/* * Copyright (c) 1982, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)time.h 8.5 (Berkeley) 5/4/95 * $FreeBSD$ */ #ifndef _SYS_TIME_H_ #define _SYS_TIME_H_ #include /* * Structure returned by gettimeofday(2) system call, * and used in other calls. */ struct timeval { long tv_sec; /* seconds */ long tv_usec; /* and microseconds */ }; #ifndef _TIMESPEC_DECLARED #define _TIMESPEC_DECLARED struct timespec { time_t tv_sec; /* seconds */ long tv_nsec; /* and nanoseconds */ }; #endif #define TIMEVAL_TO_TIMESPEC(tv, ts) \ do { \ (ts)->tv_sec = (tv)->tv_sec; \ (ts)->tv_nsec = (tv)->tv_usec * 1000; \ } while (0) #define TIMESPEC_TO_TIMEVAL(tv, ts) \ do { \ (tv)->tv_sec = (ts)->tv_sec; \ (tv)->tv_usec = (ts)->tv_nsec / 1000; \ } while (0) struct timezone { int tz_minuteswest; /* minutes west of Greenwich */ int tz_dsttime; /* type of dst correction */ }; #define DST_NONE 0 /* not on dst */ #define DST_USA 1 /* USA style dst */ #define DST_AUST 2 /* Australian style dst */ #define DST_WET 3 /* Western European dst */ #define DST_MET 4 /* Middle European dst */ #define DST_EET 5 /* Eastern European dst */ #define DST_CAN 6 /* Canada */ /* * Structure used to interface to the machine dependent hardware support * for timekeeping. * * A timecounter is a (hard or soft) binary counter which has two properties: * * it runs at a fixed, known frequency. * * it must not roll over in less than (1 + delta)/HZ seconds. "delta" * is expected to be less than 20 msec, but no hard data has been * collected on this. 16 bit at 5 MHz (31 msec) is known to work. * * get_timecount() reads the counter. * * counter_mask removes unimplemented bits from the count value. * * frequency is the counter frequency in hz. * * name is a short mnemonic name for this counter. * * cost is a measure of how long time it takes to read the counter. * * adjustment [PPM << 16] which means that the smallest unit of correction * you can apply amounts to 481.5 usec/year. * * scale_micro [2^32 * usec/tick]. * scale_nano_i [ns/tick]. * scale_nano_f [(ns/2^32)/tick]. * * offset_count is the contents of the counter which corresponds to the * rest of the offset_* values. * * offset_sec [s]. * offset_micro [usec]. * offset_nano [ns/2^32] is misnamed, the real unit is .23283064365... * attoseconds (10E-18) and before you ask: yes, they are in fact * called attoseconds, it comes from "atten" for 18 in Danish/Swedish. * * Each timecounter must supply an array of three timecounters, this is needed * to guarantee atomicity in the code. Index zero is used to transport * modifications, for instance done with sysctl, into the timecounter being * used in a safe way. Such changes may be adopted with a delay of up to 1/HZ, * index one & two are used alternately for the actual timekeeping. * * 'tc_avail' points to the next available (external) timecounter in a * circular queue. This is only valid for index 0. * * `tc_other' points to the next "work" timecounter in a circular queue, * i.e., for index i > 0 it points to index 1 + (i - 1) % NTIMECOUNTER. * We also use it to point from index 0 to index 1. * * `tc_tweak' points to index 0. */ struct timecounter; typedef unsigned timecounter_get_t __P((struct timecounter *)); typedef void timecounter_pps_t __P((struct timecounter *)); struct timecounter { /* These fields must be initialized by the driver. */ timecounter_get_t *tc_get_timecount; timecounter_pps_t *tc_poll_pps; unsigned tc_counter_mask; u_int32_t tc_frequency; char *tc_name; void *tc_priv; /* These fields will be managed by the generic code. */ int64_t tc_adjustment; u_int32_t tc_scale_micro; u_int32_t tc_scale_nano_i; u_int32_t tc_scale_nano_f; unsigned tc_offset_count; u_int32_t tc_offset_sec; u_int32_t tc_offset_micro; u_int64_t tc_offset_nano; struct timeval tc_microtime; struct timespec tc_nanotime; struct timecounter *tc_avail; struct timecounter *tc_other; struct timecounter *tc_tweak; }; #ifdef KERNEL /* Operations on timespecs */ #define