// RUN: %clang_analyze_cc1 -analyzer-checker=core,unix.cstring,alpha.unix.cstring,debug.ExprInspection -analyzer-store=region -verify -analyzer-config eagerly-assume=false %s // RUN: %clang_analyze_cc1 -DUSE_BUILTINS -analyzer-checker=core,unix.cstring,alpha.unix.cstring,debug.ExprInspection -analyzer-store=region -verify -analyzer-config eagerly-assume=false %s // RUN: %clang_analyze_cc1 -DVARIANT -analyzer-checker=core,unix.cstring,alpha.unix.cstring,debug.ExprInspection -analyzer-store=region -verify -analyzer-config eagerly-assume=false %s // RUN: %clang_analyze_cc1 -DUSE_BUILTINS -DVARIANT -analyzer-checker=core,unix.cstring,alpha.unix.cstring,debug.ExprInspection -analyzer-store=region -verify -analyzer-config eagerly-assume=false %s //===----------------------------------------------------------------------=== // Declarations //===----------------------------------------------------------------------=== // Some functions are so similar to each other that they follow the same code // path, such as memcpy and __memcpy_chk, or memcmp and bcmp. If VARIANT is // defined, make sure to use the variants instead to make sure they are still // checked by the analyzer. // Some functions are implemented as builtins. These should be #defined as // BUILTIN(f), which will prepend "__builtin_" if USE_BUILTINS is defined. // Functions that have variants and are also available as builtins should be // declared carefully! See memcpy() for an example. #ifdef USE_BUILTINS # define BUILTIN(f) __builtin_ ## f #else /* USE_BUILTINS */ # define BUILTIN(f) f #endif /* USE_BUILTINS */ typedef typeof(sizeof(int)) size_t; void clang_analyzer_eval(int); //===----------------------------------------------------------------------=== // memcpy() //===----------------------------------------------------------------------=== #ifdef VARIANT #define __memcpy_chk BUILTIN(__memcpy_chk) void *__memcpy_chk(void *restrict s1, const void *restrict s2, size_t n, size_t destlen); #define memcpy(a,b,c) __memcpy_chk(a,b,c,(size_t)-1) #else /* VARIANT */ #define memcpy BUILTIN(memcpy) void *memcpy(void *restrict s1, const void *restrict s2, size_t n); #endif /* VARIANT */ void memcpy0 () { char src[] = {1, 2, 3, 4}; char dst[4] = {0}; memcpy(dst, src, 4); // no-warning clang_analyzer_eval(memcpy(dst, src, 4) == dst); // expected-warning{{TRUE}} // If we actually model the copy, we can make this known. // The important thing for now is that the old value has been invalidated. clang_analyzer_eval(dst[0] != 0); // expected-warning{{UNKNOWN}} } void memcpy1 () { char src[] = {1, 2, 3, 4}; char dst[10]; memcpy(dst, src, 5); // expected-warning{{Memory copy function accesses out-of-bound array element}} } void memcpy2 () { char src[] = {1, 2, 3, 4}; char dst[1]; memcpy(dst, src, 4); // expected-warning{{Memory copy function overflows destination buffer}} } void memcpy3 () { char src[] = {1, 2, 3, 4}; char dst[3]; memcpy(dst+1, src+2, 2); // no-warning } void memcpy4 () { char src[] = {1, 2, 3, 4}; char dst[10]; memcpy(dst+2, src+2, 3); // expected-warning{{Memory copy function accesses out-of-bound array element}} } void memcpy5() { char src[] = {1, 2, 3, 4}; char dst[3]; memcpy(dst+2, src+2, 2); // expected-warning{{Memory copy function overflows destination buffer}} } void memcpy6() { int a[4] = {0}; memcpy(a, a, 8); // expected-warning{{overlapping}} } void memcpy7() { int a[4] = {0}; memcpy(a+2, a+1, 8); // expected-warning{{overlapping}} } void memcpy8() { int a[4] = {0}; memcpy(a+1, a+2, 8); // expected-warning{{overlapping}} } void memcpy9() { int a[4] = {0}; memcpy(a+2, a+1, 4); // no-warning memcpy(a+1, a+2, 4); // no-warning } void memcpy10() { char a[4] = {0}; memcpy(0, a, 4); // expected-warning{{Null pointer argument in call to memory copy function}} } void memcpy11() { char a[4] = {0}; memcpy(a, 0, 4); // expected-warning{{Null pointer argument in call to memory copy function}} } void memcpy12() { char a[4] = {0}; memcpy(0, a, 0); // no-warning } void memcpy13() { char