/* $NetBSD: bus.h,v 1.12 1997/10/01 08:25:15 fvdl Exp $ */ /*- * SPDX-License-Identifier: (BSD-2-Clause-NetBSD AND BSD-4-Clause) * * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1996 Charles M. Hannum. All rights reserved. * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Christopher G. Demetriou * for the NetBSD Project. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* $FreeBSD$ */ #ifndef _BUS_DMA_H_ #define _BUS_DMA_H_ #ifdef _KERNEL #include #endif /* * Machine independent interface for mapping physical addresses to peripheral * bus 'physical' addresses, and assisting with DMA operations. * * XXX This file is always included from and should not * (yet) be included directly. */ /* * Flags used in various bus DMA methods. */ #define BUS_DMA_WAITOK 0x00 /* safe to sleep (pseudo-flag) */ #define BUS_DMA_NOWAIT 0x01 /* not safe to sleep */ #define BUS_DMA_ALLOCNOW 0x02 /* perform resource allocation now */ #define BUS_DMA_COHERENT 0x04 /* hint: map memory in a coherent way */ #define BUS_DMA_ZERO 0x08 /* allocate zero'ed memory */ #define BUS_DMA_BUS1 0x10 /* placeholders for bus functions... */ #define BUS_DMA_BUS2 0x20 #define BUS_DMA_BUS3 0x40 #define BUS_DMA_BUS4 0x80 /* * The following two flags are non-standard or specific to only certain * architectures */ #define BUS_DMA_NOWRITE 0x100 #define BUS_DMA_NOCACHE 0x200 /* * The following flag is a DMA tag hint that the page offset of the * loaded kernel virtual address must be preserved in the first * physical segment address, when the KVA is loaded into DMA. */ #define BUS_DMA_KEEP_PG_OFFSET 0x400 #define BUS_DMA_LOAD_MBUF 0x800 /* Forwards needed by prototypes below. */ union ccb; struct bio; struct crypto_buffer; struct cryptop; struct mbuf; struct memdesc; struct pmap; struct uio; /* * Operations performed by bus_dmamap_sync(). */ #define BUS_DMASYNC_PREREAD 1 #define BUS_DMASYNC_POSTREAD 2 #define BUS_DMASYNC_PREWRITE 4 #define BUS_DMASYNC_POSTWRITE 8 /* * bus_dma_segment_t * * Describes a single contiguous DMA transaction. Values * are suitable for programming into DMA registers. */ typedef struct bus_dma_segment { bus_addr_t ds_addr; /* DMA address */ bus_size_t ds_len; /* length of transfer */ } bus_dma_segment_t; #ifdef _KERNEL /* * A function that returns 1 if the address cannot be accessed by * a device and 0 if it can be. */ typedef int bus_dma_filter_t(void *, bus_addr_t); /* * Generic helper function for manipulating mutexes. */ void busdma_lock_mutex(void *arg, bus_dma_lock_op_t op); /* * Allocate a device specific dma_tag encapsulating the constraints of * the parent tag in addition to other restrictions specified: * * alignment: Alignment for segments. * boundary: Boundary that segments cannot cross. * lowaddr: Low restricted address that cannot appear in a mapping. * highaddr: High restricted address that cannot appear in a mapping. * filtfunc: An optional function to further test if an address * within the range of lowaddr and highaddr cannot appear * in a mapping. * filtfuncarg: An argument that will be passed to filtfunc in addition * to the address to test. * maxsize: Maximum mapping size supported by this tag. * nsegments: Number of discontinuities allowed in maps. * maxsegsz: Maximum size of a segment in the map. * flags: Bus DMA flags. * lockfunc: An optional function to handle driver-defined lock * operations. * lockfuncarg: An argument that will be passed to lockfunc in addition * to the lock operation. * dmat: