/* * Copyright (c) 2018-2019 iXsystems Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include /* * Given two CCM_CBC_BLOCK_LEN blocks, xor * them into dst, and then encrypt dst. */ static void xor_and_encrypt(struct aes_cbc_mac_ctx *ctx, const uint8_t *src, uint8_t *dst) { const uint64_t *b1; uint64_t *b2; uint64_t temp_block[CCM_CBC_BLOCK_LEN/sizeof(uint64_t)]; b1 = (const uint64_t*)src; b2 = (uint64_t*)dst; for (size_t count = 0; count < CCM_CBC_BLOCK_LEN/sizeof(uint64_t); count++) { temp_block[count] = b1[count] ^ b2[count]; } rijndaelEncrypt(ctx->keysched, ctx->rounds, (void*)temp_block, dst); } void AES_CBC_MAC_Init(void *vctx) { struct aes_cbc_mac_ctx *ctx; ctx = vctx; bzero(ctx, sizeof(*ctx)); } void AES_CBC_MAC_Setkey(void *vctx, const uint8_t *key, u_int klen) { struct aes_cbc_mac_ctx *ctx; ctx = vctx; ctx->rounds = rijndaelKeySetupEnc(ctx->keysched, key, klen * 8); } /* * This is called to set the nonce, aka IV. * Before this call, the authDataLength and cryptDataLength fields * MUST have been set. Sadly, there's no way to return an error. * * The CBC-MAC algorithm requires that the first block contain the * nonce, as well as information about the sizes and lengths involved. */ void AES_CBC_MAC_Reinit(void *vctx, const uint8_t *nonce, u_int nonceLen) { struct aes_cbc_mac_ctx *ctx = vctx; uint8_t b0[CCM_CBC_BLOCK_LEN]; uint8_t *bp = b0, flags = 0; uint8_t L = 0; uint64_t dataLength = ctx->cryptDataLength; KASSERT(nonceLen >= 7 && nonceLen <= 13, ("nonceLen must be between 7 and 13 bytes")); ctx->nonce = nonce; ctx->nonceLength = nonceLen; ctx->authDataCount = 0; ctx->blockIndex = 0; explicit_bzero(ctx->staging_block, sizeof(ctx->staging_block)); /* * Need to determine the L field value. This is the number of * bytes needed to specify the length of the message; the length * is whatever is left in the 16 bytes after specifying flags and * the nonce. */ L = 15 - nonceLen; flags = ((ctx->authDataLength > 0) << 6) + (((AES_CBC_MAC_HASH_LEN - 2) / 2) << 3) + L - 1; /* * Now we need to set up the first block, which has flags, nonce, * and the message length. */ b0[0] = flags; bcopy(nonce, b0 + 1, nonceLen); bp = b0 + 1 + nonceLen; /* Need to copy L' [aka L-1] bytes of cryptDataLength */ for (uint8_t *dst = b0 + sizeof(b0) - 1; dst >= bp; dst--) { *dst = dataLength; dataLength >>= 8; } /* Now need to encrypt b0 */ rijndaelEncrypt(ctx->keysched, ctx->rounds, b0, ctx->block); /* If there is auth data, we need to set up the staging block */ if (ctx->authDataLength) { size_t addLength; if (ctx->authDataLength < ((1<<16) - (1<<8))) { uint16_t sizeVal = htobe16(ctx->authDataLength); bcopy(&sizeVal, ctx->staging_block, sizeof(sizeVal)); addLength = sizeof(sizeVal); } else if (ctx->authDataLength < (1ULL<<32)) { uint32_t sizeVal = htobe32(ctx->authDataLength); ctx->staging_block[0] = 0xff; ctx->staging_block[1] = 0xfe; bcopy(&sizeVal, ctx->staging_block+2, sizeof(sizeVal)); addLength = 2 + sizeof(sizeVal); } else { uint64_t sizeVal = htobe64(ctx->authDataLength); ctx->staging_block[0] = 0xff; ctx->staging_block[1] = 0xff; bcopy(&sizeVal, ctx->staging_block+2, sizeof(sizeVal)); addLength = 2 + sizeof(sizeVal); } ctx->blockIndex = addLength; /* * The length descriptor goes into the AAD