/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004 Poul-Henning Kamp * Copyright (c) 1994,1997 John S. Dyson * Copyright (c) 2013 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * this file contains a new buffer I/O scheme implementing a coherent * VM object and buffer cache scheme. Pains have been taken to make * sure that the performance degradation associated with schemes such * as this is not realized. * * Author: John S. Dyson * Significant help during the development and debugging phases * had been provided by David Greenman, also of the FreeBSD core team. * * see man buf(9) for more info. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer"); struct bio_ops bioops; /* I/O operation notification */ struct buf_ops buf_ops_bio = { .bop_name = "buf_ops_bio", .bop_write = bufwrite, .bop_strategy = bufstrategy, .bop_sync = bufsync, .bop_bdflush = bufbdflush, }; struct bufqueue { struct mtx_padalign bq_lock; TAILQ_HEAD(, buf) bq_queue; uint8_t bq_index; uint16_t bq_subqueue; int bq_len; } __aligned(CACHE_LINE_SIZE); #define BQ_LOCKPTR(bq) (&(bq)->bq_lock) #define BQ_LOCK(bq) mtx_lock(BQ_LOCKPTR((bq))) #define BQ_UNLOCK(bq) mtx_unlock(BQ_LOCKPTR((bq))) #define BQ_ASSERT_LOCKED(bq) mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED) struct bufdomain { struct bufqueue bd_subq[MAXCPU + 1]; /* Per-cpu sub queues + global */ struct bufqueue bd_dirtyq; struct bufqueue *bd_cleanq; struct mtx_padalign bd_run_lock; /* Constants */ long bd_maxbufspace; long bd_hibufspace; long bd_lobufspace; long bd_bufspacethresh; int bd_hifreebuffers; int bd_lofreebuffers; int bd_hidirtybuffers; int bd_lodirtybuffers; int bd_dirtybufthresh; int bd_lim; /* atomics */ int bd_wanted; int __aligned(CACHE_LINE_SIZE) bd_numdirtybuffers; int __aligned(CACHE_LINE_SIZE) bd_running; long __aligned(CACHE_LINE_SIZE) bd_bufspace; int __aligned(CACHE_LINE_SIZE) bd_freebuffers; } __aligned(CACHE_LINE_SIZE); #define BD_LOCKPTR(bd) (&(bd)->bd_cleanq->bq_lock) #define BD_LOCK(bd) mtx_lock(BD_LOCKPTR((bd))) #define BD_UNLOCK(bd) mtx_unlock(BD_LOCKPTR((bd))) #define BD_ASSERT_LOCKED(bd) mtx_assert(BD_LOCKPTR((bd)), MA_OWNED) #define BD_RUN_LOCKPTR(bd) (&(bd)->bd_run_lock) #define BD_RUN_LOCK(bd) mtx_lock(BD_RUN_LOCKPTR((bd))) #define BD_RUN_UNLOCK(bd) mtx_unlock(BD_RUN_LOCKPTR((bd))) #define BD_DOMAIN(bd) (bd - bdomain) static char *buf; /* buffer header pool */ static struct buf * nbufp(unsigned i) { return ((struct buf *)(buf + (sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf)) * i)); } caddr_t __read_mostly unmapped_buf; /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */ struct proc *bufdaemonproc; static void vm_hold_free_pages(struct buf *bp, int newbsize); static void vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to); static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m); static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m); static void vfs_clean_pages_dirty_buf(struct buf *bp); static void vfs_setdirty_range(struct buf *bp); static void vfs_vmio_invalidate(struct buf *bp); static void vfs_vmio_truncate(struct buf *bp, int npages); static void vfs_vmio_extend(struct buf *bp, int npages, int size); static int vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno); static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int, void (*)(struct buf *)); static int buf_flush(struct vnode *vp, struct bufdomain *, int); static int flushbufqueues(struct vnode *, struct bufdomain *, int, int); static void buf_daemon(void); static __inline void bd_wakeup(void); static int sysctl_runningspace(SYSCTL_HANDLER_ARGS); static void bufkva_reclaim(vmem_t *, int); static void bufkva_free(struct buf *); static int buf_import(void *, void **, int, int, int); static void buf_release(void *, void **, int); static void maxbcachebuf_adjust(void); static inline struct bufdomain *bufdomain(struct buf *); static void bq_remove(struct bufqueue *bq, struct buf *bp); static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock); static int buf_recycle(struct bufdomain *, bool kva); static void bq_init(struct bufqueue *bq, int qindex, int cpu, const char *lockname); static void bd_init(struct bufdomain *bd); static int bd_flushall(struct bufdomain *bd); static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS); static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS); static int sysctl_bufspace(SYSCTL_HANDLER_ARGS); int vmiodirenable = TRUE; SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0, "Use the VM system for directory writes"); long runningbufspace; SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, "Amount of presently outstanding async buffer io"); SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers"); static counter_u64_t bufkvaspace; SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace, "Kernel virtual memory used for buffers"); static long maxbufspace; SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace, __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L", "Maximum allowed value of bufspace (including metadata)"); static long bufmallocspace; SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, "Amount of malloced memory for buffers"); static long maxbufmallocspace; SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0, "Maximum amount of malloced memory for buffers"); static long lobufspace; SYSCTL_PROC(_vfs, OID_AUTO, lobufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace, __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L", "Minimum amount of buffers we want to have"); long hibufspace; SYSCTL_PROC(_vfs, OID_AUTO, hibufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace, __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L", "Maximum allowed value of bufspace (excluding metadata)"); long bufspacethresh; SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh, __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L", "Bufspace consumed before waking the daemon to free some"); static counter_u64_t buffreekvacnt; SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, "Number of times we have freed the KVA space from some buffer"); static counter_u64_t bufdefragcnt; SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, "Number of times we have had to repeat buffer allocation to defragment"); static long lorunningspace; SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE | CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L", "Minimum preferred space used for in-progress I/O"); static long hirunningspace; SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE | CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L", "Maximum amount of space to use for in-progress I/O"); int dirtybufferflushes; SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes, 0, "Number of bdwrite to bawrite conversions to limit dirty buffers"); int bdwriteskip; SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip, 0, "Number of buffers supplied to bdwrite with snapshot deadlock risk"); int altbufferflushes; SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS, &altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers"); static int recursiveflushes; SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS, &recursiveflushes, 0, "Number of flushes skipped due to being recursive"); static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS); SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers, CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I", "Number of buffers that are dirty (has unwritten changes) at the moment"); static int lodirtybuffers; SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers, CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers, __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I", "How many buffers we want to have free before bufdaemon can sleep"); static int hidirtybuffers; SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers, CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers, __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I", "When the number of dirty buffers is considered severe"); int dirtybufthresh; SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh, CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh, __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I", "Number of bdwrite to bawrite conversions to clear dirty buffers"); static int numfreebuffers; SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0, "Number of free buffers"); static int lofreebuffers; SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers, CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers, __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I", "Target number of free buffers"); static int hifreebuffers; SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers, CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers, __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I", "Threshold for clean buffer recycling"); static counter_u64_t getnewbufcalls; SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, "Number of calls to getnewbuf"); static counter_u64_t getnewbufrestarts; SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts, "Number of times getnewbuf has had to restart a buffer acquisition"); static counter_u64_t mappingrestarts; SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD, &mappingrestarts, "Number of times getblk has had to restart a buffer mapping for " "unmapped buffer"); static counter_u64_t numbufallocfails; SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW, &numbufallocfails, "Number of times buffer allocations failed"); static int flushbufqtarget = 100; SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0, "Amount of work to do in flushbufqueues when helping bufdaemon"); static counter_u64_t notbufdflushes; SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, ¬bufdflushes, "Number of dirty buffer flushes done by the bufdaemon helpers"); static long barrierwrites; SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS, &barrierwrites, 0, "Number of barrier writes"); SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD, &unmapped_buf_allowed, 0, "Permit the use of the unmapped i/o"); int maxbcachebuf = MAXBCACHEBUF; SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0, "Maximum size of a buffer cache block"); /* * This lock synchronizes access to bd_request. */ static struct mtx_padalign __exclusive_cache_line bdlock; /* * This lock protects the runningbufreq and synchronizes runningbufwakeup and * waitrunningbufspace(). */ static struct mtx_padalign __exclusive_cache_line rbreqlock; /* * Lock that protects bdirtywait. */ static struct mtx_padalign __exclusive_cache_line bdirtylock; /* * Wakeup point for bufdaemon, as well as indicator of whether it is already * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it * is idling. */ static int bd_request; /* * Request for the buf daemon to write more buffers than is indicated by * lodirtybuf. This may be necessary to push out excess dependencies or * defragment the address space where a simple count of the number of dirty * buffers is insufficient to characterize the demand for flushing them. */ static int bd_speedupreq; /* * Synchronization (sleep/wakeup) variable for active buffer space requests. * Set when wait starts, cleared prior to wakeup(). * Used in runningbufwakeup() and waitrunningbufspace(). */ static int runningbufreq; /* * Synchronization for bwillwrite() waiters. */ static int bdirtywait; /* * Definitions for the buffer free lists. */ #define QUEUE_NONE 0 /* on no queue */ #define QUEUE_EMPTY 1 /* empty buffer headers */ #define QUEUE_DIRTY 2 /* B_DELWRI buffers */ #define QUEUE_CLEAN 3 /* non-B_DELWRI buffers */ #define QUEUE_SENTINEL 4 /* not an queue index, but mark for sentinel */ /* Maximum number of buffer domains. */ #define BUF_DOMAINS 8 struct bufdomainset bdlodirty; /* Domains > lodirty */ struct bufdomainset bdhidirty; /* Domains > hidirty */ /* Configured number of clean queues. */ static int __read_mostly buf_domains; BITSET_DEFINE(bufdomainset, BUF_DOMAINS); struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS]; struct bufqueue __exclusive_cache_line bqempty; /* * per-cpu empty buffer cache. */ uma_zone_t buf_zone; /* * Single global constant for BUF_WMESG, to avoid getting multiple references. * buf_wmesg is referred from macros. */ const char *buf_wmesg = BUF_WMESG; static int sysctl_runningspace(SYSCTL_HANDLER_ARGS) { long value; int error; value = *(long *)arg1; error = sysctl_handle_long(oidp, &value, 0, req); if (error != 0 || req->newptr == NULL) return (error); mtx_lock(&rbreqlock); if (arg1 == &hirunningspace) { if (value < lorunningspace) error = EINVAL; else hirunningspace = value; } else { KASSERT(arg1 == &lorunningspace, ("%s: unknown arg1", __func__)); if (value > hirunningspace) error = EINVAL; else lorunningspace = value; } mtx_unlock(&rbreqlock); return (error); } static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS) { int error; int value; int i; value = *(int *)arg1; error = sysctl_handle_int(oidp, &value, 0, req); if (error != 0 || req->newptr == NULL) return (error); *(int *)arg1 = value; for (i = 0; i < buf_domains; i++) *(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) = value / buf_domains; return (error); } static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS) { long value; int error; int i; value = *(long *)arg1; error = sysctl_handle_long(oidp, &value, 0, req); if (error != 0 || req->newptr == NULL) return (error); *(long *)arg1 = value; for (i = 0; i < buf_domains; i++) *(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) = value / buf_domains; return (error); } #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) static int sysctl_bufspace(SYSCTL_HANDLER_ARGS) { long lvalue; int ivalue; int i; lvalue = 0; for (i = 0; i < buf_domains; i++) lvalue += bdomain[i].bd_bufspace; if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long)) return (sysctl_handle_long(oidp, &lvalue, 0, req)); if (lvalue > INT_MAX) /* On overflow, still write out a long to trigger ENOMEM. */ return (sysctl_handle_long(oidp, &lvalue, 0, req)); ivalue = lvalue; return (sysctl_handle_int(oidp, &ivalue, 0, req)); } #else static int sysctl_bufspace(SYSCTL_HANDLER_ARGS) { long lvalue; int i; lvalue = 0; for (i = 0; i < buf_domains; i++) lvalue += bdomain[i].bd_bufspace; return (sysctl_handle_long(oidp, &lvalue, 0, req)); } #endif static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS) { int value; int i; value = 0; for (i = 0; i < buf_domains; i++) value += bdomain[i].bd_numdirtybuffers; return (sysctl_handle_int(oidp, &value, 0, req)); } /* * bdirtywakeup: * * Wakeup any bwillwrite() waiters. */ static void bdirtywakeup(void) { mtx_lock(&bdirtylock); if (bdirtywait) { bdirtywait = 0; wakeup(&bdirtywait); } mtx_unlock(&bdirtylock); } /* * bd_clear: * * Clear a domain from the appropriate bitsets when dirtybuffers * is decremented. */ static void bd_clear(struct bufdomain *bd) { mtx_lock(&bdirtylock); if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers) BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty); if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers) BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty); mtx_unlock(&bdirtylock); } /* * bd_set: * * Set a domain in the appropriate bitsets when dirtybuffers * is incremented. */ static void bd_set(struct bufdomain *bd) { mtx_lock(&bdirtylock); if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers) BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty); if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers) BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty); mtx_unlock(&bdirtylock); } /* * bdirtysub: * * Decrement the numdirtybuffers count by one and wakeup any * threads blocked in bwillwrite(). */ static void bdirtysub(struct buf *bp) { struct bufdomain *bd; int num; bd = bufdomain(bp); num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1); if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2) bdirtywakeup(); if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers) bd_clear(bd); } /* * bdirtyadd: * * Increment the numdirtybuffers count by one and wakeup the buf * daemon if needed. */ static void bdirtyadd(struct buf *bp) { struct bufdomain *bd; int num; /* * Only do the wakeup once as we cross the boundary. The * buf daemon will keep running until the condition clears. */ bd = bufdomain(bp); num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1); if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2) bd_wakeup(); if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers) bd_set(bd); } /* * bufspace_daemon_wakeup: * * Wakeup the daemons responsible for freeing clean bufs. */ static void bufspace_daemon_wakeup(struct bufdomain *bd) { /* * avoid the lock if the daemon is running. */ if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) { BD_RUN_LOCK(bd); atomic_store_int(&bd->bd_running, 1); wakeup(&bd->bd_running); BD_RUN_UNLOCK(bd); } } /* * bufspace_daemon_wait: * * Sleep until the domain falls below a limit or one second passes. */ static void bufspace_daemon_wait(struct bufdomain *bd) { /* * Re-check our limits and sleep. bd_running must be * cleared prior to checking the limits to avoid missed * wakeups. The waker will adjust one of bufspace or * freebuffers prior to checking bd_running. */ BD_RUN_LOCK(bd); atomic_store_int(&bd->bd_running, 0); if (bd->bd_bufspace < bd->bd_bufspacethresh && bd->bd_freebuffers > bd->bd_lofreebuffers) { msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd), PRIBIO|PDROP, "-", hz); } else { /* Avoid spurious wakeups while running. */ atomic_store_int(&bd->bd_running, 1); BD_RUN_UNLOCK(bd); } } /* * bufspace_adjust: * * Adjust the reported bufspace for a KVA managed buffer, possibly * waking any waiters. */ static void bufspace_adjust(struct buf *bp, int bufsize) { struct bufdomain *bd; long space; int diff; KASSERT((bp->b_flags & B_MALLOC) == 0, ("bufspace_adjust: malloc buf %p", bp)); bd = bufdomain(bp); diff = bufsize - bp->b_bufsize; if (diff < 0) { atomic_subtract_long(&bd->bd_bufspace, -diff); } else if (diff > 0) { space = atomic_fetchadd_long(&bd->bd_bufspace, diff); /* Wake up the daemon on the transition. */ if (space < bd->bd_bufspacethresh && space + diff >= bd->bd_bufspacethresh) bufspace_daemon_wakeup(bd); } bp->b_bufsize = bufsize; } /* * bufspace_reserve: * * Reserve bufspace before calling allocbuf(). metadata has a * different space limit than data. */ static int bufspace_reserve(struct bufdomain *bd, int size, bool metadata) { long limit, new; long space; if (metadata) limit = bd->bd_maxbufspace; else limit = bd->bd_hibufspace; space = atomic_fetchadd_long(&bd->bd_bufspace, size); new = space + size; if (new > limit) { atomic_subtract_long(&bd->bd_bufspace, size); return (ENOSPC); } /* Wake up the daemon on the transition. */ if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh) bufspace_daemon_wakeup(bd); return (0); } /* * bufspace_release: * * Release reserved bufspace after bufspace_adjust() has consumed it. */ static void bufspace_release(struct bufdomain *bd, int size) { atomic_subtract_long(&bd->bd_bufspace, size); } /* * bufspace_wait: * * Wait for bufspace, acting as the buf daemon if a locked vnode is * supplied. bd_wanted must be set prior to polling for space. The * operation must be re-tried on return. */ static void bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags, int slpflag, int slptimeo) { struct thread *td; int error, fl, norunbuf; if ((gbflags & GB_NOWAIT_BD) != 0) return; td = curthread; BD_LOCK(bd); while (bd->bd_wanted) { if (vp != NULL && vp->v_type != VCHR && (td->td_pflags & TDP_BUFNEED) == 0) { BD_UNLOCK(bd); /* * getblk() is called with a vnode locked, and * some majority of the dirty buffers may as * well belong to the vnode. Flushing the * buffers there would make a progress that * cannot be achieved by the buf_daemon, that * cannot lock the vnode. */ norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) | (td->td_pflags & TDP_NORUNNINGBUF); /* * Play bufdaemon. The getnewbuf() function * may be called while the thread owns lock * for another dirty buffer for the same * vnode, which makes it impossible to use * VOP_FSYNC() there, due to the buffer lock * recursion. */ td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF; fl = buf_flush(vp, bd, flushbufqtarget); td->td_pflags &= norunbuf; BD_LOCK(bd); if (fl != 0) continue; if (bd->bd_wanted == 0) break; } error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd), (PRIBIO + 4) | slpflag, "newbuf", slptimeo); if (error != 0) break; } BD_UNLOCK(bd); } /* * bufspace_daemon: * * buffer space management daemon. Tries to maintain some marginal * amount of free buffer space so that requesting processes neither * block nor work to reclaim buffers. */ static void bufspace_daemon(void *arg) { struct bufdomain *bd; EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread, SHUTDOWN_PRI_LAST + 100); bd = arg; for (;;) { kthread_suspend_check(); /* * Free buffers from the clean queue until we meet our * targets. * * Theory of operation: The buffer cache is most efficient * when some free buffer headers and space are always * available to getnewbuf(). This daemon attempts to prevent * the excessive blocking and synchronization associated * with shortfall. It goes through three phases according * demand: * * 1) The daemon wakes up voluntarily once per-second * during idle periods when the counters are below * the wakeup thresholds (bufspacethresh, lofreebuffers). * * 2) The daemon wakes up as we cross the thresholds * ahead of any potential blocking. This may bounce * slightly according to the rate of consumption and * release. * * 3) The daemon and consumers are starved for working * clean buffers. This is the 'bufspace' sleep below * which will inefficiently trade bufs with bqrelse * until we return to condition 2. */ while (bd->bd_bufspace > bd->bd_lobufspace || bd->bd_freebuffers < bd->bd_hifreebuffers) { if (buf_recycle(bd, false) != 0) { if (bd_flushall(bd)) continue; /* * Speedup dirty if we've run out of clean * buffers. This is possible in particular * because softdep may held many bufs locked * pending writes to other bufs which are * marked for delayed write, exhausting * clean space until they are written. */ bd_speedup(); BD_LOCK(bd); if (bd->bd_wanted) { msleep(&bd->bd_wanted, BD_LOCKPTR(bd), PRIBIO|PDROP, "bufspace", hz/10); } else BD_UNLOCK(bd); } maybe_yield(); } bufspace_daemon_wait(bd); } } /* * bufmallocadjust: * * Adjust the reported bufspace for a malloc managed buffer, possibly * waking any waiters. */ static void bufmallocadjust(struct buf *bp, int bufsize) { int diff; KASSERT((bp->b_flags & B_MALLOC) != 0, ("bufmallocadjust: non-malloc buf %p", bp)); diff = bufsize - bp->b_bufsize; if (diff < 0) atomic_subtract_long(&bufmallocspace, -diff); else atomic_add_long(&bufmallocspace, diff); bp->b_bufsize = bufsize; } /* * runningwakeup: * * Wake up processes that are waiting on asynchronous writes to fall * below lorunningspace. */ static void runningwakeup(void) { mtx_lock(&rbreqlock); if (runningbufreq) { runningbufreq = 0; wakeup(&runningbufreq); } mtx_unlock(&rbreqlock); } /* * runningbufwakeup: * * Decrement the outstanding write count according. */ void runningbufwakeup(struct buf *bp) { long space, bspace; bspace = bp->b_runningbufspace; if (bspace == 0) return; space = atomic_fetchadd_long(&runningbufspace, -bspace); KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld", space, bspace)); bp->b_runningbufspace = 0; /* * Only acquire the lock and wakeup on the transition from exceeding * the threshold to falling below it. */ if (space < lorunningspace) return; if (space - bspace > lorunningspace) return; runningwakeup(); } /* * waitrunningbufspace() * * runningbufspace is a measure of the amount of I/O currently * running. This routine is used in async-write situations to * prevent creating huge backups of pending writes to a device. * Only asynchronous writes are governed by this function. * * This does NOT turn an async write into a sync write. It waits * for earlier writes to complete and generally returns before the * caller's write has reached the device. */ void waitrunningbufspace(void) { mtx_lock(&rbreqlock); while (runningbufspace > hirunningspace) { runningbufreq = 1; msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0); } mtx_unlock(&rbreqlock); } /* * vfs_buf_test_cache: * * Called when a buffer is extended. This function clears the B_CACHE * bit if the newly extended portion of the buffer does not contain * valid data. */ static __inline void vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, vm_page_t m) { /* * This function and its results are protected by higher level * synchronization requiring vnode and buf locks to page in and * validate pages. */ if (bp->b_flags & B_CACHE) { int base = (foff + off) & PAGE_MASK; if (vm_page_is_valid(m, base, size) == 0) bp->b_flags &= ~B_CACHE; } } /* Wake up the buffer daemon if necessary */ static void bd_wakeup(void) { mtx_lock(&bdlock); if (bd_request == 0) { bd_request = 1; wakeup(&bd_request); } mtx_unlock(&bdlock); } /* * Adjust the maxbcachbuf tunable. */ static void maxbcachebuf_adjust(void) { int i; /* * maxbcachebuf must be a power of 2 >= MAXBSIZE. */ i = 2; while (i * 2 <= maxbcachebuf) i *= 2; maxbcachebuf = i; if (maxbcachebuf < MAXBSIZE) maxbcachebuf = MAXBSIZE; if (maxbcachebuf > maxphys) maxbcachebuf = maxphys; if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF) printf("maxbcachebuf=%d\n", maxbcachebuf); } /* * bd_speedup - speedup the buffer cache flushing code */ void bd_speedup(void) { int needwake; mtx_lock(&bdlock); needwake = 0; if (bd_speedupreq == 0 || bd_request == 0) needwake = 1; bd_speedupreq = 1; bd_request = 1; if (needwake) wakeup(&bd_request); mtx_unlock(&bdlock); } #ifdef __i386__ #define TRANSIENT_DENOM 5 #else #define TRANSIENT_DENOM 10 #endif /* * Calculating buffer cache scaling values and reserve space for buffer * headers. This is called during low level kernel initialization and * may be called more then once. We CANNOT write to the memory area * being reserved at this time. */ caddr_t kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est) { int tuned_nbuf; long maxbuf, maxbuf_sz, buf_sz, biotmap_sz; /* * With KASAN or KMSAN enabled, the kernel map is shadowed. Account for * this when sizing maps based on the amount of physical memory * available. */ #if defined(KASAN) physmem_est = (physmem_est * KASAN_SHADOW_SCALE) / (KASAN_SHADOW_SCALE + 1); #elif defined(KMSAN) physmem_est /= 3; /* * KMSAN cannot reliably determine whether buffer data is initialized * unless it is updated through a KVA mapping. */ unmapped_buf_allowed = 0; #endif /* * physmem_est is in pages. Convert it to kilobytes (assumes * PAGE_SIZE is >= 1K) */ physmem_est = physmem_est * (PAGE_SIZE / 1024); maxbcachebuf_adjust(); /* * The nominal buffer size (and minimum KVA allocation) is BKVASIZE. * For the first 64MB of ram nominally allocate sufficient buffers to * cover 1/4 of our ram. Beyond the first 64MB allocate additional * buffers to cover 1/10 of our ram over 64MB. When auto-sizing * the buffer cache we limit the eventual kva reservation to * maxbcache bytes. * * factor represents the 1/4 x ram conversion. */ if (nbuf == 0) { int factor = 4 * BKVASIZE / 1024; nbuf = 50; if (physmem_est > 4096) nbuf += min((physmem_est - 4096) / factor, 65536 / factor); if (physmem_est > 65536) nbuf += min((physmem_est - 65536) * 2 / (factor * 5), 32 * 1024 * 1024 / (factor * 5)); if (maxbcache && nbuf > maxbcache / BKVASIZE) nbuf = maxbcache / BKVASIZE; tuned_nbuf = 1; } else tuned_nbuf = 0; /* XXX Avoid unsigned long overflows later on with maxbufspace. */ maxbuf = (LONG_MAX / 3) / BKVASIZE; if (nbuf > maxbuf) { if (!tuned_nbuf) printf("Warning: nbufs lowered from %d to %ld\n", nbuf, maxbuf); nbuf = maxbuf; } /* * Ideal allocation size for the transient bio submap is 10% * of the maximal space buffer map. This roughly corresponds * to the amount of the buffer mapped for typical UFS load. * * Clip the buffer map to reserve space for the transient * BIOs, if its extent is bigger than 90% (80% on i386) of the * maximum buffer map extent on the platform. * * The fall-back to the maxbuf in case of maxbcache unset, * allows to not trim the buffer KVA for the architectures * with ample KVA space. */ if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) { maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE; buf_sz = (long)nbuf * BKVASIZE; if (buf_sz < maxbuf_sz / TRANSIENT_DENOM * (TRANSIENT_DENOM - 1)) { /* * There is more KVA than memory. Do not * adjust buffer map size, and assign the rest * of maxbuf to transient map. */ biotmap_sz = maxbuf_sz - buf_sz; } else { /* * Buffer map spans all KVA we could afford on * this platform. Give 10% (20% on i386) of * the buffer map to the transient bio map. */ biotmap_sz = buf_sz / TRANSIENT_DENOM; buf_sz -= biotmap_sz; } if (biotmap_sz / INT_MAX > maxphys) bio_transient_maxcnt = INT_MAX; else bio_transient_maxcnt = biotmap_sz / maxphys; /* * Artificially limit to 1024 simultaneous in-flight I/Os * using the transient mapping. */ if (bio_transient_maxcnt > 1024) bio_transient_maxcnt = 1024; if (tuned_nbuf) nbuf = buf_sz / BKVASIZE; } if (nswbuf == 0) { nswbuf = min(nbuf / 4, 256); if (nswbuf < NSWBUF_MIN) nswbuf = NSWBUF_MIN; } /* * Reserve space for the buffer cache buffers */ buf = (char *)v; v = (caddr_t)buf + (sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf)) * nbuf; return (v); } /* Initialize the buffer subsystem. Called before use of any buffers. */ void bufinit(void) { struct buf *bp; int i; KASSERT(maxbcachebuf >= MAXBSIZE, ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf, MAXBSIZE)); bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock"); mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF); mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF); mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF); unmapped_buf = (caddr_t)kva_alloc(maxphys); /* finally, initialize each buffer header and stick on empty q */ for (i = 0; i < nbuf; i++) { bp = nbufp(i); bzero(bp, sizeof(*bp) + sizeof(vm_page_t) * atop(maxbcachebuf)); bp->b_flags = B_INVAL; bp->b_rcred = NOCRED; bp->b_wcred = NOCRED; bp->b_qindex = QUEUE_NONE; bp->b_domain = -1; bp->b_subqueue = mp_maxid + 1; bp->b_xflags = 0; bp->b_data = bp->b_kvabase = unmapped_buf; LIST_INIT(&bp->b_dep); BUF_LOCKINIT(bp); bq_insert(&bqempty, bp, false); } /* * maxbufspace is the absolute maximum amount of buffer space we are * allowed to reserve in KVM and in real terms. The absolute maximum * is nominally used by metadata. hibufspace is the nominal maximum * used by most other requests. The differential is required to * ensure that metadata deadlocks don't occur. * * maxbufspace is based on BKVASIZE. Allocating buffers larger then * this may result in KVM fragmentation which is not handled optimally * by the system. XXX This is less true with vmem. We could use * PAGE_SIZE. */ maxbufspace = (long)nbuf * BKVASIZE; hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10); lobufspace = (hibufspace / 20) * 19; /* 95% */ bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2; /* * Note: The 16 MiB upper limit for hirunningspace was chosen * arbitrarily and may need further tuning. It corresponds to * 128 outstanding write IO requests (if IO size is 128 KiB), * which fits with many RAID controllers' tagged queuing limits. * The lower 1 MiB limit is the historical upper limit for * hirunningspace. */ hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf), 16 * 1024 * 1024), 1024 * 1024); lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf); /* * Limit the amount of malloc memory since it is wired permanently into * the kernel space. Even though this is accounted for in the buffer * allocation, we don't want the malloced region to grow uncontrolled. * The malloc scheme improves memory utilization significantly on * average (small) directories. */ maxbufmallocspace = hibufspace / 20; /* * Reduce the chance of a deadlock occurring by limiting the number * of delayed-write dirty buffers we allow to stack up. */ hidirtybuffers = nbuf / 4 + 20; dirtybufthresh = hidirtybuffers * 9 / 10; /* * To support extreme low-memory systems, make sure hidirtybuffers * cannot eat up all available buffer space. This occurs when our * minimum cannot be met. We try to size hidirtybuffers to 3/4 our * buffer space assuming BKVASIZE'd buffers. */ while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { hidirtybuffers >>= 1; } lodirtybuffers = hidirtybuffers / 2; /* * lofreebuffers should be sufficient to avoid stalling waiting on * buf headers under heavy utilization. The bufs in per-cpu caches * are counted as free but will be unavailable to threads executing * on other cpus. * * hifreebuffers is the free target for the bufspace daemon. This * should be set appropriately to limit work per-iteration. */ lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus); hifreebuffers = (3 * lofreebuffers) / 2; numfreebuffers = nbuf; /* Setup the kva and free list allocators. */ vmem_set_reclaim(buffer_arena, bufkva_reclaim); buf_zone = uma_zcache_create("buf free cache", sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf), NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0); /* * Size the clean queue according to the amount of buffer space. * One queue per-256mb up to the max. More queues gives better * concurrency but less accurate LRU. */ buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS); for (i = 0 ; i < buf_domains; i++) { struct bufdomain *bd; bd = &bdomain[i]; bd_init(bd); bd->bd_freebuffers = nbuf / buf_domains; bd->bd_hifreebuffers = hifreebuffers / buf_domains; bd->bd_lofreebuffers = lofreebuffers / buf_domains; bd->bd_bufspace = 0; bd->bd_maxbufspace = maxbufspace / buf_domains; bd->bd_hibufspace = hibufspace / buf_domains; bd->bd_lobufspace = lobufspace / buf_domains; bd->bd_bufspacethresh = bufspacethresh / buf_domains; bd->bd_numdirtybuffers = 0; bd->bd_hidirtybuffers = hidirtybuffers / buf_domains; bd->bd_lodirtybuffers = lodirtybuffers / buf_domains; bd->bd_dirtybufthresh = dirtybufthresh / buf_domains; /* Don't allow more than 2% of bufs in the per-cpu caches. */ bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus; } getnewbufcalls = counter_u64_alloc(M_WAITOK); getnewbufrestarts = counter_u64_alloc(M_WAITOK); mappingrestarts = counter_u64_alloc(M_WAITOK); numbufallocfails = counter_u64_alloc(M_WAITOK); notbufdflushes = counter_u64_alloc(M_WAITOK); buffreekvacnt = counter_u64_alloc(M_WAITOK); bufdefragcnt = counter_u64_alloc(M_WAITOK); bufkvaspace = counter_u64_alloc(M_WAITOK); } #ifdef INVARIANTS static inline void vfs_buf_check_mapped(struct buf *bp) { KASSERT(bp->b_kvabase != unmapped_buf, ("mapped buf: b_kvabase was not updated %p", bp)); KASSERT(bp->b_data != unmapped_buf, ("mapped buf: b_data was not updated %p", bp)); KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf + maxphys, ("b_data + b_offset unmapped %p", bp)); } static inline void vfs_buf_check_unmapped(struct buf *bp) { KASSERT(bp->b_data == unmapped_buf, ("unmapped buf: corrupted b_data %p", bp)); } #define BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp) #define BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp) #else #define BUF_CHECK_MAPPED(bp) do {} while (0) #define BUF_CHECK_UNMAPPED(bp) do {} while (0) #endif static int isbufbusy(struct buf *bp) { if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) || ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI)) return (1); return (0); } /* * Shutdown the system cleanly to prepare for reboot, halt, or power off. */ void bufshutdown(int show_busybufs) { static int first_buf_printf = 1; struct buf *bp; int i, iter, nbusy, pbusy; #ifndef PREEMPTION int subiter; #endif /* * Sync filesystems for shutdown */ wdog_kern_pat(WD_LASTVAL); kern_sync(curthread); /* * With soft updates, some buffers that are * written will be remarked as dirty until other * buffers are written. */ for (iter = pbusy = 0; iter < 20; iter++) { nbusy = 0; for (i = nbuf - 1; i >= 0; i--) { bp = nbufp(i); if (isbufbusy(bp)) nbusy++; } if (nbusy == 0) { if (first_buf_printf) printf("All buffers synced."); break; } if (first_buf_printf) { printf("Syncing disks, buffers remaining... "); first_buf_printf = 0; } printf("%d ", nbusy); if (nbusy < pbusy) iter = 0; pbusy = nbusy; wdog_kern_pat(WD_LASTVAL); kern_sync(curthread); #ifdef PREEMPTION /* * Spin for a while to allow interrupt threads to run. */ DELAY(50000 * iter); #else /* * Context switch several times to allow interrupt * threads to run. */ for (subiter = 0; subiter < 50 * iter; subiter++) { thread_lock(curthread); mi_switch(SW_VOL); DELAY(1000); } #endif } printf("\n"); /* * Count only busy local buffers to prevent forcing * a fsck if we're just a client of a wedged NFS server */ nbusy = 0; for (i = nbuf - 1; i >= 0; i--) { bp = nbufp(i); if (isbufbusy(bp)) { #if 0 /* XXX: This is bogus. We should probably have a BO_REMOTE flag instead */ if (bp->b_dev == NULL) { TAILQ_REMOVE(&mountlist, bp->b_vp->v_mount, mnt_list); continue; } #endif nbusy++; if (show_busybufs > 0) { printf( "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:", nbusy, bp, bp->b_vp, bp->b_flags, (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno); BUF_LOCKPRINTINFO(bp); if (show_busybufs > 1) vn_printf(bp->b_vp, "vnode content: "); } } } if (nbusy) { /* * Failed to sync all blocks. Indicate this and don't * unmount filesystems (thus forcing an fsck on reboot). */ printf("Giving up on %d buffers\n", nbusy); DELAY(5000000); /* 5 seconds */ } else { if (!first_buf_printf) printf("Final sync complete\n"); /* * Unmount filesystems */ if (!KERNEL_PANICKED()) vfs_unmountall(); } swapoff_all(); DELAY(100000); /* wait for console output to finish */ } static void bpmap_qenter(struct buf *bp) { BUF_CHECK_MAPPED(bp); /* * bp->b_data is relative to bp->b_offset, but * bp->b_offset may be offset into the first page. */ bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data); pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages); bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | (vm_offset_t)(bp->b_offset & PAGE_MASK)); } static inline struct bufdomain * bufdomain(struct buf *bp) { return (&bdomain[bp->b_domain]); } static struct bufqueue * bufqueue(struct buf *bp) { switch (bp->b_qindex) { case QUEUE_NONE: /* FALLTHROUGH */ case QUEUE_SENTINEL: return (NULL); case QUEUE_EMPTY: return (&bqempty); case QUEUE_DIRTY: return (&bufdomain(bp)->bd_dirtyq); case QUEUE_CLEAN: return (&bufdomain(bp)->bd_subq[bp->b_subqueue]); default: break; } panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex); } /* * Return the locked bufqueue that bp is a member of. */ static struct bufqueue * bufqueue_acquire(struct buf *bp) { struct bufqueue *bq, *nbq; /* * bp can be pushed from a per-cpu queue to the * cleanq while we're waiting on the lock. Retry * if the queues don't match. */ bq = bufqueue(bp); BQ_LOCK(bq); for (;;) { nbq = bufqueue(bp); if (bq == nbq) break; BQ_UNLOCK(bq); BQ_LOCK(nbq); bq = nbq; } return (bq); } /* * binsfree: * * Insert the buffer into the appropriate free list. Requires a * locked buffer on entry and buffer is unlocked before return. */ static void binsfree(struct buf *bp, int qindex) { struct bufdomain *bd; struct bufqueue *bq; KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY, ("binsfree: Invalid qindex %d", qindex)); BUF_ASSERT_XLOCKED(bp); /* * Handle delayed bremfree() processing. */ if (bp->b_flags & B_REMFREE) { if (bp->b_qindex == qindex) { bp->b_flags |= B_REUSE; bp->b_flags &= ~B_REMFREE; BUF_UNLOCK(bp); return; } bq = bufqueue_acquire(bp); bq_remove(bq, bp); BQ_UNLOCK(bq); } bd = bufdomain(bp); if (qindex == QUEUE_CLEAN) { if (bd->bd_lim != 0) bq = &bd->bd_subq[PCPU_GET(cpuid)]; else bq = bd->bd_cleanq; } else bq = &bd->bd_dirtyq; bq_insert(bq, bp, true); } /* * buf_free: * * Free a buffer to the buf zone once it no longer has valid contents. */ static void buf_free(struct buf *bp) { if (bp->b_flags & B_REMFREE) bremfreef(bp); if (bp->b_vflags & BV_BKGRDINPROG) panic("losing buffer 1"); if (bp->b_rcred != NOCRED) { crfree(bp->b_rcred); bp->b_rcred = NOCRED; } if (bp->b_wcred != NOCRED) { crfree(bp->b_wcred); bp->b_wcred = NOCRED; } if (!LIST_EMPTY(&bp->b_dep)) buf_deallocate(bp); bufkva_free(bp); atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1); MPASS((bp->b_flags & B_MAXPHYS) == 0); BUF_UNLOCK(bp); uma_zfree(buf_zone, bp); } /* * buf_import: * * Import bufs into the uma cache from the buf list. The system still * expects a static array of bufs and much of the synchronization * around bufs assumes type stable storage. As a result, UMA is used * only as a per-cpu cache of bufs still maintained on a global list. */ static int buf_import(void *arg, void **store, int cnt, int domain, int flags) { struct buf *bp; int i; BQ_LOCK(&bqempty); for (i = 0; i < cnt; i++) { bp = TAILQ_FIRST(&bqempty.bq_queue); if (bp == NULL) break; bq_remove(&bqempty, bp); store[i] = bp; } BQ_UNLOCK(&bqempty); return (i); } /* * buf_release: * * Release bufs from the uma cache back to the buffer queues. */ static void buf_release(void *arg, void **store, int cnt) { struct bufqueue *bq; struct buf *bp; int i; bq = &bqempty; BQ_LOCK(bq); for (i = 0; i < cnt; i++) { bp = store[i]; /* Inline bq_insert() to batch locking. */ TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist); bp->b_flags &= ~(B_AGE | B_REUSE); bq->bq_len++; bp->b_qindex = bq->bq_index; } BQ_UNLOCK(bq); } /* * buf_alloc: * * Allocate an empty buffer header. */ static struct buf * buf_alloc(struct bufdomain *bd) { struct buf *bp; int freebufs, error; /* * We can only run out of bufs in the buf zone if the average buf * is less than BKVASIZE. In this case the actual wait/block will * come from buf_reycle() failing to flush one of these small bufs. */ bp = NULL; freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1); if (freebufs > 0) bp = uma_zalloc(buf_zone, M_NOWAIT); if (bp == NULL) { atomic_add_int(&bd->bd_freebuffers, 1); bufspace_daemon_wakeup(bd); counter_u64_add(numbufallocfails, 1); return (NULL); } /* * Wake-up the bufspace daemon on transition below threshold. */ if (freebufs == bd->bd_lofreebuffers) bufspace_daemon_wakeup(bd); error = BUF_LOCK(bp, LK_EXCLUSIVE, NULL); KASSERT(error == 0, ("%s: BUF_LOCK on free buf %p: %d.", __func__, bp, error)); (void)error; KASSERT(bp->b_vp == NULL, ("bp: %p still has vnode %p.", bp, bp->b_vp)); KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0, ("invalid buffer %p flags %#x", bp, bp->b_flags)); KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0, ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags)); KASSERT(bp->b_npages == 0, ("bp: %p still has %d vm pages\n", bp, bp->b_npages)); KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp)); KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp)); MPASS((bp->b_flags & B_MAXPHYS) == 0); bp->b_domain = BD_DOMAIN(bd); bp->b_flags = 0; bp->b_ioflags = 0; bp->b_xflags = 0; bp->b_vflags = 0; bp->b_vp = NULL; bp->b_blkno = bp->b_lblkno = 0; bp->b_offset = NOOFFSET; bp->b_iodone = 0; bp->b_error = 0; bp->b_resid = 0; bp->b_bcount = 0; bp->b_npages = 0; bp->b_dirtyoff = bp->b_dirtyend = 0; bp->b_bufobj = NULL; bp->b_data = bp->b_kvabase = unmapped_buf; bp->b_fsprivate1 = NULL; bp->b_fsprivate2 = NULL; bp->b_fsprivate3 = NULL; LIST_INIT(&bp->b_dep); return (bp); } /* * buf_recycle: * * Free a buffer from the given bufqueue. kva controls whether the * freed buf must own some kva resources. This is used for * defragmenting. */ static int buf_recycle(struct bufdomain *bd, bool kva) { struct bufqueue *bq; struct buf *bp, *nbp; if (kva) counter_u64_add(bufdefragcnt, 1); nbp = NULL; bq = bd->bd_cleanq; BQ_LOCK(bq); KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd), ("buf_recycle: Locks don't match")); nbp = TAILQ_FIRST(&bq->bq_queue); /* * Run scan, possibly freeing data and/or kva mappings on the fly * depending. */ while ((bp = nbp) != NULL) { /* * Calculate next bp (we can only use it if we do not * release the bqlock). */ nbp = TAILQ_NEXT(bp, b_freelist); /* * If we are defragging then we need a buffer with * some kva to reclaim. */ if (kva && bp->b_kvasize == 0) continue; if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) continue; /* * Implement a second chance algorithm for frequently * accessed buffers. */ if ((bp->b_flags & B_REUSE) != 0) { TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist); TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist); bp->b_flags &= ~B_REUSE; BUF_UNLOCK(bp); continue; } /* * Skip buffers with background writes in progress. */ if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { BUF_UNLOCK(bp); continue; } KASSERT(bp->b_qindex == QUEUE_CLEAN, ("buf_recycle: inconsistent queue %d bp %p", bp->b_qindex, bp)); KASSERT(bp->b_domain == BD_DOMAIN(bd), ("getnewbuf: queue domain %d doesn't match request %d", bp->b_domain, (int)BD_DOMAIN(bd))); /* * NOTE: nbp is now entirely invalid. We can only restart * the scan from this point on. */ bq_remove(bq, bp); BQ_UNLOCK(bq); /* * Requeue the background write buffer with error and * restart the scan. */ if ((bp->b_vflags & BV_BKGRDERR) != 0) { bqrelse(bp); BQ_LOCK(bq); nbp = TAILQ_FIRST(&bq->bq_queue); continue; } bp->b_flags |= B_INVAL; brelse(bp); return (0); } bd->bd_wanted = 1; BQ_UNLOCK(bq); return (ENOBUFS); } /* * bremfree: * * Mark the buffer for removal from the appropriate free list. * */ void bremfree(struct buf *bp) { CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); KASSERT((bp->b_flags & B_REMFREE) == 0, ("bremfree: buffer %p already marked for delayed removal.", bp)); KASSERT(bp->b_qindex != QUEUE_NONE, ("bremfree: buffer %p not on a queue.", bp)); BUF_ASSERT_XLOCKED(bp); bp->b_flags |= B_REMFREE; } /* * bremfreef: * * Force an immediate removal from a free list. Used only in nfs when * it abuses the b_freelist pointer. */ void bremfreef(struct buf *bp) { struct bufqueue *bq; bq = bufqueue_acquire(bp); bq_remove(bq, bp); BQ_UNLOCK(bq); } static void bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname) { mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF); TAILQ_INIT(&bq->bq_queue); bq->bq_len = 0; bq->bq_index = qindex; bq->bq_subqueue = subqueue; } static void bd_init(struct bufdomain *bd) { int i; bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1]; bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock"); bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock"); for (i = 0; i <= mp_maxid; i++) bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i, "bufq clean subqueue lock"); mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF); } /* * bq_remove: * * Removes a buffer from the free list, must be called with the * correct qlock held. */ static void bq_remove(struct bufqueue *bq, struct buf *bp) { CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); KASSERT(bp->b_qindex != QUEUE_NONE, ("bq_remove: buffer %p not on a queue.", bp)); KASSERT(bufqueue(bp) == bq, ("bq_remove: Remove buffer %p from wrong queue.", bp)); BQ_ASSERT_LOCKED(bq); if (bp->b_qindex != QUEUE_EMPTY) { BUF_ASSERT_XLOCKED(bp); } KASSERT(bq->bq_len >= 1, ("queue %d underflow", bp->b_qindex)); TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist); bq->bq_len--; bp->b_qindex = QUEUE_NONE; bp->b_flags &= ~(B_REMFREE | B_REUSE); } static void bd_flush(struct bufdomain *bd, struct bufqueue *bq) { struct buf *bp; BQ_ASSERT_LOCKED(bq); if (bq != bd->bd_cleanq) { BD_LOCK(bd); while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) { TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist); TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp, b_freelist); bp->b_subqueue = bd->bd_cleanq->bq_subqueue; } bd->bd_cleanq->bq_len += bq->bq_len; bq->bq_len = 0; } if (bd->bd_wanted) { bd->bd_wanted = 0; wakeup(&bd->bd_wanted); } if (bq != bd->bd_cleanq) BD_UNLOCK(bd); } static int bd_flushall(struct bufdomain *bd) { struct bufqueue *bq; int flushed; int i; if (bd->bd_lim == 0) return (0); flushed = 0; for (i = 0; i <= mp_maxid; i++) { bq = &bd->bd_subq[i]; if (bq->bq_len == 0) continue; BQ_LOCK(bq); bd_flush(bd, bq); BQ_UNLOCK(bq); flushed++; } return (flushed); } static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock) { struct bufdomain *bd; if (bp->b_qindex != QUEUE_NONE) panic("bq_insert: free buffer %p onto another queue?", bp); bd = bufdomain(bp); if (bp->b_flags & B_AGE) { /* Place this buf directly on the real queue. */ if (bq->bq_index == QUEUE_CLEAN) bq = bd->bd_cleanq; BQ_LOCK(bq); TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist); } else { BQ_LOCK(bq); TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist); } bp->b_flags &= ~(B_AGE | B_REUSE); bq->bq_len++; bp->b_qindex = bq->bq_index; bp->b_subqueue = bq->bq_subqueue; /* * Unlock before we notify so that we don't wakeup a waiter that * fails a trylock on the buf and sleeps again. */ if (unlock) BUF_UNLOCK(bp); if (bp->b_qindex == QUEUE_CLEAN) { /* * Flush the per-cpu queue and notify any waiters. */ if (bd->bd_wanted || (bq != bd->bd_cleanq && bq->bq_len >= bd->bd_lim)) bd_flush(bd, bq); } BQ_UNLOCK(bq); } /* * bufkva_free: * * Free the kva allocation for a buffer. * */ static void bufkva_free(struct buf *bp) { #ifdef INVARIANTS if (bp->b_kvasize == 0) { KASSERT(bp->b_kvabase == unmapped_buf && bp->b_data == unmapped_buf, ("Leaked KVA space on %p", bp)); } else if (buf_mapped(bp)) BUF_CHECK_MAPPED(bp); else BUF_CHECK_UNMAPPED(bp); #endif if (bp->b_kvasize == 0) return; vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize); counter_u64_add(bufkvaspace, -bp->b_kvasize); counter_u64_add(buffreekvacnt, 1); bp->b_data = bp->b_kvabase = unmapped_buf; bp->b_kvasize = 0; } /* * bufkva_alloc: * * Allocate the buffer KVA and set b_kvasize and b_kvabase. */ static int bufkva_alloc(struct buf *bp, int maxsize, int gbflags) { vm_offset_t addr; int error; KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0, ("Invalid gbflags 0x%x in %s", gbflags, __func__)); MPASS((bp->b_flags & B_MAXPHYS) == 0); KASSERT(maxsize <= maxbcachebuf, ("bufkva_alloc kva too large %d %u", maxsize, maxbcachebuf)); bufkva_free(bp); addr = 0; error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr); if (error != 0) { /* * Buffer map is too fragmented. Request the caller * to defragment the map. */ return (error); } bp->b_kvabase = (caddr_t)addr; bp->b_kvasize = maxsize; counter_u64_add(bufkvaspace, bp->b_kvasize); if ((gbflags & GB_UNMAPPED) != 0) { bp->b_data = unmapped_buf; BUF_CHECK_UNMAPPED(bp); } else { bp->b_data = bp->b_kvabase; BUF_CHECK_MAPPED(bp); } return (0); } /* * bufkva_reclaim: * * Reclaim buffer kva by freeing buffers holding kva. This is a vmem * callback that fires to avoid returning failure. */ static void bufkva_reclaim(vmem_t *vmem, int flags) { bool done; int q; int i; done = false; for (i = 0; i < 5; i++) { for (q = 0; q < buf_domains; q++) if (buf_recycle(&bdomain[q], true) != 0) done = true; if (done) break; } return; } /* * Attempt to initiate asynchronous I/O on read-ahead blocks. We must * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set, * the buffer is valid and we do not have to do anything. */ static void breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt, struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *)) { struct buf *rabp; struct thread *td; int i; td = curthread; for (i = 0; i < cnt; i++, rablkno++, rabsize++) { if (inmem(vp, *rablkno)) continue; rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0); if ((rabp->b_flags & B_CACHE) != 0) { brelse(rabp); continue; } #ifdef RACCT if (racct_enable) { PROC_LOCK(curproc); racct_add_buf(curproc, rabp, 0); PROC_UNLOCK(curproc); } #endif /* RACCT */ td->td_ru.ru_inblock++; rabp->b_flags |= B_ASYNC; rabp->b_flags &= ~B_INVAL; if ((flags & GB_CKHASH) != 0) { rabp->b_flags |= B_CKHASH; rabp->b_ckhashcalc = ckhashfunc; } rabp->b_ioflags &= ~BIO_ERROR; rabp->b_iocmd = BIO_READ; if (rabp->b_rcred == NOCRED && cred != NOCRED) rabp->b_rcred = crhold(cred); vfs_busy_pages(rabp, 0); BUF_KERNPROC(rabp); rabp->b_iooffset = dbtob(rabp->b_blkno); bstrategy(rabp); } } /* * Entry point for bread() and breadn() via #defines in sys/buf.h. * * Get a buffer with the specified data. Look in the cache first. We * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE * is set, the buffer is valid and we do not have to do anything, see * getblk(). Also starts asynchronous I/O on read-ahead blocks. * * Always return a NULL buffer pointer (in bpp) when returning an error. * * The blkno parameter is the logical block being requested. Normally * the mapping of logical block number to disk block address is done * by calling VOP_BMAP(). However, if the mapping is already known, the * disk block address can be passed using the dblkno parameter. If the * disk block address is not known, then the same value should be passed * for blkno and dblkno. */ int breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags, void (*ckhashfunc)(struct buf *), struct buf **bpp) { struct buf *bp; struct thread *td; int error, readwait, rv; CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size); td = curthread; /* * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags * are specified. */ error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp); if (error != 0) { *bpp = NULL; return (error); } KASSERT(blkno == bp->b_lblkno, ("getblkx returned buffer for blkno %jd instead of blkno %jd", (intmax_t)bp->b_lblkno, (intmax_t)blkno)); flags &= ~GB_NOSPARSE; *bpp = bp; /* * If not found in cache, do some I/O */ readwait = 0; if ((bp->b_flags & B_CACHE) == 0) { #ifdef RACCT if (racct_enable) { PROC_LOCK(td->td_proc); racct_add_buf(td->td_proc, bp, 0); PROC_UNLOCK(td->td_proc); } #endif /* RACCT */ td->td_ru.ru_inblock++; bp->b_iocmd = BIO_READ; bp->b_flags &= ~B_INVAL; if ((flags & GB_CKHASH) != 0) { bp->b_flags |= B_CKHASH; bp->b_ckhashcalc = ckhashfunc; } if ((flags & GB_CVTENXIO) != 0) bp->b_xflags |= BX_CVTENXIO; bp->b_ioflags &= ~BIO_ERROR; if (bp->b_rcred == NOCRED && cred != NOCRED) bp->b_rcred = crhold(cred); vfs_busy_pages(bp, 0); bp->b_iooffset = dbtob(bp->b_blkno); bstrategy(bp); ++readwait; } /* * Attempt to initiate asynchronous I/O on read-ahead blocks. */ breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc); rv = 0; if (readwait) { rv = bufwait(bp); if (rv != 0) { brelse(bp); *bpp = NULL; } } return (rv); } /* * Write, release buffer on completion. (Done by iodone * if async). Do not bother writing anything if the buffer * is invalid. * * Note that we set B_CACHE here, indicating that buffer is * fully valid and thus cacheable. This is true even of NFS * now so we set it generally. This could be set either here * or in biodone() since the I/O is synchronous. We put it * here. */ int bufwrite(struct buf *bp) { int oldflags; struct vnode *vp; long space; int vp_md; CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) { bp->b_flags |= B_INVAL | B_RELBUF; bp->b_flags &= ~B_CACHE; brelse(bp); return (ENXIO); } if (bp->b_flags & B_INVAL) { brelse(bp); return (0); } if (bp->b_flags & B_BARRIER) atomic_add_long(&barrierwrites, 1); oldflags = bp->b_flags; KASSERT(!(bp->b_vflags & BV_BKGRDINPROG), ("FFS background buffer should not get here %p", bp)); vp = bp->b_vp; if (vp) vp_md = vp->v_vflag & VV_MD; else vp_md = 0; /* * Mark the buffer clean. Increment the bufobj write count * before bundirty() call, to prevent other thread from seeing * empty dirty list and zero counter for writes in progress, * falsely indicating that the bufobj is clean. */ bufobj_wref(bp->b_bufobj); bundirty(bp); bp->b_flags &= ~B_DONE; bp->b_ioflags &= ~BIO_ERROR; bp->b_flags |= B_CACHE; bp->b_iocmd = BIO_WRITE; vfs_busy_pages(bp, 1); /* * Normal bwrites pipeline writes */ bp->b_runningbufspace = bp->b_bufsize; space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace); #ifdef RACCT if (racct_enable) { PROC_LOCK(curproc); racct_add_buf(curproc, bp, 1); PROC_UNLOCK(curproc); } #endif /* RACCT */ curthread->td_ru.ru_oublock++; if (oldflags & B_ASYNC) BUF_KERNPROC(bp); bp->b_iooffset = dbtob(bp->b_blkno); buf_track(bp, __func__); bstrategy(bp); if ((oldflags & B_ASYNC) == 0) { int rtval = bufwait(bp); brelse(bp); return (rtval); } else if (space > hirunningspace) { /* * don't allow the async write to saturate the I/O * system. We will not deadlock here because * we are blocking waiting for I/O that is already in-progress * to complete. We do not block here if it is the update * or syncer daemon trying to clean up as that can lead * to deadlock. */ if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md) waitrunningbufspace(); } return (0); } void bufbdflush(struct bufobj *bo, struct buf *bp) { struct buf *nbp; struct bufdomain *bd; bd = &bdomain[bo->bo_domain]; if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh + 10) { (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread); altbufferflushes++; } else if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh) { BO_LOCK(bo); /* * Try to find a buffer to flush. */ TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) { if ((nbp->b_vflags & BV_BKGRDINPROG) || BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) continue; if (bp == nbp) panic("bdwrite: found ourselves"); BO_UNLOCK(bo); /* Don't countdeps with the bo lock held. */ if (buf_countdeps(nbp, 0)) { BO_LOCK(bo); BUF_UNLOCK(nbp); continue; } if (nbp->b_flags & B_CLUSTEROK) { vfs_bio_awrite(nbp); } else { bremfree(nbp); bawrite(nbp); } dirtybufferflushes++; break; } if (nbp == NULL) BO_UNLOCK(bo); } } /* * Delayed write. (Buffer is marked dirty). Do not bother writing * anything if the buffer is marked invalid. * * Note that since the buffer must be completely valid, we can safely * set B_CACHE. In fact, we have to set B_CACHE here rather then in * biodone() in order to prevent getblk from writing the buffer * out synchronously. */ void bdwrite(struct buf *bp) { struct thread *td = curthread; struct vnode *vp; struct bufobj *bo; CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); KASSERT((bp->b_flags & B_BARRIER) == 0, ("Barrier request in delayed write %p", bp)); if (bp->b_flags & B_INVAL) { brelse(bp); return; } /* * If we have too many dirty buffers, don't create any more. * If we are wildly over our limit, then force a complete * cleanup. Otherwise, just keep the situation from getting * out of control. Note that we have to avoid a recursive * disaster and not try to clean up after our own cleanup! */ vp = bp->b_vp; bo = bp->b_bufobj; if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) { td->td_pflags |= TDP_INBDFLUSH; BO_BDFLUSH(bo, bp); td->td_pflags &= ~TDP_INBDFLUSH; } else recursiveflushes++; bdirty(bp); /* * Set B_CACHE, indicating that the buffer is fully valid. This is * true even of NFS now. */ bp->b_flags |= B_CACHE; /* * This bmap keeps the system from needing to do the bmap later, * perhaps when the system is attempting to do a sync. Since it * is likely that the indirect block -- or whatever other datastructure * that the filesystem needs is still in memory now, it is a good * thing to do this. Note also, that if the pageout daemon is * requesting a sync -- there might not be enough memory to do * the bmap then... So, this is important to do. */ if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) { VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); } buf_track(bp, __func__); /* * Set the *dirty* buffer range based upon the VM system dirty * pages. * * Mark the buffer pages as clean. We need to do this here to * satisfy the vnode_pager and the pageout daemon, so that it * thinks that the pages have been "cleaned". Note that since * the pages are in a delayed write buffer -- the VFS layer * "will" see that the pages get written out on the next sync, * or perhaps the cluster will be completed. */ vfs_clean_pages_dirty_buf(bp); bqrelse(bp); /* * note: we cannot initiate I/O from a bdwrite even if we wanted to, * due to the softdep code. */ } /* * bdirty: * * Turn buffer into delayed write request. We must clear BIO_READ and * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to * itself to properly update it in the dirty/clean lists. We mark it * B_DONE to ensure that any asynchronization of the buffer properly * clears B_DONE ( else a panic will occur later ). * * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() * should only be called if the buffer is known-good. * * Since the buffer is not on a queue, we do not update the numfreebuffers * count. * * The buffer must be on QUEUE_NONE. */ void bdirty(struct buf *bp) { CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); bp->b_flags &= ~(B_RELBUF); bp->b_iocmd = BIO_WRITE; if ((bp->b_flags & B_DELWRI) == 0) { bp->b_flags |= /* XXX B_DONE | */ B_DELWRI; reassignbuf(bp); bdirtyadd(bp); } } /* * bundirty: * * Clear B_DELWRI for buffer. * * Since the buffer is not on a queue, we do not update the numfreebuffers * count. * * The buffer must be on QUEUE_NONE. */ void bundirty(struct buf *bp) { CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); if (bp->b_flags & B_DELWRI) { bp->b_flags &= ~B_DELWRI; reassignbuf(bp); bdirtysub(bp); } /* * Since it is now being written, we can clear its deferred write flag. */ bp->b_flags &= ~B_DEFERRED; } /* * bawrite: * * Asynchronous write. Start output on a buffer, but do not wait for * it to complete. The buffer is released when the output completes. * * bwrite() ( or the VOP routine anyway ) is responsible for handling * B_INVAL buffers. Not us. */ void bawrite(struct buf *bp) { bp->b_flags |= B_ASYNC; (void) bwrite(bp); } /* * babarrierwrite: * * Asynchronous barrier write. Start output on a buffer, but do not * wait for it to complete. Place a write barrier after this write so * that this buffer and all buffers written before it are committed to * the disk before any buffers written after this write are committed * to the disk. The buffer is released when the output completes. */ void babarrierwrite(struct buf *bp) { bp->b_flags |= B_ASYNC | B_BARRIER; (void) bwrite(bp); } /* * bbarrierwrite: * * Synchronous barrier write. Start output on a buffer and wait for * it to complete. Place a write barrier after this write so that * this buffer and all buffers written before it are committed to * the disk before any buffers written after this write are committed * to the disk. The buffer is released when the output completes. */ int bbarrierwrite(struct buf *bp) { bp->b_flags |= B_BARRIER; return (bwrite(bp)); } /* * bwillwrite: * * Called prior to the locking of any vnodes when we are expecting to * write. We do not want to starve the buffer cache with too many * dirty buffers so we block here. By blocking prior to the locking * of any vnodes we attempt to avoid the situation where a locked vnode * prevents the various system daemons from flushing related buffers. */ void bwillwrite(void) { if (buf_dirty_count_severe()) { mtx_lock(&bdirtylock); while (buf_dirty_count_severe()) { bdirtywait = 1; msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4), "flswai", 0); } mtx_unlock(&bdirtylock); } } /* * Return true if we have too many dirty buffers. */ int buf_dirty_count_severe(void) { return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty)); } /* * brelse: * * Release a busy buffer and, if requested, free its resources. The * buffer will be stashed in the appropriate bufqueue[] allowing it * to be accessed later as a cache entity or reused for other purposes. */ void brelse(struct buf *bp) { struct mount *v_mnt; int qindex; /* * Many functions erroneously call brelse with a NULL bp under rare * error conditions. Simply return when called with a NULL bp. */ if (bp == NULL) return; CTR3(KTR_BUF, "brelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0, ("brelse: non-VMIO buffer marked NOREUSE")); if (BUF_LOCKRECURSED(bp)) { /* * Do not process, in particular, do not handle the * B_INVAL/B_RELBUF and do not release to free list. */ BUF_UNLOCK(bp); return; } if (bp->b_flags & B_MANAGED) { bqrelse(bp); return; } if (LIST_EMPTY(&bp->b_dep)) { bp->b_flags &= ~B_IOSTARTED; } else { KASSERT((bp->b_flags & B_IOSTARTED) == 0, ("brelse: SU io not finished bp %p", bp)); } if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) { BO_LOCK(bp->b_bufobj); bp->b_vflags &= ~BV_BKGRDERR; BO_UNLOCK(bp->b_bufobj); bdirty(bp); } if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) && (bp->b_flags & B_INVALONERR)) { /* * Forced invalidation of dirty buffer contents, to be used * after a failed write in the rare case that the loss of the * contents is acceptable. The buffer is invalidated and * freed. */ bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE; bp->b_flags &= ~(B_ASYNC | B_CACHE); } if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) && (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) && !(bp->b_flags & B_INVAL)) { /* * Failed write, redirty. All errors except ENXIO (which * means the device is gone) are treated as being * transient. * * XXX Treating EIO as transient is not correct; the * contract with the local storage device drivers is that * they will only return EIO once the I/O is no longer * retriable. Network I/O also respects this through the * guarantees of TCP and/or the internal retries of NFS. * ENOMEM might be transient, but we also have no way of * knowing when its ok to retry/reschedule. In general, * this entire case should be made obsolete through better * error handling/recovery and resource scheduling. * * Do this also for buffers that failed with ENXIO, but have * non-empty dependencies - the soft updates code might need * to access the buffer to untangle them. * * Must clear BIO_ERROR to prevent pages from being scrapped. */ bp->b_ioflags &= ~BIO_ERROR; bdirty(bp); } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) || (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) { /* * Either a failed read I/O, or we were asked to free or not * cache the buffer, or we failed to write to a device that's * no longer present. */ bp->b_flags |= B_INVAL; if (!LIST_EMPTY(&bp->b_dep)) buf_deallocate(bp); if (bp->b_flags & B_DELWRI) bdirtysub(bp); bp->b_flags &= ~(B_DELWRI | B_CACHE); if ((bp->b_flags & B_VMIO) == 0) { allocbuf(bp, 0); if (bp->b_vp) brelvp(bp); } } /* * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_truncate() * is called with B_DELWRI set, the underlying pages may wind up * getting freed causing a previous write (bdwrite()) to get 'lost' * because pages associated with a B_DELWRI bp are marked clean. * * We still allow the B_INVAL case to call vfs_vmio_truncate(), even * if B_DELWRI is set. */ if (bp->b_flags & B_DELWRI) bp->b_flags &= ~B_RELBUF; /* * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer * constituted, not even NFS buffers now. Two flags effect this. If * B_INVAL, the struct buf is invalidated but the VM object is kept * around ( i.e. so it is trivial to reconstitute the buffer later ). * * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be * invalidated. BIO_ERROR cannot be set for a failed write unless the * buffer is also B_INVAL because it hits the re-dirtying code above. * * Normally we can do this whether a buffer is B_DELWRI or not. If * the buffer is an NFS buffer, it is tracking piecemeal writes or * the commit state and we cannot afford to lose the buffer. If the * buffer has a background write in progress, we need to keep it * around to prevent it from being reconstituted and starting a second * background write. */ v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL; if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE || (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) && (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 || vn_isdisk(bp->b_vp) || (bp->b_flags & B_DELWRI) == 0)) { vfs_vmio_invalidate(bp); allocbuf(bp, 0); } if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 || (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) { allocbuf(bp, 