/*- * SPDX-License-Identifier: Beerware * * ---------------------------------------------------------------------------- * "THE BEER-WARE LICENSE" (Revision 42): * wrote this file. As long as you retain this notice you * can do whatever you want with this stuff. If we meet some day, and you think * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp * ---------------------------------------------------------------------------- */ #ifndef _SYS_SMP_H_ #define _SYS_SMP_H_ #ifdef _KERNEL #ifndef LOCORE #include #include /* * Types of nodes in the topological tree. */ typedef enum { /* No node has this type; can be used in topo API calls. */ TOPO_TYPE_DUMMY, /* Processing unit aka computing unit aka logical CPU. */ TOPO_TYPE_PU, /* Physical subdivision of a package. */ TOPO_TYPE_CORE, /* CPU L1/L2/L3 cache. */ TOPO_TYPE_CACHE, /* Package aka chip, equivalent to socket. */ TOPO_TYPE_PKG, /* NUMA node. */ TOPO_TYPE_NODE, /* Other logical or physical grouping of PUs. */ /* E.g. PUs on the same dye, or PUs sharing an FPU. */ TOPO_TYPE_GROUP, /* The whole system. */ TOPO_TYPE_SYSTEM } topo_node_type; /* Hardware indenitifier of a topology component. */ typedef unsigned int hwid_t; /* Logical CPU idenitifier. */ typedef int cpuid_t; /* A node in the topology. */ struct topo_node { struct topo_node *parent; TAILQ_HEAD(topo_children, topo_node) children; TAILQ_ENTRY(topo_node) siblings; cpuset_t cpuset; topo_node_type type; uintptr_t subtype; hwid_t hwid; cpuid_t id; int nchildren; int cpu_count; }; /* * Scheduling topology of a NUMA or SMP system. * * The top level topology is an array of pointers to groups. Each group * contains a bitmask of cpus in its group or subgroups. It may also * contain a pointer to an array of child groups. * * The bitmasks at non leaf groups may be used by consumers who support * a smaller depth than the hardware provides. * * The topology may be omitted by systems where all CPUs are equal. */ struct cpu_group { struct cpu_group *cg_parent; /* Our parent group. */ struct cpu_group *cg_child; /* Optional children groups. */ cpuset_t cg_mask; /* Mask of cpus in this group. */ int32_t cg_count; /* Count of cpus in this group. */ int32_t cg_first; /* First cpu in this group. */ int32_t cg_last; /* Last cpu in this group. */ int16_t cg_children; /* Number of children groups. */ int8_t cg_level; /* Shared cache level. */ int8_t cg_flags; /* Traversal modifiers. */ }; typedef struct cpu_group *cpu_group_t; /* * Defines common resources for CPUs in the group. The highest level * resource should be used when multiple are shared. */ #define CG_SHARE_NONE 0 #define CG_SHARE_L1 1 #define CG_SHARE_L2 2 #define CG_SHARE_L3 3 #define MAX_CACHE_LEVELS CG_SHARE_L3 /* * Behavior modifiers for load balancing and affinity. */ #define CG_FLAG_HTT 0x01 /* Schedule the alternate core last. */ #define CG_FLAG_SMT 0x02 /* New age htt, less crippled. */ #define CG_FLAG_THREAD (CG_FLAG_HTT | CG_FLAG_SMT) /* Any threading. */ #define CG_FLAG_NODE 0x04 /* NUMA node. */ /* * Convenience routines for building and traversing topologies. */ #ifdef SMP void topo_init_node(struct topo_node *node); void topo_init_root(struct topo_node *root); struct topo_node * topo_add_node_by_hwid(struct topo_node *parent, int hwid, topo_node_type type, uintptr_t subtype); struct topo_node * topo_find_node_by_hwid(struct topo_node *parent, int hwid, topo_node_type type, uintptr_t subtype); void topo_promote_child(struct topo_node *child); struct topo_node * topo_next_node(struct topo_node *top, struct topo_node *node); struct topo_node * topo_next_nonchild_node(struct topo_node *top, struct topo_node *node); void topo_set_pu_id(struct topo_node *node, cpuid_t id); enum topo_level { TOPO_LEVEL_PKG = 0, /* * Some systems have useful sub-package core organizations. On these, * a package has one or more subgroups. Each subgroup contains one or * more cache groups (cores that share a last level cache). */ TOPO_LEVEL_GROUP, TOPO_LEVEL_CACHEGROUP, TOPO_LEVEL_CORE, TOPO_LEVEL_THREAD, TOPO_LEVEL_COUNT /* Must be last */ }; struct topo_analysis { int entities[TOPO_LEVEL_COUNT]; }; int topo_analyze(struct topo_node *topo_root, int all, struct topo_analysis *results); #define TOPO_FOREACH(i, root) \ for (i = root; i != NULL; i = topo_next_node(root, i)) struct cpu_group *smp_topo(void); struct cpu_group *smp_topo_alloc(u_int count); struct cpu_group *smp_topo_none(void); struct