//===- CIndex.cpp - Clang-C Source Indexing Library -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the main API hooks in the Clang-C Source Indexing // library. // //===----------------------------------------------------------------------===// #include "CIndexer.h" #include "CXCursor.h" #include "CXTranslationUnit.h" #include "CXString.h" #include "CXType.h" #include "CXSourceLocation.h" #include "CIndexDiagnostic.h" #include "clang/Basic/Version.h" #include "clang/AST/DeclVisitor.h" #include "clang/AST/StmtVisitor.h" #include "clang/AST/TypeLocVisitor.h" #include "clang/Basic/Diagnostic.h" #include "clang/Frontend/ASTUnit.h" #include "clang/Frontend/CompilerInstance.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Lex/Lexer.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/PreprocessingRecord.h" #include "clang/Lex/Preprocessor.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/StringSwitch.h" #include "clang/Analysis/Support/SaveAndRestore.h" #include "llvm/Support/CrashRecoveryContext.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Timer.h" #include "llvm/Support/Mutex.h" #include "llvm/Support/Program.h" #include "llvm/Support/Signals.h" #include "llvm/Support/Threading.h" #include "llvm/Support/Compiler.h" using namespace clang; using namespace clang::cxcursor; using namespace clang::cxstring; static CXTranslationUnit MakeCXTranslationUnit(ASTUnit *TU) { if (!TU) return 0; CXTranslationUnit D = new CXTranslationUnitImpl(); D->TUData = TU; D->StringPool = createCXStringPool(); return D; } /// \brief The result of comparing two source ranges. enum RangeComparisonResult { /// \brief Either the ranges overlap or one of the ranges is invalid. RangeOverlap, /// \brief The first range ends before the second range starts. RangeBefore, /// \brief The first range starts after the second range ends. RangeAfter }; /// \brief Compare two source ranges to determine their relative position in /// the translation unit. static RangeComparisonResult RangeCompare(SourceManager &SM, SourceRange R1, SourceRange R2) { assert(R1.isValid() && "First range is invalid?"); assert(R2.isValid() && "Second range is invalid?"); if (R1.getEnd() != R2.getBegin() && SM.isBeforeInTranslationUnit(R1.getEnd(), R2.getBegin())) return RangeBefore; if (R2.getEnd() != R1.getBegin() && SM.isBeforeInTranslationUnit(R2.getEnd(), R1.getBegin())) return RangeAfter; return RangeOverlap; } /// \brief Determine if a source location falls within, before, or after a /// a given source range. static RangeComparisonResult LocationCompare(SourceManager &SM, SourceLocation L, SourceRange R) { assert(R.isValid() && "First range is invalid?"); assert(L.isValid() && "Second range is invalid?"); if (L == R.getBegin() || L == R.getEnd()) return RangeOverlap; if (SM.isBeforeInTranslationUnit(L, R.getBegin())) return RangeBefore; if (SM.isBeforeInTranslationUnit(R.getEnd(), L)) return RangeAfter; return RangeOverlap; } /// \brief Translate a Clang source range into a CIndex source range. /// /// Clang internally represents ranges where the end location points to the /// start of the token at the end. However, for external clients it is more /// useful to have a CXSourceRange be a proper half-open interval. This routine /// does the appropriate translation. CXSourceRange cxloc::translateSourceRange(const SourceManager &SM, const LangOptions &LangOpts, const CharSourceRange &R) { // We want the last character in this location, so we will adjust the // location accordingly. SourceLocation EndLoc = R.getEnd(); if (EndLoc.isValid() && EndLoc.isMacroID()) EndLoc = SM.getInstantiationRange(EndLoc).second; if (R.isTokenRange() && !EndLoc.isInvalid() && EndLoc.isFileID()) { unsigned Length = Lexer::MeasureTokenLength(EndLoc, SM, LangOpts); EndLoc = EndLoc.getFileLocWithOffset(Length); } CXSourceRange Result = { { (void *)&SM, (void *)&LangOpts }, R.getBegin().getRawEncoding(), EndLoc.getRawEncoding() }; return Result; } //===----------------------------------------------------------------------===// // Cursor visitor. //===----------------------------------------------------------------------===// namespace { class VisitorJob { public: enum Kind { DeclVisitKind, StmtVisitKind, MemberExprPartsKind, TypeLocVisitKind, OverloadExprPartsKind, DeclRefExprPartsKind, LabelRefVisitKind, ExplicitTemplateArgsVisitKind, NestedNameSpecifierVisitKind, NestedNameSpecifierLocVisitKind, DeclarationNameInfoVisitKind, MemberRefVisitKind, SizeOfPackExprPartsKind }; protected: void *data[3]; CXCursor parent; Kind K; VisitorJob(CXCursor C, Kind k, void *d1, void *d2 = 0, void *d3 = 0) : parent(C), K(k) { data[0] = d1; data[1] = d2; data[2] = d3; } public: Kind getKind() const { return K; } const CXCursor &getParent() const { return parent; } static bool classof(VisitorJob *VJ) { return true; } }; typedef llvm::SmallVector VisitorWorkList; // Cursor visitor. class CursorVisitor : public DeclVisitor, public TypeLocVisitor { /// \brief The translation unit we are traversing. CXTranslationUnit TU; ASTUnit *AU; /// \brief The parent cursor whose children we are traversing. CXCursor Parent; /// \brief The declaration that serves at the parent of any statement or /// expression nodes. Decl *StmtParent; /// \brief The visitor function. CXCursorVisitor Visitor; /// \brief The opaque client data, to be passed along to the visitor. CXClientData ClientData; // MaxPCHLevel - the maximum PCH level of declarations that we will pass on // to the visitor. Declarations with a PCH level greater than this value will // be suppressed. unsigned MaxPCHLevel; /// \brief Whether we should visit the preprocessing record entries last, /// after visiting other declarations. bool VisitPreprocessorLast; /// \brief When valid, a source range to which the cursor should restrict /// its search. SourceRange RegionOfInterest; // FIXME: Eventually remove. This part of a hack to support proper // iteration over all Decls contained lexically within an ObjC container. DeclContext::decl_iterator *DI_current; DeclContext::decl_iterator DE_current; // Cache of pre-allocated worklists for data-recursion walk of Stmts. llvm::SmallVector WorkListFreeList; llvm::SmallVector WorkListCache; using DeclVisitor::Visit; using TypeLocVisitor::Visit; /// \brief Determine whether this particular source range comes before, comes /// after, or overlaps the region of interest. /// /// \param R a half-open source range retrieved from the abstract syntax tree. RangeComparisonResult CompareRegionOfInterest(SourceRange R); class SetParentRAII { CXCursor &Parent; Decl *&StmtParent; CXCursor OldParent; public: SetParentRAII(CXCursor &Parent, Decl *&StmtParent, CXCursor NewParent) : Parent(Parent), StmtParent(StmtParent), OldParent(Parent) { Parent = NewParent; if (clang_isDeclaration(Parent.kind)) StmtParent = getCursorDecl(Parent); } ~SetParentRAII() { Parent = OldParent; if (clang_isDeclaration(Parent.kind)) StmtParent = getCursorDecl(Parent); } }; public: CursorVisitor(CXTranslationUnit TU, CXCursorVisitor Visitor, CXClientData ClientData, unsigned MaxPCHLevel, bool VisitPreprocessorLast, SourceRange RegionOfInterest = SourceRange()) : TU(TU), AU(static_cast(TU->TUData)), Visitor(Visitor), ClientData(ClientData), MaxPCHLevel(MaxPCHLevel), VisitPreprocessorLast(VisitPreprocessorLast), RegionOfInterest(RegionOfInterest), DI_current(0) { Parent.kind = CXCursor_NoDeclFound; Parent.data[0] = 0; Parent.data[1] = 0; Parent.data[2] = 0; StmtParent = 0; } ~CursorVisitor() { // Free the pre-allocated worklists for data-recursion. for (llvm::SmallVectorImpl::iterator I = WorkListCache.begin(), E = WorkListCache.end(); I != E; ++I) { delete *I; } } ASTUnit *getASTUnit() const { return static_cast(TU->TUData); } CXTranslationUnit getTU() const { return TU; } bool Visit(CXCursor Cursor, bool CheckedRegionOfInterest = false); std::pair getPreprocessedEntities(); bool VisitChildren(CXCursor Parent); // Declaration visitors bool VisitTypeAliasDecl(TypeAliasDecl *D); bool VisitAttributes(Decl *D); bool VisitBlockDecl(BlockDecl *B); bool VisitCXXRecordDecl(CXXRecordDecl *D); llvm::Optional shouldVisitCursor(CXCursor C); bool VisitDeclContext(DeclContext *DC); bool VisitTranslationUnitDecl(TranslationUnitDecl *D); bool VisitTypedefDecl(TypedefDecl *D); bool VisitTagDecl(TagDecl *D); bool VisitClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *D); bool VisitClassTemplatePartialSpecializationDecl( ClassTemplatePartialSpecializationDecl *D); bool VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D); bool VisitEnumConstantDecl(EnumConstantDecl *D); bool VisitDeclaratorDecl(DeclaratorDecl *DD); bool VisitFunctionDecl(FunctionDecl *ND); bool VisitFieldDecl(FieldDecl *D); bool VisitVarDecl(VarDecl *); bool VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D); bool VisitFunctionTemplateDecl(FunctionTemplateDecl *D); bool VisitClassTemplateDecl(ClassTemplateDecl *D); bool VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D); bool VisitObjCMethodDecl(ObjCMethodDecl *ND); bool VisitObjCContainerDecl(ObjCContainerDecl *D); bool VisitObjCCategoryDecl(ObjCCategoryDecl *ND); bool VisitObjCProtocolDecl(ObjCProtocolDecl *PID); bool VisitObjCPropertyDecl(ObjCPropertyDecl *PD); bool VisitObjCInterfaceDecl(ObjCInterfaceDecl *D); bool VisitObjCImplDecl(ObjCImplDecl *D); bool VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D); bool VisitObjCImplementationDecl(ObjCImplementationDecl *D); // FIXME: ObjCCompatibleAliasDecl requires aliased-class locations. bool VisitObjCForwardProtocolDecl(ObjCForwardProtocolDecl *D); bool VisitObjCClassDecl(ObjCClassDecl *D); bool VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *PD); bool VisitLinkageSpecDecl(LinkageSpecDecl *D); bool VisitNamespaceDecl(NamespaceDecl *D); bool VisitNamespaceAliasDecl(NamespaceAliasDecl *D); bool VisitUsingDirectiveDecl(UsingDirectiveDecl *D); bool VisitUsingDecl(UsingDecl *D); bool VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D); bool VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D); // Name visitor bool VisitDeclarationNameInfo(DeclarationNameInfo Name); bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS, SourceRange Range); bool VisitNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS); // Template visitors bool VisitTemplateParameters(const TemplateParameterList *Params); bool VisitTemplateName(TemplateName Name, SourceLocation Loc); bool VisitTemplateArgumentLoc(const TemplateArgumentLoc &TAL); // Type visitors bool VisitQualifiedTypeLoc(QualifiedTypeLoc TL); bool VisitBuiltinTypeLoc(BuiltinTypeLoc TL); bool VisitTypedefTypeLoc(TypedefTypeLoc TL); bool VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL); bool VisitTagTypeLoc(TagTypeLoc TL); bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL); bool VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL); bool VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL); bool VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL); bool VisitParenTypeLoc(ParenTypeLoc TL); bool VisitPointerTypeLoc(PointerTypeLoc TL); bool VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL); bool VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL); bool VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL); bool VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL); bool VisitFunctionTypeLoc(FunctionTypeLoc TL, bool SkipResultType = false); bool VisitArrayTypeLoc(ArrayTypeLoc TL); bool VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL); // FIXME: Implement visitors here when the unimplemented TypeLocs get // implemented bool VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL); bool VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL); bool VisitTypeOfTypeLoc(TypeOfTypeLoc TL); bool VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL); bool VisitDependentNameTypeLoc(DependentNameTypeLoc TL); bool VisitDependentTemplateSpecializationTypeLoc( DependentTemplateSpecializationTypeLoc TL); bool VisitElaboratedTypeLoc(ElaboratedTypeLoc TL); // Data-recursive visitor functions. bool IsInRegionOfInterest(CXCursor C); bool RunVisitorWorkList(VisitorWorkList &WL); void EnqueueWorkList(VisitorWorkList &WL, Stmt *S); LLVM_ATTRIBUTE_NOINLINE bool Visit(Stmt *S); }; } // end anonymous namespace static SourceRange getRawCursorExtent(CXCursor C); static SourceRange getFullCursorExtent(CXCursor C, SourceManager &SrcMgr); RangeComparisonResult CursorVisitor::CompareRegionOfInterest(SourceRange R) { return RangeCompare(AU->getSourceManager(), R, RegionOfInterest); } /// \brief Visit the given cursor and, if requested by the visitor, /// its children. /// /// \param Cursor the cursor to visit. /// /// \param CheckRegionOfInterest if true, then the caller already checked that /// this cursor is within the region of interest. /// /// \returns true if the visitation should be aborted, false if it /// should continue. bool CursorVisitor::Visit(CXCursor Cursor, bool CheckedRegionOfInterest) { if (clang_isInvalid(Cursor.kind)) return false; if (clang_isDeclaration(Cursor.kind)) { Decl *D = getCursorDecl(Cursor); assert(D && "Invalid declaration cursor"); if (D->getPCHLevel() > MaxPCHLevel) return false; if (D->isImplicit()) return false; } // If we have a range of interest, and this cursor doesn't intersect with it, // we're done. if (RegionOfInterest.isValid() && !CheckedRegionOfInterest) { SourceRange Range = getRawCursorExtent(Cursor); if (Range.isInvalid() || CompareRegionOfInterest(Range)) return false; } switch (Visitor(Cursor, Parent, ClientData)) { case CXChildVisit_Break: return true; case CXChildVisit_Continue: return false; case CXChildVisit_Recurse: return VisitChildren(Cursor); } return false; } std::pair CursorVisitor::getPreprocessedEntities() { PreprocessingRecord &PPRec = *AU->getPreprocessor().getPreprocessingRecord(); bool OnlyLocalDecls = !AU->isMainFileAST() && AU->getOnlyLocalDecls(); if (OnlyLocalDecls && RegionOfInterest.isValid()) { // If we would only look at local declarations but we have a region of // interest, check whether that region of interest is in the main file. // If not, we should traverse all declarations. // FIXME: My kingdom for a proper binary search approach to finding // cursors! std::pair Location = AU->getSourceManager().getDecomposedInstantiationLoc( RegionOfInterest.getBegin()); if (Location.first != AU->getSourceManager().getMainFileID()) OnlyLocalDecls = false; } PreprocessingRecord::iterator StartEntity, EndEntity; if (OnlyLocalDecls) { StartEntity = AU->pp_entity_begin(); EndEntity = AU->pp_entity_end(); } else { StartEntity = PPRec.begin(); EndEntity = PPRec.end(); } // There is no region of interest; we have to walk everything. if (RegionOfInterest.isInvalid()) return std::make_pair(StartEntity, EndEntity); // Find the file in which the region of interest lands. SourceManager &SM = AU->getSourceManager(); std::pair Begin = SM.getDecomposedInstantiationLoc(RegionOfInterest.getBegin()); std::pair End = SM.getDecomposedInstantiationLoc(RegionOfInterest.getEnd()); // The region of interest spans files; we have to walk everything. if (Begin.first != End.first) return std::make_pair(StartEntity, EndEntity); ASTUnit::PreprocessedEntitiesByFileMap &ByFileMap = AU->getPreprocessedEntitiesByFile(); if (ByFileMap.empty()) { // Build the mapping from files to sets of preprocessed entities. for (PreprocessingRecord::iterator E = StartEntity; E != EndEntity; ++E) { std::pair P = SM.getDecomposedInstantiationLoc((*E)->getSourceRange().getBegin()); ByFileMap[P.first].push_back(*E); } } return std::make_pair(ByFileMap[Begin.first].begin(), ByFileMap[Begin.first].end()); } /// \brief Visit the children of the given cursor. /// /// \returns true if the visitation should be aborted, false if it /// should continue. bool CursorVisitor::VisitChildren(CXCursor Cursor) { if (clang_isReference(Cursor.kind) && Cursor.kind != CXCursor_CXXBaseSpecifier) { // By definition, references have no children. return false; } // Set the Parent field to Cursor, then back to its old value once we're // done. SetParentRAII SetParent(Parent, StmtParent, Cursor); if (clang_isDeclaration(Cursor.kind)) { Decl *D = getCursorDecl(Cursor); if (!D) return false; return VisitAttributes(D) || Visit(D); } if (clang_isStatement(Cursor.kind)) { if (Stmt *S = getCursorStmt(Cursor)) return Visit(S); return false; } if (clang_isExpression(Cursor.kind)) { if (Expr *E = getCursorExpr(Cursor)) return Visit(E); return false; } if (clang_isTranslationUnit(Cursor.kind)) { CXTranslationUnit tu = getCursorTU(Cursor); ASTUnit *CXXUnit = static_cast(tu->TUData); int VisitOrder[2] = { VisitPreprocessorLast, !VisitPreprocessorLast }; for (unsigned I = 0; I != 2; ++I) { if (VisitOrder[I]) { if (!CXXUnit->isMainFileAST() && CXXUnit->getOnlyLocalDecls() && RegionOfInterest.isInvalid()) { for (ASTUnit::top_level_iterator TL = CXXUnit->top_level_begin(), TLEnd = CXXUnit->top_level_end(); TL != TLEnd; ++TL) { if (Visit(MakeCXCursor(*TL, tu), true)) return true; } } else if (VisitDeclContext( CXXUnit->getASTContext().getTranslationUnitDecl())) return true; continue; } // Walk the preprocessing record. if (CXXUnit->getPreprocessor().getPreprocessingRecord()) { // FIXME: Once we have the ability to deserialize a preprocessing record, // do so. PreprocessingRecord::iterator E, EEnd; for (llvm::tie(E, EEnd) = getPreprocessedEntities(); E != EEnd; ++E) { if (MacroExpansion *ME = dyn_cast(*E)) { if (Visit(MakeMacroExpansionCursor(ME, tu))) return true; continue; } if (MacroDefinition *MD = dyn_cast(*E)) { if (Visit(MakeMacroDefinitionCursor(MD, tu))) return true; continue; } if (InclusionDirective *ID = dyn_cast(*E)) { if (Visit(MakeInclusionDirectiveCursor(ID, tu))) return true; continue; } } } } return false; } if (Cursor.kind == CXCursor_CXXBaseSpecifier) { if (CXXBaseSpecifier *Base = getCursorCXXBaseSpecifier(Cursor)) { if (TypeSourceInfo *BaseTSInfo = Base->getTypeSourceInfo()) { return Visit(BaseTSInfo->getTypeLoc()); } } } // Nothing to visit at the moment. return false; } bool CursorVisitor::VisitBlockDecl(BlockDecl *B) { if (TypeSourceInfo *TSInfo = B->getSignatureAsWritten()) if (Visit(TSInfo->getTypeLoc())) return true; if (Stmt *Body = B->getBody()) return Visit(MakeCXCursor(Body, StmtParent, TU)); return false; } llvm::Optional CursorVisitor::shouldVisitCursor(CXCursor Cursor) { if (RegionOfInterest.isValid()) { SourceRange Range = getFullCursorExtent(Cursor, AU->getSourceManager()); if (Range.isInvalid()) return llvm::Optional(); switch (CompareRegionOfInterest(Range)) { case RangeBefore: // This declaration comes before the region of interest; skip it. return llvm::Optional(); case RangeAfter: // This declaration comes after the region of interest; we're done. return false; case RangeOverlap: // This declaration overlaps the region of interest; visit it. break; } } return true; } bool CursorVisitor::VisitDeclContext(DeclContext *DC) { DeclContext::decl_iterator I = DC->decls_begin(), E = DC->decls_end(); // FIXME: Eventually remove. This part of a hack to support proper // iteration over all Decls contained lexically within an ObjC container. SaveAndRestore DI_saved(DI_current, &I); SaveAndRestore DE_saved(DE_current, E); for ( ; I != E; ++I) { Decl *D = *I; if (D->getLexicalDeclContext() != DC) continue; CXCursor