0); bp->b_flags &= ~B_NOREUSE; if (bp->b_vp != NULL) brelvp(bp); } /* * If the buffer has junk contents signal it and eventually * clean up B_DELWRI and diassociate the vnode so that gbincore() * doesn't find it. */ if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 || (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0) bp->b_flags |= B_INVAL; if (bp->b_flags & B_INVAL) { if (bp->b_flags & B_DELWRI) bundirty(bp); if (bp->b_vp) brelvp(bp); } buf_track(bp, __func__); /* buffers with no memory */ if (bp->b_bufsize == 0) { buf_free(bp); return; } /* buffers with junk contents */ if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || (bp->b_ioflags & BIO_ERROR)) { bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); if (bp->b_vflags & BV_BKGRDINPROG) panic("losing buffer 2"); qindex = QUEUE_CLEAN; bp->b_flags |= B_AGE; /* remaining buffers */ } else if (bp->b_flags & B_DELWRI) qindex = QUEUE_DIRTY; else qindex = QUEUE_CLEAN; if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) panic("brelse: not dirty"); bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT); bp->b_xflags &= ~(BX_CVTENXIO); /* binsfree unlocks bp. */ binsfree(bp, qindex); } /* * Release a buffer back to the appropriate queue but do not try to free * it. The buffer is expected to be used again soon. * * bqrelse() is used by bdwrite() to requeue a delayed write, and used by * biodone() to requeue an async I/O on completion. It is also used when * known good buffers need to be requeued but we think we may need the data * again soon. * * XXX we should be able to leave the B_RELBUF hint set on completion. */ void bqrelse(struct buf *bp) { int qindex; CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); qindex = QUEUE_NONE; if (BUF_LOCKRECURSED(bp)) { /* do not release to free list */ BUF_UNLOCK(bp); return; } bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); bp->b_xflags &= ~(BX_CVTENXIO); if (LIST_EMPTY(&bp->b_dep)) { bp->b_flags &= ~B_IOSTARTED; } else { KASSERT((bp->b_flags & B_IOSTARTED) == 0, ("bqrelse: SU io not finished bp %p", bp)); } if (bp->b_flags & B_MANAGED) { if (bp->b_flags & B_REMFREE) bremfreef(bp); goto out; } /* buffers with stale but valid contents */ if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) { BO_LOCK(bp->b_bufobj); bp->b_vflags &= ~BV_BKGRDERR; BO_UNLOCK(bp->b_bufobj); qindex = QUEUE_DIRTY; } else { if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) panic("bqrelse: not dirty"); if ((bp->b_flags & B_NOREUSE) != 0) { brelse(bp); return; } qindex = QUEUE_CLEAN; } buf_track(bp, __func__); /* binsfree unlocks bp. */ binsfree(bp, qindex); return; out: buf_track(bp, __func__); /* unlock */ BUF_UNLOCK(bp); } /* * Complete I/O to a VMIO backed page. Validate the pages as appropriate, * restore bogus pages. */ static void vfs_vmio_iodone(struct buf *bp) { vm_ooffset_t foff; vm_page_t m; vm_object_t obj; struct vnode *vp __unused; int i, iosize, resid; bool bogus; obj = bp->b_bufobj->bo_object; KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages, ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)", blockcount_read(&obj->paging_in_progress), bp->b_npages)); vp = bp->b_vp; VNPASS(vp->v_holdcnt > 0, vp); VNPASS(vp->v_object != NULL, vp); foff = bp->b_offset; KASSERT(bp->b_offset != NOOFFSET, ("vfs_vmio_iodone: bp %p has no buffer offset", bp)); bogus = false; iosize = bp->b_bcount - bp->b_resid; for (i = 0; i < bp->b_npages; i++) { resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; if (resid > iosize) resid = iosize; /* * cleanup bogus pages, restoring the originals */ m = bp->b_pages[i]; if (m == bogus_page) { bogus = true; m = vm_page_relookup(obj, OFF_TO_IDX(foff)); if (m == NULL) panic("biodone: page disappeared!"); bp->b_pages[i] = m; } else if ((bp->b_iocmd == BIO_READ) && resid > 0) { /* * In the write case, the valid and clean bits are * already changed correctly ( see bdwrite() ), so we * only need to do this here in the read case. */ KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK, resid)) == 0, ("vfs_vmio_iodone: page %p " "has unexpected dirty bits", m)); vfs_page_set_valid(bp, foff, m); } KASSERT(OFF_TO_IDX(foff) == m->pindex, ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch", (intmax_t)foff, (uintmax_t)m->pindex)); vm_page_sunbusy(m); foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; iosize -= resid; } vm_object_pip_wakeupn(obj, bp->b_npages); if (bogus && buf_mapped(bp)) { BUF_CHECK_MAPPED(bp); pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); } } /* * Perform page invalidation when a buffer is released. The fully invalid * pages will be reclaimed later in vfs_vmio_truncate(). */ static void vfs_vmio_invalidate(struct buf *bp) { vm_object_t obj; vm_page_t m; int flags, i, resid, poffset, presid; if (buf_mapped(bp)) { BUF_CHECK_MAPPED(bp); pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages); } else BUF_CHECK_UNMAPPED(bp); /* * Get the base offset and length of the buffer. Note that * in the VMIO case if the buffer block size is not * page-aligned then b_data pointer may not be page-aligned. * But our b_pages[] array *IS* page aligned. * * block sizes less then DEV_BSIZE (usually 512) are not * supported due to the page granularity bits (m->valid, * m->dirty, etc...). * * See man buf(9) for more information */ flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0; obj = bp->b_bufobj->bo_object; resid = bp->b_bufsize; poffset = bp->b_offset & PAGE_MASK; VM_OBJECT_WLOCK(obj); for (i = 0; i < bp->b_npages; i++) { m = bp->b_pages[i]; if (m == bogus_page) panic("vfs_vmio_invalidate: Unexpected bogus page."); bp->b_pages[i] = NULL; presid = resid > (PAGE_SIZE - poffset) ? (PAGE_SIZE - poffset) : resid; KASSERT(presid >= 0, ("brelse: extra page")); vm_page_busy_acquire(m, VM_ALLOC_SBUSY); if (pmap_page_wired_mappings(m) == 0) vm_page_set_invalid(m, poffset, presid); vm_page_sunbusy(m); vm_page_release_locked(m, flags); resid -= presid; poffset = 0; } VM_OBJECT_WUNLOCK(obj); bp->b_npages = 0; } /* * Page-granular truncation of an existing VMIO buffer. */ static void vfs_vmio_truncate(struct buf *bp, int desiredpages) { vm_object_t obj; vm_page_t m; int flags, i; if (bp->b_npages == desiredpages) return; if (buf_mapped(bp)) { BUF_CHECK_MAPPED(bp); pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) + (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages); } else BUF_CHECK_UNMAPPED(bp); /* * The object lock is needed only if we will attempt to free pages. */ flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0; if ((bp->b_flags & B_DIRECT) != 0) { flags |= VPR_TRYFREE; obj = bp->b_bufobj->bo_object; VM_OBJECT_WLOCK(obj); } else { obj = NULL; } for (i = desiredpages; i < bp->b_npages; i++) { m = bp->b_pages[i]; KASSERT(m != bogus_page, ("allocbuf: bogus page found")); bp->b_pages[i] = NULL; if (obj != NULL) vm_page_release_locked(m, flags); else vm_page_release(m, flags); } if (obj != NULL) VM_OBJECT_WUNLOCK(obj); bp->b_npages = desiredpages; } /* * Byte granular extension of VMIO buffers. */ static void vfs_vmio_extend(struct buf *bp, int desiredpages, int size) { /* * We are growing the buffer, possibly in a * byte-granular fashion. */ vm_object_t obj; vm_offset_t toff; vm_offset_t tinc; vm_page_t m; /* * Step 1, bring in the VM pages from the object, allocating * them if necessary. We must clear B_CACHE if these pages * are not valid for the range covered by the buffer. */ obj = bp->b_bufobj->bo_object; if (bp->b_npages < desiredpages) { KASSERT(desiredpages <= atop(maxbcachebuf), ("vfs_vmio_extend past maxbcachebuf %p %d %u", bp, desiredpages, maxbcachebuf)); /* * We must allocate system pages since blocking * here could interfere with paging I/O, no * matter which process we are. * * Only exclusive busy can be tested here. * Blocking on shared busy might lead to * deadlocks once allocbuf() is called after * pages are vfs_busy_pages(). */ (void)vm_page_grab_pages_unlocked(obj, OFF_TO_IDX(bp->b_offset) + bp->b_npages, VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED, &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages); bp->b_npages = desiredpages; } /* * Step 2. We've loaded the pages into the buffer, * we have to figure out if we can still have B_CACHE * set. Note that B_CACHE is set according to the * byte-granular range ( bcount and size ), not the * aligned range ( newbsize ). * * The VM test is against m->valid, which is DEV_BSIZE * aligned. Needless to say, the validity of the data * needs to also be DEV_BSIZE aligned. Note that this * fails with NFS if the server or some other client * extends the file's EOF. If our buffer is resized, * B_CACHE may remain set! XXX */ toff = bp->b_bcount; tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); while ((bp->b_flags & B_CACHE) && toff < size) { vm_pindex_t pi; if (tinc > (size - toff)) tinc = size - toff; pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT; m = bp->b_pages[pi]; vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m); toff += tinc; tinc = PAGE_SIZE; } /* * Step 3, fixup the KVA pmap. */ if (buf_mapped(bp)) bpmap_qenter(bp); else BUF_CHECK_UNMAPPED(bp); } /* * Check to see if a block at a particular lbn is available for a clustered * write. */ static int vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno) { struct buf *bpa; int match; match = 0; /* If the buf isn't in core skip it */ if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL) return (0); /* If the buf is busy we don't want to wait for it */ if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) return (0); /* Only cluster with valid clusterable delayed write buffers */ if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) != (B_DELWRI | B_CLUSTEROK)) goto done; if (bpa->b_bufsize != size) goto done; /* * Check to see if it is in the expected place on disk and that the * block has been mapped. */ if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno)) match = 1; done: BUF_UNLOCK(bpa); return (match); } /* * vfs_bio_awrite: * * Implement clustered async writes for clearing out B_DELWRI buffers. * This is much better then the old way of writing only one buffer at * a time. Note that we may not be presented with the buffers in the * correct order, so we search for the cluster in both directions. */ int vfs_bio_awrite(struct buf *bp) { struct bufobj *bo; int i; int j; daddr_t lblkno = bp->b_lblkno; struct vnode *vp = bp->b_vp; int ncl; int nwritten; int size; int maxcl; int gbflags; bo = &vp->v_bufobj; gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0; /* * right now we support clustered writing only to regular files. If * we find a clusterable block we could be in the middle of a cluster * rather then at the beginning. */ if ((vp->v_type == VREG) && (vp->v_mount != 0) && /* Only on nodes that have the size info */ (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { size = vp->v_mount->mnt_stat.f_iosize; maxcl = maxphys / size; BO_RLOCK(bo); for (i = 1; i < maxcl; i++) if (vfs_bio_clcheck(vp, size, lblkno + i, bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0) break; for (j = 1; i + j <= maxcl && j <= lblkno; j++) if (vfs_bio_clcheck(vp, size, lblkno - j, bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0) break; BO_RUNLOCK(bo); --j; ncl = i + j; /* * this is a possible cluster write */ if (ncl != 1) { BUF_UNLOCK(bp); nwritten = cluster_wbuild(vp, size, lblkno - j, ncl, gbflags); return (nwritten); } } bremfree(bp); bp->b_flags |= B_ASYNC; /* * default (old) behavior, writing out only one block * * XXX returns b_bufsize instead of b_bcount for nwritten? */ nwritten = bp->b_bufsize; (void) bwrite(bp); return (nwritten); } /* * getnewbuf_kva: * * Allocate KVA for an empty buf header according to gbflags. */ static int getnewbuf_kva(struct buf *bp, int gbflags, int maxsize) { if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) { /* * In order to keep fragmentation sane we only allocate kva * in BKVASIZE chunks. XXX with vmem we can do page size. */ maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; if (maxsize != bp->b_kvasize && bufkva_alloc(bp, maxsize, gbflags)) return (ENOSPC); } return (0); } /* * getnewbuf: * * Find and initialize a new buffer header, freeing up existing buffers * in the bufqueues as necessary. The new buffer is returned locked. * * We block if: * We have insufficient buffer headers * We have insufficient buffer space * buffer_arena is too fragmented ( space reservation fails ) * If we have to flush dirty buffers ( but we try to avoid this ) * * The caller is responsible for releasing the reserved bufspace after * allocbuf() is called. */ static struct buf * getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags) { struct bufdomain *bd; struct buf *bp; bool metadata, reserved; bp = NULL; KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC, ("GB_KVAALLOC only makes sense with GB_UNMAPPED")); if (!unmapped_buf_allowed) gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC); if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 || vp->v_type == VCHR) metadata = true; else metadata = false; if (vp == NULL) bd = &bdomain[0]; else bd = &bdomain[vp->v_bufobj.bo_domain]; counter_u64_add(getnewbufcalls, 1); reserved = false; do { if (reserved == false && bufspace_reserve(bd, maxsize, metadata) != 0) { counter_u64_add(getnewbufrestarts, 1); continue; } reserved = true; if ((bp = buf_alloc(bd)) == NULL) { counter_u64_add(getnewbufrestarts, 1); continue; } if (getnewbuf_kva(bp, gbflags, maxsize) == 0) return (bp); break; } while (buf_recycle(bd, false) == 0); if (reserved) bufspace_release(bd, maxsize); if (bp != NULL) { bp->b_flags |= B_INVAL; brelse(bp); } bufspace_wait(bd, vp, gbflags, slpflag, slptimeo); return (NULL); } /* * buf_daemon: * * buffer flushing daemon. Buffers are normally flushed by the * update daemon but if it cannot keep up this process starts to * take the load in an attempt to prevent getnewbuf() from blocking. */ static struct kproc_desc buf_kp = { "bufdaemon", buf_daemon, &bufdaemonproc }; SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp); static int buf_flush(struct vnode *vp, struct bufdomain *bd, int target) { int flushed; flushed = flushbufqueues(vp, bd, target, 0); if (flushed == 0) { /* * Could not find any buffers without rollback * dependencies, so just write the first one * in the hopes of eventually making progress. */ if (vp != NULL && target > 2) target /= 2; flushbufqueues(vp, bd, target, 1); } return (flushed); } static void buf_daemon() { struct bufdomain *bd; int speedupreq; int lodirty; int i; /* * This process needs to be suspended prior to shutdown sync. */ EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread, SHUTDOWN_PRI_LAST + 100); /* * Start the buf clean daemons as children threads. */ for (i = 0 ; i < buf_domains; i++) { int error; error = kthread_add((void (*)(void *))bufspace_daemon, &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i); if (error) panic("error %d spawning bufspace daemon", error); } /* * This process is allowed to take the buffer cache to the limit */ curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED; mtx_lock(&bdlock); for (;;) { bd_request = 0; mtx_unlock(&bdlock); kthread_suspend_check(); /* * Save speedupreq for this pass and reset to capture new * requests. */ speedupreq = bd_speedupreq; bd_speedupreq = 0; /* * Flush each domain sequentially according to its level and * the speedup request. */ for (i = 0; i < buf_domains; i++) { bd = &bdomain[i]; if (speedupreq) lodirty = bd->bd_numdirtybuffers / 2; else lodirty = bd->bd_lodirtybuffers; while (bd->bd_numdirtybuffers > lodirty) { if (buf_flush(NULL, bd, bd->bd_numdirtybuffers - lodirty) == 0) break; kern_yield(PRI_USER); } } /* * Only clear bd_request if we have reached our low water * mark. The buf_daemon normally waits 1 second and * then incrementally flushes any dirty buffers that have * built up, within reason. * * If we were unable to hit our low water mark and couldn't * find any flushable buffers, we sleep for a short period * to avoid endless loops on unlockable buffers. */ mtx_lock(&bdlock); if (!BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) { /* * We reached our low water mark, reset the * request and sleep until we are needed again. * The sleep is just so the suspend code works. */ bd_request = 0; /* * Do an extra wakeup in case dirty threshold * changed via sysctl and the explicit transition * out of shortfall was missed. */ bdirtywakeup(); if (runningbufspace <= lorunningspace) runningwakeup(); msleep(&bd_request, &bdlock, PVM, "psleep", hz); } else { /* * We couldn't find any flushable dirty buffers but * still have too many dirty buffers, we * have to sleep and try again. (rare) */ msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10); } } } /* * flushbufqueues: * * Try to flush a buffer in the dirty queue. We must be careful to * free up B_INVAL buffers instead of write them, which NFS is * particularly sensitive to. */ static int flushwithdeps = 0; SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS, &flushwithdeps, 