->irqid, sc->irq); if(sc->mpu) mpu401_uninit(sc->mpu); bus_release_resource(dev, SYS_RES_IOPORT, sc->regid, sc->reg); if (sc->mpu_reg) bus_release_resource(dev, SYS_RES_IOPORT, sc->mpu_regid, sc->mpu_reg); snd_mtxfree(sc->lock); free(sc, M_DEVBUF); return 0; } static int cmi_suspend(device_t dev) { struct sc_info *sc = pcm_getdevinfo(dev); snd_mtxlock(sc->lock); sc->pch.dma_was_active = cmi_ch0_stop(sc, &sc->pch); sc->rch.dma_was_active = cmi_ch1_stop(sc, &sc->rch); cmi_power(sc, 3); snd_mtxunlock(sc->lock); return 0; } static int cmi_resume(device_t dev) { struct sc_info *sc = pcm_getdevinfo(dev); snd_mtxlock(sc->lock); cmi_power(sc, 0); if (cmi_init(sc) != 0) { device_printf(dev, "unable to reinitialize the card\n"); snd_mtxunlock(sc->lock); return ENXIO; } if (mixer_reinit(dev) == -1) { device_printf(dev, "unable to reinitialize the mixer\n"); snd_mtxunlock(sc->lock); return ENXIO; } if (sc->pch.dma_was_active) { cmichan_setspeed(NULL, &sc->pch, sc->pch.spd); cmichan_setformat(NULL, &sc->pch, sc->pch.fmt); cmi_ch0_start(sc, &sc->pch); } if (sc->rch.dma_was_active) { cmichan_setspeed(NULL, &sc->rch, sc->rch.spd); cmichan_setformat(NULL, &sc->rch, sc->rch.fmt); cmi_ch1_start(sc, &sc->rch); } snd_mtxunlock(sc->lock); return 0; } static device_method_t cmi_methods[] = { DEVMETHOD(device_probe, cmi_probe), DEVMETHOD(device_attach, cmi_attach), DEVMETHOD(device_detach, cmi_detach), DEVMETHOD(device_resume, cmi_resume), DEVMETHOD(device_suspend, cmi_suspend), { 0, 0 } }; static driver_t cmi_driver = { "pcm", cmi_methods, PCM_SOFTC_SIZE }; DRIVER_MODULE(snd_cmi, pci, cmi_driver, pcm_devclass, 0, 0); MODULE_DEPEND(snd_cmi, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER); MODULE_DEPEND(snd_cmi, midi, 1,1,1); MODULE_VERSION(snd_cmi, 1);