/*- * Copyright (c) 2003, Jeffrey Roberson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern int max_threads_per_proc; extern int max_groups_per_proc; SYSCTL_DECL(_kern_threads); static int thr_scope = 0; SYSCTL_INT(_kern_threads, OID_AUTO, thr_scope, CTLFLAG_RW, &thr_scope, 0, "sys or proc scope scheduling"); static int thr_concurrency = 0; SYSCTL_INT(_kern_threads, OID_AUTO, thr_concurrency, CTLFLAG_RW, &thr_concurrency, 0, "a concurrency value if not default"); static int create_thread(struct thread *td, mcontext_t *ctx, void (*start_func)(void *), void *arg, char *stack_base, size_t stack_size, char *tls_base, long *child_tid, long *parent_tid, int flags); /* * System call interface. */ int thr_create(struct thread *td, struct thr_create_args *uap) /* ucontext_t *ctx, long *id, int flags */ { ucontext_t ctx; int error; if ((error = copyin(uap->ctx, &ctx, sizeof(ctx)))) return (error); error = create_thread(td, &ctx.uc_mcontext, NULL, NULL, NULL, 0, NULL, uap->id, NULL, uap->flags); return (error); } int thr_new(struct thread *td, struct thr_new_args *uap) /* struct thr_param * */ { struct thr_param param; int error; if (uap->param_size < sizeof(param)) return (EINVAL); if ((error = copyin(uap->param, ¶m, sizeof(param)))) return (error); error = create_thread(td, NULL, param.start_func, param.arg, param.stack_base, param.stack_size, param.tls_base, param.child_tid, param.parent_tid, param.flags); return (error); } static int create_thread(struct thread *td, mcontext_t *ctx, void (*start_func)(void *), void *arg, char *stack_base, size_t stack_size, char *tls_base, long *child_tid, long *parent_tid, int flags) { stack_t stack; struct thread *newtd; struct ksegrp *kg, *newkg; struct proc *p; long id; int error, scope_sys, linkkg; error = 0; p = td->td_proc; kg = td->td_ksegrp; /* Have race condition but it is cheap. */ if ((p->p_numksegrps >= max_groups_per_proc) || (p->p_numthreads >= max_threads_per_proc)) { return (EPROCLIM); } /* Check PTHREAD_SCOPE_SYSTEM */ scope_sys = (flags & THR_SYSTEM_SCOPE) != 0; /* sysctl overrides user's flag */ if (thr_scope == 1) scope_sys = 0; else if (thr_scope == 2) scope_sys = 1; /* Initialize our td and new ksegrp.. */ newtd = thread_alloc(); /* * Try the copyout as soon as we allocate the td so we don't * have to tear things down in a failure case below. * Here we copy out tid to two places, one for child and one * for parent, because pthread can create a detached thread, * if parent wants to safely access child tid, it has to provide * its storage, because child thread may exit quickly and * memory is freed before parent thread can access it. */ id = newtd->td_tid; if ((child_tid != NULL && (error = copyout(&id, child_tid, sizeof(long)))) || (parent_tid != NULL && (error = copyout(&id, parent_tid, sizeof(long))))) { thread_free(newtd); return (error); } bzero(&newtd->td_startzero, __rangeof(struct thread, td_startzero, td_endzero)); bcopy(&td->td_startcopy, &newtd->td_startcopy, __rangeof(struct thread, td_startcopy, td_endcopy)); newtd->td_proc = td->td_proc; newtd->td_ucred = crhold(td->td_ucred); cpu_set_upcall(newtd, td); if (ctx != NULL) { /* old way to set user context */ error = set_mcontext(newtd, ctx); if (error != 0) { thread_free(newtd); crfree(td->td_ucred); return (error); } } else { /* Set up our machine context. */ stack.ss_sp = stack_base; stack.ss_size = stack_size; /* Set upcall address to user thread entry function. */ cpu_set_upcall_kse(newtd, start_func, arg, &stack); /* Setup user TLS address and TLS pointer register. */ error = cpu_set_user_tls(newtd, tls_base); if (error != 0) { thread_free(newtd); crfree(td->td_ucred); return (error); } } if ((td->td_proc->p_flag & P_HADTHREADS) == 0) { /* Treat initial thread as it has PTHREAD_SCOPE_PROCESS. */ p->p_procscopegrp = kg; mtx_lock_spin(&sched_lock); sched_set_concurrency(kg, thr_concurrency ? thr_concurrency : (2*mp_ncpus)); mtx_unlock_spin(&sched_lock); } linkkg = 0; if (scope_sys) { linkkg = 1; newkg = ksegrp_alloc(); bzero(&newkg->kg_startzero, __rangeof(struct ksegrp, kg_startzero, kg_endzero)); bcopy(&kg->kg_startcopy, &newkg->kg_startcopy, __rangeof(struct ksegrp, kg_startcopy, kg_endcopy)); sched_init_concurrency(newkg); PROC_LOCK(td->td_proc); } else { /* * Try to create a KSE group which will be shared * by all PTHREAD_SCOPE_PROCESS threads. */ retry: PROC_LOCK(td->td_proc); if ((newkg = p->p_procscopegrp) == NULL) { PROC_UNLOCK(p); newkg = ksegrp_alloc(); bzero(&newkg->kg_startzero, __rangeof(struct ksegrp, kg_startzero, kg_endzero)); bcopy(&kg->kg_startcopy, &newkg->kg_startcopy, __rangeof(struct ksegrp, kg_startcopy, kg_endcopy)); PROC_LOCK(p); if (p->p_procscopegrp == NULL) { p->p_procscopegrp = newkg; sched_init_concurrency(newkg); sched_set_concurrency(newkg, thr_concurrency ? thr_concurrency : (2*mp_ncpus)); linkkg = 1; } else { PROC_UNLOCK(p); ksegrp_free(newkg); goto retry; } } } td->td_proc->p_flag |= P_HADTHREADS; newtd->td_sigmask = td->td_sigmask; mtx_lock_spin(&sched_lock); if (linkkg) ksegrp_link(newkg, p); thread_link(newtd, newkg); PROC_UNLOCK(p); /* let the scheduler know about these things. */ if (linkkg) sched_fork_ksegrp(td, newkg); sched_fork_thread(td, newtd); TD_SET_CAN_RUN(newtd); /* if ((flags & THR_SUSPENDED) == 0) */ setrunqueue(newtd, SRQ_BORING); mtx_unlock_spin(&sched_lock); return (error); } int thr_self(struct thread *td, struct thr_self_args *uap) /* long *id */ { long id; int error; id = td->td_tid; if ((error = copyout(&id, uap->id, sizeof(long)))) return (error); return (0); } int thr_exit(struct thread *td, struct thr_exit_args *uap) /* long *state */ { struct proc *p; p = td->td_proc; /* Signal userland that it can free the stack. */ if ((void *)uap->state != NULL) { suword((void *)uap->state, 1); kern_umtx_wake(td, uap->state, INT_MAX); } PROC_LOCK(p); sigqueue_flush(&td->td_sigqueue); mtx_lock_spin(&sched_lock); /* * Shutting down last thread in the proc. This will actually * call exit() in the trampoline when it returns. */ if (p->p_numthreads != 1) { thread_stopped(p); thread_exit(); /* NOTREACHED */ } mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); return (0); } int thr_kill(struct thread *td, struct thr_kill_args *uap) /* long id, int sig */ { struct thread *ttd; struct proc *p; int error; p = td->td_proc; error = 0; PROC_LOCK(p); if (uap->id == -1) { if (uap->sig != 0 && !_SIG_VALID(uap->sig)) { error = EINVAL; } else { error = ESRCH; FOREACH_THREAD_IN_PROC(p, ttd) { if (ttd != td) { error = 0; if (uap->sig == 0) break; tdsignal(p, ttd, uap->sig, NULL); } } } } else { if (uap->id != td->td_tid) ttd = thread_find(p, uap->id); else ttd = td; if (ttd == NULL) error = ESRCH; else if (uap->sig == 0) ; else if (!_SIG_VALID(uap->sig)) error = EINVAL; else tdsignal(p, ttd, uap->sig, NULL); } PROC_UNLOCK(p); return (error); } int thr_suspend(struct thread *td, struct thr_suspend_args *uap) /* const struct timespec *timeout */ { struct timespec ts; struct timeval tv; int error; int hz; hz = 0; error = 0; if (uap->timeout != NULL) { error = copyin((const void *)uap->timeout, (void *)&ts, sizeof(struct timespec)); if (error != 0) return (error); if (ts.tv_nsec < 0 || ts.tv_nsec > 1000000000) return (EINVAL); if (ts.tv_sec == 0 && ts.tv_nsec == 0) return (ETIMEDOUT); TIMESPEC_TO_TIMEVAL(&tv, &ts); hz = tvtohz(&tv); } PROC_LOCK(td->td_proc); if ((td->td_flags & TDF_THRWAKEUP) == 0) error = msleep((void *)td, &td->td_proc->p_mtx, PCATCH, "lthr", hz); if (td->td_flags & TDF_THRWAKEUP) { mtx_lock_spin(&sched_lock); td->td_flags &= ~TDF_THRWAKEUP; mtx_unlock_spin(&sched_lock); PROC_UNLOCK(td->td_proc); return (0); } PROC_UNLOCK(td->td_proc); if (error == EWOULDBLOCK) error = ETIMEDOUT; else if (error == ERESTART) { if (hz != 0) error = EINTR; } return (error); } int thr_wake(struct thread *td, struct thr_wake_args *uap) /* long id */ { struct proc *p; struct thread *ttd; p = td->td_proc; PROC_LOCK(p); ttd = thread_find(p, uap->id); if (ttd == NULL) { PROC_UNLOCK(p); return (ESRCH); } mtx_lock_spin(&sched_lock); ttd->td_flags |= TDF_THRWAKEUP; mtx_unlock_spin(&sched_lock); wakeup((void *)ttd); PROC_UNLOCK(p); return (0); } int thr_set_name(struct thread *td, struct thr_set_name_args *uap) { struct proc *p = td->td_proc; char name[MAXCOMLEN + 1]; struct thread *ttd; int error; error = 0; name[0] = '\0'; if (uap->name != NULL) { error = copyinstr(uap->name, name, sizeof(name), NULL); if (error) return (error); } PROC_LOCK(p); if (uap->id == td->td_tid) ttd = td; else ttd = thread_find(p, uap->id); if (ttd != NULL) strcpy(ttd->td_name, name); else error = ESRCH; PROC_UNLOCK(p); return (error); }