buffer, so we * need to account for it. */ ctx->authDataLength += addLength; ctx->authDataCount = addLength; } } int AES_CBC_MAC_Update(void *vctx, const void *vdata, u_int length) { struct aes_cbc_mac_ctx *ctx; const uint8_t *data; size_t copy_amt; ctx = vctx; data = vdata; /* * This will be called in one of two phases: * (1) Applying authentication data, or * (2) Applying the payload data. * * Because CBC-MAC puts the authentication data size before the * data, subsequent calls won't be block-size-aligned. Which * complicates things a fair bit. * * The payload data doesn't have that problem. */ if (ctx->authDataCount < ctx->authDataLength) { /* * We need to process data as authentication data. * Since we may be out of sync, we may also need * to pad out the staging block. */ const uint8_t *ptr = data; while (length > 0) { copy_amt = MIN(length, sizeof(ctx->staging_block) - ctx->blockIndex); bcopy(ptr, ctx->staging_block + ctx->blockIndex, copy_amt); ptr += copy_amt; length -= copy_amt; ctx->authDataCount += copy_amt; ctx->blockIndex += copy_amt; ctx->blockIndex %= sizeof(ctx->staging_block); if (ctx->blockIndex == 0 || ctx->authDataCount == ctx->authDataLength) { /* * We're done with this block, so we * xor staging_block with block, and then * encrypt it. */ xor_and_encrypt(ctx, ctx->staging_block, ctx->block); bzero(ctx->staging_block, sizeof(ctx->staging_block)); ctx->blockIndex = 0; if (ctx->authDataCount >= ctx->authDataLength) break; } } /* * We'd like to be able to check length == 0 and return * here, but the way OCF calls us, length is always * blksize (16, in this case). So we have to count on * the fact that OCF calls us separately for the AAD and * for the real data. */ return (0); } /* * If we're here, then we're encoding payload data. * This is marginally easier, except that _Update can * be called with non-aligned update lengths. As a result, * we still need to use the staging block. */ KASSERT((length + ctx->cryptDataCount) <= ctx->cryptDataLength, ("More encryption data than allowed")); while (length) { uint8_t *ptr; copy_amt = MIN(sizeof(ctx->staging_block) - ctx->blockIndex, length); ptr = ctx->staging_block + ctx->blockIndex; bcopy(data, ptr, copy_amt); data += copy_amt; ctx->blockIndex += copy_amt; ctx->cryptDataCount += copy_amt; length -= copy_amt; if (ctx->blockIndex == sizeof(ctx->staging_block)) { /* We've got a full block */ xor_and_encrypt(ctx, ctx->staging_block, ctx->block); ctx->blockIndex = 0; bzero(ctx->staging_block, sizeof(ctx->staging_block)); } } return (0); } void AES_CBC_MAC_Final(uint8_t *buf, void *vctx) { struct aes_cbc_mac_ctx *ctx; uint8_t s0[CCM_CBC_BLOCK_LEN]; ctx = vctx; /* * We first need to check to see if we've got any data * left over to encrypt. */ if (ctx->blockIndex != 0) { xor_and_encrypt(ctx, ctx->staging_block, ctx->block); ctx->cryptDataCount += ctx->blockIndex; ctx->blockIndex = 0; explicit_bzero(ctx->staging_block, sizeof(ctx->staging_block)); } bzero(s0, sizeof(s0)); s0[0] = (15 - ctx->nonceLength) - 1; bcopy(ctx->nonce, s0 + 1, ctx->nonceLength); rijndaelEncrypt(ctx->keysched, ctx->rounds, s0, s0); for (size_t indx = 0; indx < AES_CBC_MAC_HASH_LEN; indx++) buf[indx] = ctx->block[indx] ^ s0[indx]; explicit_bzero(s0, sizeof(s0)); }