/* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)buf.h 8.9 (Berkeley) 3/30/95 * $FreeBSD$ */ #ifndef _SYS_BUF_H_ #define _SYS_BUF_H_ #include #include #include struct bio; struct buf; struct mount; struct vnode; /* * To avoid including */ LIST_HEAD(workhead, worklist); /* * These are currently used only by the soft dependency code, hence * are stored once in a global variable. If other subsystems wanted * to use these hooks, a pointer to a set of bio_ops could be added * to each buffer. */ extern struct bio_ops { void (*io_start)(struct buf *); void (*io_complete)(struct buf *); void (*io_deallocate)(struct buf *); void (*io_movedeps)(struct buf *, struct buf *); int (*io_countdeps)(struct buf *, int); } bioops; struct buf_ops { char *bop_name; int (*bop_write)(struct buf *); }; extern struct buf_ops buf_ops_bio; struct vm_object; typedef unsigned char b_xflags_t; /* * The buffer header describes an I/O operation in the kernel. * * NOTES: * b_bufsize, b_bcount. b_bufsize is the allocation size of the * buffer, either DEV_BSIZE or PAGE_SIZE aligned. b_bcount is the * originally requested buffer size and can serve as a bounds check * against EOF. For most, but not all uses, b_bcount == b_bufsize. * * b_dirtyoff, b_dirtyend. Buffers support piecemeal, unaligned * ranges of dirty data that need to be written to backing store. * The range is typically clipped at b_bcount ( not b_bufsize ). * * b_resid. Number of bytes remaining in I/O. After an I/O operation * completes, b_resid is usually 0 indicating 100% success. */ struct buf { /* XXX: b_io must be the first element of struct buf for now /phk */ /* XXX: if you change this, fix BIOTOBUF macro below */ struct bio b_io; /* "Builtin" I/O request. */ #define BIOTOBUF(biop) ((struct buf *)(biop)) #define b_bcount b_io.bio_bcount #define b_blkno b_io.bio_blkno #define b_caller1 b_io.bio_caller1 #define b_data b_io.bio_data #define b_dev b_io.bio_dev #define b_driver1 b_io.bio_driver1 #define b_driver2 b_io.bio_driver2 #define b_error b_io.bio_error #define b_iocmd b_io.bio_cmd #define b_ioflags b_io.bio_flags #define b_pblkno b_io.bio_pblkno #define b_resid b_io.bio_resid struct buf_ops *b_op; unsigned b_magic; #define B_MAGIC_BIO 0x10b10b10 #define B_MAGIC_NFS 0x67238234 void (*b_iodone)(struct buf *); off_t b_offset; /* Offset into file. */ #ifdef USE_BUFHASH LIST_ENTRY(buf) b_hash; /* Hash chain. */ #endif TAILQ_ENTRY(buf) b_vnbufs; /* Buffer's associated vnode. */ struct buf *b_left; /* splay tree link (V) */ struct buf *b_right; /* splay tree link (V) */ TAILQ_ENTRY(buf) b_freelist; /* Free list position if not active. */ long b_flags; /* B_* flags. */ unsigned short b_qindex; /* buffer queue index */ b_xflags_t b_xflags; /* extra flags */ struct lock b_lock; /* Buffer lock */ long b_bufsize; /* Allocated buffer size. */ long b_runningbufspace; /* when I/O is running, pipelining */ caddr_t b_kvabase; /* base kva for buffer */ int b_kvasize; /* size of kva for buffer */ daddr_t b_lblkno; /* Logical block number. */ struct vnode *b_vp; /* Device vnode. */ struct vm_object *b_object; /* Object for vp */ int b_dirtyoff; /* Offset in buffer of dirty region. */ int b_dirtyend; /* Offset of end of dirty region. */ struct ucred *b_rcred; /* Read credentials reference. */ struct ucred *b_wcred; /* Write credentials reference. */ void *b_saveaddr; /* Original b_addr for physio. */ union pager_info { void *pg_spc; int pg_reqpage; } b_pager; union cluster_info { TAILQ_HEAD(cluster_list_head, buf) cluster_head; TAILQ_ENTRY(buf) cluster_entry; } b_cluster; struct vm_page *b_pages[btoc(MAXPHYS)]; int b_npages; struct workhead b_dep; /* List of filesystem dependencies. */ }; #define b_spc b_pager.pg_spc /* * These