Cursor = MakeCXCursor(D, TU); const llvm::Optional &V = shouldVisitCursor(Cursor); if (!V.hasValue()) continue; if (!V.getValue()) return false; if (Visit(Cursor, true)) return true; } return false; } bool CursorVisitor::VisitTranslationUnitDecl(TranslationUnitDecl *D) { llvm_unreachable("Translation units are visited directly by Visit()"); return false; } bool CursorVisitor::VisitTypeAliasDecl(TypeAliasDecl *D) { if (TypeSourceInfo *TSInfo = D->getTypeSourceInfo()) return Visit(TSInfo->getTypeLoc()); return false; } bool CursorVisitor::VisitTypedefDecl(TypedefDecl *D) { if (TypeSourceInfo *TSInfo = D->getTypeSourceInfo()) return Visit(TSInfo->getTypeLoc()); return false; } bool CursorVisitor::VisitTagDecl(TagDecl *D) { return VisitDeclContext(D); } bool CursorVisitor::VisitClassTemplateSpecializationDecl( ClassTemplateSpecializationDecl *D) { bool ShouldVisitBody = false; switch (D->getSpecializationKind()) { case TSK_Undeclared: case TSK_ImplicitInstantiation: // Nothing to visit return false; case TSK_ExplicitInstantiationDeclaration: case TSK_ExplicitInstantiationDefinition: break; case TSK_ExplicitSpecialization: ShouldVisitBody = true; break; } // Visit the template arguments used in the specialization. if (TypeSourceInfo *SpecType = D->getTypeAsWritten()) { TypeLoc TL = SpecType->getTypeLoc(); if (TemplateSpecializationTypeLoc *TSTLoc = dyn_cast(&TL)) { for (unsigned I = 0, N = TSTLoc->getNumArgs(); I != N; ++I) if (VisitTemplateArgumentLoc(TSTLoc->getArgLoc(I))) return true; } } if (ShouldVisitBody && VisitCXXRecordDecl(D)) return true; return false; } bool CursorVisitor::VisitClassTemplatePartialSpecializationDecl( ClassTemplatePartialSpecializationDecl *D) { // FIXME: Visit the "outer" template parameter lists on the TagDecl // before visiting these template parameters. if (VisitTemplateParameters(D->getTemplateParameters())) return true; // Visit the partial specialization arguments. const TemplateArgumentLoc *TemplateArgs = D->getTemplateArgsAsWritten(); for (unsigned I = 0, N = D->getNumTemplateArgsAsWritten(); I != N; ++I) if (VisitTemplateArgumentLoc(TemplateArgs[I])) return true; return VisitCXXRecordDecl(D); } bool CursorVisitor::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) { // Visit the default argument. if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) if (TypeSourceInfo *DefArg = D->getDefaultArgumentInfo()) if (Visit(DefArg->getTypeLoc())) return true; return false; } bool CursorVisitor::VisitEnumConstantDecl(EnumConstantDecl *D) { if (Expr *Init = D->getInitExpr()) return Visit(MakeCXCursor(Init, StmtParent, TU)); return false; } bool CursorVisitor::VisitDeclaratorDecl(DeclaratorDecl *DD) { if (TypeSourceInfo *TSInfo = DD->getTypeSourceInfo()) if (Visit(TSInfo->getTypeLoc())) return true; // Visit the nested-name-specifier, if present. if (NestedNameSpecifierLoc QualifierLoc = DD->getQualifierLoc()) if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; return false; } /// \brief Compare two base or member initializers based on their source order. static int CompareCXXCtorInitializers(const void* Xp, const void *Yp) { CXXCtorInitializer const * const *X = static_cast(Xp); CXXCtorInitializer const * const *Y = static_cast(Yp); if ((*X)->getSourceOrder() < (*Y)->getSourceOrder()) return -1; else if ((*X)->getSourceOrder() > (*Y)->getSourceOrder()) return 1; else return 0; } bool CursorVisitor::VisitFunctionDecl(FunctionDecl *ND) { if (TypeSourceInfo *TSInfo = ND->getTypeSourceInfo()) { // Visit the function declaration's syntactic components in the order // written. This requires a bit of work. TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens(); FunctionTypeLoc *FTL = dyn_cast(&TL); // If we have a function declared directly (without the use of a typedef), // visit just the return type. Otherwise, just visit the function's type // now. if ((FTL && !isa(ND) && Visit(FTL->getResultLoc())) || (!FTL && Visit(TL))) return true; // Visit the nested-name-specifier, if present. if (NestedNameSpecifierLoc QualifierLoc = ND->getQualifierLoc()) if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; // Visit the declaration name. if (VisitDeclarationNameInfo(ND->getNameInfo())) return true; // FIXME: Visit explicitly-specified template arguments! // Visit the function parameters, if we have a function type. if (FTL && VisitFunctionTypeLoc(*FTL, true)) return true; // FIXME: Attributes? } if (ND->doesThisDeclarationHaveABody() && !ND->isLateTemplateParsed()) { if (CXXConstructorDecl *Constructor = dyn_cast(ND)) { // Find the initializers that were written in the source. llvm::SmallVector WrittenInits; for (CXXConstructorDecl::init_iterator I = Constructor->init_begin(), IEnd = Constructor->init_end(); I != IEnd; ++I) { if (!(*I)->isWritten()) continue; WrittenInits.push_back(*I); } // Sort the initializers in source order llvm::array_pod_sort(WrittenInits.begin(), WrittenInits.end(), &CompareCXXCtorInitializers); // Visit the initializers in source order for (unsigned I = 0, N = WrittenInits.size(); I != N; ++I) { CXXCtorInitializer *Init = WrittenInits[I]; if (Init->isAnyMemberInitializer()) { if (Visit(MakeCursorMemberRef(Init->getAnyMember(), Init->getMemberLocation(), TU))) return true; } else if (TypeSourceInfo *BaseInfo = Init->getBaseClassInfo()) { if (Visit(BaseInfo->getTypeLoc())) return true; } // Visit the initializer value. if (Expr *Initializer = Init->getInit()) if (Visit(MakeCXCursor(Initializer, ND, TU))) return true; } } if (Visit(MakeCXCursor(ND->getBody(), StmtParent, TU))) return true; } return false; } bool CursorVisitor::VisitFieldDecl(FieldDecl *D) { if (VisitDeclaratorDecl(D)) return true; if (Expr *BitWidth = D->getBitWidth()) return Visit(MakeCXCursor(BitWidth, StmtParent, TU)); return false; } bool CursorVisitor::VisitVarDecl(VarDecl *D) { if (VisitDeclaratorDecl(D)) return true; if (Expr *Init = D->getInit()) return Visit(MakeCXCursor(Init, StmtParent, TU)); return false; } bool CursorVisitor::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) { if (VisitDeclaratorDecl(D)) return true; if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) if (Expr *DefArg = D->getDefaultArgument()) return Visit(MakeCXCursor(DefArg, StmtParent, TU)); return false; } bool CursorVisitor::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) { // FIXME: Visit the "outer" template parameter lists on the FunctionDecl // before visiting these template parameters. if (VisitTemplateParameters(D->getTemplateParameters())) return true; return VisitFunctionDecl(D->getTemplatedDecl()); } bool CursorVisitor::VisitClassTemplateDecl(ClassTemplateDecl *D) { // FIXME: Visit the "outer" template parameter lists on the TagDecl // before visiting these template parameters. if (VisitTemplateParameters(D->getTemplateParameters())) return true; return VisitCXXRecordDecl(D->getTemplatedDecl()); } bool CursorVisitor::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) { if (VisitTemplateParameters(D->getTemplateParameters())) return true; if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited() && VisitTemplateArgumentLoc(D->getDefaultArgument())) return true; return false; } bool CursorVisitor::VisitObjCMethodDecl(ObjCMethodDecl *ND) { if (TypeSourceInfo *TSInfo = ND->getResultTypeSourceInfo()) if (Visit(TSInfo->getTypeLoc())) return true; for (ObjCMethodDecl::param_iterator P = ND->param_begin(), PEnd = ND->param_end(); P != PEnd; ++P) { if (Visit(MakeCXCursor(*P, TU))) return true; } if (ND->isThisDeclarationADefinition() && Visit(MakeCXCursor(ND->getBody(), StmtParent, TU))) return true; return false; } namespace { struct ContainerDeclsSort { SourceManager &SM; ContainerDeclsSort(SourceManager &sm) : SM(sm) {} bool operator()(Decl *A, Decl *B) { SourceLocation L_A = A->getLocStart(); SourceLocation L_B = B->getLocStart(); assert(L_A.isValid() && L_B.isValid()); return SM.isBeforeInTranslationUnit(L_A, L_B); } }; } bool CursorVisitor::VisitObjCContainerDecl(ObjCContainerDecl *D) { // FIXME: Eventually convert back to just 'VisitDeclContext()'. Essentially // an @implementation can lexically contain Decls that are not properly // nested in the AST. When we identify such cases, we need to retrofit // this nesting here. if (!DI_current) return VisitDeclContext(D); // Scan the Decls that immediately come after the container // in the current DeclContext. If any fall within the // container's lexical region, stash them into a vector // for later processing. llvm::SmallVector DeclsInContainer; SourceLocation EndLoc = D->getSourceRange().getEnd(); SourceManager &SM = AU->getSourceManager(); if (EndLoc.isValid()) { DeclContext::decl_iterator next = *DI_current; while (++next != DE_current) { Decl *D_next = *next; if (!D_next) break; SourceLocation L = D_next->getLocStart(); if (!L.isValid()) break; if (SM.isBeforeInTranslationUnit(L, EndLoc)) { *DI_current = next; DeclsInContainer.push_back(D_next); continue; } break; } } // The common case. if (DeclsInContainer.empty()) return VisitDeclContext(D); // Get all the Decls in the DeclContext, and sort them with the // additional ones we've collected. Then visit them. for (DeclContext::decl_iterator I = D->decls_begin(), E = D->decls_end(); I!=E; ++I) { Decl *subDecl = *I; if (!subDecl || subDecl->getLexicalDeclContext() != D || subDecl->getLocStart().isInvalid()) continue; DeclsInContainer.push_back(subDecl); } // Now sort the Decls so that they appear in lexical order. std::sort(DeclsInContainer.begin(), DeclsInContainer.end(), ContainerDeclsSort(SM)); // Now visit the decls. for (llvm::SmallVectorImpl::iterator I = DeclsInContainer.begin(), E = DeclsInContainer.end(); I != E; ++I) { CXCursor Cursor = MakeCXCursor(*I, TU); const llvm::Optional &V = shouldVisitCursor(Cursor); if (!V.hasValue()) continue; if (!V.getValue()) return false; if (Visit(Cursor, true)) return true; } return false; } bool CursorVisitor::VisitObjCCategoryDecl(ObjCCategoryDecl *ND) { if (Visit(MakeCursorObjCClassRef(ND->getClassInterface(), ND->getLocation(), TU))) return true; ObjCCategoryDecl::protocol_loc_iterator PL = ND->protocol_loc_begin(); for (ObjCCategoryDecl::protocol_iterator I = ND->protocol_begin(), E = ND->protocol_end(); I != E; ++I, ++PL) if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU))) return true; return VisitObjCContainerDecl(ND); } bool CursorVisitor::VisitObjCProtocolDecl(ObjCProtocolDecl *PID) { ObjCProtocolDecl::protocol_loc_iterator PL = PID->protocol_loc_begin(); for (ObjCProtocolDecl::protocol_iterator I = PID->protocol_begin(), E = PID->protocol_end(); I != E; ++I, ++PL) if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU))) return true; return VisitObjCContainerDecl(PID); } bool CursorVisitor::VisitObjCPropertyDecl(ObjCPropertyDecl *PD) { if (PD->getTypeSourceInfo() && Visit(PD->getTypeSourceInfo()->getTypeLoc())) return true; // FIXME: This implements a workaround with @property declarations also being // installed in the DeclContext for the @interface. Eventually this code // should be removed. ObjCCategoryDecl *CDecl = dyn_cast(PD->getDeclContext()); if (!CDecl || !CDecl->IsClassExtension()) return false; ObjCInterfaceDecl *ID = CDecl->getClassInterface(); if (!ID) return false; IdentifierInfo *PropertyId = PD->getIdentifier(); ObjCPropertyDecl *prevDecl = ObjCPropertyDecl::findPropertyDecl(cast(ID), PropertyId); if (!prevDecl) return false; // Visit synthesized methods since they will be skipped when visiting // the @interface. if (ObjCMethodDecl *MD = prevDecl->getGetterMethodDecl()) if (MD->isSynthesized() && MD->getLexicalDeclContext() == CDecl) if (Visit(MakeCXCursor(MD, TU))) return true; if (ObjCMethodDecl *MD = prevDecl->getSetterMethodDecl()) if (MD->isSynthesized() && MD->getLexicalDeclContext() == CDecl) if (Visit(MakeCXCursor(MD, TU))) return true; return false; } bool CursorVisitor::VisitObjCInterfaceDecl(ObjCInterfaceDecl *D) { // Issue callbacks for super class. if (D->getSuperClass() && Visit(MakeCursorObjCSuperClassRef(D->getSuperClass(), D->getSuperClassLoc(), TU))) return true; ObjCInterfaceDecl::protocol_loc_iterator PL = D->protocol_loc_begin(); for (ObjCInterfaceDecl::protocol_iterator I = D->protocol_begin(), E = D->protocol_end(); I != E; ++I, ++PL) if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU))) return true; return VisitObjCContainerDecl(D); } bool CursorVisitor::VisitObjCImplDecl(ObjCImplDecl *D) { return VisitObjCContainerDecl(D); } bool CursorVisitor::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) { // 'ID' could be null when dealing with invalid code. if (ObjCInterfaceDecl *ID = D->getClassInterface()) if (Visit(MakeCursorObjCClassRef(ID, D->getLocation(), TU))) return true; return VisitObjCImplDecl(D); } bool CursorVisitor::VisitObjCImplementationDecl(ObjCImplementationDecl *D) { #if 0 // Issue callbacks for super class. // FIXME: No source location information! if (D->getSuperClass() && Visit(MakeCursorObjCSuperClassRef(D->getSuperClass(), D->getSuperClassLoc(), TU))) return true; #endif return VisitObjCImplDecl(D); } bool CursorVisitor::VisitObjCForwardProtocolDecl(ObjCForwardProtocolDecl *D) { ObjCForwardProtocolDecl::protocol_loc_iterator PL = D->protocol_loc_begin(); for (ObjCForwardProtocolDecl::protocol_iterator I = D->protocol_begin(), E = D->protocol_end(); I != E; ++I, ++PL) if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU))) return true; return false; } bool CursorVisitor::VisitObjCClassDecl(ObjCClassDecl *D) { for (ObjCClassDecl::iterator C = D->begin(), CEnd = D->end(); C != CEnd; ++C) if (Visit(MakeCursorObjCClassRef(C->getInterface(), C->getLocation(), TU))) return true; return false; } bool CursorVisitor::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *PD) { if (ObjCIvarDecl *Ivar = PD->getPropertyIvarDecl()) return Visit(MakeCursorMemberRef(Ivar, PD->getPropertyIvarDeclLoc(), TU)); return false; } bool CursorVisitor::VisitNamespaceDecl(NamespaceDecl *D) { return VisitDeclContext(D); } bool CursorVisitor::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) { // Visit nested-name-specifier. if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc()) if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; return Visit(MakeCursorNamespaceRef(D->getAliasedNamespace(), D->getTargetNameLoc(), TU)); } bool CursorVisitor::VisitUsingDecl(UsingDecl *D) { // Visit nested-name-specifier. if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc()) { if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; } if (Visit(MakeCursorOverloadedDeclRef(D, D->getLocation(), TU))) return true; return VisitDeclarationNameInfo(D->getNameInfo()); } bool CursorVisitor::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) { // Visit nested-name-specifier. if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc()) if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; return Visit(MakeCursorNamespaceRef(D->getNominatedNamespaceAsWritten(), D->getIdentLocation(), TU)); } bool CursorVisitor::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) { // Visit nested-name-specifier. if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc()) { if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; } return VisitDeclarationNameInfo(D->getNameInfo()); } bool CursorVisitor::VisitUnresolvedUsingTypenameDecl( UnresolvedUsingTypenameDecl *D) { // Visit nested-name-specifier. if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc()) if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; return false; } bool CursorVisitor::VisitDeclarationNameInfo(DeclarationNameInfo Name) { switch (Name.getName().getNameKind()) { case clang::DeclarationName::Identifier: case clang::DeclarationName::CXXLiteralOperatorName: case clang::DeclarationName::CXXOperatorName: case clang::DeclarationName::CXXUsingDirective: return false; case clang::DeclarationName::CXXConstructorName: case clang::DeclarationName::CXXDestructorName: case clang::DeclarationName::CXXConversionFunctionName: if (TypeSourceInfo *TSInfo = Name.getNamedTypeInfo()) return Visit(TSInfo->getTypeLoc()); return false; case clang::DeclarationName::ObjCZeroArgSelector: case clang::DeclarationName::ObjCOneArgSelector: case clang::DeclarationName::ObjCMultiArgSelector: // FIXME: Per-identifier location info? return false; } return false; } bool CursorVisitor::VisitNestedNameSpecifier(NestedNameSpecifier *NNS, SourceRange Range) { // FIXME: This whole routine is a hack to work around the lack of proper // source information in nested-name-specifiers (PR5791). Since we do have // a beginning source location, we can visit the first component of the // nested-name-specifier, if it's a single-token component. if (!NNS) return false; // Get the first component in the nested-name-specifier. while (NestedNameSpecifier *Prefix = NNS->getPrefix()) NNS = Prefix; switch (NNS->getKind()) { case NestedNameSpecifier::Namespace: return Visit(MakeCursorNamespaceRef(NNS->getAsNamespace(), Range.getBegin(), TU)); case NestedNameSpecifier::NamespaceAlias: return Visit(MakeCursorNamespaceRef(NNS->getAsNamespaceAlias(), Range.getBegin(), TU)); case NestedNameSpecifier::TypeSpec: { // If the type has a form where we know that the beginning of the source // range matches up with a reference cursor. Visit the appropriate reference // cursor. const Type *T = NNS->getAsType(); if (const TypedefType *Typedef = dyn_cast(T)) return Visit(MakeCursorTypeRef(Typedef->getDecl(), Range.getBegin(), TU)); if (const TagType *Tag = dyn_cast(T)) return Visit(MakeCursorTypeRef(Tag->getDecl(), Range.getBegin(), TU)); if (const TemplateSpecializationType *TST = dyn_cast(T)) return VisitTemplateName(TST->getTemplateName(), Range.getBegin()); break; } case NestedNameSpecifier::TypeSpecWithTemplate: case NestedNameSpecifier::Global: case NestedNameSpecifier::Identifier: break; } return false; } bool CursorVisitor::VisitNestedNameSpecifierLoc(NestedNameSpecifierLoc Qualifier) { llvm::SmallVector Qualifiers; for (; Qualifier; Qualifier = Qualifier.getPrefix()) Qualifiers.push_back(Qualifier); while (!Qualifiers.empty()) { NestedNameSpecifierLoc Q = Qualifiers.pop_back_val(); NestedNameSpecifier *NNS = Q.getNestedNameSpecifier(); switch (NNS->getKind()) { case NestedNameSpecifier::Namespace: if (Visit(MakeCursorNamespaceRef(NNS->getAsNamespace(), Q.getLocalBeginLoc(), TU))) return true; break; case NestedNameSpecifier::NamespaceAlias: if (Visit(MakeCursorNamespaceRef(NNS->getAsNamespaceAlias(), Q.getLocalBeginLoc(), TU))) return true; break; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: if (Visit(Q.getTypeLoc())) return true; break; case NestedNameSpecifier::Global: case NestedNameSpecifier::Identifier: break; } } return false; } bool CursorVisitor::VisitTemplateParameters( const TemplateParameterList *Params) { if (!Params) return false; for (TemplateParameterList::const_iterator P = Params->begin(), PEnd = Params->end(); P != PEnd; ++P) { if (Visit(MakeCXCursor(*P, TU))) return true; } return false; } bool CursorVisitor::VisitTemplateName(TemplateName Name, SourceLocation Loc) { switch (Name.getKind()) { case TemplateName::Template: return Visit(MakeCursorTemplateRef(Name.getAsTemplateDecl(), Loc, TU)); case TemplateName::OverloadedTemplate: // Visit the overloaded template set. if (Visit(MakeCursorOverloadedDeclRef(Name, Loc, TU))) return true; return