a[4] = {0}; memcpy(a, 0, 0); // no-warning } void memcpy_unknown_size (size_t n) { char a[4], b[4] = {1}; clang_analyzer_eval(memcpy(a, b, n) == a); // expected-warning{{TRUE}} } void memcpy_unknown_size_warn (size_t n) { char a[4]; void *result = memcpy(a, 0, n); // expected-warning{{Null pointer argument in call to memory copy function}} clang_analyzer_eval(result == a); // no-warning (above is fatal) } //===----------------------------------------------------------------------=== // mempcpy() //===----------------------------------------------------------------------=== #ifdef VARIANT #define __mempcpy_chk BUILTIN(__mempcpy_chk) void *__mempcpy_chk(void *restrict s1, const void *restrict s2, size_t n, size_t destlen); #define mempcpy(a,b,c) __mempcpy_chk(a,b,c,(size_t)-1) #else /* VARIANT */ #define mempcpy BUILTIN(mempcpy) void *mempcpy(void *restrict s1, const void *restrict s2, size_t n); #endif /* VARIANT */ void mempcpy0 () { char src[] = {1, 2, 3, 4}; char dst[5] = {0}; mempcpy(dst, src, 4); // no-warning clang_analyzer_eval(mempcpy(dst, src, 4) == &dst[4]); // expected-warning{{TRUE}} // If we actually model the copy, we can make this known. // The important thing for now is that the old value has been invalidated. clang_analyzer_eval(dst[0] != 0); // expected-warning{{UNKNOWN}} } void mempcpy1 () { char src[] = {1, 2, 3, 4}; char dst[10]; mempcpy(dst, src, 5); // expected-warning{{Memory copy function accesses out-of-bound array element}} } void mempcpy2 () { char src[] = {1, 2, 3, 4}; char dst[1]; mempcpy(dst, src, 4); // expected-warning{{Memory copy function overflows destination buffer}} } void mempcpy3 () { char src[] = {1, 2, 3, 4}; char dst[3]; mempcpy(dst+1, src+2, 2); // no-warning } void mempcpy4 () { char src[] = {1, 2, 3, 4}; char dst[10]; mempcpy(dst+2, src+2, 3); // expected-warning{{Memory copy function accesses out-of-bound array element}} } void mempcpy5() { char src[] = {1, 2, 3, 4}; char dst[3]; mempcpy(dst+2, src+2, 2); // expected-warning{{Memory copy function overflows destination buffer}} } void mempcpy6() { int a[4] = {0}; mempcpy(a, a, 8); // expected-warning{{overlapping}} } void mempcpy7() { int a[4] = {0}; mempcpy(a+2, a+1, 8); // expected-warning{{overlapping}} } void mempcpy8() { int a[4] = {0}; mempcpy(a+1, a+2, 8); // expected-warning{{overlapping}} } void mempcpy9() { int a[4] = {0}; mempcpy(a+2, a+1, 4); // no-warning mempcpy(a+1, a+2, 4); // no-warning } void mempcpy10() { char a[4] = {0}; mempcpy(0, a, 4); // expected-warning{{Null pointer argument in call to memory copy function}} } void mempcpy11() { char a[4] = {0}; mempcpy(a, 0, 4); // expected-warning{{Null pointer argument in call to memory copy function}} } void mempcpy12() { char a[4] = {0}; mempcpy(0, a, 0); // no-warning } void mempcpy13() { char a[4] = {0}; mempcpy(a, 0, 0); // no-warning } void mempcpy14() { int src[] = {1, 2, 3, 4}; int dst[5] = {0}; int *p; p = mempcpy(dst, src, 4 * sizeof(int)); clang_analyzer_eval(p == &dst[4]); // expected-warning{{TRUE}} } struct st { int i; int j; }; void mempcpy15() { struct st s1 = {0}; struct st s2; struct st *p1; struct st *p2; p1 = (&s2) + 1; p2 = mempcpy(&s2, &s1, sizeof(struct st)); clang_analyzer_eval(p1 == p2); // expected-warning{{TRUE}} } void mempcpy16() { struct st s1[10] = {{0}}; struct st s2[10]; struct st *p1; struct st *p2; p1 = (&s2[0]) + 5; p2 = mempcpy(&s2[0], &s1[0], 5 * sizeof(struct st)); clang_analyzer_eval(p1 == p2); // expected-warning{{TRUE}} } void mempcpy_unknown_size_warn (size_t n) { char a[4]; void *result = mempcpy(a, 0, n); // expected-warning{{Null pointer argument in call to memory copy function}} clang_analyzer_eval(result == a); // no-warning (above is fatal) } void mempcpy_unknownable_size (char *src, float n) { char a[4]; // This used to crash because we don't model floats. mempcpy(a, src, (size_t)n); } //===----------------------------------------------------------------------=== // memmove() //===----------------------------------------------------------------------=== #ifdef