/*- * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * Copyright (c) 1994 John S. Dyson * All rights reserved. * Copyright (c) 1994 David Greenman * All rights reserved. * Copyright (c) 2005 Alan L. Cox * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department and William Jolitz of UUNET Technologies Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91 */ /*- * Copyright (c) 2003 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Jake Burkholder, * Safeport Network Services, and Network Associates Laboratories, the * Security Research Division of Network Associates, Inc. under * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA * CHATS research program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Manages physical address maps. * * In addition to hardware address maps, this * module is called upon to provide software-use-only * maps which may or may not be stored in the same * form as hardware maps. These pseudo-maps are * used to store intermediate results from copy * operations to and from address spaces. * * Since the information managed by this module is * also stored by the logical address mapping module, * this module may throw away valid virtual-to-physical * mappings at almost any time. However, invalidations * of virtual-to-physical mappings must be done as * requested. * * In order to cope with hardware architectures which * make virtual-to-physical map invalidates expensive, * this module may delay invalidate or reduced protection * operations until such time as they are actually * necessary. This module is given full information as * to which processors are currently using which maps, * and to when physical maps must be made correct. */ #include "opt_cpu.h" #include "opt_pmap.h" #include "opt_msgbuf.h" #include "opt_smp.h" #include "opt_xbox.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SMP #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SMP #include #endif #ifdef XBOX #include #endif #if !defined(CPU_DISABLE_SSE) && defined(I686_CPU) #define CPU_ENABLE_SSE #endif #ifndef PMAP_SHPGPERPROC #define PMAP_SHPGPERPROC 200 #endif #if defined(DIAGNOSTIC) #define PMAP_DIAGNOSTIC #endif #if !defined(PMAP_DIAGNOSTIC) #define PMAP_INLINE __gnu89_inline #else #define PMAP_INLINE #endif #define PV_STATS #ifdef PV_STATS #define PV_STAT(x) do { x ; } while (0) #else #define PV_STAT(x) do { } while (0) #endif /* * Get PDEs and PTEs for user/kernel address space */ #define pmap_pde(m, v) (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT])) #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT]) #define pmap_pde_v(pte) ((*(int *)pte & PG_V) != 0) #define pmap_pte_w(pte) ((*(int *)pte & PG_W) != 0) #define pmap_pte_m(pte) ((*(int *)pte & PG_M) != 0) #define pmap_pte_u(pte) ((*(int *)pte & PG_A) != 0) #define pmap_pte_v(pte) ((*(int *)pte & PG_V) != 0) #define pmap_pte_set_w(pte, v) ((v) ? atomic_set_int((u_int *)(pte), PG_W) : \ atomic_clear_int((u_int *)(pte), PG_W)) #define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v))) struct pmap kernel_pmap_store; LIST_HEAD(pmaplist, pmap); static struct pmaplist allpmaps; static struct mtx allpmaps_lock; vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */ vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */ int pgeflag = 0; /* PG_G or-in */ int pseflag = 0; /* PG_PS or-in */ static int nkpt; vm_offset_t kernel_vm_end; extern u_int32_t KERNend; #ifdef PAE pt_entry_t pg_nx; static uma_zone_t pdptzone; #endif /* * Data for the pv entry allocation mechanism */ static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0; static int shpgperproc = PMAP_SHPGPERPROC; struct pv_chunk *pv_chunkbase; /* KVA block for pv_chunks */ int pv_maxchunks; /* How many chunks we have KVA for */ vm_offset_t pv_vafree; /* freelist stored in the PTE */ /* * All those kernel PT submaps that BSD is so fond of */ struct sysmaps { struct mtx lock; pt_entry_t *CMAP1; pt_entry_t *CMAP2; caddr_t CADDR1; caddr_t CADDR2; }; static struct sysmaps sysmaps_pcpu[MAXCPU]; pt_entry_t *CMAP1 = 0; static pt_entry_t *CMAP3; caddr_t CADDR1 = 0, ptvmmap = 0; static caddr_t CADDR3; struct msgbuf *msgbufp = 0; /* * Crashdump maps. */ static caddr_t crashdumpmap; static pt_entry_t *PMAP1 = 0, *PMAP2; static pt_entry_t *PADDR1 = 0, *PADDR2; #ifdef SMP static int PMAP1cpu; static int PMAP1changedcpu; SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD, &PMAP1changedcpu, 0, "Number of times pmap_pte_quick changed CPU with same PMAP1"); #endif static int PMAP1changed; SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD, &PMAP1changed, 0, "Number of times pmap_pte_quick changed PMAP1"); static int PMAP1unchanged; SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD, &PMAP1unchanged, 0, "Number of times pmap_pte_quick didn't change PMAP1"); static struct mtx PMAP2mutex; static void free_pv_entry(pmap_t pmap, pv_entry_t pv); static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try); static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, vm_page_t mpte); static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva, vm_page_t *free); static void pmap_remove_page(struct pmap *pmap, vm_offset_t va, vm_page_t *free); static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va); static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m); static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m); static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags); static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags); static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free); static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va); static void pmap_pte_release(pt_entry_t *pte); static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *); static vm_offset_t pmap_kmem_choose(vm_offset_t addr); #ifdef PAE static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait); #endif CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t)); CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t)); /* * Move the kernel virtual free pointer to the next * 4MB. This is used to help improve performance * by using a large (4MB) page for much of the kernel * (.text, .data, .bss) */ static vm_offset_t pmap_kmem_choose(vm_offset_t addr) { vm_offset_t newaddr = addr; #ifndef DISABLE_PSE if (cpu_feature & CPUID_PSE) newaddr = (addr + PDRMASK) & ~PDRMASK; #endif return newaddr; } /* * Bootstrap the system enough to run with virtual memory. * * On the i386 this is called after mapping has already been enabled * and just syncs the pmap module with what has already been done. * [We can't call it easily with mapping off since the kernel is not * mapped with PA == VA, hence we would have to relocate every address * from the linked base (virtual) address "KERNBASE" to the actual * (physical) address starting relative to 0] */ void pmap_bootstrap(vm_paddr_t firstaddr) { vm_offset_t va; pt_entry_t *pte, *unused; struct sysmaps *sysmaps; int i; /* * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too * large. It should instead be correctly calculated in locore.s and * not based on 'first' (which is a physical address, not a virtual * address, for the start of unused physical memory). The kernel * page tables are NOT double mapped and thus should not be included * in this calculation. */ virtual_avail = (vm_offset_t) KERNBASE + firstaddr; virtual_avail = pmap_kmem_choose(virtual_avail); virtual_end = VM_MAX_KERNEL_ADDRESS; /* * Initialize the kernel pmap (which is statically allocated). */ PMAP_LOCK_INIT(kernel_pmap); kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD); #ifdef PAE kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT); #endif kernel_pmap->pm_active = -1; /* don't allow deactivation */ TAILQ_INIT(&kernel_pmap->pm_pvchunk); LIST_INIT(&allpmaps); mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN); mtx_lock_spin(&allpmaps_lock); LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list); mtx_unlock_spin(&allpmaps_lock); nkpt = NKPT; /* * Reserve some special page table entries/VA space for temporary * mapping of pages. */ #define SYSMAP(c, p, v, n) \ v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n); va = virtual_avail; pte = vtopte(va); /* * CMAP1/CMAP2 are used for zeroing and copying pages. * CMAP3 is used for the idle process page zeroing. */ for (i = 0; i < MAXCPU; i++) { sysmaps = &sysmaps_pcpu[i]; mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF); SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1) SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1) } SYSMAP(caddr_t, CMAP1, CADDR1, 1) SYSMAP(caddr_t, CMAP3, CADDR3, 1) *CMAP3 = 0; /* * Crashdump maps. */ SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS) /* * ptvmmap is used for reading arbitrary physical pages via /dev/mem. */ SYSMAP(caddr_t, unused, ptvmmap, 1) /* * msgbufp is used to map the system message buffer. */ SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE))) /* * ptemap is used for pmap_pte_quick */ SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1); SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1); mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF); virtual_avail = va; *CMAP1 = 0; /* * Leave in place an identity mapping (virt == phys) for the low 1 MB * physical memory region that is used by the ACPI wakeup code. This * mapping must not have PG_G set. */ #ifdef XBOX /* FIXME: This is gross, but needed for the XBOX. Since we are in such * an early stadium, we cannot yet neatly map video memory ... :-( * Better fixes are very welcome! */ if (!arch_i386_is_xbox) #endif for (i = 1; i < NKPT; i++) PTD[i] = 0; /* Initialize the PAT MSR if present. */ pmap_init_pat(); /* Turn on PG_G on kernel page(s) */ pmap_set_pg(); } /* * Setup the PAT MSR. */ void pmap_init_pat(void) { uint64_t pat_msr; /* Bail if this CPU doesn't implement PAT. */ if (!