cpu_group *smp_topo_1level(int l1share, int l1count, int l1flags); struct cpu_group *smp_topo_2level(int l2share, int l2count, int l1share, int l1count, int l1flags); struct cpu_group *smp_topo_find(struct cpu_group *top, int cpu); extern void (*cpustop_restartfunc)(void); /* The suspend/resume cpusets are x86 only, but minimize ifdefs. */ extern volatile cpuset_t resuming_cpus; /* woken up cpus in suspend pen */ extern volatile cpuset_t started_cpus; /* cpus to let out of stop pen */ extern volatile cpuset_t stopped_cpus; /* cpus in stop pen */ extern volatile cpuset_t suspended_cpus; /* cpus [near] sleeping in susp pen */ extern volatile cpuset_t toresume_cpus; /* cpus to let out of suspend pen */ extern cpuset_t hlt_cpus_mask; /* XXX 'mask' is detail in old impl */ extern cpuset_t logical_cpus_mask; #endif /* SMP */ extern u_int mp_maxid; extern int mp_maxcpus; extern int mp_ncores; extern int mp_ncpus; extern int smp_cpus; extern volatile int smp_started; extern int smp_threads_per_core; extern cpuset_t all_cpus; extern cpuset_t cpuset_domain[MAXMEMDOM]; /* CPUs in each NUMA domain. */ struct pcb; extern struct pcb *stoppcbs; /* * Macro allowing us to determine whether a CPU is absent at any given * time, thus permitting us to configure sparse maps of cpuid-dependent * (per-CPU) structures. */ #define CPU_ABSENT(x_cpu) (!CPU_ISSET(x_cpu, &all_cpus)) /* * Macros to iterate over non-absent CPUs. CPU_FOREACH() takes an * integer iterator and iterates over the available set of CPUs. * CPU_FIRST() returns the id of the first non-absent CPU. CPU_NEXT() * returns the id of the next non-absent CPU. It will wrap back to * CPU_FIRST() once the end of the list is reached. The iterators are * currently implemented via inline functions. */ #define CPU_FOREACH(i) \ for ((i) = 0; (i) <= mp_maxid; (i)++) \ if (!CPU_ABSENT((i))) static __inline int cpu_first(void) { int i; for (i = 0;; i++) if (!CPU_ABSENT(i)) return (i); } static __inline int cpu_next(int i) { for (;;) { i++; if ((u_int)i > mp_maxid) i = 0; if (!CPU_ABSENT(i)) return (i); } } #define CPU_FIRST() cpu_first() #define CPU_NEXT(i) cpu_next((i)) #ifdef SMP /* * Machine dependent functions used to initialize MP support. * * The cpu_mp_probe() should check to see if MP support is present and return * zero if it is not or non-zero if it is. If MP support is present, then * cpu_mp_start() will be called so that MP can be enabled. This function * should do things such as startup secondary processors. It should also * setup mp_ncpus, all_cpus, and smp_cpus. It should also ensure that * smp_started is initialized at the appropriate time. * Once cpu_mp_start() returns, machine independent MP startup code will be * executed and a simple message will be output to the console. Finally, * cpu_mp_announce() will be called so that machine dependent messages about * the MP support may be output to the console if desired. * * The cpu_setmaxid() function is called very early during the boot process * so that the MD code may set mp_maxid to provide an upper bound on CPU IDs * that other subsystems may use. If a platform is not able to determine * the exact maximum ID that early, then it may set mp_maxid to MAXCPU - 1. */ struct thread; struct cpu_group *cpu_topo(void); void cpu_mp_announce(void); int cpu_mp_probe(void); void cpu_mp_setmaxid(void); void cpu_mp_start(void); void forward_signal(struct thread *); int restart_cpus(cpuset_t); int stop_cpus(cpuset_t); int stop_cpus_hard(cpuset_t); #if defined(__amd64__) || defined(__i386__) int suspend_cpus(cpuset_t); int resume_cpus(cpuset_t); #endif void smp_rendezvous_action(void); extern struct mtx smp_ipi_mtx; #endif /* SMP */ int quiesce_all_cpus(const char *, int); int quiesce_cpus(cpuset_t, const char *, int); void quiesce_all_critical(void); void cpus_fence_seq_cst(void); void smp_no_rendezvous_barrier(void *); void smp_rendezvous(void (*)(void *), void (*)(void *), void (*)(void *), void *arg); void smp_rendezvous_cpus(cpuset_t, void (*)(void *), void (*)(void *), void (*)(void *), void *arg); struct smp_rendezvous_cpus_retry_arg { cpuset_t cpus; }; void smp_rendezvous_cpus_retry(cpuset_t, void (*)(void *), void (*)(void *), void (*)(void *), void (*)(void *, int), struct smp_rendezvous_cpus_retry_arg *); void smp_rendezvous_cpus_done(struct smp_rendezvous_cpus_retry_arg *); #endif /* !LOCORE */ #endif /* _KERNEL */ #endif /* _SYS_SMP_H_ */