/* * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (C) 2001 Benno Rice * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * $NetBSD: machdep.c,v 1.74.2.1 2000/11/01 16:13:48 tv Exp $ */ #ifndef lint static const char rcsid[] = "$FreeBSD$"; #endif /* not lint */ #include "opt_ddb.h" #include "opt_compat.h" #include "opt_msgbuf.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int cold = 1; struct mtx sched_lock; struct mtx Giant; struct user *proc0paddr; char machine[] = "powerpc"; SYSCTL_STRING(_hw, HW_MACHINE, machine, CTLFLAG_RD, machine, 0, ""); static char model[128]; SYSCTL_STRING(_hw, HW_MODEL, model, CTLFLAG_RD, model, 0, ""); char bootpath[256]; #ifdef DDB /* start and end of kernel symbol table */ void *ksym_start, *ksym_end; #endif /* DDB */ static void cpu_startup(void *); SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL) void powerpc_init(u_int, u_int, u_int, char *); int save_ofw_mapping(void); int restore_ofw_mapping(void); void install_extint(void (*)(void)); void osendsig(sig_t, int, sigset_t *, u_long); struct msgbuf *msgbufp = 0; int bootverbose = 0, Maxmem = 0; long dumplo; vm_offset_t phys_avail[10]; static int chosen; struct pmap ofw_pmap; extern int ofmsr; struct bat battable[16]; static void identifycpu(void); static vm_offset_t buffer_sva, buffer_eva; vm_offset_t clean_sva, clean_eva; static vm_offset_t pager_sva, pager_eva; static void powerpc_ofw_shutdown(void *junk, int howto) { if (howto & RB_HALT) { OF_exit(); } } static void cpu_startup(void *dummy) { unsigned int i; caddr_t v; vm_offset_t maxaddr; vm_size_t size; vm_offset_t firstaddr; vm_offset_t minaddr; size = 0; /* * Good {morning,afternoon,evening,night}. */ identifycpu(); /* startrtclock(); */ #ifdef PERFMON perfmon_init(); #endif printf("real memory = %ld (%ldK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024); /* * Display any holes after the first chunk of extended memory. */ if (bootverbose) { int indx; printf("Physical memory chunk(s):\n"); for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) { int size1 = phys_avail[indx + 1] - phys_avail[indx]; printf("0x%08x - 0x%08x, %d bytes (%d pages)\n", phys_avail[indx], phys_avail[indx + 1] - 1, size1, size1 / PAGE_SIZE); } } /* * Calculate callout wheel size */ for (callwheelsize = 1, callwheelbits = 0; callwheelsize < ncallout; callwheelsize <<= 1, ++callwheelbits) ; callwheelmask = callwheelsize - 1; /* * Allocate space for system data structures. * The first available kernel virtual address is in "v". * As pages of kernel virtual memory are allocated, "v" is incremented. * As pages of memory are allocated and cleared, * "firstaddr" is incremented. * An index into the kernel page table corresponding to the * virtual memory address maintained in "v" is kept in "mapaddr". */ /* * Make two passes. The first pass calculates how much memory is * needed and allocates it. The second pass assigns virtual * addresses to the various data structures. */ firstaddr = 0; again: v = (caddr_t)firstaddr; #define valloc(name, type, num) \ (name) = (type *)v; v = (caddr_t)((name)+(num)) #define valloclim(name, type, num, lim) \ (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num))) valloc(callout, struct callout, ncallout); valloc(callwheel, struct callout_tailq, callwheelsize); /* * The nominal buffer size (and minimum KVA allocation) is BKVASIZE. * For the first 64MB of ram nominally allocate sufficient buffers to * cover 1/4 of our ram. Beyond the first 64MB allocate additional * buffers to cover 1/20 of our ram over 64MB. */ if (nbuf == 0) { int factor; factor = 4 * BKVASIZE / PAGE_SIZE; nbuf = 50; if (Maxmem > 1024) nbuf += min((Maxmem - 1024) / factor, 16384 / factor); if (Maxmem > 16384) nbuf += (Maxmem - 16384) * 2 / (factor * 5); } nswbuf = max(min(nbuf/4, 64), 16); valloc(swbuf, struct buf, nswbuf); valloc(buf, struct buf, nbuf); v = bufhashinit(v); /* * End of first pass, size has been calculated so allocate memory */ if (firstaddr == 0) { size = (vm_size_t)(v - firstaddr); firstaddr = (vm_offset_t)kmem_alloc(kernel_map, round_page(size)); if (firstaddr == 0) panic("startup: no room for tables"); goto again; } /* * End of second pass, addresses have been assigned */ if ((vm_size_t)(v - firstaddr) != size) panic("startup: table size inconsistency"); clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva, (nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size); buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva, (nbuf*BKVASIZE)); pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva, (nswbuf*MAXPHYS) + pager_map_size); pager_map->system_map = 1; exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr, (16*(ARG_MAX+(PAGE_SIZE*3)))); /* * XXX: Mbuf system machine-specific initializations should * go here, if anywhere. */ /* * Initialize callouts */ SLIST_INIT(&callfree); for (i = 0; i < ncallout; i++) { callout_init(&callout[i], 0); callout[i].c_flags = CALLOUT_LOCAL_ALLOC; SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle); } for (i = 0; i < callwheelsize; i++) { TAILQ_INIT(&callwheel[i]); } mtx_init(&callout_lock, "callout", MTX_SPIN); #if defined(USERCONFIG) #if defined(USERCONFIG_BOOT) if (1) #else if (boothowto & RB_CONFIG) #endif { userconfig(); cninit(); /* the preferred console may have changed */ } #endif printf("avail memory = %ld (%ldK bytes)\n", ptoa(cnt.v_free_count), ptoa(cnt.v_free_count) / 1024); /* * Set up buffers, so they can be used to read disk labels. */ bufinit(); vm_pager_bufferinit(); EVENTHANDLER_REGISTER(shutdown_final, powerpc_ofw_shutdown, 0, SHUTDOWN_PRI_LAST); #ifdef SMP /* * OK, enough kmem_alloc/malloc state should be up, lets get on with it! */ mp_start(); /* fire up the secondaries */ mp_announce(); #endif /* SMP */ } void identifycpu() { unsigned int pvr, version, revision; /* * Find cpu type (Do it by OpenFirmware?) */ __asm ("mfpvr %0" : "=r"(pvr)); version = pvr >> 16; revision = pvr & 0xffff; switch (version) { case 0x0001: sprintf(model, "601"); break; case 0x0003: sprintf(model, "603 (Wart)"); break; case 0x0004: sprintf(model, "604 (Zephyr)"); break; case 0x0005: sprintf(model, "602 (Galahad)"); break; case 0x0006: sprintf(model, "603e (Stretch)"); break; case 0x0007: if ((revision && 0xf000) == 0x0000) sprintf(model, "603ev (Valiant)"); else sprintf(model, "603r (Goldeneye)"); break; case 0x0008: if ((revision && 0xf000) == 0x0000) sprintf(model, "G3 / 750 (Arthur)"); else sprintf(model, "G3 / 755 (Goldfinger)"); break; case 0x0009: if ((revision && 0xf000) == 0x0000) sprintf(model, "604e (Sirocco)"); else sprintf(model, "604r (Mach V)"); break; case 0x000a: sprintf(model, "604r (Mach V)"); break; case 0x000c: sprintf(model, "G4 / 7400 (Max)"); break; case 0x0014: sprintf(model, "620 (Red October)"); break; case 0x0081: sprintf(model, "8240 (Kahlua)"); break; case 0x8000: sprintf(model, "G4 / 7450 (V'ger)"); break; case 0x800c: sprintf(model, "G4 / 7410 (Nitro)"); break; case 0x8081: sprintf(model, "8245 (Kahlua II)"); break; default: sprintf(model, "Version %x", version); break; } sprintf(model + strlen(model), " (Revision %x)", revision); printf("CPU: PowerPC %s\n", model); } extern char kernel_text[], _end[]; extern void *trapcode, *trapsize; extern void *alitrap, *alisize; extern void *dsitrap, *dsisize; extern void *isitrap, *isisize; extern void *decrint, *decrsize; extern void *tlbimiss, *tlbimsize; extern void *tlbdlmiss, *tlbdlmsize; extern void *tlbdsmiss, *tlbdsmsize; #if 0 /* XXX: interrupt handler. We'll get to this later */ extern void ext_intr(void); #endif #ifdef DDB extern ddblow, ddbsize; #endif #ifdef IPKDB extern ipkdblow, ipkdbsize; #endif static struct globaldata tmpglobal; void powerpc_init(u_int startkernel, u_int endkernel, u_int basekernel, char *args) { unsigned int exc, scratch; struct mem_region *allmem, *availmem, *mp; struct globaldata *globalp; /* * Set up BAT0 to only map the lowest 256 MB area */ battable[0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW); battable[0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs); /* * Map PCI memory space. */ battable[0x8].batl = BATL(0x80000000, BAT_I, BAT_PP_RW); battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs); battable[0x9].batl = BATL(0x90000000, BAT_I, BAT_PP_RW); battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs); battable[0xa].batl = BATL(0xa0000000, BAT_I, BAT_PP_RW); battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs); /* * Map obio devices. */ battable[0xf].batl = BATL(0xf0000000, BAT_I, BAT_PP_RW); battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs); /* * Now setup fixed bat registers * * Note that we still run in real mode, and the BAT * registers were cleared above. */ /* BAT0 used for initial 256 MB segment */ __asm __volatile ("mtibatl 0,%0; mtibatu 0,%1;" "mtdbatl 0,%0; mtdbatu 0,%1;" :: "r"(battable[0].batl), "r"(battable[0].batu)); /* * Set up battable to map all RAM regions. * This is here because mem_regions() call needs bat0 set up. */ mem_regions(&allmem, &availmem); for (mp = allmem; mp->size; mp++) { vm_offset_t pa = mp->start & 0xf0000000; vm_offset_t end = mp->start + mp->size; do { u_int n = pa >> 28; battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW); battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs); pa += 0x10000000; } while (pa < end); } chosen = OF_finddevice("/chosen"); save_ofw_mapping(); proc0.p_addr = proc0paddr; bzero(proc0.p_addr, sizeof *proc0.p_addr); LIST_INIT(&proc0.p_contested); /* XXX: NetBSDism I _think_. Not sure yet. */ #if 0 curpm = curpcb->pcb_pmreal = curpcb->pcb_pm = kernel_pmap; #endif /* * Initialise some mutexes. */ mtx_init(&Giant, "Giant", MTX_DEF | MTX_RECURSE); mtx_init(&sched_lock, "sched lock", MTX_SPIN | MTX_RECURSE); mtx_init(&proc0.p_mtx, "process lock", MTX_DEF); /* * Initialise console. */ cninit(); mtx_lock(&Giant); #ifdef __notyet__ /* Needs some rethinking regarding real/virtual OFW */ OF_set_callback(callback); #endif /* * Set up trap vectors */ for (exc = EXC_RSVD; exc <= EXC_LAST; exc += 0x100) { switch (exc) { default: bcopy(&trapcode, (void *)exc, (size_t)&trapsize); break; case EXC_DECR: bcopy(&decrint, (void *)EXC_DECR, (size_t)&decrsize); break; #if 0 /* XXX: Not enabling these traps yet. */ case EXC_EXI: /* * This one is (potentially) installed during autoconf */ break; case EXC_ALI: bcopy(&alitrap, (void *)EXC_ALI, (size_t)&alisize); break; case EXC_DSI: bcopy(&dsitrap, (void *)EXC_DSI, (size_t)&dsisize); break; case EXC_ISI: bcopy(&isitrap, (void *)EXC_ISI, (size_t)&isisize); break; case EXC_IMISS: bcopy(&tlbimiss, (void *)EXC_IMISS, (size_t)&tlbimsize); break; case EXC_DLMISS: bcopy(&tlbdlmiss, (void *)EXC_DLMISS, (size_t)&tlbdlmsize); break; case EXC_DSMISS: bcopy(&tlbdsmiss, (void *)EXC_DSMISS, (size_t)&tlbdsmsize); break; #if defined(DDB) || defined(IPKDB) case EXC_TRC: case EXC_PGM: case EXC_BPT: #if defined(DDB) bcopy(&ddblow, (void *)exc, (size_t)&ddbsize); #else bcopy(&ipkdblow, (void *)exc, (size_t)&ipkdbsize); #endif break; #endif /* DDB || IPKDB */ #endif } } #if 0 /* XXX: coming soon... */ /* * external interrupt handler install */ install_extint(ext_intr); #endif __syncicache((void *)EXC_RST, EXC_LAST - EXC_RST + 0x100); /* * Now enable translation (and machine checks/recoverable interrupts). */ __asm ("mfmsr %0" : "=r"(scratch)); scratch |= PSL_IR | PSL_DR | PSL_ME | PSL_RI; __asm ("mtmsr %0" :: "r"(scratch)); ofmsr &= ~PSL_IP; /* * Parse arg string. */ #ifdef DDB bcopy(args + strlen(args) + 1, &startsym, sizeof(startsym)); bcopy(args + strlen(args) + 5, &endsym, sizeof(endsym)); if (startsym == NULL || endsym == NULL) startsym = endsym = NULL; #endif strcpy(bootpath, args); args = bootpath; while (*++args && *args != ' '); if (*args) { *args++ = 0; while (*args) { switch (*args++) { case 'a': boothowto |= RB_ASKNAME; break; case 's': boothowto |= RB_SINGLE; break; case 'd': boothowto |= RB_KDB; break; case 'v': boothowto |= RB_VERBOSE; break; } } } #ifdef DDB ddb_init((int)((u_int)endsym - (u_int)startsym), startsym, endsym); #endif #ifdef IPKDB /* * Now trap to IPKDB */ ipkdb_init(); if (boothowto & RB_KDB) ipkdb_connect(0); #endif /* * Set the page size. */ #if 0 vm_set_page_size(); #endif /* * Initialize pmap module. */ pmap_bootstrap(startkernel, endkernel); restore_ofw_mapping(); /* * Setup the global data for the bootstrap cpu. */ globalp = (struct globaldata *) &tmpglobal; /* * XXX: Pass 0 as CPU id. This is bad. We need to work out * XXX: which CPU we are somehow. */ globaldata_init(globalp, 0, sizeof(struct globaldata)); __asm ("mtsprg 0, %0" :: "r"(globalp)); PCPU_GET(next_asn) = 1; /* 0 used for proc0 pmap */ PCPU_SET(curproc, &proc0); PCPU_SET(spinlocks, NULL); } static int N_mapping; static struct { vm_offset_t va; int len; vm_offset_t pa; int mode; } ofw_mapping[256]; int save_ofw_mapping() { int mmui, mmu; OF_getprop(chosen, "mmu", &mmui, 4); mmu = OF_instance_to_package(mmui); bzero(ofw_mapping, sizeof(ofw_mapping)); N_mapping = OF_getprop(mmu, "translations", ofw_mapping, sizeof(ofw_mapping)); N_mapping /= sizeof(ofw_mapping[0]); return 0; } int restore_ofw_mapping() { int i; struct vm_page pg; pmap_pinit(&ofw_pmap); ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT; for (i = 0; i < N_mapping; i++) { vm_offset_t pa = ofw_mapping[i].pa; vm_offset_t va = ofw_mapping[i].va; int size = ofw_mapping[i].len; if (va < 0x90000000) /* XXX */ continue; while (size > 0) { pg.phys_addr = pa; pmap_enter(&ofw_pmap, va, &pg, VM_PROT_ALL, VM_PROT_ALL); pa += PAGE_SIZE; va += PAGE_SIZE; size -= PAGE_SIZE; } } return 0; } void bzero(void *buf, size_t len) { caddr_t p; p = buf; while (((vm_offset_t) p & (sizeof(u_long) - 1)) && len) { *p++ = 0; len--; } while (len >= sizeof(u_long) * 8) { *(u_long*) p = 0; *((u_long*) p + 1) = 0; *((u_long*) p + 2) = 0; *((u_long*) p + 3) = 0; len -= sizeof(u_long) * 8; *((u_long*) p + 4) = 0; *((u_long*) p + 5) = 0; *((u_long*) p + 6) = 0; *((u_long*) p + 7) = 0; p += sizeof(u_long) * 8; } while (len >= sizeof(u_long)) { *(u_long*) p = 0; len -= sizeof(u_long); p += sizeof(u_long); } while (len) { *p++ = 0; len--; } } #if 0 void delay(unsigned n) { u_long tb; do { __asm __volatile("mftb %0" : "=r" (tb)); } while (n > (int)(tb & 0xffffffff)); } #endif void osendsig(sig_t catcher, int sig, sigset_t *mask, u_long code) { /* XXX: To be done */ return; } void sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code) { /* XXX: To be done */ return; } int osigreturn(struct proc *p, struct osigreturn_args *uap) { /* XXX: To be done */ return(ENOSYS); } int sigreturn(struct proc *p, struct sigreturn_args *uap) { /* XXX: To be done */ return(ENOSYS); } void cpu_boot(int howto) { } /* * Shutdown the CPU as much as possible. */ void cpu_halt(void) { OF_exit(); } /* * Set set up registers on exec. */ void setregs(struct proc *p, u_long entry, u_long stack, u_long ps_strings) { struct trapframe *tf; struct ps_strings arginfo; tf = trapframe(p); bzero(tf, sizeof *tf); tf->fixreg[1] = -roundup(-stack + 8, 16); /* * XXX Machine-independent code has already copied arguments and * XXX environment to userland. Get them back here. */ (void)copyin((char *)PS_STRINGS, &arginfo, sizeof(arginfo)); /* * Set up arguments for _start(): * _start(argc, argv, envp, obj, cleanup, ps_strings); * * Notes: * - obj and cleanup are the auxilliary and termination * vectors. They are fixed up by ld.elf_so. * - ps_strings is a NetBSD extention, and will be * ignored by executables which are strictly * compliant with the SVR4 ABI. * * XXX We have to set both regs and retval here due to different * XXX calling convention in trap.c and init_main.c. */ tf->fixreg[3] = arginfo.ps_nargvstr; tf->fixreg[4] = (register_t)arginfo.ps_argvstr; tf->fixreg[5] = (register_t)arginfo.ps_envstr; tf->fixreg[6] = 0; /* auxillary vector */ tf->fixreg[7] = 0; /* termination vector */ tf->fixreg[8] = (register_t)PS_STRINGS; /* NetBSD extension */ tf->srr0 = entry; tf->srr1 = PSL_MBO | PSL_USERSET | PSL_FE_DFLT; p->p_addr->u_pcb.pcb_flags = 0; } extern void *extint, *extsize; extern u_long extint_call; void install_extint(void (*handler)(void)) { u_long offset; int omsr, msr; offset = (u_long)handler - (u_long)&extint_call; #ifdef DIAGNOSTIC if (offset > 0x1ffffff) panic("install_extint: too far away"); #endif msr = mfmsr(); mtmsr(msr & ~PSL_EE); extint_call = (extint_call & 0xfc000003) | offset; bcopy(&extint, (void *)EXC_EXI, (size_t)&extsize); __syncicache((void *)&extint_call, sizeof extint_call); __syncicache((void *)EXC_EXI, (int)&extsize); mtmsr(msr); } #if !defined(DDB) void Debugger(const char *msg) { printf("Debugger(\"%s\") called.\n", msg); } #endif /* !defined(DDB) */ /* XXX: dummy {fill,set}_[fp]regs */ int fill_regs(struct proc *p, struct reg *regs) { return (ENOSYS); } int fill_fpregs(struct proc *p, struct fpreg *fpregs) { return (ENOSYS); } int set_regs(struct proc *p, struct reg *regs) { return (ENOSYS); } int set_fpregs(struct proc *p, struct fpreg *fpregs) { return (ENOSYS); } int ptrace_set_pc(struct proc *p, unsigned long addr) { /* XXX: coming soon... */ return (ENOSYS); } int ptrace_single_step(struct proc *p) { /* XXX: coming soon... */ return (ENOSYS); } int ptrace_clear_single_step(struct proc *p) { /* XXX: coming soon... */ return (ENOSYS); } /* * Initialise a struct globaldata. */ void globaldata_init(struct globaldata *globaldata, int cpuid, size_t sz) { bzero(globaldata, sz); globaldata->gd_cpuid = cpuid; globaldata->gd_next_asn = 0; globaldata->gd_current_asngen = 1; }