flags are kept in b_flags. * * Notes: * * B_ASYNC VOP calls on bp's are usually async whether or not * B_ASYNC is set, but some subsystems, such as NFS, like * to know what is best for the caller so they can * optimize the I/O. * * B_PAGING Indicates that bp is being used by the paging system or * some paging system and that the bp is not linked into * the b_vp's clean/dirty linked lists or ref counts. * Buffer vp reassignments are illegal in this case. * * B_CACHE This may only be set if the buffer is entirely valid. * The situation where B_DELWRI is set and B_CACHE is * clear MUST be committed to disk by getblk() so * B_DELWRI can also be cleared. See the comments for * getblk() in kern/vfs_bio.c. If B_CACHE is clear, * the caller is expected to clear BIO_ERROR and B_INVAL, * set BIO_READ, and initiate an I/O. * * The 'entire buffer' is defined to be the range from * 0 through b_bcount. * * B_MALLOC Request that the buffer be allocated from the malloc * pool, DEV_BSIZE aligned instead of PAGE_SIZE aligned. * * B_CLUSTEROK This flag is typically set for B_DELWRI buffers * by filesystems that allow clustering when the buffer * is fully dirty and indicates that it may be clustered * with other adjacent dirty buffers. Note the clustering * may not be used with the stage 1 data write under NFS * but may be used for the commit rpc portion. * * B_VMIO Indicates that the buffer is tied into an VM object. * The buffer's data is always PAGE_SIZE aligned even * if b_bufsize and b_bcount are not. ( b_bufsize is * always at least DEV_BSIZE aligned, though ). * * B_DIRECT Hint that we should attempt to completely free * the pages underlying the buffer. B_DIRECT is * sticky until the buffer is released and typically * only has an effect when B_RELBUF is also set. * * B_NOWDRAIN This flag should be set when a device (like MD) * does a turn-around VOP_WRITE from its strategy * routine. This flag prevents bwrite() from blocking * in wdrain, avoiding a deadlock situation. */ #define B_AGE 0x00000001 /* Move to age queue when I/O done. */ #define B_NEEDCOMMIT 0x00000002 /* Append-write in progress. */ #define B_ASYNC 0x00000004 /* Start I/O, do not wait. */ #define B_DIRECT 0x00000008 /* direct I/O flag (pls free vmio) */ #define B_DEFERRED 0x00000010 /* Skipped over for cleaning */ #define B_CACHE 0x00000020 /* Bread found us in the cache. */ #define B_VALIDSUSPWRT 0x00000040 /* Valid write during suspension. */ #define B_DELWRI 0x00000080 /* Delay I/O until buffer reused. */ #define B_00000100 0x00000100 /* Available flag. */ #define B_DONE 0x00000200 /* I/O completed. */ #define B_EINTR 0x00000400 /* I/O was interrupted */ #define B_NOWDRAIN 0x00000800 /* Avoid wdrain deadlock */ #define B_SCANNED 0x00001000 /* VOP_FSYNC funcs mark written bufs */ #define B_INVAL 0x00002000 /* Does not contain valid info. */ #define B_LOCKED 0x00004000 /* Locked in core (not reusable). */ #define B_NOCACHE 0x00008000 /* Do not cache block after use. */ #define B_MALLOC 0x00010000 /* malloced b_data */ #define B_CLUSTEROK 0x00020000 /* Pagein op, so swap() can count it. */ #define B_PHYS 0x00040000 /* I/O to user memory. */ #define B_00080000 0x00080000 /* Available flag. */ #define B_00100000 0x00100000 /* Available flag. */ #define B_DIRTY 0x00200000 /* Needs writing later (in EXT2FS). */ #define B_RELBUF 0x00400000 /* Release VMIO buffer. */ #define B_00800000 0x00800000 /* Available flag. */ #define B_WRITEINPROG 0x01000000 /* Write in progress. */ #define B_02000000 0x02000000 /* Available flag. */ #define B_PAGING 0x04000000 /* volatile paging I/O -- bypass VMIO */ #define B_08000000 0x08000000 /* Available flag. */ #define B_RAM 0x10000000 /* Read ahead mark (flag) */ #define B_VMIO 