A pointer to set to a valid dma tag should the return * value of this function indicate success. */ /* XXX Should probably allow specification of alignment */ int bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment, bus_addr_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_dma_filter_t *filtfunc, void *filtfuncarg, bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc, void *lockfuncarg, bus_dma_tag_t *dmat); /* * Functions for creating and cloning tags via a template, * * bus_dma_template_t is made avaialble publicly so it can be allocated * from the caller stack. Its contents should be considered private, and * should only be accessed via the documented APIs and macros */ typedef struct { bus_dma_tag_t parent; bus_size_t alignment; bus_addr_t boundary; bus_addr_t lowaddr; bus_addr_t highaddr; bus_size_t maxsize; int nsegments; bus_size_t maxsegsize; int flags; bus_dma_lock_t *lockfunc; void *lockfuncarg; const char *name; } bus_dma_template_t; /* * These enum values should not be re-ordered. BD_PARAM_INVALID is an * invalid key and will trigger a panic. */ typedef enum { BD_PARAM_INVALID = 0, BD_PARAM_PARENT = 1, BD_PARAM_ALIGNMENT = 2, BD_PARAM_BOUNDARY = 3, BD_PARAM_LOWADDR = 4, BD_PARAM_HIGHADDR = 5, BD_PARAM_MAXSIZE = 6, BD_PARAM_NSEGMENTS = 7, BD_PARAM_MAXSEGSIZE = 8, BD_PARAM_FLAGS = 9, BD_PARAM_LOCKFUNC = 10, BD_PARAM_LOCKFUNCARG = 11, BD_PARAM_NAME = 12 } bus_dma_param_key_t; /* These contents should also be considered private */ typedef struct { bus_dma_param_key_t key; union { void *ptr; vm_paddr_t pa; uintmax_t num; }; } bus_dma_param_t; #define BD_PARENT(val) { BD_PARAM_PARENT, .ptr = val } #define BD_ALIGNMENT(val) { BD_PARAM_ALIGNMENT, .num = val } #define BD_BOUNDARY(val) { BD_PARAM_BOUNDARY, .num = val } #define BD_LOWADDR(val) { BD_PARAM_LOWADDR, .pa = val } #define BD_HIGHADDR(val) { BD_PARAM_HIGHADDR, .pa = val } #define BD_MAXSIZE(val) { BD_PARAM_MAXSIZE, .num = val } #define BD_NSEGMENTS(val) { BD_PARAM_NSEGMENTS, .num = val } #define BD_MAXSEGSIZE(val) { BD_PARAM_MAXSEGSIZE, .num = val } #define BD_FLAGS(val) { BD_PARAM_FLAGS, .num = val } #define BD_LOCKFUNC(val) { BD_PARAM_LOCKFUNC, .ptr = val } #define BD_LOCKFUNCARG(val) { BD_PARAM_LOCKFUNCARG, .ptr = val } #define BD_NAME(val) { BD_PARAM_NAME, .ptr = val } #define BUS_DMA_TEMPLATE_FILL(t, kv...) \ do { \ bus_dma_param_t pm[] = { kv }; \ bus_dma_template_fill(t, pm, howmany(sizeof(pm), sizeof(pm[0]))); \ } while (0) void bus_dma_template_init(bus_dma_template_t *t, bus_dma_tag_t parent); int bus_dma_template_tag(bus_dma_template_t *t, bus_dma_tag_t *dmat); void bus_dma_template_clone(bus_dma_template_t *t, bus_dma_tag_t dmat); void bus_dma_template_fill(bus_dma_template_t *t, bus_dma_param_t *kv, u_int count); /* * Set the memory domain to be used for allocations. * * Automatic for PCI devices. Must be set prior to creating maps or * allocating memory. */ int bus_dma_tag_set_domain(bus_dma_tag_t dmat, int domain); int bus_dma_tag_destroy(bus_dma_tag_t dmat); /* * A function that processes a successfully loaded dma map or an error * from a delayed load map. */ typedef void bus_dmamap_callback_t(void *, bus_dma_segment_t *, int, int); /* * Like bus_dmamap_callback but includes map size in bytes. This is * defined as a separate interface to maintain compatibility for users * of bus_dmamap_callback_t--at some point these interfaces should be merged. */ typedef void bus_dmamap_callback2_t(void *, bus_dma_segment_t *, int, bus_size_t, int); /* * Map the buffer buf into bus space using the dmamap map. */ int bus_dmamap_load(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t buflen, bus_dmamap_callback_t *callback, void *callback_arg, int flags); /* * Like bus_dmamap_load but for mbufs. Note the use of the * bus_dmamap_callback2_t interface. */ int bus_dmamap_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *mbuf, bus_dmamap_callback2_t *callback, void *callback_arg, int flags); int bus_dmamap_load_mbuf_sg(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *mbuf, bus_dma_segment_t *segs, int *nsegs, int flags); /* * Like bus_dmamap_load but for uios. Note the use of the * bus_dmamap_callback2_t interface. */ int bus_dmamap_load_uio(bus_dma_tag_t dmat, bus_dmamap_t map, struct uio *ui, bus_dmamap_callback2_t *callback, void *callback_arg, int flags); /* * Like bus_dmamap_load but for cam control blocks. */ int bus_dmamap_load_ccb(bus_dma_tag_t dmat, bus_dmamap_t map, union ccb *ccb, bus_dmamap_callback_t *callback, void *callback_arg, int flags); /* * Like bus_dmamap_load but for bios. */ int bus_dmamap_load_bio(bus_dma_tag_t dmat, bus_dmamap_t map, struct bio *bio, bus_dmamap_callback_t *callback, void *callback_arg, int flags); /* * Like bus_dmamap_load but for crypto ops. */ int bus_dmamap_load_crp(bus_dma_tag_t dmat, bus_dmamap_t map, struct cryptop *crp, bus_dmamap_callback_t *callback, void *callback_arg, int flags); int bus_dmamap_load_crp_buffer(bus_dma_tag_t dmat, bus_dmamap_t map, struct crypto_buffer *cb, bus_dmamap_callback_t *callback, void *callback_arg, int flags); /* * Loads any memory descriptor. */ int bus_dmamap_load_mem(bus_dma_tag_t dmat, bus_dmamap_t map, struct memdesc *mem, bus_dmamap_callback_t *callback, void *callback_arg, int flags); /* * Placeholder for use by busdma implementations which do not benefit * from optimized procedure to load an array of vm_page_t. Falls back * to do _bus_dmamap_load_phys() in loop. */ int bus_dmamap_load_ma_triv(bus_dma_tag_t dmat, bus_dmamap_t map, struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags, bus_dma_segment_t *segs, int *segp); #ifdef WANT_INLINE_DMAMAP #define BUS_DMAMAP_OP static inline #else #define BUS_DMAMAP_OP #endif /* * Allocate a handle for mapping from kva/uva/physical * address space into bus device space. */ BUS_DMAMAP_OP int bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp); /* * Destroy a handle for mapping from kva/uva/physical * address space into bus device space. */ BUS_DMAMAP_OP int bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map); /* * Allocate a piece of memory that can be efficiently mapped into * bus device space based on the constraints listed in the dma tag. * A dmamap to for use with dmamap_load is also allocated. */ BUS_DMAMAP_OP int bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags, bus_dmamap_t *mapp); /* * Free a piece of memory and its allocated dmamap, that was allocated * via bus_dmamem_alloc. */ BUS_DMAMAP_OP void bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map); /* * Perform a synchronization operation on the given map. If the map * is NULL we have a fully IO-coherent system. */ BUS_DMAMAP_OP void bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t dmamap, bus_dmasync_op_t op); /* * Release the mapping held by map. */ BUS_DMAMAP_OP void bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t dmamap); #undef BUS_DMAMAP_OP #endif /* _KERNEL */ #endif /* _BUS_DMA_H_ */