timespecclear(tvp) ((tvp)->tv_sec = (tvp)->tv_nsec = 0) #define timespecisset(tvp) ((tvp)->tv_sec || (tvp)->tv_nsec) #define timespeccmp(tvp, uvp, cmp) \ (((tvp)->tv_sec == (uvp)->tv_sec) ? \ ((tvp)->tv_nsec cmp (uvp)->tv_nsec) : \ ((tvp)->tv_sec cmp (uvp)->tv_sec)) #define timespecadd(vvp, uvp) \ do { \ (vvp)->tv_sec += (uvp)->tv_sec; \ (vvp)->tv_nsec += (uvp)->tv_nsec; \ if ((vvp)->tv_nsec >= 1000000000) { \ (vvp)->tv_sec++; \ (vvp)->tv_nsec -= 1000000000; \ } \ } while (0) #define timespecsub(vvp, uvp) \ do { \ (vvp)->tv_sec -= (uvp)->tv_sec; \ (vvp)->tv_nsec -= (uvp)->tv_nsec; \ if ((vvp)->tv_nsec < 0) { \ (vvp)->tv_sec--; \ (vvp)->tv_nsec += 1000000000; \ } \ } while (0) /* Operations on timevals. */ #define timevalclear(tvp) (tvp)->tv_sec = (tvp)->tv_usec = 0 #define timevalisset(tvp) ((tvp)->tv_sec || (tvp)->tv_usec) #define timevalcmp(tvp, uvp, cmp) \ (((tvp)->tv_sec == (uvp)->tv_sec) ? \ ((tvp)->tv_usec cmp (uvp)->tv_usec) : \ ((tvp)->tv_sec cmp (uvp)->tv_sec)) /* timevaladd and timevalsub are not inlined */ #endif /* KERNEL */ #ifndef KERNEL /* NetBSD/OpenBSD compatable interfaces */ #define timerclear(tvp) (tvp)->tv_sec = (tvp)->tv_usec = 0 #define timerisset(tvp) ((tvp)->tv_sec || (tvp)->tv_usec) #define timercmp(tvp, uvp, cmp) \ (((tvp)->tv_sec == (uvp)->tv_sec) ? \ ((tvp)->tv_usec cmp (uvp)->tv_usec) : \ ((tvp)->tv_sec cmp (uvp)->tv_sec)) #define timeradd(tvp, uvp, vvp) \ do { \ (vvp)->tv_sec = (tvp)->tv_sec + (uvp)->tv_sec; \ (vvp)->tv_usec = (tvp)->tv_usec + (uvp)->tv_usec; \ if ((vvp)->tv_usec >= 1000000) { \ (vvp)->tv_sec++; \ (vvp)->tv_usec -= 1000000; \ } \ } while (0) #define timersub(tvp, uvp, vvp) \ do { \ (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ if ((vvp)->tv_usec < 0) { \ (vvp)->tv_sec--; \ (vvp)->tv_usec += 1000000; \ } \ } while (0) #endif /* * Names of the interval timers, and structure * defining a timer setting. */ #define ITIMER_REAL 0 #define ITIMER_VIRTUAL 1 #define ITIMER_PROF 2 struct itimerval { struct timeval it_interval; /* timer interval */ struct timeval it_value; /* current value */ }; /* * Getkerninfo clock information structure */ struct clockinfo { int hz; /* clock frequency */ int tick; /* micro-seconds per hz tick */ int tickadj; /* clock skew rate for adjtime() */ int stathz; /* statistics clock frequency */ int profhz; /* profiling clock frequency */ }; /* CLOCK_REALTIME and TIMER_ABSTIME are supposed to be in time.h */ #ifndef CLOCK_REALTIME #define CLOCK_REALTIME 0 #endif #define CLOCK_VIRTUAL 1 #define CLOCK_PROF 2 #define TIMER_RELTIME 0x0 /* relative timer */ #ifndef TIMER_ABSTIME #define TIMER_ABSTIME 0x1 /* absolute timer */ #endif #ifdef KERNEL extern struct timecounter *timecounter; extern time_t time_second; void getmicrouptime __P((struct timeval *tv)); void getmicrotime __P((struct timeval *tv)); void getnanouptime __P((struct timespec *tv)); void getnanotime __P((struct timespec *tv)); void init_timecounter __P((struct timecounter *tc)); int itimerdecr __P((struct itimerval *itp, int usec)); int itimerfix __P((struct timeval *tv)); void microuptime __P((struct timeval *tv)); void microtime __P((struct timeval *tv)); void nanouptime __P((struct timespec *ts)); void nanotime __P((struct timespec *ts)); void set_timecounter __P((struct timespec *ts)); void timevaladd __P((struct timeval *, struct timeval *)); void timevalsub __P((struct timeval *, struct timeval *)); int tvtohz __P((struct timeval *)); void update_timecounter __P((struct timecounter *tc)); #else /* !KERNEL */ #include #include __BEGIN_DECLS int adjtime __P((const struct timeval *, struct timeval *)); int getitimer __P((int, struct itimerval *)); int gettimeofday __P((struct timeval *, struct timezone *)); int setitimer __P((int, const struct itimerval *, struct itimerval *)); int settimeofday __P((const struct timeval *, const struct timezone *)); int utimes __P((const char *, const struct timeval *)); __END_DECLS #endif /* !KERNEL */ #endif /* !_SYS_TIME_H_ */