(cpu_feature & CPUID_PAT)) return; #ifdef PAT_WORKS /* * Leave the indices 0-3 at the default of WB, WT, UC, and UC-. * Program 4 and 5 as WP and WC. * Leave 6 and 7 as UC and UC-. */ pat_msr = rdmsr(MSR_PAT); pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5)); pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) | PAT_VALUE(5, PAT_WRITE_COMBINING); #else /* * Due to some Intel errata, we can only safely use the lower 4 * PAT entries. Thus, just replace PAT Index 2 with WC instead * of UC-. * * Intel Pentium III Processor Specification Update * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B * or Mode C Paging) * * Intel Pentium IV Processor Specification Update * Errata N46 (PAT Index MSB May Be Calculated Incorrectly) */ pat_msr = rdmsr(MSR_PAT); pat_msr &= ~PAT_MASK(2); pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING); #endif wrmsr(MSR_PAT, pat_msr); } /* * Set PG_G on kernel pages. Only the BSP calls this when SMP is turned on. */ void pmap_set_pg(void) { pd_entry_t pdir; pt_entry_t *pte; vm_offset_t va, endva; int i; if (pgeflag == 0) return; i = KERNLOAD/NBPDR; endva = KERNBASE + KERNend; if (pseflag) { va = KERNBASE + KERNLOAD; while (va < endva) { pdir = kernel_pmap->pm_pdir[KPTDI+i]; pdir |= pgeflag; kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir; invltlb(); /* Play it safe, invltlb() every time */ i++; va += NBPDR; } } else { va = (vm_offset_t)btext; while (va < endva) { pte = vtopte(va); if (*pte) *pte |= pgeflag; invltlb(); /* Play it safe, invltlb() every time */ va += PAGE_SIZE; } } } /* * Initialize a vm_page's machine-dependent fields. */ void pmap_page_init(vm_page_t m) { TAILQ_INIT(&m->md.pv_list); m->md.pv_list_count = 0; } #ifdef PAE static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt"); static void * pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) { *flags = UMA_SLAB_PRIV; return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL, 1, 0)); } #endif /* * ABuse the pte nodes for unmapped kva to thread a kva freelist through. * Requirements: * - Must deal with pages in order to ensure that none of the PG_* bits * are ever set, PG_V in particular. * - Assumes we can write to ptes without pte_store() atomic ops, even * on PAE systems. This should be ok. * - Assumes nothing will ever test these addresses for 0 to indicate * no mapping instead of correctly checking PG_V. * - Assumes a vm_offset_t will fit in a pte (true for i386). * Because PG_V is never set, there can be no mappings to invalidate. */ static vm_offset_t pmap_ptelist_alloc(vm_offset_t *head) { pt_entry_t *pte; vm_offset_t va; va = *head; if (va == 0) return (va); /* Out of memory */ pte = vtopte(va); *head = *pte; if (*head & PG_V) panic("pmap_ptelist_alloc: va with PG_V set!"); *pte = 0; return (va); } static void pmap_ptelist_free(vm_offset_t *head, vm_offset_t va) { pt_entry_t *pte; if (va & PG_V) panic("pmap_ptelist_free: freeing va with PG_V set!"); pte = vtopte(va); *pte = *head; /* virtual! PG_V is 0 though */ *head = va; } static void pmap_ptelist_init(vm_offset_t *head, void *base, int npages) { int i; vm_offset_t va; *head = 0; for (i = npages - 1; i >= 0; i--) { va = (vm_offset_t)base + i * PAGE_SIZE; pmap_ptelist_free(head, va); } } /* * Initialize the pmap module. * Called by vm_init, to initialize any structures that the pmap * system needs to map virtual memory. */ void pmap_init(void) { /* * Initialize the address space (zone) for the pv entries. Set a * high water mark so that the system can recover from excessive * numbers of pv entries. */ TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc); pv_entry_max = shpgperproc * maxproc + cnt.v_page_count; TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max); pv_entry_max = roundup(pv_entry_max, _NPCPV); pv_entry_high_water = 9 * (pv_entry_max / 10); pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc); pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map, PAGE_SIZE * pv_maxchunks); if (pv_chunkbase == NULL) panic("pmap_init: not enough kvm for pv chunks"); pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks); #ifdef PAE pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL, NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1, UMA_ZONE_VM | UMA_ZONE_NOFREE); uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf); #endif } SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters"); SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0, "Max number of PV entries"); SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0, "Page share factor per proc"); /*************************************************** * Low level helper routines..... ***************************************************/ /* * Determine the appropriate bits to set in a PTE or PDE for a specified * caching mode. */ static int pmap_cache_bits(int mode, boolean_t is_pde) { int pat_flag, pat_index, cache_bits; /* The PAT bit is different for PTE's and PDE's. */ pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT; /* If we don't support PAT, map extended modes to older ones. */ if (!(cpu_feature & CPUID_PAT)) { switch (mode) { case PAT_UNCACHEABLE: case PAT_WRITE_THROUGH: case PAT_WRITE_BACK: break; case PAT_UNCACHED: case PAT_WRITE_COMBINING: case PAT_WRITE_PROTECTED: mode = PAT_UNCACHEABLE; break; } } /* Map the caching mode to a PAT index. */ switch (mode) { #ifdef PAT_WORKS case PAT_UNCACHEABLE: pat_index = 3; break; case PAT_WRITE_THROUGH: pat_index = 1; break; case PAT_WRITE_BACK: pat_index = 0; break; case PAT_UNCACHED: pat_index = 2; break; case PAT_WRITE_COMBINING: pat_index = 5; break; case PAT_WRITE_PROTECTED: pat_index = 4; break; #else case PAT_UNCACHED: case PAT_UNCACHEABLE: case PAT_WRITE_PROTECTED: pat_index = 3; break; case PAT_WRITE_THROUGH: pat_index = 1; break; case PAT_WRITE_BACK: pat_index = 0; break; case PAT_WRITE_COMBINING: pat_index = 2; break; #endif default: panic("Unknown caching mode %d\n", mode); } /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */ cache_bits = 0; if (pat_index & 0x4) cache_bits |= pat_flag; if (pat_index & 0x2) cache_bits |= PG_NC_PCD; if (pat_index & 0x1) cache_bits |= PG_NC_PWT; return (cache_bits); } #ifdef SMP /* * For SMP, these functions have to use the IPI mechanism for coherence. * * N.B.: Before calling any of the following TLB invalidation functions, * the calling processor must ensure that all stores updating a non- * kernel page table are globally performed. Otherwise, another * processor could cache an old, pre-update entry without being * invalidated. This can happen one of two ways: (1) The pmap becomes * active on another processor after its pm_active field is checked by * one of the following functions but before a store updating the page * table is globally performed. (2) The pmap becomes active on another * processor before its pm_active field is checked but due to * speculative loads one of the following functions stills reads the * pmap as inactive on the other processor. * * The kernel page table is exempt because its pm_active field is * immutable. The kernel page table is always active on every * processor. */ void pmap_invalidate_page(pmap_t pmap, vm_offset_t va) { u_int cpumask; u_int other_cpus; sched_pin(); if (pmap == kernel_pmap || pmap->pm_active == all_cpus) { invlpg(va); smp_invlpg(va); } else { cpumask = PCPU_GET(cpumask); other_cpus = PCPU_GET(other_cpus); if (pmap->pm_active & cpumask) invlpg(va); if (pmap->pm_active & other_cpus) smp_masked_invlpg(pmap->pm_active & other_cpus, va); } sched_unpin(); } void pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { u_int cpumask; u_int other_cpus; vm_offset_t addr; sched_pin(); if (pmap == kernel_pmap || pmap->pm_active == all_cpus) { for (addr = sva; addr < eva; addr += PAGE_SIZE) invlpg(addr); smp_invlpg_range(sva, eva); } else { cpumask = PCPU_GET(cpumask); other_cpus = PCPU_GET(other_cpus); if (pmap->pm_active & cpumask) for (addr = sva; addr < eva; addr += PAGE_SIZE) invlpg(addr); if (pmap->pm_active & other_cpus) smp_masked_invlpg_range(pmap->pm_active & other_cpus, sva, eva); } sched_unpin(); } void pmap_invalidate_all(pmap_t pmap) { u_int cpumask; u_int other_cpus; sched_pin(); if (pmap == kernel_pmap || pmap->pm_active == all_cpus) { invltlb(); smp_invltlb(); } else { cpumask = PCPU_GET(cpumask); other_cpus = PCPU_GET(other_cpus); if (pmap->pm_active & cpumask) invltlb(); if (pmap->pm_active & other_cpus) smp_masked_invltlb(pmap->pm_active & other_cpus); } sched_unpin(); } void pmap_invalidate_cache(void) { sched_pin(); wbinvd(); smp_cache_flush(); sched_unpin(); } #else /* !SMP */ /* * Normal, non-SMP, 486+ invalidation functions. * We inline these within pmap.c for speed. */ PMAP_INLINE void pmap_invalidate_page(pmap_t pmap, vm_offset_t va) { if (pmap == kernel_pmap || pmap->pm_active) invlpg(va); } PMAP_INLINE void pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { vm_offset_t addr; if (pmap == kernel_pmap || pmap->pm_active) for (addr = sva; addr < eva; addr += PAGE_SIZE) invlpg(addr); } PMAP_INLINE void pmap_invalidate_all(pmap_t pmap) { if (pmap == kernel_pmap || pmap->pm_active) invltlb(); } PMAP_INLINE void pmap_invalidate_cache(void) { wbinvd(); } #endif /* !SMP */ /* * Are we current address space or kernel? N.B. We return FALSE when * a pmap's page table is in use because a kernel thread is borrowing * it. The borrowed page table can change spontaneously, making any * dependence on its continued use subject to a race condition. */ static __inline int pmap_is_current(pmap_t pmap) { return (pmap == kernel_pmap || (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) && (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME))); } /* * If the given pmap is not the current or kernel pmap, the returned pte must * be released by passing it to pmap_pte_release(). */ pt_entry_t * pmap_pte(pmap_t pmap, vm_offset_t va) { pd_entry_t newpf; pd_entry_t *pde; pde = pmap_pde(pmap, va); if (*pde & PG_PS) return (pde); if (*pde != 0) { /* are we current address space or kernel? */ if (pmap_is_current(pmap)) return (vtopte(va)); mtx_lock(&PMAP2mutex); newpf = *pde & PG_FRAME; if ((*PMAP2 & PG_FRAME) != newpf) { *PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M; pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2); } return (PADDR2 + (i386_btop(va) & (NPTEPG - 1))); } return (0); } /* * Releases a pte that was obtained from pmap_pte(). Be prepared for the pte * being NULL. */ static __inline void pmap_pte_release(pt_entry_t *pte) { if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) mtx_unlock(&PMAP2mutex); } static __inline void invlcaddr(void *caddr) { invlpg((u_int)caddr); } /* * Super fast pmap_pte routine best used when scanning * the pv lists. This eliminates many coarse-grained * invltlb calls. Note that many of the pv list * scans are across different pmaps. It is very wasteful * to do an entire invltlb for checking a single mapping. * * If the given pmap is not the current pmap, vm_page_queue_mtx * must be held and curthread pinned to a CPU. */ static pt_entry_t * pmap_pte_quick(pmap_t pmap, vm_offset_t va) { pd_entry_t newpf; pd_entry_t *pde; pde = pmap_pde(pmap, va); if (*pde & PG_PS) return (pde); if (*pde != 0) { /* are we current address space or kernel? */ if (pmap_is_current(pmap)) return (vtopte(va)); mtx_assert(&vm_page_queue_mtx, MA_OWNED); KASSERT(curthread->td_pinned > 0, ("curthread not pinned")); newpf = *pde & PG_FRAME; if ((*PMAP1 & PG_FRAME) != newpf) { *PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M; #ifdef SMP PMAP1cpu = PCPU_GET(cpuid); #endif invlcaddr(PADDR1); PMAP1changed++; } else #ifdef SMP if (PMAP1cpu != PCPU_GET(cpuid)) { PMAP1cpu = PCPU_GET(cpuid); invlcaddr(PADDR1); PMAP1changedcpu++; } else #endif PMAP1unchanged++; return (PADDR1 + (i386_btop(va) & (NPTEPG - 1))); } return (0); } /* * Routine: pmap_extract * Function: * Extract the physical page address associated * with the given map/virtual_address pair. */ vm_paddr_t pmap_extract(pmap_t pmap, vm_offset_t va) { vm_paddr_t rtval; pt_entry_t *pte; pd_entry_t pde; rtval = 0; PMAP_LOCK(pmap); pde = pmap->pm_pdir[va >> PDRSHIFT]; if (pde != 0) { if ((pde & PG_PS) != 0) { rtval = (pde & PG_PS_FRAME) | (va & PDRMASK); PMAP_UNLOCK(pmap); return rtval; } pte = pmap_pte(pmap, va); rtval = (*pte & PG_FRAME) | (va & PAGE_MASK); pmap_pte_release(pte); } PMAP_UNLOCK(pmap); return (rtval); } /* * Routine: pmap_extract_and_hold * Function: * Atomically extract and hold the physical page * with the given pmap and virtual address pair * if that mapping permits the given protection. */ vm_page_t pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot) { pd_entry_t pde; pt_entry_t pte; vm_page_t m; m = NULL; vm_page_lock_queues(); PMAP_LOCK(pmap); pde = *pmap_pde(pmap, va); if (pde != 0) { if (pde & PG_PS) { if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) { m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK)); vm_page_hold(m); } } else { sched_pin(); pte = *pmap_pte_quick(pmap, va); if (pte != 0 && ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) { m = PHYS_TO_VM_PAGE(pte & PG_FRAME); vm_page_hold(m); } sched_unpin(); } } vm_page_unlock_queues(); PMAP_UNLOCK(pmap); return (m); } /*************************************************** * Low level mapping routines..... ***************************************************/ /* * Add a wired page to the kva. * Note: not SMP coherent. */ PMAP_INLINE void pmap_kenter(vm_offset_t va, vm_paddr_t pa) { pt_entry_t *pte; pte = vtopte(va); pte_store(pte, pa | PG_RW | PG_V | pgeflag); } PMAP_INLINE void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode) { pt_entry_t *pte; pte = vtopte(va); pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0)); } /* * Remove a page from the kernel pagetables. * Note: not SMP coherent. */ PMAP_INLINE void pmap_kremove(vm_offset_t va) { pt_entry_t *pte; pte = vtopte(va); pte_clear(pte); } /* * Used to map a range of physical addresses into kernel * virtual address space. * * The value passed in '*virt' is a suggested virtual address for * the mapping. Architectures which can support a direct-mapped * physical to virtual region can return the appropriate address * within that region, leaving '*virt' unchanged. Other * architectures should map the pages starting at '*virt' and * update '*virt' with the first usable address after the mapped * region. */ vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot) { vm_offset_t va, sva; va = sva = *virt; while (start < end) { pmap_kenter(va, start); va += PAGE_SIZE; start += PAGE_SIZE; } pmap_invalidate_range(kernel_pmap, sva, va); *virt = va; return (sva); } /* * Add a list of wired pages to the kva * this routine is only used for temporary * kernel mappings that do not need to have * page modification or references recorded. * Note that old mappings are simply written * over. The page *must* be wired. * Note: SMP coherent. Uses a ranged shootdown IPI. */ void pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count) { pt_entry_t *endpte, oldpte, *pte; oldpte = 0; pte = vtopte(sva); endpte = pte + count; while (pte < endpte) { oldpte |= *pte; pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag | PG_RW | PG_V); pte++; ma++; } if ((oldpte & PG_V) != 0) pmap_invalidate_range(kernel_pmap, sva, sva + count * PAGE_SIZE); } /* * This routine tears out page mappings from the * kernel -- it is meant only for temporary mappings. * Note: SMP coherent. Uses a ranged shootdown IPI. */ void pmap_qremove(vm_offset_t sva, int count) { vm_offset_t va; va = sva; while (count-- > 0) { pmap_kremove(va); va += PAGE_SIZE; } pmap_invalidate_range(kernel_pmap, sva, va); } /*************************************************** * Page table page management routines..... ***************************************************/ static __inline void pmap_free_zero_pages(vm_page_t free) { vm_page_t m; while (free != NULL) { m = free; free = m->right; vm_page_free_zero(m); } } /* * This routine unholds page table pages, and if the hold count * drops to zero, then it decrements the wire count. */ static __inline int pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free) { --m->wire_count; if (m->wire_count == 0) return _pmap_unwire_pte_hold(pmap, m, free); else return 0; } static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free) { vm_offset_t pteva; /* * unmap the page table page */ pmap->pm_pdir[m->pindex] = 0; --pmap->pm_stats.resident_count; /* * This is a release store so that the ordinary store unmapping * the page table page is globally performed before TLB shoot- * down is begun. */ atomic_subtract_rel_int(&cnt.v_wire_count, 1); /* * Do an invltlb to make the invalidated mapping * take effect immediately. */ pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex); pmap_invalidate_page(pmap, pteva); /* * Put page on a list so that it is released after * *ALL* TLB shootdown is done */ m->right = *free; *free = m; return 1; } /* * After removing a page table entry, this routine is used to * conditionally free the page, and manage the hold/wire counts. */ static int pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free) { pd_entry_t ptepde; vm_page_t mpte; if (va >= VM_MAXUSER_ADDRESS) return 0; ptepde = *pmap_pde(pmap, va); mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME); return pmap_unwire_pte_hold(pmap, mpte, free); } void pmap_pinit0(pmap_t pmap) { PMAP_LOCK_INIT(pmap); pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD); #ifdef PAE pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT); #endif pmap->pm_active = 0; PCPU_SET(curpmap, pmap); TAILQ_INIT(&pmap->pm_pvchunk); bzero(&pmap->pm_stats, sizeof pmap->pm_stats); mtx_lock_spin(&allpmaps_lock); LIST_INSERT_HEAD(&allpmaps, pmap, pm_list); mtx_unlock_spin(&allpmaps_lock); } /* * Initialize a preallocated and zeroed pmap structure, * such as one in a vmspace structure. */ int pmap_pinit(pmap_t pmap) { vm_page_t m, ptdpg[NPGPTD]; vm_paddr_t pa; static int color; int i; PMAP_LOCK_INIT(pmap); /* * No need to allocate page table space yet but we do need a valid * page directory table. */ if (pmap->pm_pdir == NULL) { pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map, NBPTD); if (pmap->pm_pdir == NULL) { PMAP_LOCK_DESTROY(pmap); return (0); } #ifdef PAE pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO); KASSERT(((vm_offset_t)pmap->pm_pdpt & ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0, ("pmap_pinit: pdpt misaligned")); KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30), ("pmap_pinit: pdpt above 4g")); #endif } /* * allocate the page directory page(s) */ for (i = 0; i < NPGPTD;) { m = vm_page_alloc(NULL, color++, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); if (m == NULL) VM_WAIT; else { ptdpg[i++] = m; } } pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD); for (i = 0; i < NPGPTD; i++) { if ((ptdpg[i]->flags & PG_ZERO) == 0) bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE); } mtx_lock_spin(&allpmaps_lock); LIST_INSERT_HEAD(&allpmaps, pmap, pm_list); mtx_unlock_spin(&allpmaps_lock); /* Wire in kernel global address entries. */ bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t)); /* install self-referential address mapping entry(s) */ for (i = 0; i < NPGPTD; i++) { pa = VM_PAGE_TO_PHYS(ptdpg[i]); pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M; #ifdef PAE pmap->pm_pdpt[i] = pa | PG_V; #endif } pmap->pm_active = 0; TAILQ_INIT(&pmap->pm_pvchunk); bzero(&pmap->pm_stats, sizeof pmap->pm_stats); return (1); } /* * this routine is called if the page table page is not * mapped correctly. */ static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags) { vm_paddr_t ptepa; vm_page_t m; KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT || (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK, ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK")); /* * Allocate a page table page. */ if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) { if (flags & M_WAITOK) { PMAP_UNLOCK(pmap); vm_page_unlock_queues(); VM_WAIT; vm_page_lock_queues(); PMAP_LOCK(pmap); } /* * Indicate the need to retry. While waiting, the page table * page may have been allocated. */ return (NULL); } if ((m->flags & PG_ZERO) == 0) pmap_zero_page(m); /* * Map the pagetable page into the process address space, if * it isn't already there. */ pmap->pm_stats.resident_count++; ptepa = VM_PAGE_TO_PHYS(m); pmap->pm_pdir[ptepindex] = (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M); return m; } static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags) { unsigned ptepindex; pd_entry_t ptepa; vm_page_t m; KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT || (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK, ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK")); /* * Calculate pagetable page index */ ptepindex = va >> PDRSHIFT; retry: /* * Get the page directory entry */ ptepa = pmap->pm_pdir[ptepindex]; /* * This supports switching from a 4MB page to a * normal 4K page. */ if (ptepa & PG_PS) { pmap->pm_pdir[ptepindex] = 0; ptepa = 0; pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE; pmap_invalidate_all(kernel_pmap); } /* * If the page table page is mapped, we just increment the * hold count, and activate it. */ if (ptepa) { m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME); m->wire_count++; } else { /* * Here if the pte page isn't mapped, or if it has * been deallocated. */ m = _pmap_allocpte(pmap, ptepindex, flags); if (m == NULL && (flags & M_WAITOK)) goto retry; } return (m); } /*************************************************** * Pmap allocation/deallocation routines. ***************************************************/ #ifdef SMP /* * Deal with a SMP shootdown of other users of the pmap that we are * trying to dispose of. This can be a bit hairy. */ static u_int *lazymask; static u_int lazyptd; static volatile u_int lazywait; void pmap_lazyfix_action(void); void pmap_lazyfix_action(void) { u_int mymask = PCPU_GET(cpumask); #ifdef COUNT_IPIS (*ipi_lazypmap_counts[PCPU_GET(cpuid)])++; #endif if (rcr3() == lazyptd) load_cr3(PCPU_GET(curpcb)->pcb_cr3); atomic_clear_int(lazymask, mymask); atomic_store_rel_int(&lazywait, 1); } static void pmap_lazyfix_self(u_int mymask) { if (rcr3() == lazyptd) load_cr3(PCPU_GET(curpcb)->pcb_cr3); atomic_clear_int(lazymask, mymask); } static void pmap_lazyfix(pmap_t pmap) { u_int mymask; u_int mask; u_int spins; while ((mask = pmap->pm_active) != 0) { spins = 50000000; mask = mask & -mask; /* Find least significant set bit */ mtx_lock_spin(&smp_ipi_mtx); #ifdef PAE lazyptd = vtophys(pmap->pm_pdpt); #else lazyptd = vtophys(pmap->pm_pdir); #endif mymask = PCPU_GET(cpumask); if (mask == mymask) { lazymask = &pmap->pm_active; pmap_lazyfix_self(mymask); } else { atomic_store_rel_int((u_int *)&lazymask, (u_int)&pmap->pm_active); atomic_store_rel_int(&lazywait, 0); ipi_selected(mask, IPI_LAZYPMAP); while (lazywait == 0) { ia32_pause(); if (--spins == 0) break; } } mtx_unlock_spin(&smp_ipi_mtx); if (spins == 0) printf("pmap_lazyfix: spun for 50000000\n"); } } #else /* SMP */ /* * Cleaning up on uniprocessor is easy. For various reasons, we're * unlikely to have to even execute this code, including the fact * that the cleanup is deferred until the parent does a wait(2), which * means that another userland process has run. */ static void pmap_lazyfix(pmap_t pmap) { u_int cr3; cr3 = vtophys(pmap->pm_pdir); if (cr3 == rcr3()) { load_cr3(PCPU_GET(curpcb)->pcb_cr3); pmap->pm_active &= ~(PCPU_GET(cpumask)); } } #endif /* SMP */ /* * Release any resources held by the given physical map. * Called when a pmap initialized by pmap_pinit is being released. * Should only be called if the map contains no valid mappings. */ void pmap_release(pmap_t pmap) { vm_page_t m, ptdpg[NPGPTD]; int i; KASSERT(pmap->pm_stats.resident_count == 0, ("pmap_release: pmap resident count %ld != 0", pmap->pm_stats.resident_count)); pmap_lazyfix(pmap); mtx_lock_spin(&allpmaps_lock); LIST_REMOVE(pmap, pm_list); mtx_unlock_spin(&allpmaps_lock); for (i = 0; i < NPGPTD; i++) ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] & PG_FRAME); bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) * sizeof(*pmap->pm_pdir)); pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD); for (i = 0; i < NPGPTD; i++) { m = ptdpg[i]; #ifdef PAE KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME), ("pmap_release: got wrong ptd page")); #endif m->wire_count--; atomic_subtract_int(&cnt.v_wire_count, 1); vm_page_free_zero(m); } PMAP_LOCK_DESTROY(pmap); } static int kvm_size(SYSCTL_HANDLER_ARGS) { unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE; return sysctl_handle_long(oidp, &ksize, 0, req); } SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 0, 0, kvm_size, "IU", "Size of KVM"); static int kvm_free(SYSCTL_HANDLER_ARGS) { unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end; return sysctl_handle_long(oidp, &kfree, 0, req); } SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 0, 0, kvm_free, "IU", "Amount of KVM free"); /* * grow the number of kernel page table entries, if needed */ void pmap_growkernel(vm_offset_t addr) { struct pmap *pmap; vm_paddr_t ptppaddr; vm_page_t nkpg; pd_entry_t newpdir; pt_entry_t *pde; mtx_assert(&kernel_map->system_mtx, MA_OWNED); if (kernel_vm_end == 0) { kernel_vm_end = KERNBASE; nkpt = 0; while (pdir_pde(PTD, kernel_vm_end)) { kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1); nkpt++; if (kernel_vm_end - 1 >= kernel_map->max_offset) { kernel_vm_end = kernel_map->max_offset; break; } } } addr = roundup2(addr, PAGE_SIZE * NPTEPG); if (addr - 1 >= kernel_map->max_offset) addr = kernel_map->max_offset; while (kernel_vm_end < addr) { if (pdir_pde(PTD, kernel_vm_end)) { kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1); if (kernel_vm_end - 1 >= kernel_map->max_offset) { kernel_vm_end = kernel_map->max_offset; break; } continue; } /* * This index is bogus, but out of the way */ nkpg = vm_page_alloc(NULL, nkpt, VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED); if (!nkpg) panic("pmap_growkernel: no memory to grow kernel"); nkpt++; pmap_zero_page(nkpg); ptppaddr = VM_PAGE_TO_PHYS(nkpg); newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M); pdir_pde(PTD, kernel_vm_end) = newpdir; mtx_lock_spin(&allpmaps_lock); LIST_FOREACH(pmap, &allpmaps, pm_list) { pde = pmap_pde(pmap, kernel_vm_end); pde_store(pde, newpdir); } mtx_unlock_spin(&allpmaps_lock); kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1); if (kernel_vm_end - 1 >= kernel_map->max_offset) { kernel_vm_end = kernel_map->max_offset; break; } } } /*************************************************** * page management routines. ***************************************************/ CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE); CTASSERT(_NPCM == 11); static __inline struct pv_chunk * pv_to_chunk(pv_entry_t pv) { return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK); } #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap) #define PC_FREE0_9 0xfffffffful /* Free values for index 0 through 9 */ #define PC_FREE10 0x0000fffful /* Free values for index 10 */ static uint32_t pc_freemask[11] = { PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE10 }; SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0, "Current number of pv entries"); #ifdef PV_STATS static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail; SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0, "Current number of pv entry chunks"); SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0, "Current number of pv entry chunks allocated"); SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0, "Current number of pv entry chunks frees"); SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0, "Number of times tried to get a chunk page but failed."); static long pv_entry_frees, pv_entry_allocs; static int pv_entry_spare; SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0, "Current number of pv entry frees"); SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0, "Current number of pv entry allocs"); SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0, "Current number of spare pv entries"); static int pmap_collect_inactive, pmap_collect_active; SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0, "Current number times pmap_collect called on inactive queue"); SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0, "Current number times pmap_collect called on active queue"); #endif /* * We are in a serious low memory condition. Resort to * drastic measures to free some pages so we can allocate * another pv entry chunk. This is normally called to * unmap inactive pages, and if necessary, active pages. */ static void pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq) { pmap_t pmap; pt_entry_t *pte, tpte; pv_entry_t next_pv, pv; vm_offset_t va; vm_page_t m, free; sched_pin(); TAILQ_FOREACH(m, &vpq->pl, pageq) { if (m->hold_count || m->busy) continue; TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) { va = pv->pv_va; pmap = PV_PMAP(pv); /* Avoid deadlock and lock recursion. */ if (pmap > locked_pmap) PMAP_LOCK(pmap); else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) continue; pmap->pm_stats.resident_count--; pte = pmap_pte_quick(pmap, va); tpte = pte_load_clear(pte); KASSERT((tpte & PG_W) == 0, ("pmap_collect: wired pte %#jx", (uintmax_t)tpte)); if (tpte & PG_A) vm_page_flag_set(m, PG_REFERENCED); if (tpte & PG_M) { KASSERT((tpte & PG_RW), ("pmap_collect: modified page not writable: va: %#x, pte: %#jx", va, (uintmax_t)tpte)); vm_page_dirty(m); } free = NULL; pmap_unuse_pt(pmap, va, &free); pmap_invalidate_page(pmap, va); pmap_free_zero_pages(free); TAILQ_REMOVE(&m->md.pv_list, pv, pv_list); if (TAILQ_EMPTY(&m->md.pv_list)) vm_page_flag_clear(m, PG_WRITEABLE); m->md.pv_list_count--; free_pv_entry(pmap, pv); if (pmap != locked_pmap) PMAP_UNLOCK(pmap); } } sched_unpin(); } /* * free the pv_entry back to the free list */ static void free_pv_entry(pmap_t pmap, pv_entry_t pv) { vm_page_t m; struct pv_chunk *pc; int idx, field, bit; mtx_assert(&vm_page_queue_mtx, MA_OWNED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); PV_STAT(pv_entry_frees++); PV_STAT(pv_entry_spare++); pv_entry_count--; pc = pv_to_chunk(pv); idx = pv - &pc->pc_pventry[0]; field = idx / 32; bit = idx % 32; pc->pc_map[field] |= 1ul << bit; /* move to head of list */ TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); for (idx = 0; idx < _NPCM; idx++) if (pc->pc_map[idx] != pc_freemask[idx]) return; PV_STAT(pv_entry_spare -= _NPCPV); PV_STAT(pc_chunk_count--); PV_STAT(pc_chunk_frees++); /* entire chunk is free, return it */ TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc)); pmap_qremove((vm_offset_t)pc, 1); vm_page_unwire(m, 0); vm_page_free(m); pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc); } /* * get a new pv_entry, allocating a block from the system * when needed. */ static pv_entry_t get_pv_entry(pmap_t pmap, int try) { static const struct timeval printinterval = { 60, 0 }; static struct timeval lastprint; static vm_pindex_t colour; struct vpgqueues *pq; int bit, field; pv_entry_t pv; struct pv_chunk *pc; vm_page_t m; PMAP_LOCK_ASSERT(pmap, MA_OWNED); mtx_assert(&vm_page_queue_mtx, MA_OWNED); PV_STAT(pv_entry_allocs++); pv_entry_count++; if (pv_entry_count > pv_entry_high_water) if (ratecheck(&lastprint, &printinterval)) printf("Approaching the limit on PV entries, consider " "increasing either the vm.pmap.shpgperproc or the " "vm.pmap.pv_entry_max tunable.