false; case TemplateName::DependentTemplate: // FIXME: Visit nested-name-specifier. return false; case TemplateName::QualifiedTemplate: // FIXME: Visit nested-name-specifier. return Visit(MakeCursorTemplateRef( Name.getAsQualifiedTemplateName()->getDecl(), Loc, TU)); case TemplateName::SubstTemplateTemplateParm: return Visit(MakeCursorTemplateRef( Name.getAsSubstTemplateTemplateParm()->getParameter(), Loc, TU)); case TemplateName::SubstTemplateTemplateParmPack: return Visit(MakeCursorTemplateRef( Name.getAsSubstTemplateTemplateParmPack()->getParameterPack(), Loc, TU)); } return false; } bool CursorVisitor::VisitTemplateArgumentLoc(const TemplateArgumentLoc &TAL) { switch (TAL.getArgument().getKind()) { case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Pack: return false; case TemplateArgument::Type: if (TypeSourceInfo *TSInfo = TAL.getTypeSourceInfo()) return Visit(TSInfo->getTypeLoc()); return false; case TemplateArgument::Declaration: if (Expr *E = TAL.getSourceDeclExpression()) return Visit(MakeCXCursor(E, StmtParent, TU)); return false; case TemplateArgument::Expression: if (Expr *E = TAL.getSourceExpression()) return Visit(MakeCXCursor(E, StmtParent, TU)); return false; case TemplateArgument::Template: case TemplateArgument::TemplateExpansion: if (VisitNestedNameSpecifierLoc(TAL.getTemplateQualifierLoc())) return true; return VisitTemplateName(TAL.getArgument().getAsTemplateOrTemplatePattern(), TAL.getTemplateNameLoc()); } return false; } bool CursorVisitor::VisitLinkageSpecDecl(LinkageSpecDecl *D) { return VisitDeclContext(D); } bool CursorVisitor::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { return Visit(TL.getUnqualifiedLoc()); } bool CursorVisitor::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { ASTContext &Context = AU->getASTContext(); // Some builtin types (such as Objective-C's "id", "sel", and // "Class") have associated declarations. Create cursors for those. QualType VisitType; switch (TL.getType()->getAs()->getKind()) { case BuiltinType::Void: case BuiltinType::Bool: case BuiltinType::Char_U: case BuiltinType::UChar: case BuiltinType::Char16: case BuiltinType::Char32: case BuiltinType::UShort: case BuiltinType::UInt: case BuiltinType::ULong: case BuiltinType::ULongLong: case BuiltinType::UInt128: case BuiltinType::Char_S: case BuiltinType::SChar: case BuiltinType::WChar_U: case BuiltinType::WChar_S: case BuiltinType::Short: case BuiltinType::Int: case BuiltinType::Long: case BuiltinType::LongLong: case BuiltinType::Int128: case BuiltinType::Float: case BuiltinType::Double: case BuiltinType::LongDouble: case BuiltinType::NullPtr: case BuiltinType::Overload: case BuiltinType::BoundMember: case BuiltinType::Dependent: case BuiltinType::UnknownAny: break; case BuiltinType::ObjCId: VisitType = Context.getObjCIdType(); break; case BuiltinType::ObjCClass: VisitType = Context.getObjCClassType(); break; case BuiltinType::ObjCSel: VisitType = Context.getObjCSelType(); break; } if (!VisitType.isNull()) { if (const TypedefType *Typedef = VisitType->getAs()) return Visit(MakeCursorTypeRef(Typedef->getDecl(), TL.getBuiltinLoc(), TU)); } return false; } bool CursorVisitor::VisitTypedefTypeLoc(TypedefTypeLoc TL) { return Visit(MakeCursorTypeRef(TL.getTypedefNameDecl(), TL.getNameLoc(), TU)); } bool CursorVisitor::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) { return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU)); } bool CursorVisitor::VisitTagTypeLoc(TagTypeLoc TL) { return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU)); } bool CursorVisitor::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU)); } bool CursorVisitor::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { if (Visit(MakeCursorObjCClassRef(TL.getIFaceDecl(), TL.getNameLoc(), TU))) return true; return false; } bool CursorVisitor::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { if (TL.hasBaseTypeAsWritten() && Visit(TL.getBaseLoc())) return true; for (unsigned I = 0, N = TL.getNumProtocols(); I != N; ++I) { if (Visit(MakeCursorObjCProtocolRef(TL.getProtocol(I), TL.getProtocolLoc(I), TU))) return true; } return false; } bool CursorVisitor::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitParenTypeLoc(ParenTypeLoc TL) { return Visit(TL.getInnerLoc()); } bool CursorVisitor::VisitPointerTypeLoc(PointerTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitFunctionTypeLoc(FunctionTypeLoc TL, bool SkipResultType) { if (!SkipResultType && Visit(TL.getResultLoc())) return true; for (unsigned I = 0, N = TL.getNumArgs(); I != N; ++I) if (Decl *D = TL.getArg(I)) if (Visit(MakeCXCursor(D, TU))) return true; return false; } bool CursorVisitor::VisitArrayTypeLoc(ArrayTypeLoc TL) { if (Visit(TL.getElementLoc())) return true; if (Expr *Size = TL.getSizeExpr()) return Visit(MakeCXCursor(Size, StmtParent, TU)); return false; } bool CursorVisitor::VisitTemplateSpecializationTypeLoc( TemplateSpecializationTypeLoc TL) { // Visit the template name. if (VisitTemplateName(TL.getTypePtr()->getTemplateName(), TL.getTemplateNameLoc())) return true; // Visit the template arguments. for (unsigned I = 0, N = TL.getNumArgs(); I != N; ++I) if (VisitTemplateArgumentLoc(TL.getArgLoc(I))) return true; return false; } bool CursorVisitor::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { return Visit(MakeCXCursor(TL.getUnderlyingExpr(), StmtParent, TU)); } bool CursorVisitor::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { if (TypeSourceInfo *TSInfo = TL.getUnderlyingTInfo()) return Visit(TSInfo->getTypeLoc()); return false; } bool CursorVisitor::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) { if (TypeSourceInfo *TSInfo = TL.getUnderlyingTInfo()) return Visit(TSInfo->getTypeLoc()); return false; } bool CursorVisitor::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) { if (VisitNestedNameSpecifierLoc(TL.getQualifierLoc())) return true; return false; } bool CursorVisitor::VisitDependentTemplateSpecializationTypeLoc( DependentTemplateSpecializationTypeLoc TL) { // Visit the nested-name-specifier, if there is one. if (TL.getQualifierLoc() && VisitNestedNameSpecifierLoc(TL.getQualifierLoc())) return true; // Visit the template arguments. for (unsigned I = 0, N = TL.getNumArgs(); I != N; ++I) if (VisitTemplateArgumentLoc(TL.getArgLoc(I))) return true; return false; } bool CursorVisitor::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) { if (VisitNestedNameSpecifierLoc(TL.getQualifierLoc())) return true; return Visit(TL.getNamedTypeLoc()); } bool CursorVisitor::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) { return Visit(TL.getPatternLoc()); } bool CursorVisitor::VisitCXXRecordDecl(CXXRecordDecl *D) { // Visit the nested-name-specifier, if present. if (NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc()) if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; if (D->isDefinition()) { for (CXXRecordDecl::base_class_iterator I = D->bases_begin(), E = D->bases_end(); I != E; ++I) { if (Visit(cxcursor::MakeCursorCXXBaseSpecifier(I, TU))) return true; } } return VisitTagDecl(D); } bool CursorVisitor::VisitAttributes(Decl *D) { for (AttrVec::const_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i) if (Visit(MakeCXCursor(*i, D, TU))) return true; return false; } //===----------------------------------------------------------------------===// // Data-recursive visitor methods. //===----------------------------------------------------------------------===// namespace { #define DEF_JOB(NAME, DATA, KIND)\ class NAME : public VisitorJob {\ public:\ NAME(DATA *d, CXCursor parent) : VisitorJob(parent, VisitorJob::KIND, d) {} \ static bool classof(const VisitorJob *VJ) { return VJ->getKind() == KIND; }\ DATA *get() const { return static_cast(data[0]); }\ }; DEF_JOB(StmtVisit, Stmt, StmtVisitKind) DEF_JOB(MemberExprParts, MemberExpr, MemberExprPartsKind) DEF_JOB(DeclRefExprParts, DeclRefExpr, DeclRefExprPartsKind) DEF_JOB(OverloadExprParts, OverloadExpr, OverloadExprPartsKind) DEF_JOB(ExplicitTemplateArgsVisit, ExplicitTemplateArgumentList, ExplicitTemplateArgsVisitKind) DEF_JOB(SizeOfPackExprParts, SizeOfPackExpr, SizeOfPackExprPartsKind) #undef DEF_JOB class DeclVisit : public VisitorJob { public: DeclVisit(Decl *d, CXCursor parent, bool isFirst) : VisitorJob(parent, VisitorJob::DeclVisitKind, d, isFirst ? (void*) 1 : (void*) 0) {} static bool classof(const VisitorJob *VJ) { return VJ->getKind() == DeclVisitKind; } Decl *get() const { return static_cast(data[0]); } bool isFirst() const { return data[1] ? true : false; } }; class TypeLocVisit : public VisitorJob { public: TypeLocVisit(TypeLoc tl, CXCursor parent) : VisitorJob(parent, VisitorJob::TypeLocVisitKind, tl.getType().getAsOpaquePtr(), tl.getOpaqueData()) {} static bool classof(const VisitorJob *VJ) { return VJ->getKind() == TypeLocVisitKind; } TypeLoc get() const { QualType T = QualType::getFromOpaquePtr(data[0]); return TypeLoc(T, data[1]); } }; class LabelRefVisit : public VisitorJob { public: LabelRefVisit(LabelDecl *LD, SourceLocation labelLoc, CXCursor parent) : VisitorJob(parent, VisitorJob::LabelRefVisitKind, LD, labelLoc.getPtrEncoding()) {} static bool classof(const VisitorJob *VJ) { return VJ->getKind() == VisitorJob::LabelRefVisitKind; } LabelDecl *get() const { return static_cast(data[0]); } SourceLocation getLoc() const { return SourceLocation::getFromPtrEncoding(data[1]); } }; class NestedNameSpecifierVisit : public VisitorJob { public: NestedNameSpecifierVisit(NestedNameSpecifier *NS, SourceRange R, CXCursor parent) : VisitorJob(parent, VisitorJob::NestedNameSpecifierVisitKind, NS, R.getBegin().getPtrEncoding(), R.getEnd().getPtrEncoding()) {} static bool classof(const VisitorJob *VJ) { return VJ->getKind() == VisitorJob::NestedNameSpecifierVisitKind; } NestedNameSpecifier *get() const { return static_cast(data[0]); } SourceRange getSourceRange() const { SourceLocation A = SourceLocation::getFromRawEncoding((unsigned)(uintptr_t) data[1]); SourceLocation B = SourceLocation::getFromRawEncoding((unsigned)(uintptr_t) data[2]); return SourceRange(A, B); } }; class NestedNameSpecifierLocVisit : public VisitorJob { public: NestedNameSpecifierLocVisit(NestedNameSpecifierLoc Qualifier, CXCursor parent) : VisitorJob(parent, VisitorJob::NestedNameSpecifierLocVisitKind, Qualifier.getNestedNameSpecifier(), Qualifier.getOpaqueData()) { } static bool classof(const VisitorJob *VJ) { return VJ->getKind() == VisitorJob::NestedNameSpecifierLocVisitKind; } NestedNameSpecifierLoc get() const { return NestedNameSpecifierLoc(static_cast(data[0]), data[1]); } }; class DeclarationNameInfoVisit : public VisitorJob { public: DeclarationNameInfoVisit(Stmt *S, CXCursor parent) : VisitorJob(parent, VisitorJob::DeclarationNameInfoVisitKind, S) {} static bool classof(const VisitorJob *VJ) { return VJ->getKind() == VisitorJob::DeclarationNameInfoVisitKind; } DeclarationNameInfo get() const { Stmt *S = static_cast(data[0]); switch (S->getStmtClass()) { default: llvm_unreachable("Unhandled Stmt"); case Stmt::CXXDependentScopeMemberExprClass: return cast(S)->getMemberNameInfo(); case Stmt::DependentScopeDeclRefExprClass: return cast(S)->getNameInfo(); } } }; class MemberRefVisit : public VisitorJob { public: MemberRefVisit(FieldDecl *D, SourceLocation L, CXCursor parent) : VisitorJob(parent, VisitorJob::MemberRefVisitKind, D, L.getPtrEncoding()) {} static bool classof(const VisitorJob *VJ) { return VJ->getKind() == VisitorJob::MemberRefVisitKind; } FieldDecl *get() const { return static_cast(data[0]); } SourceLocation getLoc() const { return SourceLocation::getFromRawEncoding((unsigned)(uintptr_t) data[1]); } }; class EnqueueVisitor : public StmtVisitor { VisitorWorkList &WL; CXCursor Parent; public: EnqueueVisitor(VisitorWorkList &wl, CXCursor parent) : WL(wl), Parent(parent) {} void VisitAddrLabelExpr(AddrLabelExpr *E); void VisitBlockExpr(BlockExpr *B); void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); void VisitCompoundStmt(CompoundStmt *S); void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) { /* Do nothing. */ } void VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E); void VisitCXXNewExpr(CXXNewExpr *E); void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E); void VisitCXXPseudoDestructorExpr(CXXPseudoDestructorExpr *E); void VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *E); void VisitCXXTypeidExpr(CXXTypeidExpr *E); void VisitCXXUnresolvedConstructExpr(CXXUnresolvedConstructExpr *E); void VisitCXXUuidofExpr(CXXUuidofExpr *E); void VisitDeclRefExpr(DeclRefExpr *D); void VisitDeclStmt(DeclStmt *S); void VisitDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E); void VisitDesignatedInitExpr(DesignatedInitExpr *E); void VisitExplicitCastExpr(ExplicitCastExpr *E); void VisitForStmt(ForStmt *FS); void VisitGotoStmt(GotoStmt *GS); void VisitIfStmt(IfStmt *If); void VisitInitListExpr(InitListExpr *IE); void VisitMemberExpr(MemberExpr *M); void VisitOffsetOfExpr(OffsetOfExpr *E); void VisitObjCEncodeExpr(ObjCEncodeExpr *E); void VisitObjCMessageExpr(ObjCMessageExpr *M); void VisitOverloadExpr(OverloadExpr *E); void VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E); void VisitStmt(Stmt *S); void VisitSwitchStmt(SwitchStmt *S); void VisitWhileStmt(WhileStmt *W); void VisitUnaryTypeTraitExpr(UnaryTypeTraitExpr *E); void VisitBinaryTypeTraitExpr(BinaryTypeTraitExpr *E); void VisitArrayTypeTraitExpr(ArrayTypeTraitExpr *E); void VisitExpressionTraitExpr(ExpressionTraitExpr *E); void VisitUnresolvedMemberExpr(UnresolvedMemberExpr *U); void VisitVAArgExpr(VAArgExpr *E); void VisitSizeOfPackExpr(SizeOfPackExpr *E); private: void AddDeclarationNameInfo(Stmt *S); void AddNestedNameSpecifier(NestedNameSpecifier *NS, SourceRange R); void AddNestedNameSpecifierLoc(NestedNameSpecifierLoc Qualifier); void AddExplicitTemplateArgs(const ExplicitTemplateArgumentList *A); void AddMemberRef(FieldDecl *D, SourceLocation L); void AddStmt(Stmt *S); void AddDecl(Decl *D, bool isFirst = true); void AddTypeLoc(TypeSourceInfo *TI); void EnqueueChildren(Stmt *S); }; } // end anonyous namespace void EnqueueVisitor::AddDeclarationNameInfo(Stmt *S) { // 'S' should always be non-null, since it comes from the // statement we are visiting. WL.push_back(DeclarationNameInfoVisit(S, Parent)); } void EnqueueVisitor::AddNestedNameSpecifier(NestedNameSpecifier *N, SourceRange R) { if (N) WL.push_back(NestedNameSpecifierVisit(N, R, Parent)); } void EnqueueVisitor::AddNestedNameSpecifierLoc(NestedNameSpecifierLoc Qualifier) { if (Qualifier) WL.push_back(NestedNameSpecifierLocVisit(Qualifier, Parent)); } void EnqueueVisitor::AddStmt(Stmt *S) { if (S) WL.push_back(StmtVisit(S, Parent)); } void EnqueueVisitor::AddDecl(Decl *D, bool isFirst) { if (D) WL.push_back(DeclVisit(D, Parent, isFirst)); } void EnqueueVisitor:: AddExplicitTemplateArgs(const ExplicitTemplateArgumentList *A) { if (A) WL.push_back(ExplicitTemplateArgsVisit( const_cast(A), Parent)); } void EnqueueVisitor::AddMemberRef(FieldDecl *D, SourceLocation L) { if (D) WL.push_back(MemberRefVisit(D, L, Parent)); } void EnqueueVisitor::AddTypeLoc(TypeSourceInfo *TI) { if (TI) WL.push_back(TypeLocVisit(TI->getTypeLoc(), Parent)); } void EnqueueVisitor::EnqueueChildren(Stmt *S) { unsigned size = WL.size(); for (Stmt::child_range Child = S->children(); Child; ++Child) { AddStmt(*Child); } if (size == WL.size()) return; // Now reverse the entries we just added. This will match the DFS // ordering performed by the worklist. VisitorWorkList::iterator I = WL.begin() + size, E = WL.end(); std::reverse(I, E); } void EnqueueVisitor::VisitAddrLabelExpr(AddrLabelExpr *E) { WL.push_back(LabelRefVisit(E->getLabel(), E->getLabelLoc(), Parent)); } void EnqueueVisitor::VisitBlockExpr(BlockExpr *B) { AddDecl(B->getBlockDecl()); } void EnqueueVisitor::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { EnqueueChildren(E); AddTypeLoc(E->getTypeSourceInfo()); } void EnqueueVisitor::VisitCompoundStmt(CompoundStmt *S) { for (CompoundStmt::reverse_body_iterator I = S->body_rbegin(), E = S->body_rend(); I != E; ++I) { AddStmt(*I); } } void EnqueueVisitor:: VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E) { AddExplicitTemplateArgs(E->getOptionalExplicitTemplateArgs()); AddDeclarationNameInfo(E); if (NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc()) AddNestedNameSpecifierLoc(QualifierLoc); if (!E->isImplicitAccess()) AddStmt(E->getBase()); } void EnqueueVisitor::VisitCXXNewExpr(CXXNewExpr *E) { // Enqueue the initializer or constructor arguments. for (unsigned I = E->getNumConstructorArgs(); I > 0; --I) AddStmt(E->getConstructorArg(I-1)); // Enqueue the array size, if any. AddStmt(E->getArraySize()); // Enqueue the allocated type. AddTypeLoc(E->getAllocatedTypeSourceInfo()); // Enqueue the placement arguments. for (unsigned I = E->getNumPlacementArgs(); I > 0; --I) AddStmt(E->getPlacementArg(I-1)); } void EnqueueVisitor::VisitCXXOperatorCallExpr(CXXOperatorCallExpr *CE) { for (unsigned I = CE->getNumArgs(); I > 1 /* Yes, this is 1 */; --I) AddStmt(CE->getArg(I-1)); AddStmt(CE->getCallee()); AddStmt(CE->getArg(0)); } void EnqueueVisitor::VisitCXXPseudoDestructorExpr(CXXPseudoDestructorExpr *E) { // Visit the name of the type being destroyed. AddTypeLoc(E->getDestroyedTypeInfo()); // Visit the scope type that looks disturbingly like the nested-name-specifier // but isn't. AddTypeLoc(E->getScopeTypeInfo()); // Visit the nested-name-specifier. if (NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc()) AddNestedNameSpecifierLoc(QualifierLoc); // Visit base expression. AddStmt(E->getBase()); } void EnqueueVisitor::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { AddTypeLoc(E->getTypeSourceInfo()); } void EnqueueVisitor::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *E) { EnqueueChildren(E); AddTypeLoc(E->getTypeSourceInfo()); } void EnqueueVisitor::VisitCXXTypeidExpr(CXXTypeidExpr *E) { EnqueueChildren(E); if (E->isTypeOperand()) AddTypeLoc(E->getTypeOperandSourceInfo()); } void EnqueueVisitor::VisitCXXUnresolvedConstructExpr(CXXUnresolvedConstructExpr *E) { EnqueueChildren(E); AddTypeLoc(E->getTypeSourceInfo()); } void EnqueueVisitor::VisitCXXUuidofExpr(CXXUuidofExpr *E) { EnqueueChildren(E); if (E->isTypeOperand()) AddTypeLoc(E->getTypeOperandSourceInfo()); } void EnqueueVisitor::VisitDeclRefExpr(DeclRefExpr *DR) { if (DR->hasExplicitTemplateArgs()) { AddExplicitTemplateArgs(&DR->getExplicitTemplateArgs()); } WL.push_back(DeclRefExprParts(DR, Parent)); } void EnqueueVisitor::VisitDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E) { AddExplicitTemplateArgs(E->getOptionalExplicitTemplateArgs()); AddDeclarationNameInfo(E); AddNestedNameSpecifierLoc(E->getQualifierLoc()); } void EnqueueVisitor::VisitDeclStmt(DeclStmt *S) { unsigned size = WL.size(); bool isFirst = true; for (DeclStmt::decl_iterator D = S->decl_begin(), DEnd = S->decl_end(); D != DEnd; ++D) { AddDecl(*D, isFirst); isFirst = false; } if (size == WL.size()) return; // Now reverse the entries we just added. This will match the DFS // ordering performed by the worklist. VisitorWorkList::iterator I = WL.begin() + size, E = WL.end(); std::reverse(I, E); } void EnqueueVisitor::VisitDesignatedInitExpr(DesignatedInitExpr *E) { AddStmt(E->getInit()); typedef DesignatedInitExpr::Designator Designator; for (DesignatedInitExpr::reverse_designators_iterator D = E->designators_rbegin(), DEnd = E->designators_rend(); D != DEnd; ++D) { if (D->isFieldDesignator()) { if (FieldDecl *Field = D->getField()) AddMemberRef(Field, D->getFieldLoc()); continue; } if (D->isArrayDesignator()) { AddStmt(E->getArrayIndex(*D)); continue; } assert(D->isArrayRangeDesignator() && "Unknown designator kind"); AddStmt(E->getArrayRangeEnd(*D)); AddStmt(E->getArrayRangeStart(*D)); } } void EnqueueVisitor::VisitExplicitCastExpr(ExplicitCastExpr *E) { EnqueueChildren(E); AddTypeLoc(E->getTypeInfoAsWritten()); } void EnqueueVisitor::VisitForStmt(ForStmt *FS) { AddStmt(FS->getBody()); AddStmt(FS->getInc()); AddStmt(FS->getCond()); AddDecl(FS->getConditionVariable()); AddStmt(FS->getInit()); } void EnqueueVisitor::VisitGotoStmt(GotoStmt *GS) { WL.push_back(LabelRefVisit(GS->getLabel(), GS->getLabelLoc(), Parent)); } void EnqueueVisitor::VisitIfStmt(IfStmt *If) { AddStmt(If->getElse()); AddStmt(If->getThen()); AddStmt(If->getCond()); AddDecl(If->getConditionVariable()); } void EnqueueVisitor::VisitInitListExpr(InitListExpr *IE) { // We care about the syntactic form of the initializer list, only. if (InitListExpr *Syntactic = IE->getSyntacticForm()) IE = Syntactic; EnqueueChildren(IE); } void EnqueueVisitor::VisitMemberExpr(MemberExpr *M) { WL.push_back(MemberExprParts(M, Parent)); // If the base of the member access expression is an implicit 'this', don't // visit it. // FIXME: If we ever want to show these implicit accesses, this will be // unfortunate. However, clang_getCursor() relies on this behavior. if (!M->isImplicitAccess()) AddStmt(M->getBase()); } void EnqueueVisitor::VisitObjCEncodeExpr(ObjCEncodeExpr *E) { AddTypeLoc(E->getEncodedTypeSourceInfo()); } void EnqueueVisitor::VisitObjCMessageExpr(ObjCMessageExpr *M) { EnqueueChildren(M); AddTypeLoc(M->getClassReceiverTypeInfo()); } void EnqueueVisitor::VisitOffsetOfExpr(OffsetOfExpr *E) { // Visit the components of the offsetof expression. for (unsigned N = E->getNumComponents(), I = N; I > 0; --I) { typedef OffsetOfExpr::OffsetOfNode OffsetOfNode; const OffsetOfNode &Node = E->getComponent(I-1); switch (Node.getKind()) { case OffsetOfNode::Array: AddStmt(E->getIndexExpr(Node.getArrayExprIndex())); break; case OffsetOfNode::Field: AddMemberRef(Node.getField(), Node.getSourceRange().getEnd()); break; case OffsetOfNode::Identifier: case OffsetOfNode::Base: continue; } } // Visit the type into which we're computing the offset. AddTypeLoc(E->getTypeSourceInfo()); } void EnqueueVisitor::VisitOverloadExpr(OverloadExpr *E) { AddExplicitTemplateArgs(E->getOptionalExplicitTemplateArgs()); WL.push_back(OverloadExprParts(E, Parent)); } void EnqueueVisitor::VisitUnaryExprOrTypeTraitExpr( UnaryExprOrTypeTraitExpr *E) { EnqueueChildren(E); if (E->isArgumentType()) AddTypeLoc(E->getArgumentTypeInfo()); } void EnqueueVisitor::VisitStmt(Stmt *S) { EnqueueChildren(S); } void EnqueueVisitor::VisitSwitchStmt(SwitchStmt *S) { AddStmt(S->getBody()); AddStmt(S->getCond()); AddDecl(S->getConditionVariable()); } void EnqueueVisitor::VisitWhileStmt(WhileStmt *W) { AddStmt(W->getBody()); AddStmt(W->getCond()); AddDecl(W->getConditionVariable()); } void EnqueueVisitor::VisitUnaryTypeTraitExpr(UnaryTypeTraitExpr *E) { AddTypeLoc(E->getQueriedTypeSourceInfo()); } void EnqueueVisitor::VisitBinaryTypeTraitExpr(BinaryTypeTraitExpr *E) { AddTypeLoc(E->getRhsTypeSourceInfo()); AddTypeLoc(E->getLhsTypeSourceInfo()); } void EnqueueVisitor::VisitArrayTypeTraitExpr(ArrayTypeTraitExpr *E) { AddTypeLoc(E->getQueriedTypeSourceInfo()); } void EnqueueVisitor::VisitExpressionTraitExpr(ExpressionTraitExpr *E) { EnqueueChildren(E); } void EnqueueVisitor::VisitUnresolvedMemberExpr(UnresolvedMemberExpr *U) { VisitOverloadExpr(U); if (!U->isImplicitAccess()) AddStmt(U->getBase()); } void EnqueueVisitor::VisitVAArgExpr(VAArgExpr *E) { AddStmt(E->getSubExpr()); AddTypeLoc(E->getWrittenTypeInfo()); } void EnqueueVisitor::VisitSizeOfPackExpr(SizeOfPackExpr *E) { WL.push_back(SizeOfPackExprParts(E, Parent)); } void CursorVisitor::EnqueueWorkList(VisitorWorkList &WL, Stmt *S) { EnqueueVisitor(WL, MakeCXCursor(S, StmtParent, TU)).Visit(S); } bool CursorVisitor::IsInRegionOfInterest(CXCursor C) { if (RegionOfInterest.isValid()) { SourceRange Range = getRawCursorExtent(C); if (Range.isInvalid() || CompareRegionOfInterest(Range)) return false; } return true; } bool CursorVisitor::RunVisitorWorkList(VisitorWorkList &WL) { while (!WL.empty()) { // Dequeue the worklist item. VisitorJob LI = WL.back(); WL.pop_back(); // Set the Parent field, then back to its old value once we're done. SetParentRAII SetParent(Parent, StmtParent, LI.getParent()); switch (LI.getKind()) { case VisitorJob::DeclVisitKind: { Decl *D = cast(&LI)->get(); if (!D) continue; // For now, perform default visitation for Decls. if (Visit(MakeCXCursor(D, TU, cast(&LI)->isFirst()))) return true; continue; } case VisitorJob::ExplicitTemplateArgsVisitKind: { const ExplicitTemplateArgumentList *ArgList = cast(&LI)->get(); for (const TemplateArgumentLoc *Arg = ArgList->getTemplateArgs(), *ArgEnd = Arg + ArgList->NumTemplateArgs; Arg != ArgEnd; ++Arg) { if (VisitTemplateArgumentLoc(*Arg)) return true; } continue; } case VisitorJob::TypeLocVisitKind: { // Perform default visitation for TypeLocs. if (Visit(cast(&LI)->get())) return true; continue; } case VisitorJob::LabelRefVisitKind: { LabelDecl *LS = cast(&LI)->get(); if (LabelStmt *stmt = LS->getStmt()) { if (Visit(MakeCursorLabelRef(stmt, cast(&LI)->getLoc(), TU))) { return true; } } continue; } case VisitorJob::NestedNameSpecifierVisitKind: { NestedNameSpecifierVisit *V = cast(&LI); if (VisitNestedNameSpecifier(V->get(), V->getSourceRange())) return true; continue; } case VisitorJob::NestedNameSpecifierLocVisitKind: { NestedNameSpecifierLocVisit *V = cast(&LI); if (VisitNestedNameSpecifierLoc(V->get())) return true; continue; } case VisitorJob::DeclarationNameInfoVisitKind: { if (VisitDeclarationNameInfo(cast(&LI) ->get())) return true; continue; } case VisitorJob::MemberRefVisitKind: { MemberRefVisit *V = cast(&LI); if (Visit(MakeCursorMemberRef(V->get(), V->getLoc(), TU))) return true; continue; } case VisitorJob::StmtVisitKind: { Stmt *S = cast(&LI)->get(); if (!S) continue; // Update the current cursor. CXCursor Cursor = MakeCXCursor(S, StmtParent, TU); if (!IsInRegionOfInterest(Cursor)) continue; switch (Visitor(Cursor, Parent, ClientData)) { case CXChildVisit_Break: return true; case CXChildVisit_Continue: break; case CXChildVisit_Recurse: EnqueueWorkList(WL, S); break; } continue; } case VisitorJob::MemberExprPartsKind: { // Handle the other pieces in the MemberExpr besides the base. MemberExpr *M = cast(&LI)->get(); // Visit the nested-name-specifier if (NestedNameSpecifierLoc QualifierLoc = M->getQualifierLoc()) if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; // Visit the declaration name. if (VisitDeclarationNameInfo(M->getMemberNameInfo())) return true; // Visit the explicitly-specified template arguments, if any. if (M->hasExplicitTemplateArgs()) { for (const TemplateArgumentLoc *Arg = M->getTemplateArgs(), *ArgEnd = Arg + M->getNumTemplateArgs(); Arg != ArgEnd; ++Arg) { if (VisitTemplateArgumentLoc(*Arg)) return true; } } continue; } case VisitorJob::DeclRefExprPartsKind: { DeclRefExpr *DR = cast(&LI)->get(); // Visit nested-name-specifier, if present. if (NestedNameSpecifierLoc QualifierLoc = DR->getQualifierLoc()) if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; // Visit declaration name. if (VisitDeclarationNameInfo(DR->getNameInfo())) return true; continue; } case VisitorJob::OverloadExprPartsKind: { OverloadExpr *O = cast(&LI)->get(); // Visit the nested-name-specifier. if (NestedNameSpecifierLoc QualifierLoc = O->getQualifierLoc()) if (VisitNestedNameSpecifierLoc(QualifierLoc)) return true; // Visit the declaration name. if (VisitDeclarationNameInfo(O->getNameInfo())) return true; // Visit the overloaded declaration reference. if (Visit(MakeCursorOverloadedDeclRef(O, TU))) return true; continue; } case VisitorJob::SizeOfPackExprPartsKind: { SizeOfPackExpr *E = cast(&LI)->get(); NamedDecl *Pack = E->getPack(); if (isa(Pack)) { if (Visit(MakeCursorTypeRef(cast(Pack), E->getPackLoc(), TU))) return true; continue; } if (isa(Pack)) { if (Visit(MakeCursorTemplateRef(cast(Pack), E->getPackLoc(), TU))) return true; continue; } // Non-type template parameter packs and function parameter packs are // treated like DeclRefExpr cursors. continue; } } } return false; } bool CursorVisitor::Visit(Stmt *S) { VisitorWorkList *WL = 0; if (!WorkListFreeList.empty()) { WL = WorkListFreeList.back(); WL->clear(); WorkListFreeList.pop_back(); } else { WL = new VisitorWorkList(); WorkListCache.push_back(WL); } EnqueueWorkList(*WL, S); bool result = RunVisitorWorkList(*WL); WorkListFreeList.push_back(WL); return result; } //===----------------------------------------------------------------------===// // Misc. API hooks. //===----------------------------------------------------------------------===// static llvm::sys::Mutex EnableMultithreadingMutex; static bool EnabledMultithreading; extern "C" { CXIndex clang_createIndex(int excludeDeclarationsFromPCH, int displayDiagnostics) { // Disable pretty stack trace functionality, which will otherwise be a very // poor citizen of the world and set up all sorts of signal handlers. llvm::DisablePrettyStackTrace = true; // We use crash recovery to make some of our APIs more reliable, implicitly // enable it. llvm::CrashRecoveryContext::Enable(); // Enable support for multithreading in LLVM. { llvm::sys::ScopedLock L(EnableMultithreadingMutex); if (!EnabledMultithreading) { llvm::llvm_start_multithreaded(); EnabledMultithreading = true; } } CIndexer *CIdxr = new CIndexer(); if (excludeDeclarationsFromPCH) CIdxr->setOnlyLocalDecls(); if (displayDiagnostics) CIdxr->setDisplayDiagnostics(); return CIdxr; } void clang_disposeIndex(CXIndex CIdx) { if (CIdx) delete static_cast(CIdx); } void clang_toggleCrashRecovery(unsigned isEnabled) { if (isEnabled) llvm::CrashRecoveryContext::Enable(); else llvm::CrashRecoveryContext::Disable(); } CXTranslationUnit clang_createTranslationUnit(CXIndex CIdx, const char *ast_filename) { if (!CIdx) return 0; CIndexer *CXXIdx = static_cast(CIdx); FileSystemOptions FileSystemOpts; FileSystemOpts.WorkingDir = CXXIdx->getWorkingDirectory(); llvm::IntrusiveRefCntPtr Diags; ASTUnit *TU = ASTUnit::LoadFromASTFile(ast_filename, Diags, FileSystemOpts, CXXIdx->getOnlyLocalDecls(), 0, 0, true); return MakeCXTranslationUnit(TU); } unsigned clang_defaultEditingTranslationUnitOptions() { return CXTranslationUnit_PrecompiledPreamble | CXTranslationUnit_CacheCompletionResults | CXTranslationUnit_CXXPrecompiledPreamble | CXTranslationUnit_CXXChainedPCH; } CXTranslationUnit clang_createTranslationUnitFromSourceFile(CXIndex CIdx, const char *source_filename, int num_command_line_args, const char * const *command_line_args, unsigned num_unsaved_files, struct CXUnsavedFile *unsaved_files) { unsigned Options = CXTranslationUnit_DetailedPreprocessingRecord | CXTranslationUnit_NestedMacroExpansions; return clang_parseTranslationUnit(CIdx, source_filename, command_line_args, num_command_line_args, unsaved_files, num_unsaved_files, Options); } struct ParseTranslationUnitInfo { CXIndex CIdx; const char *source_filename; const char *const *command_line_args; int num_command_line_args; struct CXUnsavedFile *unsaved_files; unsigned num_unsaved_files; unsigned options; CXTranslationUnit result; }; static void clang_parseTranslationUnit_Impl(void *UserData) { ParseTranslationUnitInfo *PTUI = static_cast(UserData); CXIndex CIdx = PTUI->CIdx; const char *source_filename = PTUI->source_filename; const char * const *command_line_args = PTUI->command_line_args; int num_command_line_args = PTUI->num_command_line_args; struct CXUnsavedFile *unsaved_files = PTUI->unsaved_files; unsigned num_unsaved_files = PTUI->num_unsaved_files; unsigned options = PTUI->options; PTUI->result = 0; if (!CIdx) return; CIndexer *CXXIdx = static_cast(CIdx); bool PrecompilePreamble = options & CXTranslationUnit_PrecompiledPreamble; bool CompleteTranslationUnit = ((options & CXTranslationUnit_Incomplete) == 0); bool CacheCodeCompetionResults = options & CXTranslationUnit_CacheCompletionResults; bool CXXPrecompilePreamble = options & CXTranslationUnit_CXXPrecompiledPreamble; bool CXXChainedPCH = options & CXTranslationUnit_CXXChainedPCH; // Configure the diagnostics. DiagnosticOptions DiagOpts; llvm::IntrusiveRefCntPtr Diags(CompilerInstance::createDiagnostics(DiagOpts, num_command_line_args, command_line_args)); // Recover resources if we crash before exiting this function. llvm::CrashRecoveryContextCleanupRegistrar > DiagCleanup(Diags.getPtr()); llvm::OwningPtr > RemappedFiles(new std::vector()); // Recover resources if we crash before exiting this function. llvm::CrashRecoveryContextCleanupRegistrar< std::vector > RemappedCleanup(RemappedFiles.get()); for (unsigned I = 0; I != num_unsaved_files; ++I) { llvm::StringRef Data(unsaved_files[I].Contents, unsaved_files[I].Length); const llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBufferCopy(Data, unsaved_files[I].Filename); RemappedFiles->push_back(std::make_pair(unsaved_files[I].Filename, Buffer)); } llvm::OwningPtr > Args(new std::vector()); // Recover resources if we crash before exiting this method. llvm::CrashRecoveryContextCleanupRegistrar > ArgsCleanup(Args.get()); // Since the Clang C library is primarily used by batch tools dealing with // (often very broken) source code, where spell-checking can have a // significant negative impact on performance (particularly when // precompiled headers are involved), we disable it by default. // Only do this if we haven't found a spell-checking-related argument. bool FoundSpellCheckingArgument = false; for (int I = 0; I != num_command_line_args; ++I) { if (strcmp(command_line_args[I], "-fno-spell-checking") == 0 || strcmp(command_line_args[I], "-fspell-checking") == 0) { FoundSpellCheckingArgument = true; break; } } if (!FoundSpellCheckingArgument) Args->push_back("-fno-spell-checking"); Args->insert(Args->end(), command_line_args, command_line_args + num_command_line_args); // The 'source_filename' argument is optional. If the caller does not // specify it then it is assumed that the source file is specified // in the actual argument list. // Put the source file after command_line_args otherwise if '-x' flag is // present it will be unused. if (source_filename) Args->push_back(source_filename); // Do we need the detailed preprocessing record? bool NestedMacroExpansions = false; if (options & CXTranslationUnit_DetailedPreprocessingRecord) { Args->push_back("-Xclang"); Args->push_back("-detailed-preprocessing-record"); NestedMacroExpansions = (options & CXTranslationUnit_NestedMacroExpansions); } unsigned NumErrors = Diags->getClient()->getNumErrors(); llvm::OwningPtr Unit( ASTUnit::LoadFromCommandLine(Args->size() ? &(*Args)[0] : 0 /* vector::data() not portable */, Args->size() ? (&(*Args)[0] + Args->size()) :0, Diags, CXXIdx->getClangResourcesPath(), CXXIdx->getOnlyLocalDecls(), /*CaptureDiagnostics=*/true, RemappedFiles->size() ? &(*RemappedFiles)[0]:0, RemappedFiles->size(), /*RemappedFilesKeepOriginalName=*/true, PrecompilePreamble, CompleteTranslationUnit, CacheCodeCompetionResults, CXXPrecompilePreamble, CXXChainedPCH, NestedMacroExpansions)); if (NumErrors != Diags->getClient()->getNumErrors()) { // Make sure to check that 'Unit' is non-NULL. if (CXXIdx->getDisplayDiagnostics() && Unit.get()) { for (ASTUnit::stored_diag_iterator D = Unit->stored_diag_begin(), DEnd = Unit->stored_diag_end(); D != DEnd; ++D) { CXStoredDiagnostic Diag(*D, Unit->getASTContext().getLangOptions()); CXString Msg = clang_formatDiagnostic(&Diag, clang_defaultDiagnosticDisplayOptions()); fprintf(stderr, "%s\n", clang_getCString(Msg)); clang_disposeString(Msg); } #ifdef LLVM_ON_WIN32 // On Windows, force a flush, since there may be multiple copies of // stderr and stdout in the file system, all with different buffers // but writing to the same device. fflush(stderr); #endif } } PTUI->result = MakeCXTranslationUnit(Unit.take()); } CXTranslationUnit clang_parseTranslationUnit(CXIndex CIdx, const char *source_filename, const char * const *command_line_args, int num_command_line_args, struct CXUnsavedFile *unsaved_files, unsigned num_unsaved_files, unsigned options) { ParseTranslationUnitInfo PTUI = { CIdx, source_filename, command_line_args, num_command_line_args, unsaved_files, num_unsaved_files, options, 0 }; llvm::CrashRecoveryContext CRC; if (!RunSafely(CRC, clang_parseTranslationUnit_Impl, &PTUI)) { fprintf(stderr, "libclang: crash detected during parsing: {\n"); fprintf(stderr, " 'source_filename' : '%s'\n", source_filename); fprintf(stderr, " 'command_line_args' : ["); for (int i = 0; i != num_command_line_args; ++i) { if (i) fprintf(stderr, ", "); fprintf(stderr, "'%s'", command_line_args[i]); } fprintf(stderr, "],\n"); fprintf(stderr, " 'unsaved_files' : ["); for (unsigned i = 0; i != num_unsaved_files; ++i) { if (i) fprintf(stderr, ", "); fprintf(stderr, "('%s', '...', %ld)", unsaved_files[i].Filename, unsaved_files[i].Length); } fprintf(stderr, "],\n"); fprintf(stderr, " 'options' : %d,\n", options); fprintf(stderr, "}\n"); return 0; } else if (getenv("LIBCLANG_RESOURCE_USAGE")) { PrintLibclangResourceUsage(PTUI.result); } return PTUI.result; } unsigned clang_defaultSaveOptions(CXTranslationUnit TU) { return CXSaveTranslationUnit_None; } int clang_saveTranslationUnit(CXTranslationUnit TU, const char *FileName, unsigned options) { if (!TU) return CXSaveError_InvalidTU; CXSaveError result = static_cast(TU->TUData)->Save(FileName); if (getenv("LIBCLANG_RESOURCE_USAGE")) PrintLibclangResourceUsage(TU); return result; } void clang_disposeTranslationUnit(CXTranslationUnit CTUnit) { if (CTUnit) { // If the translation unit has been marked as unsafe to free, just discard // it. if (static_cast(CTUnit->TUData)->isUnsafeToFree()) return; delete static_cast(CTUnit->TUData); disposeCXStringPool(CTUnit->StringPool); delete CTUnit; } } unsigned clang_defaultReparseOptions(CXTranslationUnit TU) { return CXReparse_None; } struct ReparseTranslationUnitInfo { CXTranslationUnit TU; unsigned num_unsaved_files; struct CXUnsavedFile *unsaved_files; unsigned options; int result; }; static void clang_reparseTranslationUnit_Impl(void *UserData) { ReparseTranslationUnitInfo *RTUI = static_cast(UserData); CXTranslationUnit TU = RTUI->TU; unsigned num_unsaved_files = RTUI->num_unsaved_files; struct CXUnsavedFile *unsaved_files = RTUI->unsaved_files; unsigned options = RTUI->options; (void) options; RTUI->result = 1; if (!TU) return; ASTUnit *CXXUnit = static_cast(TU->TUData); ASTUnit::ConcurrencyCheck Check(*CXXUnit); llvm::OwningPtr > RemappedFiles(new std::vector()); // Recover resources if we crash before exiting this function. llvm::CrashRecoveryContextCleanupRegistrar< std::vector > RemappedCleanup(RemappedFiles.get()); for (unsigned I = 0; I != num_unsaved_files; ++I) { llvm::StringRef Data(unsaved_files[I].Contents, unsaved_files[I].Length); const llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBufferCopy(Data, unsaved_files[I].Filename); RemappedFiles->push_back(std::make_pair(unsaved_files[I].Filename, Buffer)); } if (!CXXUnit->Reparse(RemappedFiles->size() ? &(*RemappedFiles)[0] : 0, RemappedFiles->size())) RTUI->result = 0; } int clang_reparseTranslationUnit(CXTranslationUnit TU, unsigned num_unsaved_files, struct CXUnsavedFile *unsaved_files, unsigned options) { ReparseTranslationUnitInfo RTUI = { TU, num_unsaved_files, unsaved_files, options, 0 }; llvm::CrashRecoveryContext CRC; if (!RunSafely(CRC, clang_reparseTranslationUnit_Impl, &RTUI)) { fprintf(stderr, "libclang: crash detected during reparsing\n"); static_cast(TU->TUData)->setUnsafeToFree(true); return 1; } else if (getenv("LIBCLANG_RESOURCE_USAGE")) PrintLibclangResourceUsage(TU); return RTUI.result; } CXString clang_getTranslationUnitSpelling(CXTranslationUnit CTUnit) { if (!CTUnit) return createCXString(""); ASTUnit *CXXUnit = static_cast(CTUnit->TUData); return createCXString(CXXUnit->getOriginalSourceFileName(), true); } CXCursor clang_getTranslationUnitCursor(CXTranslationUnit TU) { CXCursor Result = { CXCursor_TranslationUnit, { 0, 0, TU } }; return Result; } } // end: extern "C" //===----------------------------------------------------------------------===// // CXSourceLocation and CXSourceRange Operations. //===----------------------------------------------------------------------===// extern "C" { CXSourceLocation clang_getNullLocation() { CXSourceLocation Result = { { 0, 0 }, 0 }; return Result; } unsigned clang_equalLocations(CXSourceLocation loc1, CXSourceLocation loc2) { return (loc1.ptr_data[0] == loc2.ptr_data[0] && loc1.ptr_data[1] == loc2.ptr_data[1] && loc1.int_data == loc2.int_data); } CXSourceLocation clang_getLocation(CXTranslationUnit tu, CXFile file, unsigned line, unsigned column) { if (!tu || !file) return clang_getNullLocation(); bool Logging = ::getenv("LIBCLANG_LOGGING"); ASTUnit *CXXUnit = static_cast(tu->TUData); const FileEntry *File = static_cast(file); SourceLocation SLoc = CXXUnit->getSourceManager().getLocation(File, line, column); if (SLoc.isInvalid()) { if (Logging) llvm::errs() << "clang_getLocation(\"" << File->getName() << "\", " << line << ", " << column << ") = invalid\n"; return clang_getNullLocation(); } if (Logging) llvm::errs() << "clang_getLocation(\"" << File->getName() << "\", " << line << ", " << column << ") = " << SLoc.getRawEncoding() << "\n"; return cxloc::translateSourceLocation(CXXUnit->getASTContext(), SLoc); } CXSourceLocation clang_getLocationForOffset(CXTranslationUnit tu, CXFile file, unsigned offset) { if (!tu || !file) return clang_getNullLocation(); ASTUnit *CXXUnit = static_cast(tu->TUData); SourceLocation Start = CXXUnit->getSourceManager().getLocation( static_cast(file), 1, 1); if (Start.isInvalid()) return clang_getNullLocation(); SourceLocation SLoc = Start.getFileLocWithOffset(offset); if (SLoc.isInvalid()) return clang_getNullLocation(); return cxloc::translateSourceLocation(CXXUnit->getASTContext(), SLoc); } CXSourceRange clang_getNullRange() { CXSourceRange Result = { { 0, 0 }, 0, 0 }; return Result; } CXSourceRange clang_getRange(CXSourceLocation begin, CXSourceLocation end) { if (begin.ptr_data[0] != end.ptr_data[0] || begin.ptr_data[1] != end.ptr_data[1]) return clang_getNullRange(); CXSourceRange Result = { { begin.ptr_data[0], begin.ptr_data[1] }, begin.int_data, end.int_data }; return Result; } } // end: extern "C" static void createNullLocation(CXFile *file, unsigned *line, unsigned *column, unsigned *offset) { if (file) *file = 0; if (line) *line = 0; if (column) *column = 0; if (offset) *offset = 0; return; } extern "C" { void clang_getInstantiationLocation(CXSourceLocation location, CXFile *file, unsigned *line, unsigned *column, unsigned *offset) { SourceLocation Loc = SourceLocation::getFromRawEncoding(location.int_data); if (!location.ptr_data[0] || Loc.isInvalid()) { createNullLocation(file, line, column, offset); return; } const SourceManager &SM = *static_cast(location.ptr_data[0]); SourceLocation InstLoc = SM.getInstantiationLoc(Loc); // Check that the FileID is invalid on the expansion location. // This can manifest in invalid code. FileID fileID = SM.getFileID(InstLoc); bool Invalid = false; const SrcMgr::SLocEntry &sloc = SM.getSLocEntry(fileID, &Invalid); if (!sloc.isFile() || Invalid) { createNullLocation(file, line, column, offset); return; } if (file) *file = (void *)SM.getFileEntryForSLocEntry(sloc); if (line) *line = SM.getInstantiationLineNumber(InstLoc); if (column) *column = SM.getInstantiationColumnNumber(InstLoc); if (offset) *offset = SM.getDecomposedLoc(InstLoc).second; } void clang_getSpellingLocation(CXSourceLocation location, CXFile *file, unsigned *line, unsigned *column, unsigned *offset) { SourceLocation Loc = SourceLocation::getFromRawEncoding(location.int_data); if (!location.ptr_data[0] || Loc.isInvalid()) return createNullLocation(file, line, column, offset); const SourceManager &SM = *static_cast(location.ptr_data[0]); SourceLocation SpellLoc = Loc; if (SpellLoc.isMacroID()) { SourceLocation SimpleSpellingLoc = SM.getImmediateSpellingLoc(SpellLoc); if (SimpleSpellingLoc.isFileID() && SM.getFileEntryForID(SM.getDecomposedLoc(SimpleSpellingLoc).first)) SpellLoc = SimpleSpellingLoc; else SpellLoc = SM.getInstantiationLoc(SpellLoc); } std::pair LocInfo = SM.getDecomposedLoc(SpellLoc); FileID FID = LocInfo.first; unsigned FileOffset = LocInfo.second; if (FID.isInvalid()) return createNullLocation(file, line, column, offset); if (file) *file = (void *)SM.getFileEntryForID(FID); if (line) *line = SM.getLineNumber(FID, FileOffset); if (column) *column = SM.getColumnNumber(FID, FileOffset); if (offset) *offset = FileOffset; } CXSourceLocation clang_getRangeStart(CXSourceRange range) { CXSourceLocation Result = { { range.ptr_data[0], range.ptr_data[1] }, range.begin_int_data }; return Result; } CXSourceLocation clang_getRangeEnd(CXSourceRange range) { CXSourceLocation Result = { { range.ptr_data[0], range.ptr_data[1] }, range.end_int_data }; return Result; } } // end: extern "C" //===----------------------------------------------------------------------===// // CXFile Operations. //===----------------------------------------------------------------------===// extern "C" { CXString clang_getFileName(CXFile SFile) { if (!SFile) return createCXString((const char*)NULL); FileEntry *FEnt = static_cast(SFile); return createCXString(FEnt->getName()); } time_t clang_getFileTime(CXFile SFile) { if (!SFile) return 0; FileEntry *FEnt = static_cast(SFile); return FEnt->getModificationTime(); } CXFile clang_getFile(CXTranslationUnit tu, const char *file_name) { if (!tu) return 0; ASTUnit *CXXUnit = static_cast(tu->TUData); FileManager &FMgr = CXXUnit->getFileManager(); return const_cast(FMgr.getFile(file_name)); } unsigned clang_isFileMultipleIncludeGuarded(CXTranslationUnit tu, CXFile file) { if (!tu || !file) return 0; ASTUnit *CXXUnit = static_cast(tu->TUData); FileEntry *FEnt = static_cast(file); return CXXUnit->getPreprocessor().getHeaderSearchInfo() .isFileMultipleIncludeGuarded(FEnt); } } // end: extern "C" //===----------------------------------------------------------------------===// // CXCursor Operations. //===----------------------------------------------------------------------===// static Decl *getDeclFromExpr(Stmt *E) { if (CastExpr *CE = dyn_cast(E)) return getDeclFromExpr(CE->getSubExpr()); if (DeclRefExpr *RefExpr = dyn_cast(E)) return RefExpr->getDecl(); if (BlockDeclRefExpr *RefExpr = dyn_cast(E)) return RefExpr->getDecl(); if (MemberExpr *ME = dyn_cast(E)) return ME->getMemberDecl(); if (ObjCIvarRefExpr *RE = dyn_cast(E)) return RE->getDecl(); if (ObjCPropertyRefExpr *PRE = dyn_cast(E)) return PRE->isExplicitProperty() ? PRE->getExplicitProperty() : 0; if (CallExpr *CE = dyn_cast(E)) return getDeclFromExpr(CE->getCallee()); if (CXXConstructExpr *CE = llvm::dyn_cast(E)) if (!CE->isElidable()) return CE->getConstructor(); if (ObjCMessageExpr *OME = dyn_cast(E)) return OME->getMethodDecl(); if (ObjCProtocolExpr *PE = dyn_cast(E)) return PE->getProtocol(); if (SubstNonTypeTemplateParmPackExpr *NTTP = dyn_cast(E)) return NTTP->getParameterPack(); if (SizeOfPackExpr *SizeOfPack = dyn_cast(E)) if (isa(SizeOfPack->getPack()) || isa(SizeOfPack->getPack())) return SizeOfPack->getPack(); return 0; } static SourceLocation getLocationFromExpr(Expr *E) { if (ObjCMessageExpr *Msg = dyn_cast(E)) return /*FIXME:*/Msg->getLeftLoc(); if (DeclRefExpr *DRE = dyn_cast(E)) return DRE->getLocation(); if (BlockDeclRefExpr *RefExpr = dyn_cast(E)) return RefExpr->getLocation(); if (MemberExpr *Member = dyn_cast(E)) return Member->getMemberLoc(); if (ObjCIvarRefExpr *Ivar = dyn_cast(E)) return Ivar->getLocation(); if (SizeOfPackExpr *SizeOfPack = dyn_cast(E)) return SizeOfPack->getPackLoc(); return E->getLocStart(); } extern "C" { unsigned clang_visitChildren(CXCursor parent, CXCursorVisitor visitor, CXClientData client_data) { CursorVisitor CursorVis(getCursorTU(parent), visitor, client_data, getCursorASTUnit(parent)->getMaxPCHLevel(), false); return CursorVis.VisitChildren(parent); } #ifndef __has_feature #define __has_feature(x) 0 #endif #if __has_feature(blocks) typedef enum CXChildVisitResult (^CXCursorVisitorBlock)(CXCursor cursor, CXCursor parent); static enum CXChildVisitResult visitWithBlock(CXCursor cursor, CXCursor parent, CXClientData client_data) { CXCursorVisitorBlock block = (CXCursorVisitorBlock)client_data; return block(cursor, parent); } #else // If we are compiled with a compiler that doesn't have native blocks support, // define and call the block manually, so the typedef struct _CXChildVisitResult { void *isa; int flags; int reserved; enum CXChildVisitResult(*invoke)(struct _CXChildVisitResult*, CXCursor, CXCursor); } *CXCursorVisitorBlock; static enum CXChildVisitResult visitWithBlock(CXCursor cursor, CXCursor parent, CXClientData client_data) { CXCursorVisitorBlock block = (CXCursorVisitorBlock)client_data; return block->invoke(block, cursor, parent); } #endif unsigned clang_visitChildrenWithBlock(CXCursor parent, CXCursorVisitorBlock block) { return clang_visitChildren(parent, visitWithBlock, block); } static CXString getDeclSpelling(Decl *D) { NamedDecl *ND = dyn_cast_or_null(D); if (!ND) { if (ObjCPropertyImplDecl *PropImpl =llvm::dyn_cast(D)) if (ObjCPropertyDecl *Property = PropImpl->getPropertyDecl()) return createCXString(Property->getIdentifier()->getName()); return createCXString(""); } if (ObjCMethodDecl *OMD = dyn_cast(ND)) return createCXString(OMD->getSelector().getAsString()); if (ObjCCategoryImplDecl *CIMP = dyn_cast(ND)) // No, this isn't the same as the code below. getIdentifier() is non-virtual // and returns different names. NamedDecl returns the class name and // ObjCCategoryImplDecl returns the category name. return createCXString(CIMP->getIdentifier()->getNameStart()); if (isa(D)) return createCXString(""); llvm::SmallString<1024> S; llvm::raw_svector_ostream os(S); ND->printName(os); return createCXString(os.str()); } CXString clang_getCursorSpelling(CXCursor C) { if (clang_isTranslationUnit(C.kind)) return clang_getTranslationUnitSpelling( static_cast(C.data[2])); if (clang_isReference(C.kind)) { switch (C.kind) { case CXCursor_ObjCSuperClassRef: { ObjCInterfaceDecl *Super = getCursorObjCSuperClassRef(C).first; return createCXString(Super->getIdentifier()->getNameStart()); } case CXCursor_ObjCClassRef: { ObjCInterfaceDecl *Class = getCursorObjCClassRef(C).first; return createCXString(Class->getIdentifier()->getNameStart()); } case CXCursor_ObjCProtocolRef: { ObjCProtocolDecl *OID = getCursorObjCProtocolRef(C).first; assert(OID && "getCursorSpelling(): Missing protocol decl"); return createCXString(OID->getIdentifier()->getNameStart()); } case CXCursor_CXXBaseSpecifier: { CXXBaseSpecifier *B = getCursorCXXBaseSpecifier(C); return createCXString(B->getType().getAsString()); } case CXCursor_TypeRef: { TypeDecl *Type = getCursorTypeRef(C).first; assert(Type && "Missing type decl"); return createCXString(getCursorContext(C).getTypeDeclType(Type). getAsString()); } case CXCursor_TemplateRef: { TemplateDecl *Template = getCursorTemplateRef(C).first; assert(Template && "Missing template decl"); return createCXString(Template->getNameAsString()); } case CXCursor_NamespaceRef: { NamedDecl *NS = getCursorNamespaceRef(C).first; assert(NS && "Missing namespace decl"); return createCXString(NS->getNameAsString()); } case CXCursor_MemberRef: { FieldDecl *Field = getCursorMemberRef(C).first; assert(Field && "Missing member decl"); return createCXString(Field->getNameAsString()); } case CXCursor_LabelRef: { LabelStmt *Label = getCursorLabelRef(C).first; assert(Label && "Missing label"); return createCXString(Label->getName()); } case CXCursor_OverloadedDeclRef: { OverloadedDeclRefStorage Storage = getCursorOverloadedDeclRef(C).first; if (Decl *D = Storage.dyn_cast()) { if (NamedDecl *ND = dyn_cast(D)) return createCXString(ND->getNameAsString()); return createCXString(""); } if (OverloadExpr *E = Storage.dyn_cast()) return createCXString(E->getName().getAsString()); OverloadedTemplateStorage *Ovl = Storage.get(); if (Ovl->size() == 0) return createCXString(""); return createCXString((*Ovl->begin())->getNameAsString()); } default: return createCXString(""); } } if (clang_isExpression(C.kind)) { Decl *D = getDeclFromExpr(getCursorExpr(C)); if (D) return getDeclSpelling(D); return createCXString(""); } if (clang_isStatement(C.kind)) { Stmt *S = getCursorStmt(C); if (LabelStmt *Label = dyn_cast_or_null(S)) return createCXString(Label->getName()); return createCXString(""); } if (C.kind == CXCursor_MacroExpansion) return createCXString(getCursorMacroExpansion(C)->getName() ->getNameStart()); if (C.kind == CXCursor_MacroDefinition) return createCXString(getCursorMacroDefinition(C)->getName() ->getNameStart()); if (C.kind == CXCursor_InclusionDirective) return createCXString(getCursorInclusionDirective(C)->getFileName()); if (clang_isDeclaration(C.kind)) return getDeclSpelling(getCursorDecl(C)); return createCXString(""); } CXString clang_getCursorDisplayName(CXCursor C) { if (!clang_isDeclaration(C.kind)) return clang_getCursorSpelling(C); Decl *D = getCursorDecl(C); if (!D) return createCXString(""); PrintingPolicy &Policy = getCursorContext(C).PrintingPolicy; if (FunctionTemplateDecl *FunTmpl = dyn_cast(D)) D = FunTmpl->getTemplatedDecl(); if (FunctionDecl *Function = dyn_cast(D)) { llvm::SmallString<64> Str; llvm::raw_svector_ostream OS(Str); OS << Function->getNameAsString(); if (Function->getPrimaryTemplate()) OS << "<>"; OS << "("; for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) { if (I) OS << ", "; OS << Function->getParamDecl(I)->getType().getAsString(Policy); } if (Function->isVariadic()) { if (Function->getNumParams()) OS << ", "; OS << "..."; } OS << ")"; return createCXString(OS.str()); } if (ClassTemplateDecl *ClassTemplate = dyn_cast(D)) { llvm::SmallString<64> Str; llvm::raw_svector_ostream OS(Str); OS << ClassTemplate->getNameAsString(); OS << "<"; TemplateParameterList *Params = ClassTemplate->getTemplateParameters(); for (unsigned I = 0, N = Params->size(); I != N; ++I) { if (I) OS << ", "; NamedDecl *Param = Params->getParam(I); if (Param->getIdentifier()) { OS << Param->getIdentifier()->getName(); continue; } // There is no parameter name, which makes this tricky. Try to come up // with something useful that isn't too long. if (TemplateTypeParmDecl *TTP = dyn_cast(Param)) OS << (TTP->wasDeclaredWithTypename()? "typename" : "class"); else if (NonTypeTemplateParmDecl *NTTP = dyn_cast(Param)) OS << NTTP->getType().getAsString(Policy); else OS << "template<...> class"; } OS << ">"; return createCXString(OS.str()); } if (ClassTemplateSpecializationDecl *ClassSpec = dyn_cast(D)) { // If the type was explicitly written, use that. if (TypeSourceInfo *TSInfo = ClassSpec->getTypeAsWritten()) return createCXString(TSInfo->getType().getAsString(Policy)); llvm::SmallString<64> Str; llvm::raw_svector_ostream OS(Str); OS << ClassSpec->getNameAsString(); OS << TemplateSpecializationType::PrintTemplateArgumentList( ClassSpec->getTemplateArgs().data(), ClassSpec->getTemplateArgs().size(), Policy); return createCXString(OS.str()); } return clang_getCursorSpelling(C); } CXString clang_getCursorKindSpelling(enum CXCursorKind Kind) { switch (Kind) { case CXCursor_FunctionDecl: return createCXString("FunctionDecl"); case CXCursor_TypedefDecl: return createCXString("TypedefDecl"); case CXCursor_EnumDecl: return createCXString("EnumDecl"); case CXCursor_EnumConstantDecl: return createCXString("EnumConstantDecl"); case CXCursor_StructDecl: return createCXString("StructDecl"); case CXCursor_UnionDecl: return createCXString("UnionDecl"); case CXCursor_ClassDecl: return createCXString("ClassDecl"); case CXCursor_FieldDecl: return createCXString("FieldDecl"); case CXCursor_VarDecl: return createCXString("VarDecl"); case CXCursor_ParmDecl: return createCXString("ParmDecl"); case CXCursor_ObjCInterfaceDecl: return createCXString("ObjCInterfaceDecl"); case CXCursor_ObjCCategoryDecl: return createCXString("ObjCCategoryDecl"); case CXCursor_ObjCProtocolDecl: return createCXString("ObjCProtocolDecl"); case CXCursor_ObjCPropertyDecl: return createCXString("ObjCPropertyDecl"); case CXCursor_ObjCIvarDecl: return createCXString("ObjCIvarDecl"); case CXCursor_ObjCInstanceMethodDecl: return createCXString("ObjCInstanceMethodDecl"); case CXCursor_ObjCClassMethodDecl: return createCXString("ObjCClassMethodDecl"); case CXCursor_ObjCImplementationDecl: return createCXString("ObjCImplementationDecl"); case CXCursor_ObjCCategoryImplDecl: return createCXString("ObjCCategoryImplDecl"); case CXCursor_CXXMethod: return createCXString("CXXMethod"); case CXCursor_UnexposedDecl: return createCXString("UnexposedDecl"); case CXCursor_ObjCSuperClassRef: return createCXString("ObjCSuperClassRef"); case CXCursor_ObjCProtocolRef: return createCXString("ObjCProtocolRef"); case CXCursor_ObjCClassRef: return createCXString("ObjCClassRef"); case CXCursor_TypeRef: return createCXString("TypeRef"); case CXCursor_TemplateRef: return createCXString("TemplateRef"); case CXCursor_NamespaceRef: return createCXString("NamespaceRef"); case CXCursor_MemberRef: return createCXString("MemberRef"); case CXCursor_LabelRef: return createCXString("LabelRef"); case CXCursor_OverloadedDeclRef: return createCXString("OverloadedDeclRef"); case CXCursor_UnexposedExpr: return createCXString("UnexposedExpr"); case CXCursor_BlockExpr: return createCXString("BlockExpr"); case CXCursor_DeclRefExpr: return createCXString("DeclRefExpr"); case CXCursor_MemberRefExpr: return createCXString("MemberRefExpr"); case CXCursor_CallExpr: return createCXString("CallExpr"); case CXCursor_ObjCMessageExpr: return createCXString("ObjCMessageExpr"); case CXCursor_UnexposedStmt: return createCXString("UnexposedStmt"); case CXCursor_LabelStmt: return createCXString("LabelStmt"); case CXCursor_InvalidFile: return createCXString("InvalidFile"); case CXCursor_InvalidCode: return createCXString("InvalidCode"); case CXCursor_NoDeclFound: return createCXString("NoDeclFound"); case CXCursor_NotImplemented: return createCXString("NotImplemented"); case CXCursor_TranslationUnit: return createCXString("TranslationUnit"); case CXCursor_UnexposedAttr: return createCXString("UnexposedAttr"); case