0x20000000 /* VMIO flag */ #define B_CLUSTER 0x40000000 /* pagein op, so swap() can count it */ #define B_80000000 0x80000000 /* Available flag. */ #define PRINT_BUF_FLAGS "\20\40b31\37cluster\36vmio\35ram\34b27" \ "\33paging\32b25\31writeinprog\30b23\27relbuf\26dirty\25b20" \ "\24b19\23phys\22clusterok\21malloc\20nocache\17locked\16inval" \ "\15scanned\14nowdrain\13eintr\12done\11b8\10delwri\7validsuspwrt" \ "\6cache\5deferred\4direct\3async\2needcommit\1age" /* * These flags are kept in b_xflags. */ #define BX_VNDIRTY 0x00000001 /* On vnode dirty list */ #define BX_VNCLEAN 0x00000002 /* On vnode clean list */ #define BX_BKGRDWRITE 0x00000004 /* Do writes in background */ #define BX_BKGRDINPROG 0x00000008 /* Background write in progress */ #define BX_BKGRDWAIT 0x00000010 /* Background write waiting */ #define BX_BKGRDMARKER 0x00000020 /* Mark buffer for splay tree */ #define BX_ALTDATA 0x00000040 /* Holds extended data */ #define NOOFFSET (-1LL) /* No buffer offset calculated yet */ #ifdef _KERNEL /* * Buffer locking */ extern struct mtx buftimelock; /* Interlock on setting prio and timo */ extern const char *buf_wmesg; /* Default buffer lock message */ #define BUF_WMESG "bufwait" #include /* XXX for curthread */ #include /* * Initialize a lock. */ #define BUF_LOCKINIT(bp) \ lockinit(&(bp)->b_lock, PRIBIO + 4, buf_wmesg, 0, 0) /* * * Get a lock sleeping non-interruptably until it becomes available. */ static __inline int BUF_LOCK(struct buf *, int); static __inline int BUF_LOCK(struct buf *bp, int locktype) { int s, ret; s = splbio(); mtx_lock(&buftimelock); locktype |= LK_INTERLOCK; bp->b_lock.lk_wmesg = buf_wmesg; bp->b_lock.lk_prio = PRIBIO + 4; ret = lockmgr(&(bp)->b_lock, locktype, &buftimelock, curthread); splx(s); return ret; } /* * Get a lock sleeping with specified interruptably and timeout. */ static __inline int BUF_TIMELOCK(struct buf *, int, char *, int, int); static __inline int BUF_TIMELOCK(struct buf *bp, int locktype, char *wmesg, int catch, int timo) { int s, ret; s = splbio(); mtx_lock(&buftimelock); locktype |= LK_INTERLOCK | LK_TIMELOCK; bp->b_lock.lk_wmesg = wmesg; bp->b_lock.lk_prio = (PRIBIO + 4) | catch; bp->b_lock.lk_timo = timo; ret = lockmgr(&(bp)->b_lock, (locktype), &buftimelock, curthread); splx(s); return ret; } /* * Release a lock. Only the acquiring process may free the lock unless * it has been handed off to biodone. */ static __inline void BUF_UNLOCK(struct buf *); static __inline void BUF_UNLOCK(struct buf *bp) { int s; s = splbio(); lockmgr(&(bp)->b_lock, LK_RELEASE, NULL, curthread); splx(s); } /* * Free a buffer lock. */ #define BUF_LOCKFREE(bp) \ do { \ if (BUF_REFCNT(bp) > 0) \ panic("free locked buf"); \ lockdestroy(&(bp)->b_lock); \ } while (0) #ifdef _SYS_PROC_H_ /* Avoid #include pollution */ /* * When initiating asynchronous I/O, change ownership of the lock to the * kernel. Once done, the lock may legally released by biodone. The * original owning process can no longer acquire it recursively, but must * wait until the I/O is completed and the lock has been freed by biodone. */ static __inline void BUF_KERNPROC(struct buf *); static __inline void BUF_KERNPROC(struct buf *bp) { struct thread *td = curthread; if ((td != PCPU_GET(idlethread)) && bp->b_lock.lk_lockholder == td->td_proc->p_pid) td->td_locks--; bp->b_lock.lk_lockholder = LK_KERNPROC; } #endif /* * Find out the number of references to a lock. */ static __inline int BUF_REFCNT(struct buf *); static __inline int BUF_REFCNT(struct buf *bp) { int s, ret; s = splbio(); ret = lockcount(&(bp)->b_lock); splx(s); return ret; } #endif /* _KERNEL */ struct buf_queue_head { TAILQ_HEAD(buf_queue, buf) queue; daddr_t last_pblkno; struct buf *insert_point; struct