\n"); pq = NULL; retry: pc = TAILQ_FIRST(&pmap->pm_pvchunk); if (pc != NULL) { for (field = 0; field < _NPCM; field++) { if (pc->pc_map[field]) { bit = bsfl(pc->pc_map[field]); break; } } if (field < _NPCM) { pv = &pc->pc_pventry[field * 32 + bit]; pc->pc_map[field] &= ~(1ul << bit); /* If this was the last item, move it to tail */ for (field = 0; field < _NPCM; field++) if (pc->pc_map[field] != 0) { PV_STAT(pv_entry_spare--); return (pv); /* not full, return */ } TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list); PV_STAT(pv_entry_spare--); return (pv); } } /* * Access to the ptelist "pv_vafree" is synchronized by the page * queues lock. If "pv_vafree" is currently non-empty, it will * remain non-empty until pmap_ptelist_alloc() completes. */ if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq == &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) { if (try) { pv_entry_count--; PV_STAT(pc_chunk_tryfail++); return (NULL); } /* * Reclaim pv entries: At first, destroy mappings to * inactive pages. After that, if a pv chunk entry * is still needed, destroy mappings to active pages. */ if (pq == NULL) { PV_STAT(pmap_collect_inactive++); pq = &vm_page_queues[PQ_INACTIVE]; } else if (pq == &vm_page_queues[PQ_INACTIVE]) { PV_STAT(pmap_collect_active++); pq = &vm_page_queues[PQ_ACTIVE]; } else panic("get_pv_entry: increase vm.pmap.shpgperproc"); pmap_collect(pmap, pq); goto retry; } PV_STAT(pc_chunk_count++); PV_STAT(pc_chunk_allocs++); colour++; pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree); pmap_qenter((vm_offset_t)pc, &m, 1); pc->pc_pmap = pmap; pc->pc_map[0] = pc_freemask[0] & ~1ul; /* preallocated bit 0 */ for (field = 1; field < _NPCM; field++) pc->pc_map[field] = pc_freemask[field]; pv = &pc->pc_pventry[0]; TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); PV_STAT(pv_entry_spare += _NPCPV - 1); return (pv); } static void pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va) { pv_entry_t pv; PMAP_LOCK_ASSERT(pmap, MA_OWNED); mtx_assert(&vm_page_queue_mtx, MA_OWNED); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { if (pmap == PV_PMAP(pv) && va == pv->pv_va) break; } KASSERT(pv != NULL, ("pmap_remove_entry: pv not found")); TAILQ_REMOVE(&m->md.pv_list, pv, pv_list); m->md.pv_list_count--; if (TAILQ_EMPTY(&m->md.pv_list)) vm_page_flag_clear(m, PG_WRITEABLE); free_pv_entry(pmap, pv); } /* * Create a pv entry for page at pa for * (pmap, va). */ static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m) { pv_entry_t pv; PMAP_LOCK_ASSERT(pmap, MA_OWNED); mtx_assert(&vm_page_queue_mtx, MA_OWNED); pv = get_pv_entry(pmap, FALSE); pv->pv_va = va; TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list); m->md.pv_list_count++; } /* * Conditionally create a pv entry. */ static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m) { pv_entry_t pv; PMAP_LOCK_ASSERT(pmap, MA_OWNED); mtx_assert(&vm_page_queue_mtx, MA_OWNED); if (pv_entry_count < pv_entry_high_water && (pv = get_pv_entry(pmap, TRUE)) != NULL) { pv->pv_va = va; TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list); m->md.pv_list_count++; return (TRUE); } else return (FALSE); } /* * pmap_remove_pte: do the things to unmap a page in a process */ static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free) { pt_entry_t oldpte; vm_page_t m; mtx_assert(&vm_page_queue_mtx, MA_OWNED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); oldpte = pte_load_clear(ptq); if (oldpte & PG_W) pmap->pm_stats.wired_count -= 1; /* * Machines that don't support invlpg, also don't support * PG_G. */ if (oldpte & PG_G) pmap_invalidate_page(kernel_pmap, va); pmap->pm_stats.resident_count -= 1; if (oldpte & PG_MANAGED) { m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME); if (oldpte & PG_M) { KASSERT((oldpte & PG_RW), ("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx", va, (uintmax_t)oldpte)); vm_page_dirty(m); } if (oldpte & PG_A) vm_page_flag_set(m, PG_REFERENCED); pmap_remove_entry(pmap, m, va); } return (pmap_unuse_pt(pmap, va, free)); } /* * Remove a single page from a process address space */ static void pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free) { pt_entry_t *pte; mtx_assert(&vm_page_queue_mtx, MA_OWNED); KASSERT(curthread->td_pinned > 0, ("curthread not pinned")); PMAP_LOCK_ASSERT(pmap, MA_OWNED); if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0) return; pmap_remove_pte(pmap, pte, va, free); pmap_invalidate_page(pmap, va); } /* * Remove the given range of addresses from the specified map. * * It is assumed that the start and end are properly * rounded to the page size. */ void pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { vm_offset_t pdnxt; pd_entry_t ptpaddr; pt_entry_t *pte; vm_page_t free = NULL; int anyvalid; /* * Perform an unsynchronized read. This is, however, safe. */ if (pmap->pm_stats.resident_count == 0) return; anyvalid = 0; vm_page_lock_queues(); sched_pin(); PMAP_LOCK(pmap); /* * special handling of removing one page. a very * common operation and easy to short circuit some * code. */ if ((sva + PAGE_SIZE == eva) && ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) { pmap_remove_page(pmap, sva, &free); goto out; } for (; sva < eva; sva = pdnxt) { unsigned pdirindex; /* * Calculate index for next page table. */ pdnxt = (sva + NBPDR) & ~PDRMASK; if (pmap->pm_stats.resident_count == 0) break; pdirindex = sva >> PDRSHIFT; ptpaddr = pmap->pm_pdir[pdirindex]; /* * Weed out invalid mappings. Note: we assume that the page * directory table is always allocated, and in kernel virtual. */ if (ptpaddr == 0) continue; /* * Check for large page. */ if ((ptpaddr & PG_PS) != 0) { pmap->pm_pdir[pdirindex] = 0; pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE; anyvalid = 1; continue; } /* * Limit our scan to either the end of the va represented * by the current page table page, or to the end of the * range being removed. */ if (pdnxt > eva) pdnxt = eva; for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++, sva += PAGE_SIZE) { if (*pte == 0) continue; /* * The TLB entry for a PG_G mapping is invalidated * by pmap_remove_pte(). */ if ((*pte & PG_G) == 0) anyvalid = 1; if (pmap_remove_pte(pmap, pte, sva, &free)) break; } } out: sched_unpin(); if (anyvalid) pmap_invalidate_all(pmap); vm_page_unlock_queues(); PMAP_UNLOCK(pmap); pmap_free_zero_pages(free); } /* * Routine: pmap_remove_all * Function: * Removes this physical page from * all physical maps in which it resides. * Reflects back modify bits to the pager. * * Notes: * Original versions of this routine were very * inefficient because they iteratively called * pmap_remove (slow...) */ void pmap_remove_all(vm_page_t m) { pv_entry_t pv; pmap_t pmap; pt_entry_t *pte, tpte; vm_page_t free; #if defined(PMAP_DIAGNOSTIC) /* * XXX This makes pmap_remove_all() illegal for non-managed pages! */ if (m->flags & PG_FICTITIOUS) { panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m)); } #endif mtx_assert(&vm_page_queue_mtx, MA_OWNED); sched_pin(); while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pmap->pm_stats.resident_count--; pte = pmap_pte_quick(pmap, pv->pv_va); tpte = pte_load_clear(pte); if (tpte & PG_W) pmap->pm_stats.wired_count--; if (tpte & PG_A) vm_page_flag_set(m, PG_REFERENCED); /* * Update the vm_page_t clean and reference bits. */ if (tpte & PG_M) { KASSERT((tpte & PG_RW), ("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx", pv->pv_va, (uintmax_t)tpte)); vm_page_dirty(m); } free = NULL; pmap_unuse_pt(pmap, pv->pv_va, &free); pmap_invalidate_page(pmap, pv->pv_va); pmap_free_zero_pages(free); TAILQ_REMOVE(&m->md.pv_list, pv, pv_list); m->md.pv_list_count--; free_pv_entry(pmap, pv); PMAP_UNLOCK(pmap); } vm_page_flag_clear(m, PG_WRITEABLE); sched_unpin(); } /* * Set the physical protection on the * specified range of this map as requested. */ void pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) { vm_offset_t pdnxt; pd_entry_t ptpaddr; pt_entry_t *pte; int anychanged; if ((prot & VM_PROT_READ) == VM_PROT_NONE) { pmap_remove(pmap, sva, eva); return; } #ifdef PAE if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) == (VM_PROT_WRITE|VM_PROT_EXECUTE)) return; #else if (prot & VM_PROT_WRITE) return; #endif anychanged = 0; vm_page_lock_queues(); sched_pin(); PMAP_LOCK(pmap); for (; sva < eva; sva = pdnxt) { pt_entry_t obits, pbits; unsigned pdirindex; pdnxt = (sva + NBPDR) & ~PDRMASK; pdirindex = sva >> PDRSHIFT; ptpaddr = pmap->pm_pdir[pdirindex]; /* * Weed out invalid mappings. Note: we assume that the page * directory table is always allocated, and in kernel virtual. */ if (ptpaddr == 0) continue; /* * Check for large page. */ if ((ptpaddr & PG_PS) != 0) { if ((prot & VM_PROT_WRITE) == 0) pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW); #ifdef PAE if ((prot & VM_PROT_EXECUTE) == 0) pmap->pm_pdir[pdirindex] |= pg_nx; #endif anychanged = 1; continue; } if (pdnxt > eva) pdnxt = eva; for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++, sva += PAGE_SIZE) { vm_page_t m; retry: /* * Regardless of whether a pte is 32 or 64 bits in * size, PG_RW, PG_A, and PG_M are among the least * significant 32 bits. */ obits = pbits = *pte; if ((pbits & PG_V) == 0) continue; if (pbits & PG_MANAGED) { m = NULL; if (pbits & PG_A) { m = PHYS_TO_VM_PAGE(pbits & PG_FRAME); vm_page_flag_set(m, PG_REFERENCED); pbits &= ~PG_A; } if ((pbits & PG_M) != 0) { if (m == NULL) m = PHYS_TO_VM_PAGE(pbits & PG_FRAME); vm_page_dirty(m); } } if ((prot & VM_PROT_WRITE) == 0) pbits &= ~(PG_RW | PG_M); #ifdef PAE if ((prot & VM_PROT_EXECUTE) == 0) pbits |= pg_nx; #endif if (pbits != obits) { #ifdef PAE if (!atomic_cmpset_64(pte, obits, pbits)) goto retry; #else if (!atomic_cmpset_int((u_int *)pte, obits, pbits)) goto retry; #endif if (obits & PG_G) pmap_invalidate_page(pmap, sva); else anychanged = 1; } } } sched_unpin(); if (anychanged) pmap_invalidate_all(pmap); vm_page_unlock_queues(); PMAP_UNLOCK(pmap); } /* * Insert the given physical page (p) at * the specified virtual address (v) in the * target physical map with the protection requested. * * If specified, the page will be wired down, meaning * that the related pte can not be reclaimed. * * NB: This is the only routine which MAY NOT lazy-evaluate * or lose information. That is, this routine must actually * insert this page into the given map NOW. */ void pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, boolean_t wired) { vm_paddr_t pa; pd_entry_t *pde; pt_entry_t *pte; vm_paddr_t opa; pt_entry_t origpte, newpte; vm_page_t mpte, om; boolean_t invlva; va = trunc_page(va); #ifdef PMAP_DIAGNOSTIC if (va > VM_MAX_KERNEL_ADDRESS) panic("pmap_enter: toobig"); if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS)) panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va); #endif mpte = NULL; vm_page_lock_queues(); PMAP_LOCK(pmap); sched_pin(); /* * In the case that a page table page is not * resident, we are creating it here. */ if (va < VM_MAXUSER_ADDRESS) { mpte = pmap_allocpte(pmap, va, M_WAITOK); } #if 0 && defined(PMAP_DIAGNOSTIC) else { pd_entry_t *pdeaddr = pmap_pde(pmap, va); origpte = *pdeaddr; if ((origpte & PG_V) == 0) { panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n", pmap->pm_pdir[PTDPTDI], origpte, va); } } #endif pde = pmap_pde(pmap, va); if ((*pde & PG_PS) != 0) panic("pmap_enter: attempted pmap_enter on 4MB page"); pte = pmap_pte_quick(pmap, va); /* * Page Directory table entry not valid, we need a new PT page */ if (pte == NULL) { panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n", (uintmax_t)pmap->pm_pdir[PTDPTDI], va); } pa = VM_PAGE_TO_PHYS(m); om = NULL; origpte = *pte; opa = origpte & PG_FRAME; /* * Mapping has not changed, must be protection or wiring change. */ if (origpte && (opa == pa)) { /* * Wiring change, just update stats. We don't worry about * wiring PT pages as they remain resident as long as there * are valid mappings in them. Hence, if a user page is wired, * the PT page will be also. */ if (wired && ((origpte & PG_W) == 0)) pmap->pm_stats.wired_count++; else if (!wired && (origpte & PG_W)) pmap->pm_stats.wired_count--; /* * Remove extra pte reference */ if (mpte) mpte->wire_count--; /* * We might be turning off write access to the page, * so we go ahead and sense modify status. */ if (origpte & PG_MANAGED) { om = m; pa |= PG_MANAGED; } goto validate; } /* * Mapping has changed, invalidate old range and fall through to * handle validating new mapping. */ if (opa) { if (origpte & PG_W) pmap->pm_stats.wired_count--; if (origpte & PG_MANAGED) { om = PHYS_TO_VM_PAGE(opa); pmap_remove_entry(pmap, om, va); } if (mpte != NULL) { mpte->wire_count--; KASSERT(mpte->wire_count > 0, ("pmap_enter: missing reference to page table page," " va: 0x%x", va)); } } else pmap->pm_stats.resident_count++; /* * Enter on the PV list if part of our managed memory. */ if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) { KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva, ("pmap_enter: managed mapping within the clean submap")); pmap_insert_entry(pmap, va, m); pa |= PG_MANAGED; } /* * Increment counters */ if (wired) pmap->pm_stats.wired_count++; validate: /* * Now validate mapping with desired protection/wiring. */ newpte = (pt_entry_t)(pa | PG_V); if ((prot & VM_PROT_WRITE) != 0) { newpte |= PG_RW; vm_page_flag_set(m, PG_WRITEABLE); } #ifdef PAE if ((prot & VM_PROT_EXECUTE) == 0) newpte |= pg_nx; #endif if (wired) newpte |= PG_W; if (va < VM_MAXUSER_ADDRESS) newpte |= PG_U; if (pmap == kernel_pmap) newpte |= pgeflag; /* * if the mapping or permission bits are different, we need * to update the pte. */ if ((origpte & ~(PG_M|PG_A)) != newpte) { if (origpte & PG_V) { invlva = FALSE; origpte = pte_load_store(pte, newpte | PG_A); if (origpte & PG_A) { if (origpte & PG_MANAGED) vm_page_flag_set(om, PG_REFERENCED); if (opa != VM_PAGE_TO_PHYS(m)) invlva = TRUE; #ifdef PAE if ((origpte & PG_NX) == 0 && (newpte & PG_NX) != 0) invlva = TRUE; #endif } if (origpte & PG_M) { KASSERT((origpte & PG_RW), ("pmap_enter: modified page not writable: va: %#x, pte: %#jx", va, (uintmax_t)origpte)); if ((origpte & PG_MANAGED) != 0) vm_page_dirty(om); if ((prot & VM_PROT_WRITE) == 0) invlva = TRUE; } if (invlva) pmap_invalidate_page(pmap, va); } else pte_store(pte, newpte | PG_A); } sched_unpin(); vm_page_unlock_queues(); PMAP_UNLOCK(pmap); } /* * Maps a sequence of resident pages belonging to the same object. * The sequence begins with the given page m_start. This page is * mapped at the given virtual address start. Each subsequent page is * mapped at a virtual address that is offset from start by the same * amount as the page is offset from m_start within the object. The * last page in the sequence is the page with the largest offset from * m_start that can be mapped at a virtual address less than the given * virtual address end. Not every virtual page between start and end * is mapped; only those for which a resident page exists with the * corresponding offset from m_start are mapped. */ void pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end, vm_page_t m_start, vm_prot_t prot) { vm_page_t m, mpte; vm_pindex_t diff, psize; VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED); psize = atop(end - start); mpte = NULL; m = m_start; PMAP_LOCK(pmap); while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m, prot, mpte); m = TAILQ_NEXT(m, listq); } PMAP_UNLOCK(pmap); } /* * this code makes some *MAJOR* assumptions: * 1. Current pmap & pmap exists. * 2. Not wired. * 3. Read access. * 4. No page table pages. * but is *MUCH* faster than pmap_enter... */ void pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot) { PMAP_LOCK(pmap); (void) pmap_enter_quick_locked(pmap, va, m, prot, NULL); PMAP_UNLOCK(pmap); } static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, vm_page_t mpte) { pt_entry_t *pte; vm_paddr_t pa; vm_page_t free; KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva || (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0, ("pmap_enter_quick_locked: managed mapping within the clean submap")); mtx_assert(&vm_page_queue_mtx, MA_OWNED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * In the case that a page table page is not * resident, we are creating it here. */ if (va < VM_MAXUSER_ADDRESS) { unsigned ptepindex; pd_entry_t ptepa; /* * Calculate pagetable page index */ ptepindex = va >> PDRSHIFT; if (mpte && (mpte->pindex == ptepindex)) { mpte->wire_count++; } else { /* * Get the page directory entry */ ptepa = pmap->pm_pdir[ptepindex]; /* * If the page table page is mapped, we just increment * the hold count, and activate it. */ if (ptepa) { if (ptepa & PG_PS) panic("pmap_enter_quick: unexpected mapping into 4MB page"); mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME); mpte->wire_count++; } else { mpte = _pmap_allocpte(pmap, ptepindex, M_NOWAIT); if (mpte == NULL) return (mpte); } } } else { mpte = NULL; } /* * This call to vtopte makes the assumption that we are * entering the page into the current pmap. In order to support * quick entry into any pmap, one would likely use pmap_pte_quick. * But that isn't as quick as vtopte. */ pte = vtopte(va); if (*pte) { if (mpte != NULL) { mpte->wire_count--; mpte = NULL; } return (mpte); } /* * Enter on the PV list if part of our managed memory. */ if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 && !pmap_try_insert_pv_entry(pmap, va, m)) { if (mpte != NULL) { free = NULL; if (pmap_unwire_pte_hold(pmap, mpte, &free)) { pmap_invalidate_page(pmap, va); pmap_free_zero_pages(free); } mpte = NULL; } return (mpte); } /* * Increment counters */ pmap->pm_stats.resident_count++; pa = VM_PAGE_TO_PHYS(m); #ifdef PAE if ((prot & VM_PROT_EXECUTE) == 0) pa |= pg_nx; #endif /* * Now validate mapping with RO protection */ if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) pte_store(pte, pa | PG_V | PG_U); else pte_store(pte, pa | PG_V | PG_U | PG_MANAGED); return mpte; } /* * Make a temporary mapping for a physical address. This is only intended * to be used for panic dumps. */ void * pmap_kenter_temporary(vm_paddr_t pa, int i) { vm_offset_t va; va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE); pmap_kenter(va, pa); invlpg(va); return ((void *)crashdumpmap); } /* * This code maps large physical mmap regions into the * processor address space. Note that some shortcuts * are taken, but the code works. */ void pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object, vm_pindex_t pindex, vm_size_t size) { vm_page_t p; VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); KASSERT(object->type == OBJT_DEVICE, ("pmap_object_init_pt: non-device object")); if (pseflag && ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) { int i; vm_page_t m[1]; unsigned int ptepindex; int npdes; pd_entry_t ptepa; PMAP_LOCK(pmap); if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)]) goto out; PMAP_UNLOCK(pmap); retry: p = vm_page_lookup(object, pindex); if (p != NULL) { if (vm_page_sleep_if_busy(p, FALSE, "init4p")) goto retry; } else { p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL); if (p == NULL) return; m[0] = p; if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) { vm_page_lock_queues(); vm_page_free(p); vm_page_unlock_queues(); return; } p = vm_page_lookup(object, pindex); vm_page_lock_queues(); vm_page_wakeup(p); vm_page_unlock_queues(); } ptepa = VM_PAGE_TO_PHYS(p); if (ptepa & (NBPDR - 1)) return; p->valid = VM_PAGE_BITS_ALL; PMAP_LOCK(pmap); pmap->pm_stats.resident_count += size >> PAGE_SHIFT; npdes = size >> PDRSHIFT; for(i = 0; i < npdes; i++) { pde_store(&pmap->pm_pdir[ptepindex], ptepa | PG_U | PG_RW | PG_V | PG_PS); ptepa += NBPDR; ptepindex += 1; } pmap_invalidate_all(pmap); out: PMAP_UNLOCK(pmap); } } /* * Routine: pmap_change_wiring * Function: Change the wiring attribute for a map/virtual-address * pair. * In/out conditions: * The mapping must already exist in the pmap. */ void pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired) { pt_entry_t *pte; PMAP_LOCK(pmap); pte = pmap_pte(pmap, va); if (wired && !pmap_pte_w(pte)) pmap->pm_stats.wired_count++; else if (!wired && pmap_pte_w(pte)) pmap->pm_stats.wired_count--; /* * Wiring is not a hardware characteristic so there is no need to * invalidate TLB. */ pmap_pte_set_w(pte, wired); pmap_pte_release(pte); PMAP_UNLOCK(pmap); } /* * Copy the range specified by src_addr/len * from the source map to the range dst_addr/len * in the destination map. * * This routine is only advisory and need not do anything. */ void pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) { vm_page_t free; vm_offset_t addr; vm_offset_t end_addr = src_addr + len; vm_offset_t pdnxt; if (dst_addr != src_addr) return; if (!pmap_is_current(src_pmap)) return; vm_page_lock_queues(); if (dst_pmap < src_pmap) { PMAP_LOCK(dst_pmap); PMAP_LOCK(src_pmap); } else { PMAP_LOCK(src_pmap); PMAP_LOCK(dst_pmap); } sched_pin(); for (addr = src_addr; addr < end_addr; addr = pdnxt) { pt_entry_t *src_pte, *dst_pte; vm_page_t dstmpte, srcmpte; pd_entry_t srcptepaddr; unsigned ptepindex; if (addr >= UPT_MIN_ADDRESS) panic("pmap_copy: invalid to pmap_copy page tables"); pdnxt = (addr + NBPDR) & ~PDRMASK; ptepindex = addr >> PDRSHIFT; srcptepaddr = src_pmap->pm_pdir[ptepindex]; if (srcptepaddr == 0) continue; if (srcptepaddr & PG_PS) { if (dst_pmap->pm_pdir[ptepindex] == 0) { dst_pmap->pm_pdir[ptepindex] = srcptepaddr & ~PG_W; dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE; } continue; } srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME); if (srcmpte->wire_count == 0) panic("pmap_copy: source page table page is unused"); if (pdnxt > end_addr) pdnxt = end_addr; src_pte = vtopte(addr); while (addr < pdnxt) { pt_entry_t ptetemp; ptetemp = *src_pte; /* * we only virtual copy managed pages */ if ((ptetemp & PG_MANAGED) != 0) { dstmpte = pmap_allocpte(dst_pmap, addr, M_NOWAIT); if (dstmpte == NULL) break; dst_pte = pmap_pte_quick(dst_pmap, addr); if (*dst_pte == 0 && pmap_try_insert_pv_entry(dst_pmap, addr, PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) { /* * Clear the wired, modified, and * accessed (referenced) bits * during the copy. */ *dst_pte = ptetemp & ~(PG_W | PG_M | PG_A); dst_pmap->pm_stats.resident_count++; } else { free = NULL; if (pmap_unwire_pte_hold( dst_pmap, dstmpte, &free)) { pmap_invalidate_page(dst_pmap, addr); pmap_free_zero_pages(free); } } if (dstmpte->wire_count >= srcmpte->wire_count) break; } addr += PAGE_SIZE; src_pte++; } } sched_unpin(); vm_page_unlock_queues(); PMAP_UNLOCK(src_pmap); PMAP_UNLOCK(dst_pmap); } static __inline void pagezero(void *page) { #if defined(I686_CPU) if (cpu_class == CPUCLASS_686) { #if defined(CPU_ENABLE_SSE) if (cpu_feature & CPUID_SSE2) sse2_pagezero(page); else #endif i686_pagezero(page); } else #endif bzero(page, PAGE_SIZE); } /* * pmap_zero_page zeros the specified hardware page by mapping * the page into KVM and using bzero to clear its contents. */ void pmap_zero_page(vm_page_t m) { struct sysmaps *sysmaps; sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)]; mtx_lock(&sysmaps->lock); if (*sysmaps->CMAP2) panic("pmap_zero_page: CMAP2 busy"); sched_pin(); *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M; invlcaddr(sysmaps->CADDR2); pagezero(sysmaps->CADDR2); *sysmaps->CMAP2 = 0; sched_unpin(); mtx_unlock(&sysmaps->lock); } /* * pmap_zero_page_area zeros the specified hardware page by mapping * the page into KVM and using bzero to clear its contents. * * off and size may not cover an area beyond a single hardware page. */ void pmap_zero_page_area(vm_page_t m, int off, int size) { struct sysmaps *sysmaps; sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)]; mtx_lock(&sysmaps->lock); if (*sysmaps->CMAP2) panic("pmap_zero_page: CMAP2 busy"); sched_pin(); *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M; invlcaddr(sysmaps->CADDR2); if (off == 0 && size == PAGE_SIZE) pagezero(sysmaps->CADDR2); else bzero((char *)sysmaps->CADDR2 + off, size); *sysmaps->CMAP2 = 0; sched_unpin(); mtx_unlock(&sysmaps->lock); } /* * pmap_zero_page_idle zeros the specified hardware page by mapping * the page into KVM and using bzero to clear its contents. This * is intended to be called from the vm_pagezero process only and * outside of Giant. */ void pmap_zero_page_idle(vm_page_t m) { if (*CMAP3) panic("pmap_zero_page: CMAP3 busy"); sched_pin(); *CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M; invlcaddr(CADDR3); pagezero(CADDR3); *CMAP3 = 0; sched_unpin(); } /* * pmap_copy_page copies the specified (machine independent) * page by mapping the page into virtual memory and using * bcopy to copy the page, one machine dependent page at a * time. */ void pmap_copy_page(vm_page_t src, vm_page_t dst) { struct sysmaps *sysmaps; sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)]; mtx_lock(&sysmaps->lock); if (*sysmaps->CMAP1) panic("pmap_copy_page: CMAP1 busy"); if (*sysmaps->CMAP2) panic("pmap_copy_page: CMAP2 busy"); sched_pin(); invlpg((u_int)sysmaps->CADDR1); invlpg((u_int)sysmaps->CADDR2); *sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A; *sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M; bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE); *sysmaps->CMAP1 = 0; *sysmaps->CMAP2 = 0; sched_unpin(); mtx_unlock(&sysmaps->lock); } /* * Returns true if the pmap's pv is one of the first * 16 pvs linked to from this page. This count may * be changed upwards or downwards in the future; it * is only necessary that true be returned for a small * subset of pmaps for proper page aging. */ boolean_t pmap_page_exists_quick(pmap_t pmap, vm_page_t m) { pv_entry_t pv; int loops = 0; if (m->flags & PG_FICTITIOUS) return FALSE; mtx_assert(&vm_page_queue_mtx, MA_OWNED); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { if (PV_PMAP(pv) == pmap) { return TRUE; } loops++; if (loops >= 16) break; } return (FALSE); } /* * pmap_page_wired_mappings: * * Return the number of managed mappings to the given physical page * that are wired. */ int pmap_page_wired_mappings(vm_page_t m) { pv_entry_t pv; pt_entry_t *pte; pmap_t pmap; int count; count = 0; if ((m->flags & PG_FICTITIOUS) != 0) return (count); mtx_assert(&vm_page_queue_mtx, MA_OWNED); sched_pin(); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte = pmap_pte_quick(pmap, pv->pv_va); if ((*pte & PG_W) != 0) count++; PMAP_UNLOCK(pmap); } sched_unpin(); return (count); } /* * Remove all pages from specified address space * this aids process exit speeds. Also, this code * is special cased for current process only, but * can have the more generic (and slightly slower) * mode enabled. This is much faster than pmap_remove * in the case of running down an entire address space. */ void pmap_remove_pages(pmap_t pmap) { pt_entry_t *pte, tpte; vm_page_t m, free = NULL; pv_entry_t pv; struct pv_chunk *pc, *npc; int field, idx; int32_t bit; uint32_t inuse, bitmask; int allfree; if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) { printf("warning: pmap_remove_pages called with non-current pmap\n"); return; } vm_page_lock_queues(); PMAP_LOCK(pmap); sched_pin(); TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) { allfree = 1; for (field = 0; field < _NPCM; field++) { inuse = (~(pc->pc_map[field])) & pc_freemask[field]; while (inuse != 0) { bit = bsfl(inuse); bitmask = 1UL << bit; idx = field * 32 + bit; pv = &pc->pc_pventry[idx]; inuse &= ~bitmask; pte = vtopte(pv->pv_va); tpte = *pte; if (tpte == 0) { printf( "TPTE at %p IS ZERO @ VA %08x\n", pte, pv->pv_va); panic("bad pte"); } /* * We cannot remove wired pages from a process' mapping at this time */ if (tpte & PG_W) { allfree = 0; continue; } m = PHYS_TO_VM_PAGE(tpte & PG_FRAME); KASSERT(m->phys_addr == (tpte & PG_FRAME), ("vm_page_t %p phys_addr mismatch %016jx %016jx", m, (uintmax_t)m->phys_addr, (uintmax_t)tpte)); KASSERT(m < &vm_page_array[vm_page_array_size], ("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte)); pmap->pm_stats.resident_count--; pte_clear(pte); /* * Update the vm_page_t clean/reference bits. */ if (tpte & PG_M) vm_page_dirty(m); /* Mark free */ PV_STAT(pv_entry_frees++); PV_STAT(pv_entry_spare++); pv_entry_count--; pc->pc_map[field] |= bitmask; m->md.pv_list_count--; TAILQ_REMOVE(&m->md.pv_list, pv, pv_list); if (TAILQ_EMPTY(&m->md.pv_list)) vm_page_flag_clear(m, PG_WRITEABLE); pmap_unuse_pt(pmap, pv->pv_va, &free); } } if (allfree) { PV_STAT(pv_entry_spare -= _NPCPV); PV_STAT(pc_chunk_count--); PV_STAT(pc_chunk_frees++); TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc)); pmap_qremove((vm_offset_t)pc, 1); vm_page_unwire(m, 0); vm_page_free(m); pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc); } } sched_unpin(); pmap_invalidate_all(pmap); vm_page_unlock_queues(); PMAP_UNLOCK(pmap); pmap_free_zero_pages(free); } /* * pmap_is_modified: * * Return whether or not the specified physical page was modified * in any physical maps. */ boolean_t pmap_is_modified(vm_page_t m) { pv_entry_t pv; pt_entry_t *pte; pmap_t pmap; boolean_t rv; rv = FALSE; if (m->flags & PG_FICTITIOUS) return (rv); sched_pin(); mtx_assert(&vm_page_queue_mtx, MA_OWNED); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte = pmap_pte_quick(pmap, pv->pv_va); rv = (*pte & PG_M) != 0; PMAP_UNLOCK(pmap); if (rv) break; } sched_unpin(); return (rv); } /* * pmap_is_prefaultable: * * Return whether or not the specified virtual address is elgible * for prefault. */ boolean_t pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr) { pt_entry_t *pte; boolean_t rv; rv = FALSE; PMAP_LOCK(pmap); if (*pmap_pde(pmap, addr)) { pte = vtopte(addr); rv = *pte == 0; } PMAP_UNLOCK(pmap); return (rv); } /* * Clear the write and modified bits in each of the given page's mappings. */ void pmap_remove_write(vm_page_t m) { pv_entry_t pv; pmap_t pmap; pt_entry_t oldpte, *pte; mtx_assert(&vm_page_queue_mtx, MA_OWNED); if ((m->flags & PG_FICTITIOUS) != 0 || (m->flags & PG_WRITEABLE) == 0) return; sched_pin(); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte = pmap_pte_quick(pmap, pv->pv_va); retry: oldpte = *pte; if ((oldpte & PG_RW) != 0) { /* * Regardless of whether a pte is 32 or 64 bits * in size, PG_RW and PG_M are among the least * significant 32 bits. */ if (!atomic_cmpset_int((u_int *)pte, oldpte, oldpte & ~(PG_RW | PG_M))) goto retry; if ((oldpte & PG_M) != 0) vm_page_dirty(m); pmap_invalidate_page(pmap, pv->pv_va); } PMAP_UNLOCK(pmap); } vm_page_flag_clear(m, PG_WRITEABLE); sched_unpin(); } /* * pmap_ts_referenced: * * Return a count of reference bits for a page, clearing those bits. * It is not necessary for every reference bit to be cleared, but it * is necessary that 0 only be returned when there are truly no * reference bits set. * * XXX: The exact number of bits to check and clear is a matter that * should be tested and standardized at some point in the future for * optimal aging of shared pages. */ int pmap_ts_referenced(vm_page_t m) { pv_entry_t pv, pvf, pvn; pmap_t pmap; pt_entry_t *pte; int rtval = 0; if (m->flags & PG_FICTITIOUS) return (rtval); sched_pin(); mtx_assert(&vm_page_queue_mtx, MA_OWNED); if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) { pvf = pv; do { pvn = TAILQ_NEXT(pv, pv_list); TAILQ_REMOVE(&m->md.pv_list, pv, pv_list); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list); pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte = pmap_pte_quick(pmap, pv->pv_va); if ((*pte & PG_A) != 0) { atomic_clear_int((u_int *)pte, PG_A); pmap_invalidate_page(pmap, pv->pv_va); rtval++; if (rtval > 4) pvn = NULL; } PMAP_UNLOCK(pmap); } while ((pv = pvn) != NULL && pv != pvf); } sched_unpin(); return (rtval); } /* * Clear the modify bits on the specified physical page. */ void pmap_clear_modify(vm_page_t m) { pv_entry_t pv; pmap_t pmap; pt_entry_t *pte; mtx_assert(&vm_page_queue_mtx, MA_OWNED); if ((m->flags & PG_FICTITIOUS) != 0) return; sched_pin(); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte = pmap_pte_quick(pmap, pv->pv_va); if ((*pte & PG_M) != 0) { /* * Regardless of whether a pte is 32 or 64 bits * in size, PG_M is among the least significant * 32 bits. */ atomic_clear_int((u_int *)pte, PG_M); pmap_invalidate_page(pmap, pv->pv_va); } PMAP_UNLOCK(pmap); } sched_unpin(); } /* * pmap_clear_reference: * * Clear the reference bit on the specified physical page. */ void pmap_clear_reference(vm_page_t m) { pv_entry_t pv; pmap_t pmap; pt_entry_t *pte; mtx_assert(&vm_page_queue_mtx, MA_OWNED); if ((m->flags & PG_FICTITIOUS) != 0) return; sched_pin(); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte = pmap_pte_quick(pmap, pv->pv_va); if ((*pte & PG_A) != 0) { /* * Regardless of whether a pte is 32 or 64 bits * in size, PG_A is among the least significant * 32 bits. */ atomic_clear_int((u_int *)pte, PG_A); pmap_invalidate_page(pmap, pv->pv_va); } PMAP_UNLOCK(pmap); } sched_unpin(); } /* * Miscellaneous support routines follow */ /* * Map a set of physical memory pages into the kernel virtual * address space. Return a pointer to where it is mapped. This * routine is intended to be used for mapping device memory, * NOT real memory. */ void * pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode) { vm_offset_t va, tmpva, offset; offset = pa & PAGE_MASK; size = roundup(offset + size, PAGE_SIZE); pa = pa & PG_FRAME; if (pa < KERNLOAD && pa + size <= KERNLOAD) va = KERNBASE + pa; else va = kmem_alloc_nofault(kernel_map, size); if (!va) panic("pmap_mapdev: Couldn't alloc kernel virtual memory"); for (tmpva = va; size > 0; ) { pmap_kenter_attr(tmpva, pa, mode); size -= PAGE_SIZE; tmpva += PAGE_SIZE; pa += PAGE_SIZE; } pmap_invalidate_range(kernel_pmap, va, tmpva); pmap_invalidate_cache(); return ((void *)(va + offset)); } void * pmap_mapdev(vm_paddr_t pa, vm_size_t size) { return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE)); } void * pmap_mapbios(vm_paddr_t pa, vm_size_t size) { return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK)); } void pmap_unmapdev(vm_offset_t va, vm_size_t size) { vm_offset_t base, offset, tmpva; if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD) return; base = trunc_page(va); offset = va & PAGE_MASK; size = roundup(offset + size, PAGE_SIZE); for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) pmap_kremove(tmpva); pmap_invalidate_range(kernel_pmap, va, tmpva); kmem_free(kernel_map, base, size); } int pmap_change_attr(va, size, mode) vm_offset_t va; vm_size_t size; int mode; { vm_offset_t base, offset, tmpva; pt_entry_t *pte; u_int opte, npte; pd_entry_t *pde; base = trunc_page(va); offset = va & PAGE_MASK; size = roundup(offset + size, PAGE_SIZE); /* Only supported on kernel virtual addresses. */ if (base <= VM_MAXUSER_ADDRESS) return (EINVAL); /* 4MB pages and pages that aren't mapped aren't supported. */ for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) { pde = pmap_pde(kernel_pmap, tmpva); if (*pde & PG_PS) return (EINVAL); if (*pde == 0) return (EINVAL); pte = vtopte(va); if (*pte == 0) return (EINVAL); } /* * Ok, all the pages exist and are 4k, so run through them updating * their cache mode. */ for (tmpva = base; size > 0; ) { pte = vtopte(tmpva); /* * The cache mode bits are all in the low 32-bits of the * PTE, so we can just spin on updating the low 32-bits. */ do { opte = *(u_int *)pte; npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT); npte |= pmap_cache_bits(mode, 0); } while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte)); tmpva += PAGE_SIZE; size -= PAGE_SIZE; } /* * Flush CPU caches to make sure any data isn't cached that shouldn't * be, etc. */ pmap_invalidate_range(kernel_pmap, base, tmpva); pmap_invalidate_cache(); return (0); } /* * perform the pmap work for mincore */ int pmap_mincore(pmap_t pmap, vm_offset_t addr) { pt_entry_t *ptep, pte; vm_page_t m; int val = 0; PMAP_LOCK(pmap); ptep = pmap_pte(pmap, addr); pte = (ptep != NULL) ? *ptep : 0; pmap_pte_release(ptep); PMAP_UNLOCK(pmap); if (pte != 0) { vm_paddr_t pa; val = MINCORE_INCORE; if ((pte & PG_MANAGED) == 0) return val; pa = pte & PG_FRAME; m = PHYS_TO_VM_PAGE(pa); /* * Modified by us */ if (pte & PG_M) val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER; else { /* * Modified by someone else */ vm_page_lock_queues(); if (m->dirty || pmap_is_modified(m)) val |= MINCORE_MODIFIED_OTHER; vm_page_unlock_queues(); } /* * Referenced by us */ if (pte & PG_A) val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER; else { /* * Referenced by someone else */ vm_page_lock_queues(); if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) { val |= MINCORE_REFERENCED_OTHER; vm_page_flag_set(m, PG_REFERENCED); } vm_page_unlock_queues(); } } return val; } void pmap_activate(struct thread *td) { pmap_t pmap, oldpmap; u_int32_t cr3; critical_enter(); pmap = vmspace_pmap(td->td_proc->p_vmspace); oldpmap = PCPU_GET(curpmap); #if defined(SMP) atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask)); atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask)); #else oldpmap->pm_active &= ~1; pmap->pm_active |= 1; #endif #ifdef PAE cr3 = vtophys(pmap->pm_pdpt); #else cr3 = vtophys(pmap->pm_pdir); #endif /* * pmap_activate is for the current thread on the current cpu */ td->td_pcb->pcb_cr3 = cr3; load_cr3(cr3); PCPU_SET(curpmap, pmap); critical_exit(); } vm_offset_t pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size) { if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) { return addr; } addr = (addr + PDRMASK) & ~PDRMASK; return addr; } #if defined(PMAP_DEBUG) pmap_pid_dump(int pid) { pmap_t pmap; struct proc *p; int npte = 0; int index; sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { if (p->p_pid != pid) continue; if (p->p_vmspace) { int i,j; index = 0; pmap = vmspace_pmap(p->p_vmspace); for (i = 0; i < NPDEPTD; i++) { pd_entry_t *pde; pt_entry_t *pte; vm_offset_t base = i << PDRSHIFT; pde = &pmap->pm_pdir[i]; if (pde && pmap_pde_v(pde)) { for (j = 0; j < NPTEPG; j++) { vm_offset_t va = base + (j << PAGE_SHIFT); if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) { if (index) { index = 0; printf("\n"); } sx_sunlock(&allproc_lock); return npte; } pte = pmap_pte(pmap, va); if (pte && pmap_pte_v(pte)) { pt_entry_t pa; vm_page_t m; pa = *pte; m = PHYS_TO_VM_PAGE(pa & PG_FRAME); printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x", va, pa, m->hold_count, m->wire_count, m->flags); npte++; index++; if (index >= 2) { index = 0; printf("\n"); } else { printf(" "); } } } } } } } sx_sunlock(&allproc_lock); return npte; } #endif #if defined(DEBUG) static void pads(pmap_t pm); void pmap_pvdump(vm_offset_t pa); /* print address space of pmap*/ static void pads(pmap_t pm) { int i, j; vm_paddr_t va; pt_entry_t *ptep; if (pm == kernel_pmap) return; for (i = 0; i < NPDEPTD; i++) if (pm->pm_pdir[i]) for (j = 0; j < NPTEPG; j++) { va = (i << PDRSHIFT) + (j << PAGE_SHIFT); if (pm == kernel_pmap && va < KERNBASE) continue; if (pm != kernel_pmap && va > UPT_MAX_ADDRESS) continue; ptep = pmap_pte(pm, va); if (pmap_pte_v(ptep)) printf("%x:%x ", va, *ptep); }; } void pmap_pvdump(vm_paddr_t pa) { pv_entry_t pv; pmap_t pmap; vm_page_t m; printf("pa %x", pa); m = PHYS_TO_VM_PAGE(pa); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { pmap = PV_PMAP(pv); printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va); pads(pmap); } printf(" "); } #endif