VARIANT #define __memmove_chk BUILTIN(__memmove_chk) void *__memmove_chk(void *s1, const void *s2, size_t n, size_t destlen); #define memmove(a,b,c) __memmove_chk(a,b,c,(size_t)-1) #else /* VARIANT */ #define memmove BUILTIN(memmove) void *memmove(void *s1, const void *s2, size_t n); #endif /* VARIANT */ void memmove0 () { char src[] = {1, 2, 3, 4}; char dst[4] = {0}; memmove(dst, src, 4); // no-warning clang_analyzer_eval(memmove(dst, src, 4) == dst); // expected-warning{{TRUE}} // If we actually model the copy, we can make this known. // The important thing for now is that the old value has been invalidated. clang_analyzer_eval(dst[0] != 0); // expected-warning{{UNKNOWN}} } void memmove1 () { char src[] = {1, 2, 3, 4}; char dst[10]; memmove(dst, src, 5); // expected-warning{{out-of-bound}} } void memmove2 () { char src[] = {1, 2, 3, 4}; char dst[1]; memmove(dst, src, 4); // expected-warning{{overflow}} } //===----------------------------------------------------------------------=== // memcmp() //===----------------------------------------------------------------------=== #ifdef VARIANT #define bcmp BUILTIN(bcmp) // __builtin_bcmp is not defined with const in Builtins.def. int bcmp(/*const*/ void *s1, /*const*/ void *s2, size_t n); #define memcmp bcmp // #else /* VARIANT */ #define memcmp BUILTIN(memcmp) int memcmp(const void *s1, const void *s2, size_t n); #endif /* VARIANT */ void memcmp0 () { char a[] = {1, 2, 3, 4}; char b[4] = { 0 }; memcmp(a, b, 4); // no-warning } void memcmp1 () { char a[] = {1, 2, 3, 4}; char b[10] = { 0 }; memcmp(a, b, 5); // expected-warning{{out-of-bound}} } void memcmp2 () { char a[] = {1, 2, 3, 4}; char b[1] = { 0 }; memcmp(a, b, 4); // expected-warning{{out-of-bound}} } void memcmp3 () { char a[] = {1, 2, 3, 4}; clang_analyzer_eval(memcmp(a, a, 4) == 0); // expected-warning{{TRUE}} } void memcmp4 (char *input) { char a[] = {1, 2, 3, 4}; clang_analyzer_eval(memcmp(a, input, 4) == 0); // expected-warning{{UNKNOWN}} } void memcmp5 (char *input) { char a[] = {1, 2, 3, 4}; clang_analyzer_eval(memcmp(a, 0, 0) == 0); // expected-warning{{TRUE}} clang_analyzer_eval(memcmp(0, a, 0) == 0); // expected-warning{{TRUE}} clang_analyzer_eval(memcmp(a, input, 0) == 0); // expected-warning{{TRUE}} } void memcmp6 (char *a, char *b, size_t n) { int result = memcmp(a, b, n); if (result != 0) clang_analyzer_eval(n != 0); // expected-warning{{TRUE}} // else // analyzer_assert_unknown(n == 0); // We can't do the above comparison because n has already been constrained. // On one path n == 0, on the other n != 0. } int memcmp7 (char *a, size_t x, size_t y, size_t n) { // We used to crash when either of the arguments was unknown. return memcmp(a, &a[x*y], n) + memcmp(&a[x*y], a, n); } //===----------------------------------------------------------------------=== // bcopy() //===----------------------------------------------------------------------=== #define bcopy BUILTIN(bcopy) // __builtin_bcopy is not defined with const in Builtins.def. void bcopy(/*const*/ void *s1, void *s2, size_t n); void bcopy0 () { char src[] = {1, 2, 3, 4}; char dst[4] = {0}; bcopy(src, dst, 4); // no-warning // If we actually model the copy, we can make this known. // The important thing for now is that the old value has been invalidated. clang_analyzer_eval(dst[0] != 0); // expected-warning{{UNKNOWN}} } void bcopy1 () { char src[] = {1, 2, 3, 4}; char dst[10]; bcopy(src, dst, 5); // expected-warning{{out-of-bound}} } void bcopy2 () { char src[] = {1, 2, 3, 4}; char dst[1]; bcopy(src, dst, 4); // expected-warning{{overflow}} } void *malloc(size_t); void free(void *); char radar_11125445_memcopythenlogfirstbyte(const char *input, size_t length) { char *bytes = malloc(sizeof(char) * (length + 1)); memcpy(bytes, input, length); char x = bytes[0]; // no warning free(bytes); return x; } struct S { char f; }; void nocrash_on_locint_offset(void *addr, void* from, struct S s) { int iAdd = (int) addr; memcpy(((void *) &(s.f)), from, iAdd); }