buf *switch_point; }; /* * This structure describes a clustered I/O. It is stored in the b_saveaddr * field of the buffer on which I/O is done. At I/O completion, cluster * callback uses the structure to parcel I/O's to individual buffers, and * then free's this structure. */ struct cluster_save { long bs_bcount; /* Saved b_bcount. */ long bs_bufsize; /* Saved b_bufsize. */ void *bs_saveaddr; /* Saved b_addr. */ int bs_nchildren; /* Number of associated buffers. */ struct buf **bs_children; /* List of associated buffers. */ }; #ifdef _KERNEL #define BUF_WRITE(bp) \ (bp)->b_op->bop_write(bp) #define BUF_STRATEGY(bp) VOP_STRATEGY((bp)->b_vp, (bp)) static __inline void buf_start(struct buf *bp) { if (bioops.io_start) (*bioops.io_start)(bp); } static __inline void buf_complete(struct buf *bp) { if (bioops.io_complete) (*bioops.io_complete)(bp); } static __inline void buf_deallocate(struct buf *bp) { if (bioops.io_deallocate) (*bioops.io_deallocate)(bp); BUF_LOCKFREE(bp); } static __inline void buf_movedeps(struct buf *bp, struct buf *bp2) { if (bioops.io_movedeps) (*bioops.io_movedeps)(bp, bp2); } static __inline int buf_countdeps(struct buf *bp, int i) { if (bioops.io_countdeps) return ((*bioops.io_countdeps)(bp, i)); else return (0); } #endif /* _KERNEL */ /* * Zero out the buffer's data area. */ #define clrbuf(bp) { \ bzero((bp)->b_data, (u_int)(bp)->b_bcount); \ (bp)->b_resid = 0; \ } #ifdef _KERNEL extern int nbuf; /* The number of buffer headers */ extern int maxswzone; /* Max KVA for swap structures */ extern int maxbcache; /* Max KVA for buffer cache */ extern int runningbufspace; extern int buf_maxio; /* nominal maximum I/O for buffer */ extern struct buf *buf; /* The buffer headers. */ extern char *buffers; /* The buffer contents. */ extern int bufpages; /* Number of memory pages in the buffer pool. */ extern struct buf *swbuf; /* Swap I/O buffer headers. */ extern int nswbuf; /* Number of swap I/O buffer headers. */ struct uio; caddr_t kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est); void bufinit(void); void bwillwrite(void); int buf_dirty_count_severe(void); void bremfree(struct buf *); int bread(struct vnode *, daddr_t, int, struct ucred *, struct buf **); int breadn(struct vnode *, daddr_t, int, daddr_t *, int *, int, struct ucred *, struct buf **); int bwrite(struct buf *); void bdwrite(struct buf *); void bawrite(struct buf *); void bdirty(struct buf *); void bundirty(struct buf *); void brelse(struct buf *); void bqrelse(struct buf *); int vfs_bio_awrite(struct buf *); struct buf * getpbuf(int *); struct buf *incore(struct vnode *, daddr_t); struct buf *gbincore(struct vnode *, daddr_t); int inmem(struct vnode *, daddr_t); struct buf *getblk(struct vnode *, daddr_t, int, int, int); struct buf *geteblk(int); int bufwait(struct buf *); void bufdone(struct buf *); void bufdonebio(struct bio *); void cluster_callback(struct buf *); int cluster_read(struct vnode *, u_quad_t, daddr_t, long, struct ucred *, long, int, struct buf **); int cluster_wbuild(struct vnode *, long, daddr_t, int); void cluster_write(struct buf *, u_quad_t, int); void vfs_bio_set_validclean(struct buf *, int base, int size); void vfs_bio_clrbuf(struct buf *); void vfs_busy_pages(struct buf *, int clear_modify); void vfs_unbusy_pages(struct buf *); void vwakeup(struct buf *); void vmapbuf(struct buf *); void vunmapbuf(struct buf *); void relpbuf(struct buf *, int *); void brelvp(struct buf *); void bgetvp(struct vnode *, struct buf *); void pbgetvp(struct vnode *, struct buf *); void pbrelvp(struct buf *); int allocbuf(struct buf *bp, int size); void reassignbuf(struct buf *, struct vnode *); struct buf *trypbuf(int *); #endif /* _KERNEL */ #endif /* !_SYS_BUF_H_ */