0, "Number of buffers flushed with dependecies that require rollbacks"); static int flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target, int flushdeps) { struct bufqueue *bq; struct buf *sentinel; struct vnode *vp; struct mount *mp; struct buf *bp; int hasdeps; int flushed; int error; bool unlock; flushed = 0; bq = &bd->bd_dirtyq; bp = NULL; sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO); sentinel->b_qindex = QUEUE_SENTINEL; BQ_LOCK(bq); TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist); BQ_UNLOCK(bq); while (flushed != target) { maybe_yield(); BQ_LOCK(bq); bp = TAILQ_NEXT(sentinel, b_freelist); if (bp != NULL) { TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist); TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel, b_freelist); } else { BQ_UNLOCK(bq); break; } /* * Skip sentinels inserted by other invocations of the * flushbufqueues(), taking care to not reorder them. * * Only flush the buffers that belong to the * vnode locked by the curthread. */ if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL && bp->b_vp != lvp)) { BQ_UNLOCK(bq); continue; } error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL); BQ_UNLOCK(bq); if (error != 0) continue; /* * BKGRDINPROG can only be set with the buf and bufobj * locks both held. We tolerate a race to clear it here. */ if ((bp->b_vflags & BV_BKGRDINPROG) != 0 || (bp->b_flags & B_DELWRI) == 0) { BUF_UNLOCK(bp); continue; } if (bp->b_flags & B_INVAL) { bremfreef(bp); brelse(bp); flushed++; continue; } if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) { if (flushdeps == 0) { BUF_UNLOCK(bp); continue; } hasdeps = 1; } else hasdeps = 0; /* * We must hold the lock on a vnode before writing * one of its buffers. Otherwise we may confuse, or * in the case of a snapshot vnode, deadlock the * system. * * The lock order here is the reverse of the normal * of vnode followed by buf lock. This is ok because * the NOWAIT will prevent deadlock. */ vp = bp->b_vp; if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { BUF_UNLOCK(bp); continue; } if (lvp == NULL) { unlock = true; error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); } else { ASSERT_VOP_LOCKED(vp, "getbuf"); unlock = false; error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 : vn_lock(vp, LK_TRYUPGRADE); } if (error == 0) { CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); if (curproc == bufdaemonproc) { vfs_bio_awrite(bp); } else { bremfree(bp); bwrite(bp); counter_u64_add(notbufdflushes, 1); } vn_finished_write(mp); if (unlock) VOP_UNLOCK(vp); flushwithdeps += hasdeps; flushed++; /* * Sleeping on runningbufspace while holding * vnode lock leads to deadlock. */ if (curproc == bufdaemonproc && runningbufspace > hirunningspace) waitrunningbufspace(); continue; } vn_finished_write(mp); BUF_UNLOCK(bp); } BQ_LOCK(bq); TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist); BQ_UNLOCK(bq); free(sentinel, M_TEMP); return (flushed); } /* * Check to see if a block is currently memory resident. */ struct buf * incore(struct bufobj *bo, daddr_t blkno) { return (gbincore_unlocked(bo, blkno)); } /* * Returns true if no I/O is needed to access the * associated VM object. This is like incore except * it also hunts around in the VM system for the data. */ bool inmem(struct vnode * vp, daddr_t blkno) { vm_object_t obj; vm_offset_t toff, tinc, size; vm_page_t m, n; vm_ooffset_t off; int valid; ASSERT_VOP_LOCKED(vp, "inmem"); if (incore(&vp->v_bufobj, blkno)) return (true); if (vp->v_mount == NULL) return (false); obj = vp->v_object; if (obj == NULL) return (false); size = PAGE_SIZE; if (size > vp->v_mount->mnt_stat.f_iosize) size = vp->v_mount->mnt_stat.f_iosize; off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { m = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff)); recheck: if (m == NULL) return (false); tinc = size; if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); /* * Consider page validity only if page mapping didn't change * during the check. */ valid = vm_page_is_valid(m, (vm_offset_t)((toff + off) & PAGE_MASK), tinc); n = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff)); if (m != n) { m = n; goto recheck; } if (!valid) return (false); } return (true); } /* * Set the dirty range for a buffer based on the status of the dirty * bits in the pages comprising the buffer. The range is limited * to the size of the buffer. * * Tell the VM system that the pages associated with this buffer * are clean. This is used for delayed writes where the data is * going to go to disk eventually without additional VM intevention. * * Note that while we only really need to clean through to b_bcount, we * just go ahead and clean through to b_bufsize. */ static void vfs_clean_pages_dirty_buf(struct buf *bp) { vm_ooffset_t foff, noff, eoff; vm_page_t m; int i; if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0) return; foff = bp->b_offset; KASSERT(bp->b_offset != NOOFFSET, ("vfs_clean_pages_dirty_buf: no buffer offset")); vfs_busy_pages_acquire(bp); vfs_setdirty_range(bp); for (i = 0; i < bp->b_npages; i++) { noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; eoff = noff; if (eoff > bp->b_offset + bp->b_bufsize) eoff = bp->b_offset + bp->b_bufsize; m = bp->b_pages[i]; vfs_page_set_validclean(bp, foff, m); /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ foff = noff; } vfs_busy_pages_release(bp); } static void vfs_setdirty_range(struct buf *bp) { vm_offset_t boffset; vm_offset_t eoffset; int i; /* * test the pages to see if they have been modified directly * by users through the VM system. */ for (i = 0; i < bp->b_npages; i++) vm_page_test_dirty(bp->b_pages[i]); /* * Calculate the encompassing dirty range, boffset and eoffset, * (eoffset - boffset) bytes. */ for (i = 0; i < bp->b_npages; i++) { if (bp->b_pages[i]->dirty) break; } boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); for (i = bp->b_npages - 1; i >= 0; --i) { if (bp->b_pages[i]->dirty) { break; } } eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); /* * Fit it to the buffer. */ if (eoffset > bp->b_bcount) eoffset = bp->b_bcount; /* * If we have a good dirty range, merge with the existing * dirty range. */ if (boffset < eoffset) { if (bp->b_dirtyoff > boffset) bp->b_dirtyoff = boffset; if (bp->b_dirtyend < eoffset) bp->b_dirtyend = eoffset; } } /* * Allocate the KVA mapping for an existing buffer. * If an unmapped buffer is provided but a mapped buffer is requested, take * also care to properly setup mappings between pages and KVA. */ static void bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags) { int bsize, maxsize, need_mapping, need_kva; off_t offset; need_mapping = bp->b_data == unmapped_buf && (gbflags & GB_UNMAPPED) == 0; need_kva = bp->b_kvabase == unmapped_buf && bp->b_data == unmapped_buf && (gbflags & GB_KVAALLOC) != 0; if (!need_mapping && !need_kva) return; BUF_CHECK_UNMAPPED(bp); if (need_mapping && bp->b_kvabase != unmapped_buf) { /* * Buffer is not mapped, but the KVA was already * reserved at the time of the instantiation. Use the * allocated space. */ goto has_addr; } /* * Calculate the amount of the address space we would reserve * if the buffer was mapped. */ bsize = vn_isdisk(bp->b_vp) ? DEV_BSIZE : bp->b_bufobj->bo_bsize; KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize")); offset = blkno * bsize; maxsize = size + (offset & PAGE_MASK); maxsize = imax(maxsize, bsize); while (bufkva_alloc(bp, maxsize, gbflags) != 0) { if ((gbflags & GB_NOWAIT_BD) != 0) { /* * XXXKIB: defragmentation cannot * succeed, not sure what else to do. */ panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp); } counter_u64_add(mappingrestarts, 1); bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0); } has_addr: if (need_mapping) { /* b_offset is handled by bpmap_qenter. */ bp->b_data = bp->b_kvabase; BUF_CHECK_MAPPED(bp); bpmap_qenter(bp); } } struct buf * getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo, int flags) { struct buf *bp; int error; error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp); if (error != 0) return (NULL); return (bp); } /* * getblkx: * * Get a block given a specified block and offset into a file/device. * The buffers B_DONE bit will be cleared on return, making it almost * ready for an I/O initiation. B_INVAL may or may not be set on * return. The caller should clear B_INVAL prior to initiating a * READ. * * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for * an existing buffer. * * For a VMIO buffer, B_CACHE is modified according to the backing VM. * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set * and then cleared based on the backing VM. If the previous buffer is * non-0-sized but invalid, B_CACHE will be cleared. * * If getblk() must create a new buffer, the new buffer is returned with * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which * case it is returned with B_INVAL clear and B_CACHE set based on the * backing VM. * * getblk() also forces a bwrite() for any B_DELWRI buffer whose * B_CACHE bit is clear. * * What this means, basically, is that the caller should use B_CACHE to * determine whether the buffer is fully valid or not and should clear * B_INVAL prior to issuing a read. If the caller intends to validate * the buffer by loading its data area with something, the caller needs * to clear B_INVAL. If the caller does this without issuing an I/O, * the caller should set B_CACHE ( as an optimization ), else the caller * should issue the I/O and biodone() will set B_CACHE if the I/O was * a write attempt or if it was a successful read. If the caller * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR * prior to issuing the READ. biodone() will *not* clear B_INVAL. * * The blkno parameter is the logical block being requested. Normally * the mapping of logical block number to disk block address is done * by calling VOP_BMAP(). However, if the mapping is already known, the * disk block address can be passed using the dblkno parameter. If the * disk block address is not known, then the same value should be passed * for blkno and dblkno. */ int getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag, int slptimeo, int flags, struct buf **bpp) { struct buf *bp; struct bufobj *bo; daddr_t d_blkno; int bsize, error, maxsize, vmio; off_t offset; CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size); KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC, ("GB_KVAALLOC only makes sense with GB_UNMAPPED")); if (vp->v_type != VCHR) ASSERT_VOP_LOCKED(vp, "getblk"); if (size > maxbcachebuf) panic("getblk: size(%d) > maxbcachebuf(%d)\n", size, maxbcachebuf); if (!unmapped_buf_allowed) flags &= ~(GB_UNMAPPED | GB_KVAALLOC); bo = &vp->v_bufobj; d_blkno = dblkno; /* Attempt lockless lookup first. */ bp = gbincore_unlocked(bo, blkno); if (bp == NULL) { /* * With GB_NOCREAT we must be sure about not finding the buffer * as it may have been reassigned during unlocked lookup. */ if ((flags & GB_NOCREAT) != 0) goto loop; goto newbuf_unlocked; } error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL, "getblku", 0, 0); if (error != 0) goto loop; /* Verify buf identify has not changed since lookup. */ if (bp->b_bufobj == bo && bp->b_lblkno == blkno) goto foundbuf_fastpath; /* It changed, fallback to locked lookup. */ BUF_UNLOCK_RAW(bp); loop: BO_RLOCK(bo); bp = gbincore(bo, blkno); if (bp != NULL) { int lockflags; /* * Buffer is in-core. If the buffer is not busy nor managed, * it must be on a queue. */ lockflags = LK_EXCLUSIVE | LK_INTERLOCK | ((flags & GB_LOCK_NOWAIT) ? LK_NOWAIT : LK_SLEEPFAIL); error = BUF_TIMELOCK(bp, lockflags, BO_LOCKPTR(bo), "getblk", slpflag, slptimeo); /* * If we slept and got the lock we have to restart in case * the buffer changed identities. */ if (error == ENOLCK) goto loop; /* We timed out or were interrupted. */ else if (error != 0) return (error); foundbuf_fastpath: /* If recursed, assume caller knows the rules. */ if (BUF_LOCKRECURSED(bp)) goto end; /* * The buffer is locked. B_CACHE is cleared if the buffer is * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set * and for a VMIO buffer B_CACHE is adjusted according to the * backing VM cache. */ if (bp->b_flags & B_INVAL) bp->b_flags &= ~B_CACHE; else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) bp->b_flags |= B_CACHE; if (bp->b_flags & B_MANAGED) MPASS(bp->b_qindex == QUEUE_NONE); else bremfree(bp); /* * check for size inconsistencies for non-VMIO case. */ if (bp->b_bcount != size) { if ((bp->b_flags & B_VMIO) == 0 || (size > bp->b_kvasize)) { if (bp->b_flags & B_DELWRI) { bp->b_flags |= B_NOCACHE; bwrite(bp); } else { if (LIST_EMPTY(&bp->b_dep)) { bp->b_flags |= B_RELBUF; brelse(bp); } else { bp->b_flags |= B_NOCACHE; bwrite(bp); } } goto loop; } } /* * Handle the case of unmapped buffer which should * become mapped, or the buffer for which KVA * reservation is requested. */ bp_unmapped_get_kva(bp, blkno, size, flags); /* * If the size is inconsistent in the VMIO case, we can resize * the buffer. This might lead to B_CACHE getting set or * cleared. If the size has not changed, B_CACHE remains * unchanged from its previous state. */ allocbuf(bp, size); KASSERT(bp->b_offset != NOOFFSET, ("getblk: no buffer offset")); /* * A buffer with B_DELWRI set and B_CACHE clear must * be committed before we can return the buffer in * order to prevent the caller from issuing a read * ( due to B_CACHE not being set ) and overwriting * it. * * Most callers, including NFS and FFS, need this to * operate properly either because they assume they * can issue a read if B_CACHE is not set, or because * ( for example ) an uncached B_DELWRI might loop due * to softupdates re-dirtying the buffer. In the latter * case, B_CACHE is set after the first write completes, * preventing further loops. * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE * above while extending the buffer, we cannot allow the * buffer to remain with B_CACHE set after the write * completes or it will represent a corrupt state. To * deal with this we set B_NOCACHE to scrap the buffer * after the write. * * We might be able to do something fancy, like setting * B_CACHE in bwrite() except if B_DELWRI is already set, * so the below call doesn't set B_CACHE, but that gets real * confusing. This is much easier. */ if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { bp->b_flags |= B_NOCACHE; bwrite(bp); goto loop; } bp->b_flags &= ~B_DONE; } else { /* * Buffer is not in-core, create new buffer. The buffer * returned by getnewbuf() is locked. Note that the returned * buffer is also considered valid (not marked B_INVAL). */ BO_RUNLOCK(bo); newbuf_unlocked: /* * If the user does not want us to create the buffer, bail out * here. */ if (flags & GB_NOCREAT) return (EEXIST); bsize = vn_isdisk(vp) ? DEV_BSIZE : bo->bo_bsize; KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize")); offset = blkno * bsize; vmio = vp->v_object != NULL; if (vmio) { maxsize = size + (offset & PAGE_MASK); } else { maxsize = size; /* Do not allow non-VMIO notmapped buffers. */ flags &= ~(GB_UNMAPPED | GB_KVAALLOC); } maxsize = imax(maxsize, bsize); if ((flags & GB_NOSPARSE) != 0 && vmio && !vn_isdisk(vp)) { error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0); KASSERT(error != EOPNOTSUPP, ("GB_NOSPARSE from fs not supporting bmap, vp %p", vp)); if (error != 0) return (error); if (d_blkno == -1) return (EJUSTRETURN); } bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags); if (bp == NULL) { if (slpflag || slptimeo) return (ETIMEDOUT); /* * XXX This is here until the sleep path is diagnosed * enough to work under very low memory conditions. * * There's an issue on low memory, 4BSD+non-preempt * systems (eg MIPS routers with 32MB RAM) where buffer * exhaustion occurs without sleeping for buffer * reclaimation. This just sticks in a loop and * constantly attempts to allocate a buffer, which * hits exhaustion and tries to wakeup bufdaemon. * This never happens because we never yield. * * The real solution is to identify and fix these cases * so we aren't effectively busy-waiting in a loop * until the reclaimation path has cycles to run. */ kern_yield(PRI_USER); goto loop; } /* * This code is used to make sure that a buffer is not * created while the getnewbuf routine is blocked. * This can be a problem whether the vnode is locked or not. * If the buffer is created out from under us, we have to * throw away the one we just created. * * Note: this must occur before we associate the buffer * with the vp especially considering limitations in * the splay tree implementation when dealing with duplicate * lblkno's. */ BO_LOCK(bo); if (gbincore(bo, blkno)) { BO_UNLOCK(bo); bp->b_flags |= B_INVAL; bufspace_release(bufdomain(bp), maxsize); brelse(bp); goto loop; } /* * Insert the buffer into the hash, so that it can * be found by incore. */ bp->b_lblkno = blkno; bp->b_blkno = d_blkno; bp->b_offset = offset; bgetvp(vp, bp); BO_UNLOCK(bo); /* * set B_VMIO bit. allocbuf() the buffer bigger. Since