/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012 Ian Lepore * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Buffer allocation support routines for bus_dmamem_alloc implementations. */ #include #include #include #include #include #include #include #include #include #include /* * We manage buffer zones up to a page in size. Buffers larger than a page can * be managed by one of the kernel's page-oriented memory allocation routines as * efficiently as what we can do here. Also, a page is the largest size for * which we can g'tee contiguity when using uma, and contiguity is one of the * requirements we have to fulfill. */ #define MIN_ZONE_BUFSIZE 32 #define MAX_ZONE_BUFSIZE PAGE_SIZE /* * The static array of 12 bufzones is big enough to handle all the zones for the * smallest supported allocation size of 32 through the largest supported page * size of 64K. If you up the biggest page size number, up the array size too. * Basically the size of the array needs to be log2(maxsize)-log2(minsize)+1, * but I don't know of an easy way to express that as a compile-time constant. */ #if PAGE_SIZE > 65536 #error Unsupported page size #endif struct busdma_bufalloc { bus_size_t min_size; size_t num_zones; struct busdma_bufzone buf_zones[12]; }; busdma_bufalloc_t busdma_bufalloc_create(const char *name, bus_size_t minimum_alignment, uma_alloc alloc_func, uma_free free_func, u_int32_t zcreate_flags) { struct busdma_bufalloc *ba; struct busdma_bufzone *bz; int i; bus_size_t cursize; ba = malloc(sizeof(struct busdma_bufalloc), M_DEVBUF, M_ZERO | M_WAITOK); ba->min_size = MAX(MIN_ZONE_BUFSIZE, minimum_alignment); /* * Each uma zone is created with an alignment of size-1, meaning that * the alignment is equal to the size (I.E., 64 byte buffers are aligned * to 64 byte boundaries, etc). This allows for a fast efficient test * when deciding whether a pool buffer meets the constraints of a given * tag used for allocation: the buffer is usable if tag->alignment <= * bufzone->size. */ for (i = 0, bz = ba->buf_zones, cursize = ba->min_size; i < nitems(ba->buf_zones) && cursize <= MAX_ZONE_BUFSIZE; ++i, ++bz, cursize <<= 1) { snprintf(bz->name, sizeof(bz->name), "dma %.10s %ju", name, (uintmax_t)cursize); bz->size = cursize; bz->umazone = uma_zcreate(bz->name, bz->size, NULL, NULL, NULL, NULL, bz->size - 1, zcreate_flags); if (bz->umazone == NULL) { busdma_bufalloc_destroy(ba); return (NULL); } if (alloc_func != NULL) uma_zone_set_allocf(bz->umazone, alloc_func); if (free_func != NULL) uma_zone_set_freef(bz->umazone, free_func); ++ba->num_zones; } return (ba); } void busdma_bufalloc_destroy(busdma_bufalloc_t ba) { struct busdma_bufzone *bz; int i; if (ba == NULL) return; for (i = 0, bz = ba->buf_zones; i < ba->num_zones; ++i, ++bz) { uma_zdestroy(bz->umazone); } free(ba, M_DEVBUF); } struct busdma_bufzone * busdma_bufalloc_findzone(busdma_bufalloc_t ba, bus_size_t size) { struct busdma_bufzone *bz; int i; if (size > MAX_ZONE_BUFSIZE) return (NULL); for (i = 0, bz = ba->buf_zones; i < ba->num_zones; ++i, ++bz) { if (bz->size >= size) return (bz); } panic("Didn't find a buffer zone of the right size"); } void * busdma_bufalloc_alloc_uncacheable(uma_zone_t zone, vm_size_t size, int domain, uint8_t *pflag, int wait) { #ifdef VM_MEMATTR_UNCACHEABLE /* Inform UMA that this allocator uses kernel_arena/object. */ *pflag = UMA_SLAB_KERNEL; return ((void *)kmem_alloc_attr_domainset(DOMAINSET_FIXED(domain), size, wait, 0, BUS_SPACE_MAXADDR, VM_MEMATTR_UNCACHEABLE)); #else panic("VM_MEMATTR_UNCACHEABLE unavailable"); #endif /* VM_MEMATTR_UNCACHEABLE */ } void busdma_bufalloc_free_uncacheable(void *item, vm_size_t size, uint8_t pflag) { kmem_free((vm_offset_t)item, size); }