CXCursor_IBActionAttr: return createCXString("attribute(ibaction)"); case CXCursor_IBOutletAttr: return createCXString("attribute(iboutlet)"); case CXCursor_IBOutletCollectionAttr: return createCXString("attribute(iboutletcollection)"); case CXCursor_PreprocessingDirective: return createCXString("preprocessing directive"); case CXCursor_MacroDefinition: return createCXString("macro definition"); case CXCursor_MacroExpansion: return createCXString("macro expansion"); case CXCursor_InclusionDirective: return createCXString("inclusion directive"); case CXCursor_Namespace: return createCXString("Namespace"); case CXCursor_LinkageSpec: return createCXString("LinkageSpec"); case CXCursor_CXXBaseSpecifier: return createCXString("C++ base class specifier"); case CXCursor_Constructor: return createCXString("CXXConstructor"); case CXCursor_Destructor: return createCXString("CXXDestructor"); case CXCursor_ConversionFunction: return createCXString("CXXConversion"); case CXCursor_TemplateTypeParameter: return createCXString("TemplateTypeParameter"); case CXCursor_NonTypeTemplateParameter: return createCXString("NonTypeTemplateParameter"); case CXCursor_TemplateTemplateParameter: return createCXString("TemplateTemplateParameter"); case CXCursor_FunctionTemplate: return createCXString("FunctionTemplate"); case CXCursor_ClassTemplate: return createCXString("ClassTemplate"); case CXCursor_ClassTemplatePartialSpecialization: return createCXString("ClassTemplatePartialSpecialization"); case CXCursor_NamespaceAlias: return createCXString("NamespaceAlias"); case CXCursor_UsingDirective: return createCXString("UsingDirective"); case CXCursor_UsingDeclaration: return createCXString("UsingDeclaration"); case CXCursor_TypeAliasDecl: return createCXString("TypeAliasDecl"); case CXCursor_ObjCSynthesizeDecl: return createCXString("ObjCSynthesizeDecl"); case CXCursor_ObjCDynamicDecl: return createCXString("ObjCDynamicDecl"); } llvm_unreachable("Unhandled CXCursorKind"); return createCXString((const char*) 0); } struct GetCursorData { SourceLocation TokenBeginLoc; CXCursor &BestCursor; GetCursorData(SourceLocation tokenBegin, CXCursor &outputCursor) : TokenBeginLoc(tokenBegin), BestCursor(outputCursor) { } }; enum CXChildVisitResult GetCursorVisitor(CXCursor cursor, CXCursor parent, CXClientData client_data) { GetCursorData *Data = static_cast(client_data); CXCursor *BestCursor = &Data->BestCursor; if (clang_isExpression(cursor.kind) && clang_isDeclaration(BestCursor->kind)) { Decl *D = getCursorDecl(*BestCursor); // Avoid having the cursor of an expression replace the declaration cursor // when the expression source range overlaps the declaration range. // This can happen for C++ constructor expressions whose range generally // include the variable declaration, e.g.: // MyCXXClass foo; // Make sure pointing at 'foo' returns a VarDecl cursor. if (D->getLocation().isValid() && Data->TokenBeginLoc.isValid() && D->getLocation() == Data->TokenBeginLoc) return CXChildVisit_Break; } // If our current best cursor is the construction of a temporary object, // don't replace that cursor with a type reference, because we want // clang_getCursor() to point at the constructor. if (clang_isExpression(BestCursor->kind) && isa(getCursorExpr(*BestCursor)) && cursor.kind == CXCursor_TypeRef) return CXChildVisit_Recurse; // Don't override a preprocessing cursor with another preprocessing // cursor; we want the outermost preprocessing cursor. if (clang_isPreprocessing(cursor.kind) && clang_isPreprocessing(BestCursor->kind)) return CXChildVisit_Recurse; *BestCursor = cursor; return CXChildVisit_Recurse; } CXCursor clang_getCursor(CXTranslationUnit TU, CXSourceLocation Loc) { if (!TU) return clang_getNullCursor(); ASTUnit *CXXUnit = static_cast(TU->TUData); ASTUnit::ConcurrencyCheck Check(*CXXUnit); // Translate the given source location to make it point at the beginning of // the token under the cursor. SourceLocation SLoc = cxloc::translateSourceLocation(Loc); // Guard against an invalid SourceLocation, or we may assert in one // of the following calls. if (SLoc.isInvalid()) return clang_getNullCursor(); bool Logging = getenv("LIBCLANG_LOGGING"); SLoc = Lexer::GetBeginningOfToken(SLoc, CXXUnit->getSourceManager(), CXXUnit->getASTContext().getLangOptions()); CXCursor Result = MakeCXCursorInvalid(CXCursor_NoDeclFound); if (SLoc.isValid()) { // FIXME: Would be great to have a "hint" cursor, then walk from that // hint cursor upward until we find a cursor whose source range encloses // the region of interest, rather than starting from the translation unit. GetCursorData ResultData(SLoc, Result); CXCursor Parent = clang_getTranslationUnitCursor(TU); CursorVisitor CursorVis(TU, GetCursorVisitor, &ResultData, Decl::MaxPCHLevel, true, SourceLocation(SLoc)); CursorVis.VisitChildren(Parent); } if (Logging) { CXFile SearchFile; unsigned SearchLine, SearchColumn; CXFile ResultFile; unsigned ResultLine, ResultColumn; CXString SearchFileName, ResultFileName, KindSpelling, USR; const char *IsDef = clang_isCursorDefinition(Result)? " (Definition)" : ""; CXSourceLocation ResultLoc = clang_getCursorLocation(Result); clang_getInstantiationLocation(Loc, &SearchFile, &SearchLine, &SearchColumn, 0); clang_getInstantiationLocation(ResultLoc, &ResultFile, &ResultLine, &ResultColumn, 0); SearchFileName = clang_getFileName(SearchFile); ResultFileName = clang_getFileName(ResultFile); KindSpelling = clang_getCursorKindSpelling(Result.kind); USR = clang_getCursorUSR(Result); fprintf(stderr, "clang_getCursor(%s:%d:%d) = %s(%s:%d:%d):%s%s\n", clang_getCString(SearchFileName), SearchLine, SearchColumn, clang_getCString(KindSpelling), clang_getCString(ResultFileName), ResultLine, ResultColumn, clang_getCString(USR), IsDef); clang_disposeString(SearchFileName); clang_disposeString(ResultFileName); clang_disposeString(KindSpelling); clang_disposeString(USR); CXCursor Definition = clang_getCursorDefinition(Result); if (!clang_equalCursors(Definition, clang_getNullCursor())) { CXSourceLocation DefinitionLoc = clang_getCursorLocation(Definition); CXString DefinitionKindSpelling = clang_getCursorKindSpelling(Definition.kind); CXFile DefinitionFile; unsigned DefinitionLine, DefinitionColumn; clang_getInstantiationLocation(DefinitionLoc, &DefinitionFile, &DefinitionLine, &DefinitionColumn, 0); CXString DefinitionFileName = clang_getFileName(DefinitionFile); fprintf(stderr, " -> %s(%s:%d:%d)\n", clang_getCString(DefinitionKindSpelling), clang_getCString(DefinitionFileName), DefinitionLine, DefinitionColumn); clang_disposeString(DefinitionFileName); clang_disposeString(DefinitionKindSpelling); } } return Result; } CXCursor clang_getNullCursor(void) { return MakeCXCursorInvalid(CXCursor_InvalidFile); } unsigned clang_equalCursors(CXCursor X, CXCursor Y) { return X == Y; } unsigned clang_hashCursor(CXCursor C) { unsigned Index = 0; if (clang_isExpression(C.kind) || clang_isStatement(C.kind)) Index = 1; return llvm::DenseMapInfo >::getHashValue( std::make_pair(C.kind, C.data[Index])); } unsigned clang_isInvalid(enum CXCursorKind K) { return K >= CXCursor_FirstInvalid && K <= CXCursor_LastInvalid; } unsigned clang_isDeclaration(enum CXCursorKind K) { return K >= CXCursor_FirstDecl && K <= CXCursor_LastDecl; } unsigned clang_isReference(enum CXCursorKind K) { return K >= CXCursor_FirstRef && K <= CXCursor_LastRef; } unsigned clang_isExpression(enum CXCursorKind K) { return K >= CXCursor_FirstExpr && K <= CXCursor_LastExpr; } unsigned clang_isStatement(enum CXCursorKind K) { return K >= CXCursor_FirstStmt && K <= CXCursor_LastStmt; } unsigned clang_isAttribute(enum CXCursorKind K) { return K >= CXCursor_FirstAttr && K <= CXCursor_LastAttr; } unsigned clang_isTranslationUnit(enum CXCursorKind K) { return K == CXCursor_TranslationUnit; } unsigned clang_isPreprocessing(enum CXCursorKind K) { return K >= CXCursor_FirstPreprocessing && K <= CXCursor_LastPreprocessing; } unsigned clang_isUnexposed(enum CXCursorKind K) { switch (K) { case CXCursor_UnexposedDecl: case CXCursor_UnexposedExpr: case CXCursor_UnexposedStmt: case CXCursor_UnexposedAttr: return true; default: return false; } } CXCursorKind clang_getCursorKind(CXCursor C) { return C.kind; } CXSourceLocation clang_getCursorLocation(CXCursor C) { if (clang_isReference(C.kind)) { switch (C.kind) { case CXCursor_ObjCSuperClassRef: { std::pair P = getCursorObjCSuperClassRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_ObjCProtocolRef: { std::pair P = getCursorObjCProtocolRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_ObjCClassRef: { std::pair P = getCursorObjCClassRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_TypeRef: { std::pair P = getCursorTypeRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_TemplateRef: { std::pair P = getCursorTemplateRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_NamespaceRef: { std::pair P = getCursorNamespaceRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_MemberRef: { std::pair P = getCursorMemberRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_CXXBaseSpecifier: { CXXBaseSpecifier *BaseSpec = getCursorCXXBaseSpecifier(C); if (!BaseSpec) return clang_getNullLocation(); if (TypeSourceInfo *TSInfo = BaseSpec->getTypeSourceInfo()) return cxloc::translateSourceLocation(getCursorContext(C), TSInfo->getTypeLoc().getBeginLoc()); return cxloc::translateSourceLocation(getCursorContext(C), BaseSpec->getSourceRange().getBegin()); } case CXCursor_LabelRef: { std::pair P = getCursorLabelRef(C); return cxloc::translateSourceLocation(getCursorContext(C), P.second); } case CXCursor_OverloadedDeclRef: return cxloc::translateSourceLocation(getCursorContext(C), getCursorOverloadedDeclRef(C).second); default: // FIXME: Need a way to enumerate all non-reference cases. llvm_unreachable("Missed a reference kind"); } } if (clang_isExpression(C.kind)) return cxloc::translateSourceLocation(getCursorContext(C), getLocationFromExpr(getCursorExpr(C))); if (clang_isStatement(C.kind)) return cxloc::translateSourceLocation(getCursorContext(C), getCursorStmt(C)->getLocStart()); if (C.kind == CXCursor_PreprocessingDirective) { SourceLocation L = cxcursor::getCursorPreprocessingDirective(C).getBegin(); return cxloc::translateSourceLocation(getCursorContext(C), L); } if (C.kind == CXCursor_MacroExpansion) { SourceLocation L = cxcursor::getCursorMacroExpansion(C)->getSourceRange().getBegin(); return cxloc::translateSourceLocation(getCursorContext(C), L); } if (C.kind == CXCursor_MacroDefinition) { SourceLocation L = cxcursor::getCursorMacroDefinition(C)->getLocation(); return cxloc::translateSourceLocation(getCursorContext(C), L); } if (C.kind == CXCursor_InclusionDirective) { SourceLocation L = cxcursor::getCursorInclusionDirective(C)->getSourceRange().getBegin(); return cxloc::translateSourceLocation(getCursorContext(C), L); } if (C.kind < CXCursor_FirstDecl || C.kind > CXCursor_LastDecl) return clang_getNullLocation(); Decl *D = getCursorDecl(C); SourceLocation Loc = D->getLocation(); if (ObjCInterfaceDecl *Class = dyn_cast(D)) Loc = Class->getClassLoc(); // FIXME: Multiple variables declared in a single declaration // currently lack the information needed to correctly determine their // ranges when accounting for the type-specifier. We use context // stored in the CXCursor to determine if the VarDecl is in a DeclGroup, // and if so, whether it is the first decl. if (VarDecl *VD = dyn_cast(D)) { if (!cxcursor::isFirstInDeclGroup(C)) Loc = VD->getLocation(); } return cxloc::translateSourceLocation(getCursorContext(C), Loc); } } // end extern "C" static SourceRange getRawCursorExtent(CXCursor C) { if (clang_isReference(C.kind)) { switch (C.kind) { case CXCursor_ObjCSuperClassRef: return getCursorObjCSuperClassRef(C).second; case CXCursor_ObjCProtocolRef: return getCursorObjCProtocolRef(C).second; case CXCursor_ObjCClassRef: return getCursorObjCClassRef(C).second; case CXCursor_TypeRef: return getCursorTypeRef(C).second; case CXCursor_TemplateRef: return getCursorTemplateRef(C).second; case CXCursor_NamespaceRef: return getCursorNamespaceRef(C).second; case CXCursor_MemberRef: return getCursorMemberRef(C).second; case CXCursor_CXXBaseSpecifier: return getCursorCXXBaseSpecifier(C)->getSourceRange(); case CXCursor_LabelRef: return getCursorLabelRef(C).second; case CXCursor_OverloadedDeclRef: return getCursorOverloadedDeclRef(C).second; default: // FIXME: Need a way to enumerate all non-reference cases. llvm_unreachable("Missed a reference kind"); } } if (clang_isExpression(C.kind)) return getCursorExpr(C)->getSourceRange(); if (clang_isStatement(C.kind)) return getCursorStmt(C)->getSourceRange(); if (C.kind == CXCursor_PreprocessingDirective) return cxcursor::getCursorPreprocessingDirective(C); if (C.kind == CXCursor_MacroExpansion) return cxcursor::getCursorMacroExpansion(C)->getSourceRange(); if (C.kind == CXCursor_MacroDefinition) return cxcursor::getCursorMacroDefinition(C)->getSourceRange(); if (C.kind == CXCursor_InclusionDirective) return cxcursor::getCursorInclusionDirective(C)->getSourceRange(); if (C.kind >= CXCursor_FirstDecl && C.kind <= CXCursor_LastDecl) { Decl *D = cxcursor::getCursorDecl(C); SourceRange R = D->getSourceRange(); // FIXME: Multiple variables declared in a single declaration // currently lack the information needed to correctly determine their // ranges when accounting for the type-specifier. We use context // stored in the CXCursor to determine if the VarDecl is in a DeclGroup, // and if so, whether it is the first decl. if (VarDecl *VD = dyn_cast(D)) { if (!cxcursor::isFirstInDeclGroup(C)) R.setBegin(VD->getLocation()); } return R; } return SourceRange(); } /// \brief Retrieves the "raw" cursor extent, which is then extended to include /// the decl-specifier-seq for declarations. static SourceRange getFullCursorExtent(CXCursor C, SourceManager &SrcMgr) { if (C.kind >= CXCursor_FirstDecl && C.kind <= CXCursor_LastDecl) { Decl *D = cxcursor::getCursorDecl(C); SourceRange R = D->getSourceRange(); // Adjust the start of the location for declarations preceded by // declaration specifiers. SourceLocation StartLoc; if (const DeclaratorDecl *DD = dyn_cast(D)) { if (TypeSourceInfo *TI = DD->getTypeSourceInfo()) StartLoc = TI->getTypeLoc().getSourceRange().getBegin(); } else if (TypedefDecl *Typedef = dyn_cast(D)) { if (TypeSourceInfo *TI = Typedef->getTypeSourceInfo()) StartLoc = TI->getTypeLoc().getSourceRange().getBegin(); } if (StartLoc.isValid() && R.getBegin().isValid() && SrcMgr.isBeforeInTranslationUnit(StartLoc, R.getBegin())) R.setBegin(StartLoc); // FIXME: Multiple variables declared in a single declaration // currently lack the information needed to correctly determine their // ranges when accounting for the type-specifier. We use context // stored in the CXCursor to determine if the VarDecl is in a DeclGroup, // and if so, whether it is the first decl. if (VarDecl *VD = dyn_cast(D)) { if (!cxcursor::isFirstInDeclGroup(C)) R.setBegin(VD->getLocation()); } return R; } return getRawCursorExtent(C); } extern "C" { CXSourceRange clang_getCursorExtent(CXCursor C) { SourceRange R = getRawCursorExtent(C); if (R.isInvalid()) return clang_getNullRange(); return cxloc::translateSourceRange(getCursorContext(C), R); } CXCursor clang_getCursorReferenced(CXCursor C) { if (clang_isInvalid(C.kind)) return clang_getNullCursor(); CXTranslationUnit tu = getCursorTU(C); if (clang_isDeclaration(C.kind)) { Decl *D = getCursorDecl(C); if (UsingDecl *Using = dyn_cast(D)) return MakeCursorOverloadedDeclRef(Using, D->getLocation(), tu); if (ObjCClassDecl *Classes = dyn_cast(D)) return MakeCursorOverloadedDeclRef(Classes, D->getLocation(), tu); if (ObjCForwardProtocolDecl *Protocols = dyn_cast(D)) return MakeCursorOverloadedDeclRef(Protocols, D->getLocation(), tu); if (ObjCPropertyImplDecl *PropImpl =llvm::dyn_cast(D)) if (ObjCPropertyDecl *Property = PropImpl->getPropertyDecl()) return MakeCXCursor(Property, tu); return C; } if (clang_isExpression(C.kind)) { Expr *E = getCursorExpr(C); Decl *D = getDeclFromExpr(E); if (D) return MakeCXCursor(D, tu); if (OverloadExpr *Ovl = dyn_cast_or_null(E)) return MakeCursorOverloadedDeclRef(Ovl, tu); return clang_getNullCursor(); } if (clang_isStatement(C.kind)) { Stmt *S = getCursorStmt(C); if (GotoStmt *Goto = dyn_cast_or_null(S)) if (LabelDecl *label = Goto->getLabel()) if (LabelStmt *labelS = label->getStmt()) return MakeCXCursor(labelS, getCursorDecl(C), tu); return clang_getNullCursor(); } if (C.kind == CXCursor_MacroExpansion) { if (MacroDefinition *Def = getCursorMacroExpansion(C)->getDefinition()) return MakeMacroDefinitionCursor(Def, tu); } if (!clang_isReference(C.kind)) return clang_getNullCursor(); switch (C.kind) { case CXCursor_ObjCSuperClassRef: return MakeCXCursor(getCursorObjCSuperClassRef(C).first, tu); case CXCursor_ObjCProtocolRef: { return MakeCXCursor(getCursorObjCProtocolRef(C).first, tu); case CXCursor_ObjCClassRef: return MakeCXCursor(getCursorObjCClassRef(C).first, tu ); case CXCursor_TypeRef: return MakeCXCursor(getCursorTypeRef(C).first, tu ); case CXCursor_TemplateRef: return MakeCXCursor(getCursorTemplateRef(C).first, tu ); case CXCursor_NamespaceRef: return MakeCXCursor(getCursorNamespaceRef(C).first, tu ); case CXCursor_MemberRef: return MakeCXCursor(getCursorMemberRef(C).first, tu ); case CXCursor_CXXBaseSpecifier: { CXXBaseSpecifier *B = cxcursor::getCursorCXXBaseSpecifier(C); return clang_getTypeDeclaration(cxtype::MakeCXType(B->getType(), tu )); } case CXCursor_LabelRef: // FIXME: We end up faking the "parent" declaration here because we // don't want to make CXCursor larger. return MakeCXCursor(getCursorLabelRef(C).first, static_cast(tu->TUData)->getASTContext() .getTranslationUnitDecl(), tu); case CXCursor_OverloadedDeclRef: return C; default: // We would prefer to enumerate all non-reference cursor kinds here. llvm_unreachable("Unhandled reference cursor kind"); break; } } return clang_getNullCursor(); } CXCursor clang_getCursorDefinition(CXCursor C) { if (clang_isInvalid(C.kind)) return clang_getNullCursor(); CXTranslationUnit TU = getCursorTU(C); bool WasReference = false; if (clang_isReference(C.kind) || clang_isExpression(C.kind)) { C = clang_getCursorReferenced(C); WasReference = true; } if (C.kind == CXCursor_MacroExpansion) return clang_getCursorReferenced(C); if (!clang_isDeclaration(C.kind)) return clang_getNullCursor(); Decl *D = getCursorDecl(C); if (!D) return clang_getNullCursor(); switch (D->getKind()) { // Declaration kinds that don't really separate the notions of // declaration and definition. case Decl::Namespace: case Decl::Typedef: case Decl::TypeAlias: case Decl::TypeAliasTemplate: case Decl::TemplateTypeParm: case Decl::EnumConstant: case Decl::Field: case Decl::IndirectField: case Decl::ObjCIvar: case Decl::ObjCAtDefsField: case Decl::ImplicitParam: case Decl::ParmVar: case Decl::NonTypeTemplateParm: case Decl::TemplateTemplateParm: case Decl::ObjCCategoryImpl: case Decl::ObjCImplementation: case Decl::AccessSpec: case Decl::LinkageSpec: case Decl::ObjCPropertyImpl: case Decl::FileScopeAsm: case Decl::StaticAssert: case Decl::Block: case Decl::Label: // FIXME: Is this right?? return C; // Declaration kinds that don't make any sense here, but are // nonetheless harmless. case Decl::TranslationUnit: break; // Declaration