the * buffer size starts out as 0, B_CACHE will be set by * allocbuf() for the VMIO case prior to it testing the * backing store for validity. */ if (vmio) { bp->b_flags |= B_VMIO; KASSERT(vp->v_object == bp->b_bufobj->bo_object, ("ARGH! different b_bufobj->bo_object %p %p %p\n", bp, vp->v_object, bp->b_bufobj->bo_object)); } else { bp->b_flags &= ~B_VMIO; KASSERT(bp->b_bufobj->bo_object == NULL, ("ARGH! has b_bufobj->bo_object %p %p\n", bp, bp->b_bufobj->bo_object)); BUF_CHECK_MAPPED(bp); } allocbuf(bp, size); bufspace_release(bufdomain(bp), maxsize); bp->b_flags &= ~B_DONE; } CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp); end: buf_track(bp, __func__); KASSERT(bp->b_bufobj == bo, ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); *bpp = bp; return (0); } /* * Get an empty, disassociated buffer of given size. The buffer is initially * set to B_INVAL. */ struct buf * geteblk(int size, int flags) { struct buf *bp; int maxsize; maxsize = (size + BKVAMASK) & ~BKVAMASK; while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) { if ((flags & GB_NOWAIT_BD) && (curthread->td_pflags & TDP_BUFNEED) != 0) return (NULL); } allocbuf(bp, size); bufspace_release(bufdomain(bp), maxsize); bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ return (bp); } /* * Truncate the backing store for a non-vmio buffer. */ static void vfs_nonvmio_truncate(struct buf *bp, int newbsize) { if (bp->b_flags & B_MALLOC) { /* * malloced buffers are not shrunk */ if (newbsize == 0) { bufmallocadjust(bp, 0); free(bp->b_data, M_BIOBUF); bp->b_data = bp->b_kvabase; bp->b_flags &= ~B_MALLOC; } return; } vm_hold_free_pages(bp, newbsize); bufspace_adjust(bp, newbsize); } /* * Extend the backing for a non-VMIO buffer. */ static void vfs_nonvmio_extend(struct buf *bp, int newbsize) { caddr_t origbuf; int origbufsize; /* * We only use malloced memory on the first allocation. * and revert to page-allocated memory when the buffer * grows. * * There is a potential smp race here that could lead * to bufmallocspace slightly passing the max. It * is probably extremely rare and not worth worrying * over. */ if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 && bufmallocspace < maxbufmallocspace) { bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK); bp->b_flags |= B_MALLOC; bufmallocadjust(bp, newbsize); return; } /* * If the buffer is growing on its other-than-first * allocation then we revert to the page-allocation * scheme. */ origbuf = NULL; origbufsize = 0; if (bp->b_flags & B_MALLOC) { origbuf = bp->b_data; origbufsize = bp->b_bufsize; bp->b_data = bp->b_kvabase; bufmallocadjust(bp, 0); bp->b_flags &= ~B_MALLOC; newbsize = round_page(newbsize); } vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize, (vm_offset_t) bp->b_data + newbsize); if (origbuf != NULL) { bcopy(origbuf, bp->b_data, origbufsize); free(origbuf, M_BIOBUF); } bufspace_adjust(bp, newbsize); } /* * This code constitutes the buffer memory from either anonymous system * memory (in the case of non-VMIO operations) or from an associated * VM object (in the case of VMIO operations). This code is able to * resize a buffer up or down. * * Note that this code is tricky, and has many complications to resolve * deadlock or inconsistent data situations. Tread lightly!!! * There are B_CACHE and B_DELWRI interactions that must be dealt with by * the caller. Calling this code willy nilly can result in the loss of data. * * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with * B_CACHE for the non-VMIO case. */ int allocbuf(struct buf *bp, int size) { int newbsize; if (bp->b_bcount == size) return (1); if (bp->b_kvasize != 0 && bp->b_kvasize < size) panic("allocbuf: buffer too small"); newbsize = roundup2(size, DEV_BSIZE); if ((bp->b_flags & B_VMIO) == 0) { if ((bp->b_flags & B_MALLOC) == 0) newbsize = round_page(newbsize); /* * Just get anonymous memory from the kernel. Don't * mess with B_CACHE. */ if (newbsize < bp->b_bufsize) vfs_nonvmio_truncate(bp, newbsize); else if (newbsize > bp->b_bufsize) vfs_nonvmio_extend(bp, newbsize); } else { int desiredpages; desiredpages = (size == 0) ? 0 : num_pages((bp->b_offset & PAGE_MASK) + newbsize); if (bp->b_flags & B_MALLOC) panic("allocbuf: VMIO buffer can't be malloced"); /* * Set B_CACHE initially if buffer is 0 length or will become * 0-length. */ if (size == 0 || bp->b_bufsize == 0) bp->b_flags |= B_CACHE; if (newbsize < bp->b_bufsize) vfs_vmio_truncate(bp, desiredpages); /* XXX This looks as if it should be newbsize > b_bufsize */ else if (size > bp->b_bcount) vfs_vmio_extend(bp, desiredpages, size); bufspace_adjust(bp, newbsize); } bp->b_bcount = size; /* requested buffer size. */ return (1); } extern int inflight_transient_maps; static struct bio_queue nondump_bios; void biodone(struct bio *bp) { struct mtx *mtxp; void (*done)(struct bio *); vm_offset_t start, end; biotrack(bp, __func__); /* * Avoid completing I/O when dumping after a panic since that may * result in a deadlock in the filesystem or pager code. Note that * this doesn't affect dumps that were started manually since we aim * to keep the system usable after it has been resumed. */ if (__predict_false(dumping && SCHEDULER_STOPPED())) { TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue); return; } if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) { bp->bio_flags &= ~BIO_TRANSIENT_MAPPING; bp->bio_flags |= BIO_UNMAPPED; start = trunc_page((vm_offset_t)bp->bio_data); end = round_page((vm_offset_t)bp->bio_data + bp->bio_length); bp->bio_data = unmapped_buf; pmap_qremove(start, atop(end - start)); vmem_free(transient_arena, start, end - start); atomic_add_int(&inflight_transient_maps, -1); } done = bp->bio_done; /* * The check for done == biodone is to allow biodone to be * used as a bio_done routine. */ if (done == NULL || done == biodone) { mtxp = mtx_pool_find(mtxpool_sleep, bp); mtx_lock(mtxp); bp->bio_flags |= BIO_DONE; wakeup(bp); mtx_unlock(mtxp); } else done(bp); } /* * Wait for a BIO to finish. */ int biowait(struct bio *bp, const char *wchan) { struct mtx *mtxp; mtxp = mtx_pool_find(mtxpool_sleep, bp); mtx_lock(mtxp); while ((bp->bio_flags & BIO_DONE) == 0) msleep(bp, mtxp, PRIBIO, wchan, 0); mtx_unlock(mtxp); if (bp->bio_error != 0) return (bp->bio_error); if (!(bp->bio_flags & BIO_ERROR)) return (0); return (EIO); } void biofinish(struct bio *bp, struct devstat *stat, int error) { if (error) { bp->bio_error = error; bp->bio_flags |= BIO_ERROR; } if (stat != NULL) devstat_end_transaction_bio(stat, bp); biodone(bp); } #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) void biotrack_buf(struct bio *bp, const char *location) { buf_track(bp->bio_track_bp, location); } #endif /* * bufwait: * * Wait for buffer I/O completion, returning error status. The buffer * is left locked and B_DONE on return. B_EINTR is converted into an EINTR * error and cleared. */ int bufwait(struct buf *bp) { if (bp->b_iocmd == BIO_READ) bwait(bp, PRIBIO, "biord"); else bwait(bp, PRIBIO, "biowr"); if (bp->b_flags & B_EINTR) { bp->b_flags &= ~B_EINTR; return (EINTR); } if (bp->b_ioflags & BIO_ERROR) { return (bp->b_error ? bp->b_error : EIO); } else { return (0); } } /* * bufdone: * * Finish I/O on a buffer, optionally calling a completion function. * This is usually called from an interrupt so process blocking is * not allowed. * * biodone is also responsible for setting B_CACHE in a B_VMIO bp. * In a non-VMIO bp, B_CACHE will be set on the next getblk() * assuming B_INVAL is clear. * * For the VMIO case, we set B_CACHE if the op was a read and no * read error occurred, or if the op was a write. B_CACHE is never * set if the buffer is invalid or otherwise uncacheable. * * bufdone does not mess with B_INVAL, allowing the I/O routine or the * initiator to leave B_INVAL set to brelse the buffer out of existence * in the biodone routine. */ void bufdone(struct buf *bp) { struct bufobj *dropobj; void (*biodone)(struct buf *); buf_track(bp, __func__); CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); dropobj = NULL; KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); runningbufwakeup(bp); if (bp->b_iocmd == BIO_WRITE) dropobj = bp->b_bufobj; /* call optional completion function if requested */ if (bp->b_iodone != NULL) { biodone = bp->b_iodone; bp->b_iodone = NULL; (*biodone) (bp); if (dropobj) bufobj_wdrop(dropobj); return; } if (bp->b_flags & B_VMIO) { /* * Set B_CACHE if the op was a normal read and no error * occurred. B_CACHE is set for writes in the b*write() * routines. */ if (bp->b_iocmd == BIO_READ && !(bp->b_flags & (B_INVAL|B_NOCACHE)) && !(bp->b_ioflags & BIO_ERROR)) bp->b_flags |= B_CACHE; vfs_vmio_iodone(bp); } if (!LIST_EMPTY(&bp->b_dep)) buf_complete(bp); if ((bp->b_flags & B_CKHASH) != 0) { KASSERT(bp->b_iocmd == BIO_READ, ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd)); KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp)); (*bp->b_ckhashcalc)(bp); } /* * For asynchronous completions, release the buffer now. The brelse * will do a wakeup there if necessary - so no need to do a wakeup * here in the async case. The sync case always needs to do a wakeup. */ if (bp->b_flags & B_ASYNC) { if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR)) brelse(bp); else bqrelse(bp); } else bdone(bp); if (dropobj) bufobj_wdrop(dropobj); } /* * This routine is called in lieu of iodone in the case of * incomplete I/O. This keeps the busy status for pages * consistent. */ void vfs_unbusy_pages(struct buf *bp) { int i; vm_object_t obj; vm_page_t m; runningbufwakeup(bp); if (!(bp->b_flags & B_VMIO)) return; obj = bp->b_bufobj->bo_object; for (i = 0; i < bp->b_npages; i++) { m = bp->b_pages[i]; if (m == bogus_page) { m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i); if (!m) panic("vfs_unbusy_pages: page missing\n"); bp->b_pages[i] = m; if (buf_mapped(bp)) { BUF_CHECK_MAPPED(bp); pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); } else BUF_CHECK_UNMAPPED(bp); } vm_page_sunbusy(m); } vm_object_pip_wakeupn(obj, bp->b_npages); } /* * vfs_page_set_valid: * * Set the valid bits in a page based on the supplied offset. The * range is restricted to the buffer's size. * * This routine is typically called after a read completes. */ static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m) { vm_ooffset_t eoff; /* * Compute the end offset, eoff, such that [off, eoff) does not span a * page boundary and eoff is not greater than the end of the buffer. * The end of the buffer, in this case, is our file EOF, not the * allocation size of the buffer. */ eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK; if (eoff > bp->b_offset + bp->b_bcount) eoff = bp->b_offset + bp->b_bcount; /* * Set valid range. This is typically the entire buffer and thus the * entire page. */ if (eoff > off) vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off); } /* * vfs_page_set_validclean: * * Set the valid bits and clear the dirty bits in a page based on the * supplied offset. The range is restricted to the buffer's size. */ static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m) { vm_ooffset_t soff, eoff; /* * Start and end offsets in buffer. eoff - soff may not cross a * page boundary or cross the end of the buffer. The end of the * buffer, in this case, is our file EOF, not the allocation size * of the buffer. */ soff = off; eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; if (eoff > bp->b_offset + bp->b_bcount) eoff = bp->b_offset + bp->b_bcount; /* * Set valid range. This is typically the entire buffer and thus the * entire page. */ if (eoff > soff) { vm_page_set_validclean( m, (vm_offset_t) (soff & PAGE_MASK), (vm_offset_t) (eoff - soff) ); } } /* * Acquire a shared busy on all pages in the buf. */ void vfs_busy_pages_acquire(struct buf *bp) { int i; for (i = 0; i < bp->b_npages; i++) vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY); } void vfs_busy_pages_release(struct buf *bp) { int i; for (i = 0; i < bp->b_npages; i++) vm_page_sunbusy(bp->b_pages[i]); } /* * This routine is called before a device strategy routine. * It is used to tell the VM system that paging I/O is in * progress, and treat the pages associated with the buffer * almost as being exclusive busy. Also the object paging_in_progress * flag is handled to make sure that the object doesn't become * inconsistent. * * Since I/O has not been initiated yet, certain buffer flags * such as BIO_ERROR or B_INVAL may be in an inconsistent state * and should be ignored. */ void vfs_busy_pages(struct buf *bp, int clear_modify) { vm_object_t obj; vm_ooffset_t foff; vm_page_t m; int i; bool bogus; if (!(bp->b_flags & B_VMIO)) return; obj = bp->b_bufobj->bo_object; foff = bp->b_offset; KASSERT(bp->b_offset != NOOFFSET, ("vfs_busy_pages: no buffer offset")); if ((bp->b_flags & B_CLUSTER) == 0) { vm_object_pip_add(obj, bp->b_npages); vfs_busy_pages_acquire(bp); } if (bp->b_bufsize != 0) vfs_setdirty_range(bp); bogus = false; for (i = 0; i < bp->b_npages; i++) { m = bp->b_pages[i]; vm_page_assert_sbusied(m); /* * When readying a buffer for a read ( i.e * clear_modify == 0 ), it is important to do * bogus_page replacement for valid pages in * partially instantiated buffers. Partially * instantiated buffers can, in turn, occur when * reconstituting a buffer from its VM backing store * base. We only have to do this if B_CACHE is * clear ( which causes the I/O to occur in the * first place ). The replacement prevents the read * I/O from overwriting potentially dirty VM-backed * pages. XXX bogus page replacement is, uh, bogus. * It may not work properly with small-block devices. * We need to find a better way. */ if (clear_modify) { pmap_remove_write(m); vfs_page_set_validclean(bp, foff, m); } else if (vm_page_all_valid(m) && (bp->b_flags & B_CACHE) == 0) { bp->b_pages[i] = bogus_page; bogus = true; } foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; } if (bogus && buf_mapped(bp)) { BUF_CHECK_MAPPED(bp); pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); } } /* * vfs_bio_set_valid: * * Set the range within the buffer to valid. The range is * relative to the beginning of the buffer, b_offset. Note that * b_offset itself may be offset from the beginning of the first * page. */ void vfs_bio_set_valid(struct buf *bp, int base, int size) { int i, n; vm_page_t m; if (!(bp->b_flags & B_VMIO)) return; /* * Fixup base to be relative to beginning of first page. * Set initial n to be the maximum number of bytes in the * first page that can be validated. */ base += (bp->b_offset & PAGE_MASK); n = PAGE_SIZE - (base & PAGE_MASK); /* * Busy may not be strictly necessary here because the pages are * unlikely to be fully valid and the vnode lock will synchronize * their access via getpages. It is grabbed for consistency with * other page validation. */ vfs_busy_pages_acquire(bp); for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { m = bp->b_pages[i]; if (n > size) n = size; vm_page_set_valid_range(m, base & PAGE_MASK, n); base += n; size -= n; n = PAGE_SIZE; } vfs_busy_pages_release(bp); } /* * vfs_bio_clrbuf: * * If the specified buffer is a non-VMIO buffer, clear the entire * buffer. If the specified buffer is a VMIO buffer, clear and * validate only the previously invalid portions of the buffer. * This routine essentially fakes an I/O, so we need to clear * BIO_ERROR and B_INVAL. * * Note that while we only theoretically need to clear through b_bcount, * we go ahead and clear through b_bufsize. */ void vfs_bio_clrbuf(struct buf *bp) { int i, j, mask, sa, ea, slide; if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) { clrbuf(bp); return; } bp->b_flags &= ~B_INVAL; bp->b_ioflags &= ~BIO_ERROR; vfs_busy_pages_acquire(bp); sa = bp->b_offset & PAGE_MASK; slide = 0; for (i = 0; i < bp->b_npages; i++, sa = 0) { slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize); ea = slide & PAGE_MASK; if (ea == 0) ea = PAGE_SIZE; if (bp->b_pages[i] == bogus_page) continue; j = sa / DEV_BSIZE; mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; if ((bp->b_pages[i]->valid & mask) == mask) continue; if ((bp->b_pages[i]->valid & mask) == 0) pmap_zero_page_area(bp->b_pages[i], sa, ea - sa); else { for (; sa < ea; sa += DEV_BSIZE, j++) { if ((bp->b_pages[i]->valid & (1 << j)) == 0) { pmap_zero_page_area(bp->b_pages[i], sa, DEV_BSIZE); } } } vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE, roundup2(ea - sa, DEV_BSIZE)); } vfs_busy_pages_release(bp); bp->b_resid = 0; } void vfs_bio_bzero_buf(struct buf *bp, int base, int size) { vm_page_t m; int i, n; if (buf_mapped(bp)) { BUF_CHECK_MAPPED(bp); bzero(bp->b_data + base, size); } else { BUF_CHECK_UNMAPPED(bp); n = PAGE_SIZE - (base & PAGE_MASK); for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { m = bp->b_pages[i]; if (n > size) n = size; pmap_zero_page_area(m, base & PAGE_MASK, n); base += n; size -= n; n = PAGE_SIZE; } } } /* * Update buffer flags based on I/O request parameters, optionally releasing the * buffer. If it's VMIO or direct I/O, the buffer pages are released to the VM, * where they may be placed on a page queue (VMIO) or freed immediately (direct * I/O). Otherwise the buffer is released to the cache. */ static void b_io_dismiss(struct buf *bp, int ioflag, bool release) { KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0, ("buf %p non-VMIO noreuse", bp)); if ((ioflag & IO_DIRECT) != 0) bp->b_flags |= B_DIRECT; if ((ioflag & IO_EXT) != 0) bp->b_xflags |= BX_ALTDATA; if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) { bp->b_flags |= B_RELBUF; if ((ioflag & IO_NOREUSE) != 0) bp->b_flags |= B_NOREUSE; if (release) brelse(bp); } else if (release) bqrelse(bp); } void vfs_bio_brelse(struct buf *bp, int ioflag) { b_io_dismiss(bp, ioflag, true); } void vfs_bio_set_flags(struct buf *bp, int ioflag) { b_io_dismiss(bp, ioflag, false); } /* * vm_hold_load_pages and vm_hold_free_pages get pages into * a buffers address space. The pages are anonymous and are * not associated with a file object. */ static void vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) { vm_offset_t pg; vm_page_t p; int index; BUF_CHECK_MAPPED(bp); to = round_page(to); from = round_page(from); index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; MPASS((bp->b_flags & B_MAXPHYS) == 0); KASSERT(to - from <= maxbcachebuf, ("vm_hold_load_pages too large %p %#jx %#jx %u", bp, (uintmax_t)from, (uintmax_t)to, maxbcachebuf)); for (pg = from; pg < to; pg += PAGE_SIZE, index++) { /* * note: must allocate system pages since blocking here * could interfere with paging I/O, no matter which * process we are. */ p = vm_page_alloc_noobj(VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) | VM_ALLOC_WAITOK); pmap_qenter(pg, &p, 1); bp->b_pages[index] = p; } bp->b_npages = index; } /* Return pages associated with this buf to the vm system */ static void vm_hold_free_pages(struct buf *bp, int newbsize) { vm_offset_t from; vm_page_t p; int index, newnpages; BUF_CHECK_MAPPED(bp); from = round_page((vm_offset_t)bp->b_data + newbsize); newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; if (bp->b_npages > newnpages) pmap_qremove(from, bp->b_npages - newnpages); for (index = newnpages; index < bp->b_npages; index++) { p = bp->b_pages[index]; bp->b_pages[index] = NULL; vm_page_unwire_noq(p); vm_page_free(p); } bp->b_npages = newnpages; } /* * Map an IO request into kernel virtual address space. * * All requests are (re)mapped into kernel VA space. * Notice that we use b_bufsize for the size of the buffer * to be mapped. b_bcount might be modified by the driver. * * Note that even if the caller determines that the address space should * be valid, a race or a smaller-file mapped into a larger space may * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST * check the return value. * * This function only works with pager buffers. */ int vmapbuf(struct buf *bp, void *uaddr, size_t len, int mapbuf) { vm_prot_t prot; int pidx; MPASS((bp->b_flags & B_MAXPHYS) != 0); prot = VM_PROT_READ; if (bp->b_iocmd == BIO_READ) prot |= VM_PROT_WRITE; /* Less backwards than it looks */ pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, (vm_offset_t)uaddr, len, prot, bp->b_pages, PBUF_PAGES); if (pidx < 0) return (-1); bp->b_bufsize = len; bp->b_npages = pidx; bp->b_offset = ((vm_offset_t)uaddr) & PAGE_MASK; if (mapbuf || !unmapped_buf_allowed) { pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx); bp->b_data = bp->b_kvabase + bp->b_offset; } else bp->b_data = unmapped_buf; return (0); } /* * Free the io map PTEs associated with this IO operation. * We also invalidate the TLB entries and restore the original b_addr. * * This function only works with pager buffers. */ void vunmapbuf(struct buf *bp) { int npages; npages = bp->b_npages; if (buf_mapped(bp)) pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); vm_page_unhold_pages(bp->b_pages, npages); bp->b_data = unmapped_buf; } void bdone(struct buf *bp) { struct mtx *mtxp; mtxp = mtx_pool_find(mtxpool_sleep, bp); mtx_lock(mtxp); bp->b_flags |= B_DONE; wakeup(bp); mtx_unlock(mtxp); } void bwait(struct buf *bp, u_char pri, const char *wchan) { struct mtx *mtxp; mtxp = mtx_pool_find(mtxpool_sleep, bp); mtx_lock(mtxp); while ((bp->b_flags & B_DONE) == 0) msleep(bp, mtxp, pri, wchan, 0); mtx_unlock(mtxp); } int bufsync(struct bufobj *bo, int waitfor) { return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread)); } void bufstrategy(struct bufobj *bo, struct buf *bp) { int i __unused; struct vnode *vp; vp = bp->b_vp; KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy")); KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp)); i = VOP_STRATEGY(vp, bp); KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp)); } /* * Initialize a struct bufobj before use. Memory is assumed zero filled. */ void bufobj_init(struct bufobj *bo, void *private) { static volatile int bufobj_cleanq; bo->bo_domain = atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains; rw_init(BO_LOCKPTR(bo), "bufobj interlock"); bo->bo_private = private; TAILQ_INIT(&bo->bo_clean.bv_hd); TAILQ_INIT(&bo->bo_dirty.bv_hd); } void bufobj_wrefl(struct bufobj *bo) { KASSERT(bo != NULL, ("NULL bo in bufobj_wref")); ASSERT_BO_WLOCKED(bo); bo->bo_numoutput++; } void bufobj_wref(struct bufobj *bo) { KASSERT(bo != NULL, ("NULL bo in bufobj_wref")); BO_LOCK(bo); bo->bo_numoutput++; BO_UNLOCK(bo); } void bufobj_wdrop(struct bufobj *bo) { KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop")); BO_LOCK(bo); KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count")); if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) { bo->bo_flag &= ~BO_WWAIT; wakeup(&bo->bo_numoutput); } BO_UNLOCK(bo); } int bufobj_wwait(struct bufobj *bo, int slpflag, int timeo) { int error; KASSERT(bo != NULL, ("NULL bo in bufobj_wwait")); ASSERT_BO_WLOCKED(bo); error = 0; while (bo->bo_numoutput) { bo->bo_flag |= BO_WWAIT; error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo), slpflag | (PRIBIO + 1), "bo_wwait", timeo); if (error) break; } return (error); } /* * Set bio_data or bio_ma for struct bio from the struct buf. */ void bdata2bio(struct buf *bp, struct bio *bip) { if (!buf_mapped(bp)) { KASSERT(unmapped_buf_allowed, ("unmapped")); bip->bio_ma = bp->b_pages; bip->bio_ma_n = bp->b_npages; bip->bio_data = unmapped_buf; bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; bip->bio_flags |= BIO_UNMAPPED; KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) / PAGE_SIZE == bp->b_npages, ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset, (long long)bip->bio_length, bip->bio_ma_n)); } else { bip->bio_data = bp->b_data; bip->bio_ma = NULL; } } /* * The MIPS pmap code currently doesn't handle aliased pages. * The VIPT caches may not handle page aliasing themselves, leading * to data corruption. * * As such, this code makes a system extremely unhappy if said * system doesn't support unaliasing the above situation in hardware. * Some "recent" systems (eg some mips24k/mips74k cores) don't enable * this feature at build time, so it has to be handled in software. * * Once the MIPS pmap/cache code grows to support this function on * earlier chips, it should be flipped back off. */ #ifdef __mips__ static int buf_pager_relbuf = 1; #else static int buf_pager_relbuf = 0; #endif SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN, &buf_pager_relbuf, 0, "Make buffer pager release buffers after reading"); /* * The buffer pager. It uses buffer reads to validate pages. * * In contrast to the generic local pager from vm/vnode_pager.c, this * pager correctly and easily handles volumes where the underlying * device block size is greater than the machine page size. The * buffer cache transparently extends the requested page run to be * aligned at the block boundary, and does the necessary bogus page * replacements in the addends to avoid obliterating already valid * pages. * * The only non-trivial issue is that the exclusive busy state for * pages, which is assumed by the vm_pager_getpages() interface, is * incompatible with the VMIO buffer cache's desire to share-busy the * pages. This function performs a trivial downgrade of the pages' * state before reading buffers, and a less trivial upgrade from the * shared-busy to excl-busy state after the read. */ int vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count, int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno, vbg_get_blksize_t get_blksize) { vm_page_t m; vm_object_t object; struct buf *bp; struct mount *mp; daddr_t lbn, lbnp; vm_ooffset_t la, lb, poff, poffe; long bo_bs, bsize; int br_flags, error, i, pgsin, pgsin_a, pgsin_b; bool redo, lpart; object = vp->v_object; mp = vp->v_mount; error = 0; la = IDX_TO_OFF(ma[count - 1]->pindex); if (la >= object->un_pager.vnp.vnp_size) return (VM_PAGER_BAD); /* * Change the meaning of la from where the last requested page starts * to where it ends, because that's the end of the requested region * and the start of the potential read-ahead region. */ la += PAGE_SIZE; lpart = la > object->un_pager.vnp.vnp_size; error = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)), &bo_bs); if (error != 0) return (VM_PAGER_ERROR); /* * Calculate read-ahead, behind and total pages. */ pgsin = count; lb = IDX_TO_OFF(ma[0]->pindex); pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs)); pgsin += pgsin_b; if (rbehind != NULL) *rbehind = pgsin_b; pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la); if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size) pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size, PAGE_SIZE) - la); pgsin += pgsin_a; if (rahead != NULL) *rahead = pgsin_a; VM_CNT_INC(v_vnodein); VM_CNT_ADD(v_vnodepgsin, pgsin); br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0) ? GB_UNMAPPED : 0; again: for (i = 0; i < count; i++) { if (ma[i] != bogus_page) vm_page_busy_downgrade(ma[i]); } lbnp = -1; for (i = 0; i < count; i++) { m = ma[i]; if (m == bogus_page) continue; /* * Pages are shared busy and the object lock is not * owned, which together allow for the pages' * invalidation. The racy test for validity avoids * useless creation of the buffer for the most typical * case when invalidation is not used in redo or for * parallel read. The shared->excl upgrade loop at * the end of the function catches the race in a * reliable way (protected by the object lock). */ if (vm_page_all_valid(m)) continue; poff = IDX_TO_OFF(m->pindex); poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size); for (; poff < poffe; poff += bsize) { lbn = get_lblkno(vp, poff); if (lbn == lbnp) goto next_page; lbnp = lbn; error = get_blksize(vp, lbn, &bsize); if (error == 0) error = bread_gb(vp, lbn, bsize, curthread->td_ucred, br_flags, &bp); if (error != 0) goto end_pages; if (bp->b_rcred == curthread->td_ucred) { crfree(bp->b_rcred); bp->b_rcred = NOCRED; } if (LIST_EMPTY(&bp->b_dep)) { /* * Invalidation clears m->valid, but * may leave B_CACHE flag if the * buffer existed at the invalidation * time. In this case, recycle the * buffer to do real read on next * bread() after redo. * * Otherwise B_RELBUF is not strictly * necessary, enable to reduce buf * cache pressure. */ if (buf_pager_relbuf || !vm_page_all_valid(m)) bp->b_flags |= B_RELBUF; bp->b_flags &= ~B_NOCACHE; brelse(bp); } else { bqrelse(bp); } } KASSERT(1 /* racy, enable for debugging */ || vm_page_all_valid(m) || i == count - 1, ("buf %d %p invalid", i, m)); if (i == count - 1 && lpart) { if (!vm_page_none_valid(m) && !vm_page_all_valid(m)) vm_page_zero_invalid(m, TRUE); } next_page:; } end_pages: redo = false; for (i = 0; i < count; i++) { if (ma[i] == bogus_page) continue; if (vm_page_busy_tryupgrade(ma[i]) == 0) { vm_page_sunbusy(ma[i]); ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex, VM_ALLOC_NORMAL); } /* * Since the pages were only sbusy while neither the * buffer nor the object lock was held by us, or * reallocated while vm_page_grab() slept for busy * relinguish, they could have been invalidated. * Recheck the valid bits and re-read as needed. * * Note that the last page is made fully valid in the * read loop, and partial validity for the page at * index count - 1 could mean that the page was * invalidated or removed, so we must restart for * safety as well. */ if (!vm_page_all_valid(ma[i])) redo = true; } if (redo && error == 0) goto again; return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK); } #include "opt_ddb.h" #ifdef DDB #include /* DDB command to show buffer data */ DB_SHOW_COMMAND(buffer, db_show_buffer) { /* get args */ struct buf *bp = (struct buf *)addr; #ifdef FULL_BUF_TRACKING uint32_t i, j; #endif if (!have_addr) { db_printf("usage: show buffer \n"); return; } db_printf("buf at %p\n", bp); db_printf("b_flags = 0x%b, b_xflags=0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags, PRINT_BUF_XFLAGS); db_printf("b_vflags=0x%b b_ioflags0x%b\n", (u_int)bp->b_vflags, PRINT_BUF_VFLAGS, (u_int)bp->b_ioflags, PRINT_BIO_FLAGS); db_printf( "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n" "b_bufobj = (%p), b_data = %p\n, b_blkno = %jd, b_lblkno = %jd, " "b_vp = %p, b_dep = %p\n", bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first); db_printf("b_kvabase = %p, b_kvasize = %d\n", bp->b_kvabase, bp->b_kvasize); if (bp->b_npages) { int i; db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); for (i = 0; i < bp->b_npages; i++) { vm_page_t m; m = bp->b_pages[i]; if (m != NULL) db_printf("(%p, 0x%lx, 0x%lx)", m->object, (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); else db_printf("( ??? )"); if ((i + 1) < bp->b_npages) db_printf(","); } db_printf("\n"); } BUF_LOCKPRINTINFO(bp); #if defined(FULL_BUF_TRACKING) db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt); i = bp->b_io_tcnt % BUF_TRACKING_SIZE; for (j = 1; j <= BUF_TRACKING_SIZE; j++) { if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL) continue; db_printf(" %2u: %s\n", j, bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]); } #elif defined(BUF_TRACKING) db_printf("b_io_tracking: %s\n", bp->b_io_tracking); #endif db_printf(" "); } DB_SHOW_COMMAND(bufqueues, bufqueues) { struct bufdomain *bd; struct buf *bp; long total; int i, j, cnt; db_printf("bqempty: %d\n", bqempty.bq_len); for (i = 0; i < buf_domains; i++) { bd = &bdomain[i]; db_printf("Buf domain %d\n", i); db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers); db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers); db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers); db_printf("\n"); db_printf("\tbufspace\t%ld\n", bd->bd_bufspace); db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace); db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace); db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace); db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh); db_printf("\n"); db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers); db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers); db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers); db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh); db_printf("\n"); total = 0; TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist) total += bp->b_bufsize; db_printf("\tcleanq count\t%d (%ld)\n", bd->bd_cleanq->bq_len, total); total = 0; TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist) total += bp->b_bufsize; db_printf("\tdirtyq count\t%d (%ld)\n", bd->bd_dirtyq.bq_len, total); db_printf("\twakeup\t\t%d\n", bd->bd_wanted); db_printf("\tlim\t\t%d\n", bd->bd_lim); db_printf("\tCPU "); for (j = 0; j <= mp_maxid; j++) db_printf("%d, ", bd->bd_subq[j].bq_len); db_printf("\n"); cnt = 0; total = 0; for (j = 0; j < nbuf; j++) { bp = nbufp(j); if (bp->b_domain == i && BUF_ISLOCKED(bp)) { cnt++; total += bp->b_bufsize; } } db_printf("\tLocked buffers: %d space %ld\n", cnt, total); cnt = 0; total = 0; for (j = 0; j < nbuf; j++) { bp = nbufp(j); if (bp->b_domain == i) { cnt++; total += bp->b_bufsize; } } db_printf("\tTotal buffers: %d space %ld\n", cnt, total); } } DB_SHOW_COMMAND(lockedbufs, lockedbufs) { struct buf *bp; int i; for (i = 0; i < nbuf; i++) { bp = nbufp(i); if (BUF_ISLOCKED(bp)) { db_show_buffer((uintptr_t)bp, 1, 0, NULL); db_printf("\n"); if (db_pager_quit) break; } } } DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs) { struct vnode *vp; struct buf *bp; if (!have_addr) { db_printf("usage: show vnodebufs \n"); return; } vp = (struct vnode *)addr; db_printf("Clean buffers:\n"); TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) { db_show_buffer((uintptr_t)bp, 1, 0, NULL); db_printf("\n"); } db_printf("Dirty buffers:\n"); TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) { db_show_buffer((uintptr_t)bp, 1, 0, NULL); db_printf("\n"); } } DB_COMMAND(countfreebufs, db_coundfreebufs) { struct buf *bp; int i, used = 0, nfree = 0; if (have_addr) { db_printf("usage: countfreebufs\n"); return; } for (i = 0; i < nbuf; i++) { bp = nbufp(i); if (bp->b_qindex == QUEUE_EMPTY) nfree++; else used++; } db_printf("Counted %d free, %d used (%d tot)\n", nfree, used, nfree + used); db_printf("numfreebuffers is %d\n", numfreebuffers); } #endif /* DDB */