kinds for which the definition is not resolvable. case Decl::UnresolvedUsingTypename: case Decl::UnresolvedUsingValue: break; case Decl::UsingDirective: return MakeCXCursor(cast(D)->getNominatedNamespace(), TU); case Decl::NamespaceAlias: return MakeCXCursor(cast(D)->getNamespace(), TU); case Decl::Enum: case Decl::Record: case Decl::CXXRecord: case Decl::ClassTemplateSpecialization: case Decl::ClassTemplatePartialSpecialization: if (TagDecl *Def = cast(D)->getDefinition()) return MakeCXCursor(Def, TU); return clang_getNullCursor(); case Decl::Function: case Decl::CXXMethod: case Decl::CXXConstructor: case Decl::CXXDestructor: case Decl::CXXConversion: { const FunctionDecl *Def = 0; if (cast(D)->getBody(Def)) return MakeCXCursor(const_cast(Def), TU); return clang_getNullCursor(); } case Decl::Var: { // Ask the variable if it has a definition. if (VarDecl *Def = cast(D)->getDefinition()) return MakeCXCursor(Def, TU); return clang_getNullCursor(); } case Decl::FunctionTemplate: { const FunctionDecl *Def = 0; if (cast(D)->getTemplatedDecl()->getBody(Def)) return MakeCXCursor(Def->getDescribedFunctionTemplate(), TU); return clang_getNullCursor(); } case Decl::ClassTemplate: { if (RecordDecl *Def = cast(D)->getTemplatedDecl() ->getDefinition()) return MakeCXCursor(cast(Def)->getDescribedClassTemplate(), TU); return clang_getNullCursor(); } case Decl::Using: return MakeCursorOverloadedDeclRef(cast(D), D->getLocation(), TU); case Decl::UsingShadow: return clang_getCursorDefinition( MakeCXCursor(cast(D)->getTargetDecl(), TU)); case Decl::ObjCMethod: { ObjCMethodDecl *Method = cast(D); if (Method->isThisDeclarationADefinition()) return C; // Dig out the method definition in the associated // @implementation, if we have it. // FIXME: The ASTs should make finding the definition easier. if (ObjCInterfaceDecl *Class = dyn_cast(Method->getDeclContext())) if (ObjCImplementationDecl *ClassImpl = Class->getImplementation()) if (ObjCMethodDecl *Def = ClassImpl->getMethod(Method->getSelector(), Method->isInstanceMethod())) if (Def->isThisDeclarationADefinition()) return MakeCXCursor(Def, TU); return clang_getNullCursor(); } case Decl::ObjCCategory: if (ObjCCategoryImplDecl *Impl = cast(D)->getImplementation()) return MakeCXCursor(Impl, TU); return clang_getNullCursor(); case Decl::ObjCProtocol: if (!cast(D)->isForwardDecl()) return C; return clang_getNullCursor(); case Decl::ObjCInterface: // There are two notions of a "definition" for an Objective-C // class: the interface and its implementation. When we resolved a // reference to an Objective-C class, produce the @interface as // the definition; when we were provided with the interface, // produce the @implementation as the definition. if (WasReference) { if (!cast(D)->isForwardDecl()) return C; } else if (ObjCImplementationDecl *Impl = cast(D)->getImplementation()) return MakeCXCursor(Impl, TU); return clang_getNullCursor(); case Decl::ObjCProperty: // FIXME: We don't really know where to find the // ObjCPropertyImplDecls that implement this property. return clang_getNullCursor(); case Decl::ObjCCompatibleAlias: if (ObjCInterfaceDecl *Class = cast(D)->getClassInterface()) if (!Class->isForwardDecl()) return MakeCXCursor(Class, TU); return clang_getNullCursor(); case Decl::ObjCForwardProtocol: return MakeCursorOverloadedDeclRef(cast(D), D->getLocation(), TU); case Decl::ObjCClass: return MakeCursorOverloadedDeclRef(cast(D), D->getLocation(), TU); case Decl::Friend: if (NamedDecl *Friend = cast(D)->getFriendDecl()) return clang_getCursorDefinition(MakeCXCursor(Friend, TU)); return clang_getNullCursor(); case Decl::FriendTemplate: if (NamedDecl *Friend = cast(D)->getFriendDecl()) return clang_getCursorDefinition(MakeCXCursor(Friend, TU)); return clang_getNullCursor(); } return clang_getNullCursor(); } unsigned clang_isCursorDefinition(CXCursor C) { if (!clang_isDeclaration(C.kind)) return 0; return clang_getCursorDefinition(C) == C; } CXCursor clang_getCanonicalCursor(CXCursor C) { if (!clang_isDeclaration(C.kind)) return C; if (Decl *D = getCursorDecl(C)) { if (ObjCCategoryImplDecl *CatImplD = dyn_cast(D)) if (ObjCCategoryDecl *CatD = CatImplD->getCategoryDecl()) return MakeCXCursor(CatD, getCursorTU(C)); if (ObjCImplDecl *ImplD = dyn_cast(D)) if (ObjCInterfaceDecl *IFD = ImplD->getClassInterface()) return MakeCXCursor(IFD, getCursorTU(C)); return MakeCXCursor(D->getCanonicalDecl(), getCursorTU(C)); } return C; } unsigned clang_getNumOverloadedDecls(CXCursor C) { if (C.kind != CXCursor_OverloadedDeclRef) return 0; OverloadedDeclRefStorage Storage = getCursorOverloadedDeclRef(C).first; if (OverloadExpr *E = Storage.dyn_cast()) return E->getNumDecls(); if (OverloadedTemplateStorage *S = Storage.dyn_cast()) return S->size(); Decl *D = Storage.get(); if (UsingDecl *Using = dyn_cast(D)) return Using->shadow_size(); if (ObjCClassDecl *Classes = dyn_cast(D)) return Classes->size(); if (ObjCForwardProtocolDecl *Protocols =dyn_cast(D)) return Protocols->protocol_size(); return 0; } CXCursor clang_getOverloadedDecl(CXCursor cursor, unsigned index) { if (cursor.kind != CXCursor_OverloadedDeclRef) return clang_getNullCursor(); if (index >= clang_getNumOverloadedDecls(cursor)) return clang_getNullCursor(); CXTranslationUnit TU = getCursorTU(cursor); OverloadedDeclRefStorage Storage = getCursorOverloadedDeclRef(cursor).first; if (OverloadExpr *E = Storage.dyn_cast()) return MakeCXCursor(E->decls_begin()[index], TU); if (OverloadedTemplateStorage *S = Storage.dyn_cast()) return MakeCXCursor(S->begin()[index], TU); Decl *D = Storage.get(); if (UsingDecl *Using = dyn_cast(D)) { // FIXME: This is, unfortunately, linear time. UsingDecl::shadow_iterator Pos = Using->shadow_begin(); std::advance(Pos, index); return MakeCXCursor(cast(*Pos)->getTargetDecl(), TU); } if (ObjCClassDecl *Classes = dyn_cast(D)) return MakeCXCursor(Classes->begin()[index].getInterface(), TU); if (ObjCForwardProtocolDecl *Protocols = dyn_cast(D)) return MakeCXCursor(Protocols->protocol_begin()[index], TU); return clang_getNullCursor(); } void clang_getDefinitionSpellingAndExtent(CXCursor C, const char **startBuf, const char **endBuf, unsigned *startLine, unsigned *startColumn, unsigned *endLine, unsigned *endColumn) { assert(getCursorDecl(C) && "CXCursor has null decl"); NamedDecl *ND = static_cast(getCursorDecl(C)); FunctionDecl *FD = dyn_cast(ND); CompoundStmt *Body = dyn_cast(FD->getBody()); SourceManager &SM = FD->getASTContext().getSourceManager(); *startBuf = SM.getCharacterData(Body->getLBracLoc()); *endBuf = SM.getCharacterData(Body->getRBracLoc()); *startLine = SM.getSpellingLineNumber(Body->getLBracLoc()); *startColumn = SM.getSpellingColumnNumber(Body->getLBracLoc()); *endLine = SM.getSpellingLineNumber(Body->getRBracLoc()); *endColumn = SM.getSpellingColumnNumber(Body->getRBracLoc()); } void clang_enableStackTraces(void) { llvm::sys::PrintStackTraceOnErrorSignal(); } void clang_executeOnThread(void (*fn)(void*), void *user_data, unsigned stack_size) { llvm::llvm_execute_on_thread(fn, user_data, stack_size); } } // end: extern "C" //===----------------------------------------------------------------------===// // Token-based Operations. //===----------------------------------------------------------------------===// /* CXToken layout: * int_data[0]: a CXTokenKind * int_data[1]: starting token location * int_data[2]: token length * int_data[3]: reserved * ptr_data: for identifiers and keywords, an IdentifierInfo*. * otherwise unused. */ extern "C" { CXTokenKind clang_getTokenKind(CXToken CXTok) { return static_cast(CXTok.int_data[0]); } CXString clang_getTokenSpelling(CXTranslationUnit TU, CXToken CXTok) { switch (clang_getTokenKind(CXTok)) { case CXToken_Identifier: case CXToken_Keyword: // We know we have an IdentifierInfo*, so use that. return createCXString(static_cast(CXTok.ptr_data) ->getNameStart()); case CXToken_Literal: { // We have stashed the starting pointer in the ptr_data field. Use it. const char *Text = static_cast(CXTok.ptr_data); return createCXString(llvm::StringRef(Text, CXTok.int_data[2])); } case CXToken_Punctuation: case CXToken_Comment: break; } // We have to find the starting buffer pointer the hard way, by // deconstructing the source location. ASTUnit *CXXUnit = static_cast(TU->TUData); if (!CXXUnit) return createCXString(""); SourceLocation Loc = SourceLocation::getFromRawEncoding(CXTok.int_data[1]); std::pair LocInfo = CXXUnit->getSourceManager().getDecomposedLoc(Loc); bool Invalid = false; llvm::StringRef Buffer = CXXUnit->getSourceManager().getBufferData(LocInfo.first, &Invalid); if (Invalid) return createCXString(""); return createCXString(Buffer.substr(LocInfo.second, CXTok.int_data[2])); } CXSourceLocation clang_getTokenLocation(CXTranslationUnit TU, CXToken CXTok) { ASTUnit *CXXUnit = static_cast(TU->TUData); if (!CXXUnit) return clang_getNullLocation(); return cxloc::translateSourceLocation(CXXUnit->getASTContext(), SourceLocation::getFromRawEncoding(CXTok.int_data[1])); } CXSourceRange clang_getTokenExtent(CXTranslationUnit TU, CXToken CXTok) { ASTUnit *CXXUnit = static_cast(TU->TUData); if (!CXXUnit) return clang_getNullRange(); return cxloc::translateSourceRange(CXXUnit->getASTContext(), SourceLocation::getFromRawEncoding(CXTok.int_data[1])); } void clang_tokenize(CXTranslationUnit TU, CXSourceRange Range, CXToken **Tokens, unsigned *NumTokens) { if (Tokens) *Tokens = 0; if (NumTokens) *NumTokens = 0; ASTUnit *CXXUnit = static_cast(TU->TUData); if (!CXXUnit || !Tokens || !NumTokens) return; ASTUnit::ConcurrencyCheck Check(*CXXUnit); SourceRange R = cxloc::translateCXSourceRange(Range); if (R.isInvalid()) return; SourceManager &SourceMgr = CXXUnit->getSourceManager(); std::pair BeginLocInfo = SourceMgr.getDecomposedLoc(R.getBegin()); std::pair EndLocInfo = SourceMgr.getDecomposedLoc(R.getEnd()); // Cannot tokenize across files. if (BeginLocInfo.first != EndLocInfo.first) return; // Create a lexer bool Invalid = false; llvm::StringRef Buffer = SourceMgr.getBufferData(BeginLocInfo.first, &Invalid); if (Invalid) return; Lexer Lex(SourceMgr.getLocForStartOfFile(BeginLocInfo.first), CXXUnit->getASTContext().getLangOptions(), Buffer.begin(), Buffer.data() + BeginLocInfo.second, Buffer.end()); Lex.SetCommentRetentionState(true); // Lex tokens until we hit the end of the range. const char *EffectiveBufferEnd = Buffer.data() + EndLocInfo.second; llvm::SmallVector CXTokens; Token Tok; bool previousWasAt = false; do { // Lex the next token Lex.LexFromRawLexer(Tok); if (Tok.is(tok::eof)) break; // Initialize the CXToken. CXToken CXTok; // - Common fields CXTok.int_data[1] = Tok.getLocation().getRawEncoding(); CXTok.int_data[2] = Tok.getLength(); CXTok.int_data[3] = 0; // - Kind-specific fields if (Tok.isLiteral()) { CXTok.int_data[0] = CXToken_Literal; CXTok.ptr_data = (void *)Tok.getLiteralData(); } else if (Tok.is(tok::raw_identifier)) { // Lookup the identifier to determine whether we have a keyword. IdentifierInfo *II = CXXUnit->getPreprocessor().LookUpIdentifierInfo(Tok); if ((II->getObjCKeywordID() != tok::objc_not_keyword) && previousWasAt) { CXTok.int_data[0] = CXToken_Keyword; } else { CXTok.int_data[0] = Tok.is(tok::identifier) ? CXToken_Identifier : CXToken_Keyword; } CXTok.ptr_data = II; } else if (Tok.is(tok::comment)) { CXTok.int_data[0] = CXToken_Comment; CXTok.ptr_data = 0; } else { CXTok.int_data[0] = CXToken_Punctuation; CXTok.ptr_data = 0; } CXTokens.push_back(CXTok); previousWasAt = Tok.is(tok::at); } while (Lex.getBufferLocation() <= EffectiveBufferEnd); if (CXTokens.empty()) return; *Tokens = (CXToken *)malloc(sizeof(CXToken) * CXTokens.size()); memmove(*Tokens, CXTokens.data(), sizeof(CXToken) * CXTokens.size()); *NumTokens = CXTokens.size(); } void clang_disposeTokens(CXTranslationUnit TU, CXToken *Tokens, unsigned NumTokens) { free(Tokens); } } // end: extern "C" //===----------------------------------------------------------------------===// // Token annotation APIs. //===----------------------------------------------------------------------===// typedef llvm::DenseMap AnnotateTokensData; static enum CXChildVisitResult AnnotateTokensVisitor(CXCursor cursor, CXCursor parent, CXClientData client_data); namespace { class AnnotateTokensWorker { AnnotateTokensData &Annotated; CXToken *Tokens; CXCursor *Cursors; unsigned NumTokens; unsigned TokIdx; unsigned PreprocessingTokIdx; CursorVisitor AnnotateVis; SourceManager &SrcMgr; bool HasContextSensitiveKeywords; bool MoreTokens() const { return TokIdx < NumTokens; } unsigned NextToken() const { return TokIdx; } void AdvanceToken() { ++TokIdx; } SourceLocation GetTokenLoc(unsigned tokI) { return SourceLocation::getFromRawEncoding(Tokens[tokI].int_data[1]); } public: AnnotateTokensWorker(AnnotateTokensData &annotated, CXToken *tokens, CXCursor *cursors, unsigned numTokens, CXTranslationUnit tu, SourceRange RegionOfInterest) : Annotated(annotated), Tokens(tokens), Cursors(cursors), NumTokens(numTokens), TokIdx(0), PreprocessingTokIdx(0), AnnotateVis(tu, AnnotateTokensVisitor, this, Decl::MaxPCHLevel, true, RegionOfInterest), SrcMgr(static_cast(tu->TUData)->getSourceManager()), HasContextSensitiveKeywords(false) { } void VisitChildren(CXCursor C) { AnnotateVis.VisitChildren(C); } enum CXChildVisitResult Visit(CXCursor cursor, CXCursor parent); void AnnotateTokens(CXCursor parent); void AnnotateTokens() { AnnotateTokens(clang_getTranslationUnitCursor(AnnotateVis.getTU())); } /// \brief Determine whether the annotator saw any cursors that have /// context-sensitive keywords. bool hasContextSensitiveKeywords() const { return HasContextSensitiveKeywords; } }; } void AnnotateTokensWorker::AnnotateTokens(CXCursor parent) { // Walk the AST within the region of interest, annotating tokens // along the way. VisitChildren(parent); for (unsigned I = 0 ; I < TokIdx ; ++I) { AnnotateTokensData::iterator Pos = Annotated.find(Tokens[I].int_data[1]); if (Pos != Annotated.end() && (clang_isInvalid(Cursors[I].kind) || Pos->second.kind != CXCursor_PreprocessingDirective)) Cursors[I] = Pos->second; } // Finish up annotating any tokens left. if (!MoreTokens()) return; const CXCursor &C = clang_getNullCursor(); for (unsigned I = TokIdx ; I < NumTokens ; ++I) { AnnotateTokensData::iterator Pos = Annotated.find(Tokens[I].int_data[1]); Cursors[I] = (Pos == Annotated.end()) ? C : Pos->second; } } enum CXChildVisitResult AnnotateTokensWorker::Visit(CXCursor cursor, CXCursor parent) { CXSourceLocation Loc = clang_getCursorLocation(cursor); SourceRange cursorRange = getRawCursorExtent(cursor); if (cursorRange.isInvalid()) return CXChildVisit_Recurse; if (!HasContextSensitiveKeywords) { // Objective-C properties can have context-sensitive keywords. if (cursor.kind == CXCursor_ObjCPropertyDecl) { if (ObjCPropertyDecl *Property = dyn_cast_or_null(getCursorDecl(cursor))) HasContextSensitiveKeywords = Property->getPropertyAttributesAsWritten() != 0; } // Objective-C methods can have context-sensitive keywords. else if (cursor.kind == CXCursor_ObjCInstanceMethodDecl || cursor.kind == CXCursor_ObjCClassMethodDecl) { if (ObjCMethodDecl *Method = dyn_cast_or_null(getCursorDecl(cursor))) { if (Method->getObjCDeclQualifier()) HasContextSensitiveKeywords = true; else { for (ObjCMethodDecl::param_iterator P = Method->param_begin(), PEnd = Method->param_end(); P != PEnd; ++P) { if ((*P)->getObjCDeclQualifier()) { HasContextSensitiveKeywords = true; break; } } } } } // C++ methods can have context-sensitive keywords. else if (cursor.kind == CXCursor_CXXMethod) { if (CXXMethodDecl *Method = dyn_cast_or_null(getCursorDecl(cursor))) { if (Method->hasAttr() || Method->hasAttr()) HasContextSensitiveKeywords = true; } } // C++ classes can have context-sensitive keywords. else if (cursor.kind == CXCursor_StructDecl || cursor.kind == CXCursor_ClassDecl || cursor.kind == CXCursor_ClassTemplate || cursor.kind == CXCursor_ClassTemplatePartialSpecialization) { if (Decl *D = getCursorDecl(cursor)) if (D->hasAttr()) HasContextSensitiveKeywords = true; } } if (clang_isPreprocessing(cursor.kind)) { // For macro expansions, just note where the beginning of the macro // expansion occurs. if (cursor.kind == CXCursor_MacroExpansion) { Annotated[Loc.int_data] = cursor; return CXChildVisit_Recurse; } // Items in the preprocessing record are kept separate from items in // declarations, so we keep a separate token index. unsigned SavedTokIdx = TokIdx; TokIdx = PreprocessingTokIdx; // Skip tokens up until we catch up to the beginning of the preprocessing // entry. while (MoreTokens()) { const unsigned I = NextToken(); SourceLocation TokLoc = GetTokenLoc(I); switch (LocationCompare(SrcMgr, TokLoc, cursorRange)) { case RangeBefore: AdvanceToken(); continue; case RangeAfter: case RangeOverlap: break; } break; } // Look at all of the tokens within this range. while (MoreTokens()) { const unsigned I = NextToken(); SourceLocation TokLoc = GetTokenLoc(I); switch (LocationCompare(SrcMgr, TokLoc, cursorRange)) { case RangeBefore: assert(0 && "Infeasible"); case RangeAfter: break; case RangeOverlap: Cursors[I] = cursor; AdvanceToken(); continue; } break; } // Save the preprocessing token index; restore the non-preprocessing // token index. PreprocessingTokIdx = TokIdx; TokIdx = SavedTokIdx; return CXChildVisit_Recurse; } if (cursorRange.isInvalid()) return CXChildVisit_Continue; SourceLocation L = SourceLocation::getFromRawEncoding(Loc.int_data); // Adjust the annotated range based specific declarations. const enum CXCursorKind cursorK = clang_getCursorKind(cursor); if (cursorK >= CXCursor_FirstDecl && cursorK <= CXCursor_LastDecl) { Decl *D = cxcursor::getCursorDecl(cursor); // Don't visit synthesized ObjC methods, since they have no syntatic // representation in the source. if (const ObjCMethodDecl *MD = dyn_cast(D)) { if (MD->isSynthesized()) return CXChildVisit_Continue; } SourceLocation StartLoc; if (const DeclaratorDecl *DD = dyn_cast(D)) { if (TypeSourceInfo *TI = DD->getTypeSourceInfo()) StartLoc = TI->getTypeLoc().getSourceRange().getBegin(); } else if (TypedefDecl *Typedef = dyn_cast(D)) { if (TypeSourceInfo *TI = Typedef->getTypeSourceInfo()) StartLoc = TI->getTypeLoc().getSourceRange().getBegin(); } if (StartLoc.isValid() && L.isValid() && SrcMgr.isBeforeInTranslationUnit(StartLoc, L)) cursorRange.setBegin(StartLoc); } // If the location of the cursor occurs within a macro instantiation, record // the spelling location of the cursor in our annotation map. We can then // paper over the token labelings during a post-processing step to try and // get cursor mappings for tokens that are the *arguments* of a macro // instantiation. if (L.isMacroID()) { unsigned rawEncoding = SrcMgr.getSpellingLoc(L).getRawEncoding(); // Only invalidate the old annotation if it isn't part of a preprocessing // directive. Here we assume that the default construction of CXCursor // results in CXCursor.kind being an initialized value (i.e., 0). If // this isn't the case, we can fix by doing lookup + insertion. CXCursor &oldC = Annotated[rawEncoding]; if (!clang_isPreprocessing(oldC.kind)) oldC = cursor; } const enum CXCursorKind K = clang_getCursorKind(parent); const CXCursor updateC = (clang_isInvalid(K) || K == CXCursor_TranslationUnit) ? clang_getNullCursor() : parent; while (MoreTokens()) { const unsigned I = NextToken(); SourceLocation TokLoc = GetTokenLoc(I); switch (LocationCompare(SrcMgr, TokLoc, cursorRange)) { case RangeBefore: Cursors[I] = updateC; AdvanceToken(); continue; case RangeAfter: case RangeOverlap: break; } break; } // Avoid having the cursor of an expression "overwrite" the annotation of the // variable declaration that it belongs to. // This can happen for C++ constructor expressions whose range generally // include the variable declaration, e.g.: // MyCXXClass foo; // Make sure we don't annotate 'foo' as a CallExpr cursor. if (clang_isExpression(cursorK)) { Expr *E = getCursorExpr(cursor); if (Decl *D = getCursorParentDecl(cursor)) { const unsigned I = NextToken(); if (E->getLocStart().isValid() && D->getLocation().isValid() && E->getLocStart() == D->getLocation() && E->getLocStart() == GetTokenLoc(I)) { Cursors[I] = updateC; AdvanceToken(); } } } // Visit children to get their cursor information. const unsigned BeforeChildren = NextToken(); VisitChildren(cursor); const unsigned AfterChildren = NextToken(); // Adjust 'Last' to the last token within the extent of the cursor. while (MoreTokens()) { const unsigned I = NextToken(); SourceLocation TokLoc = GetTokenLoc(I); switch (LocationCompare(SrcMgr, TokLoc, cursorRange)) { case RangeBefore: assert(0 && "Infeasible"); case RangeAfter: break; case RangeOverlap: Cursors[I] = updateC; AdvanceToken(); continue; } break; } const unsigned Last = NextToken(); // Scan the tokens that are at the beginning of the cursor, but are not // capture by the child cursors. // For AST elements within macros, rely on a post-annotate pass to // to correctly annotate the tokens with cursors. Otherwise we can // get confusing results of having tokens that map to cursors that really // are expanded by an instantiation. if (L.isMacroID()) cursor = clang_getNullCursor(); for (unsigned I = BeforeChildren; I != AfterChildren; ++I) { if (!clang_isInvalid(clang_getCursorKind(Cursors[I]))) break; Cursors[I] = cursor; } // Scan the tokens that are at the end of the cursor, but are not captured // but the child cursors. for (unsigned I = AfterChildren; I != Last; ++I) Cursors[I] = cursor; TokIdx = Last; return CXChildVisit_Continue; } static enum CXChildVisitResult AnnotateTokensVisitor(CXCursor cursor, CXCursor parent, CXClientData client_data) { return static_cast(client_data)->Visit(cursor, parent); } namespace { struct clang_annotateTokens_Data { CXTranslationUnit TU; ASTUnit *CXXUnit; CXToken *Tokens; unsigned NumTokens; CXCursor *Cursors; }; } // This gets run a separate thread to avoid stack blowout. static void clang_annotateTokensImpl(void *UserData) { CXTranslationUnit TU = ((clang_annotateTokens_Data*)UserData)->TU; ASTUnit *CXXUnit = ((clang_annotateTokens_Data*)UserData)->CXXUnit; CXToken *Tokens = ((clang_annotateTokens_Data*)UserData)->Tokens; const unsigned NumTokens = ((clang_annotateTokens_Data*)UserData)->NumTokens; CXCursor *Cursors = ((clang_annotateTokens_Data*)UserData)->Cursors; // Determine the region of interest, which contains all of the tokens. SourceRange RegionOfInterest; RegionOfInterest.setBegin( cxloc::translateSourceLocation(clang_getTokenLocation(TU, Tokens[0]))); RegionOfInterest.setEnd( cxloc::translateSourceLocation(clang_getTokenLocation(TU, Tokens[NumTokens-1]))); // A mapping from the source locations found when re-lexing or traversing the // region of interest to the corresponding cursors. AnnotateTokensData Annotated; // Relex the tokens within the source range to look for preprocessing // directives. SourceManager &SourceMgr = CXXUnit->getSourceManager(); std::pair BeginLocInfo = SourceMgr.getDecomposedLoc(RegionOfInterest.getBegin()); std::pair EndLocInfo = SourceMgr.getDecomposedLoc(RegionOfInterest.getEnd()); llvm::StringRef Buffer; bool Invalid = false; if (BeginLocInfo.first == EndLocInfo.first && ((Buffer = SourceMgr.getBufferData(BeginLocInfo.first, &Invalid)),true) && !Invalid) { Lexer Lex(SourceMgr.getLocForStartOfFile(BeginLocInfo.first), CXXUnit->getASTContext().getLangOptions(), Buffer.begin(), Buffer.data() + BeginLocInfo.second, Buffer.end()); Lex.SetCommentRetentionState(true); // Lex tokens in raw mode until we hit the end of the range, to avoid // entering #includes or expanding macros. while (true) { Token Tok; Lex.LexFromRawLexer(Tok); reprocess: if (Tok.is(tok::hash) && Tok.isAtStartOfLine()) { // We have found a preprocessing directive. Gobble it up so that we // don't see it while preprocessing these tokens later, but keep track // of all of the token locations inside this preprocessing directive so // that we can annotate them appropriately. // // FIXME: Some simple tests here could identify macro definitions and // #undefs, to provide specific cursor kinds for those. llvm::SmallVector Locations; do { Locations.push_back(Tok.getLocation()); Lex.LexFromRawLexer(Tok); } while (!Tok.isAtStartOfLine() && !Tok.is(tok::eof)); using namespace cxcursor; CXCursor Cursor = MakePreprocessingDirectiveCursor(SourceRange(Locations.front(), Locations.back()), TU); for (unsigned I = 0, N = Locations.size(); I != N; ++I) { Annotated[Locations[I].getRawEncoding()] = Cursor; } if (Tok.isAtStartOfLine()) goto reprocess; continue; } if (Tok.is(tok::eof)) break; } } // Annotate all of the source locations in the region of interest that map to // a specific cursor. AnnotateTokensWorker W(Annotated, Tokens, Cursors, NumTokens, TU, RegionOfInterest); // FIXME: We use a ridiculous stack size here because the data-recursion // algorithm uses a large stack frame than the non-data recursive version, // and AnnotationTokensWorker currently transforms the data-recursion // algorithm back into a traditional recursion by explicitly calling // VisitChildren(). We will need to remove this explicit recursive call. W.AnnotateTokens(); // If we ran into any entities that involve context-sensitive keywords, // take another pass through the tokens to mark them as such. if (W.hasContextSensitiveKeywords()) { for (unsigned I = 0; I != NumTokens; ++I) { if (clang_getTokenKind(Tokens[I]) != CXToken_Identifier) continue; if (Cursors[I].kind == CXCursor_ObjCPropertyDecl) { IdentifierInfo *II = static_cast(Tokens[I].ptr_data); if (ObjCPropertyDecl *Property = dyn_cast_or_null(getCursorDecl(Cursors[I]))) { if (Property->getPropertyAttributesAsWritten() != 0 && llvm::StringSwitch(II->getName()) .Case("readonly", true) .Case("assign", true) .Case("unsafe_unretained", true) .Case("readwrite", true) .Case("retain", true) .Case("copy", true) .Case("nonatomic", true) .Case("atomic", true) .Case("getter", true) .Case("setter", true) .Case("strong", true) .Case("weak", true) .Default(false)) Tokens[I].int_data[0] = CXToken_Keyword; } continue; } if (Cursors[I].kind == CXCursor_ObjCInstanceMethodDecl || Cursors[I].kind == CXCursor_ObjCClassMethodDecl) { IdentifierInfo *II = static_cast(Tokens[I].ptr_data); if (llvm::StringSwitch(II->getName()) .Case("in", true) .Case("out", true) .Case("inout", true) .Case("oneway", true) .Case("bycopy", true) .Case("byref", true) .Default(false)) Tokens[I].int_data[0] = CXToken_Keyword; continue; } if (Cursors[I].kind == CXCursor_CXXMethod) { IdentifierInfo *II = static_cast(Tokens[I].ptr_data); if (CXXMethodDecl *Method = dyn_cast_or_null(getCursorDecl(Cursors[I]))) { if ((Method->hasAttr() || Method->hasAttr()) && Method->getLocation().getRawEncoding() != Tokens[I].int_data[1] && llvm::StringSwitch(II->getName()) .Case("final", true) .Case("override", true) .Default(false)) Tokens[I].int_data[0] = CXToken_Keyword; } continue; } if (Cursors[I].kind == CXCursor_ClassDecl || Cursors[I].kind == CXCursor_StructDecl || Cursors[I].kind == CXCursor_ClassTemplate) { IdentifierInfo *II = static_cast(Tokens[I].ptr_data); if (II->getName() == "final") { // We have to be careful with 'final', since it could be the name // of a member class rather than the context-sensitive keyword. // So, check whether the cursor associated with this Decl *D = getCursorDecl(Cursors[I]); if (CXXRecordDecl *Record = dyn_cast_or_null(D)) { if ((Record->hasAttr()) && Record->getIdentifier() != II) Tokens[I].int_data[0] = CXToken_Keyword; } else if (ClassTemplateDecl *ClassTemplate = dyn_cast_or_null(D)) { CXXRecordDecl *Record = ClassTemplate->getTemplatedDecl(); if ((Record->hasAttr()) && Record->getIdentifier() != II) Tokens[I].int_data[0] = CXToken_Keyword; } } continue; } } } } extern "C" { void clang_annotateTokens(CXTranslationUnit TU, CXToken *Tokens, unsigned NumTokens, CXCursor *Cursors) { if (NumTokens == 0 || !Tokens || !Cursors) return; // Any token we don't specifically annotate will have a NULL cursor. CXCursor C = clang_getNullCursor(); for (unsigned I = 0; I != NumTokens; ++I) Cursors[I] = C; ASTUnit *CXXUnit = static_cast(TU->TUData); if (!CXXUnit) return; ASTUnit::ConcurrencyCheck Check(*CXXUnit); clang_annotateTokens_Data data = { TU, CXXUnit, Tokens, NumTokens, Cursors }; llvm::CrashRecoveryContext CRC; if (!RunSafely(CRC, clang_annotateTokensImpl, &data, GetSafetyThreadStackSize() * 2)) { fprintf(stderr, "libclang: crash detected while annotating tokens\n"); } } } // end: extern "C" //===----------------------------------------------------------------------===// // Operations for querying linkage of a cursor. //===----------------------------------------------------------------------===// extern "C" { CXLinkageKind clang_getCursorLinkage(CXCursor cursor) { if (!clang_isDeclaration(cursor.kind)) return CXLinkage_Invalid; Decl *D = cxcursor::getCursorDecl(cursor); if (NamedDecl *ND = dyn_cast_or_null(D)) switch (ND->getLinkage()) { case NoLinkage: return CXLinkage_NoLinkage; case InternalLinkage: return CXLinkage_Internal; case UniqueExternalLinkage: return CXLinkage_UniqueExternal; case ExternalLinkage: return CXLinkage_External; }; return CXLinkage_Invalid; } } // end: extern "C" //===----------------------------------------------------------------------===// // Operations for querying language of a cursor. //===----------------------------------------------------------------------===// static CXLanguageKind getDeclLanguage(const Decl *D) { switch (D->getKind()) { default: break; case Decl::ImplicitParam: case Decl::ObjCAtDefsField: case Decl::ObjCCategory: case Decl::ObjCCategoryImpl: case Decl::ObjCClass: case Decl::ObjCCompatibleAlias: case Decl::ObjCForwardProtocol: case Decl::ObjCImplementation: case Decl::ObjCInterface: case Decl::ObjCIvar: case Decl::ObjCMethod: case Decl::ObjCProperty: case Decl::ObjCPropertyImpl: case Decl::ObjCProtocol: return CXLanguage_ObjC; case Decl::CXXConstructor: case Decl::CXXConversion: case Decl::CXXDestructor: case Decl::CXXMethod: case Decl::CXXRecord: case Decl::ClassTemplate: case Decl::ClassTemplatePartialSpecialization: case Decl::ClassTemplateSpecialization: case Decl::Friend: case Decl::FriendTemplate: case Decl::FunctionTemplate: case Decl::LinkageSpec: case Decl::Namespace: case Decl::NamespaceAlias: case Decl::NonTypeTemplateParm: case Decl::StaticAssert: case Decl::TemplateTemplateParm: case Decl::TemplateTypeParm: case Decl::UnresolvedUsingTypename: case Decl::UnresolvedUsingValue: case Decl::Using: case Decl::UsingDirective: case Decl::UsingShadow: return CXLanguage_CPlusPlus; } return CXLanguage_C; } extern "C" { enum CXAvailabilityKind clang_getCursorAvailability(CXCursor cursor) { if (clang_isDeclaration(cursor.kind)) if (Decl *D = cxcursor::getCursorDecl(cursor)) { if (isa(D) && cast(D)->isDeleted()) return CXAvailability_Available; switch (D->getAvailability()) { case AR_Available: case AR_NotYetIntroduced: return CXAvailability_Available; case AR_Deprecated: return CXAvailability_Deprecated; case AR_Unavailable: return CXAvailability_NotAvailable; } } return CXAvailability_Available; } CXLanguageKind clang_getCursorLanguage(CXCursor cursor) { if (clang_isDeclaration(cursor.kind)) return getDeclLanguage(cxcursor::getCursorDecl(cursor)); return CXLanguage_Invalid; } /// \brief If the given cursor is the "templated" declaration /// descibing a class or function template, return the class or /// function template. static Decl *maybeGetTemplateCursor(Decl *D) { if (!D) return 0; if (FunctionDecl *FD = dyn_cast(D)) if (FunctionTemplateDecl *FunTmpl = FD->getDescribedFunctionTemplate()) return FunTmpl; if (CXXRecordDecl *RD = dyn_cast(D)) if (ClassTemplateDecl *ClassTmpl = RD->getDescribedClassTemplate()) return ClassTmpl; return D; } CXCursor clang_getCursorSemanticParent(CXCursor cursor) { if (clang_isDeclaration(cursor.kind)) { if (Decl *D = getCursorDecl(cursor)) { DeclContext *DC = D->getDeclContext(); if (!DC) return clang_getNullCursor(); return MakeCXCursor(maybeGetTemplateCursor(cast(DC)), getCursorTU(cursor)); } } if (clang_isStatement(cursor.kind) || clang_isExpression(cursor.kind)) { if (Decl *D = getCursorDecl(cursor)) return MakeCXCursor(D, getCursorTU(cursor)); } return clang_getNullCursor(); } CXCursor clang_getCursorLexicalParent(CXCursor cursor) { if (clang_isDeclaration(cursor.kind)) { if (Decl *D = getCursorDecl(cursor)) { DeclContext *DC = D->getLexicalDeclContext(); if (!DC) return clang_getNullCursor(); return MakeCXCursor(maybeGetTemplateCursor(cast(DC)), getCursorTU(cursor)); } } // FIXME: Note that we can't easily compute the lexical context of a // statement or expression, so we return nothing. return clang_getNullCursor(); } static void CollectOverriddenMethods(DeclContext *Ctx, ObjCMethodDecl *Method, llvm::SmallVectorImpl &Methods) { if (!Ctx) return; // If we have a class or category implementation, jump straight to the // interface. if (ObjCImplDecl *Impl = dyn_cast(Ctx)) return CollectOverriddenMethods(Impl->getClassInterface(), Method, Methods); ObjCContainerDecl *Container = dyn_cast(Ctx); if (!Container) return; // Check whether we have a matching method at this level. if (ObjCMethodDecl *Overridden = Container->getMethod(Method->getSelector(), Method->isInstanceMethod())) if (Method != Overridden) { // We found an override at this level; there is no need to look // into other protocols or categories. Methods.push_back(Overridden); return; } if (ObjCProtocolDecl *Protocol = dyn_cast(Container)) { for (ObjCProtocolDecl::protocol_iterator P = Protocol->protocol_begin(), PEnd = Protocol->protocol_end(); P != PEnd; ++P) CollectOverriddenMethods(*P, Method, Methods); } if (ObjCCategoryDecl *Category = dyn_cast(Container)) { for (ObjCCategoryDecl::protocol_iterator P = Category->protocol_begin(), PEnd = Category->protocol_end(); P != PEnd; ++P) CollectOverriddenMethods(*P, Method, Methods); } if (ObjCInterfaceDecl *Interface = dyn_cast(Container)) { for (ObjCInterfaceDecl::protocol_iterator P = Interface->protocol_begin(), PEnd = Interface->protocol_end(); P != PEnd; ++P) CollectOverriddenMethods(*P, Method, Methods); for (ObjCCategoryDecl *Category = Interface->getCategoryList(); Category; Category = Category->getNextClassCategory()) CollectOverriddenMethods(Category, Method, Methods); // We only look into the superclass if we haven't found anything yet. if (Methods.empty()) if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) return CollectOverriddenMethods(Super, Method, Methods); } } void clang_getOverriddenCursors(CXCursor cursor, CXCursor **overridden, unsigned *num_overridden) { if (overridden) *overridden = 0; if (num_overridden) *num_overridden = 0; if (!overridden || !num_overridden) return; if (!clang_isDeclaration(cursor.kind)) return; Decl *D = getCursorDecl(cursor); if (!D) return; // Handle C++ member functions. CXTranslationUnit TU = getCursorTU(cursor); if (CXXMethodDecl *CXXMethod = dyn_cast(D)) { *num_overridden = CXXMethod->size_overridden_methods(); if (!*num_overridden) return; *overridden = new CXCursor [*num_overridden]; unsigned I = 0; for (CXXMethodDecl::method_iterator M = CXXMethod->begin_overridden_methods(), MEnd = CXXMethod->end_overridden_methods(); M != MEnd; (void)++M, ++I) (*overridden)[I] = MakeCXCursor(const_cast(*M), TU); return; } ObjCMethodDecl *Method = dyn_cast(D); if (!Method) return; // Handle Objective-C methods. llvm::SmallVector Methods; CollectOverriddenMethods(Method->getDeclContext(), Method, Methods); if (Methods.empty()) return; *num_overridden = Methods.size(); *overridden = new CXCursor [Methods.size()]; for (unsigned I = 0, N = Methods.size(); I != N; ++I) (*overridden)[I] = MakeCXCursor(Methods[I], TU); } void clang_disposeOverriddenCursors(CXCursor *overridden) { delete [] overridden; } CXFile clang_getIncludedFile(CXCursor cursor) { if (cursor.kind != CXCursor_InclusionDirective) return 0; InclusionDirective *ID = getCursorInclusionDirective(cursor); return (void *)ID->getFile(); } } // end: extern "C" //===----------------------------------------------------------------------===// // C++ AST instrospection. //===----------------------------------------------------------------------===// extern "C" { unsigned clang_CXXMethod_isStatic(CXCursor C) { if (!clang_isDeclaration(C.kind)) return 0; CXXMethodDecl *Method = 0; Decl *D = cxcursor::getCursorDecl(C); if (FunctionTemplateDecl *FunTmpl = dyn_cast_or_null(D)) Method = dyn_cast(FunTmpl->getTemplatedDecl()); else Method = dyn_cast_or_null(D); return (Method && Method->isStatic()) ? 1 : 0; } unsigned clang_CXXMethod_isVirtual(CXCursor C) { if (!clang_isDeclaration(C.kind)) return 0; CXXMethodDecl *Method = 0; Decl *D = cxcursor::getCursorDecl(C); if (FunctionTemplateDecl *FunTmpl = dyn_cast_or_null(D)) Method = dyn_cast(FunTmpl->getTemplatedDecl()); else Method = dyn_cast_or_null(D); return (Method && Method->isVirtual()) ? 1 : 0; } } // end: extern "C" //===----------------------------------------------------------------------===// // Attribute introspection. //===----------------------------------------------------------------------===// extern "C" { CXType clang_getIBOutletCollectionType(CXCursor C) { if (C.kind != CXCursor_IBOutletCollectionAttr) return cxtype::MakeCXType(QualType(), cxcursor::getCursorTU(C)); IBOutletCollectionAttr *A = cast(cxcursor::getCursorAttr(C)); return cxtype::MakeCXType(A->getInterFace(), cxcursor::getCursorTU(C)); } } // end: extern "C" //===----------------------------------------------------------------------===// // Inspecting memory usage. //===----------------------------------------------------------------------===// typedef std::vector MemUsageEntries; static inline void createCXTUResourceUsageEntry(MemUsageEntries &entries, enum CXTUResourceUsageKind k, unsigned long amount) { CXTUResourceUsageEntry entry = { k, amount }; entries.push_back(entry); } extern "C" { const char *clang_getTUResourceUsageName(CXTUResourceUsageKind kind) { const char *str = ""; switch (kind) { case CXTUResourceUsage_AST: str = "ASTContext: expressions, declarations, and types"; break; case CXTUResourceUsage_Identifiers: str = "ASTContext: identifiers"; break; case CXTUResourceUsage_Selectors: str = "ASTContext: selectors"; break; case CXTUResourceUsage_GlobalCompletionResults: str = "Code completion: cached global results"; break; case CXTUResourceUsage_SourceManagerContentCache: str = "SourceManager: content cache allocator"; break; case CXTUResourceUsage_AST_SideTables: str = "ASTContext: side tables"; break; case CXTUResourceUsage_SourceManager_Membuffer_Malloc: str = "SourceManager: malloc'ed memory buffers"; break; case CXTUResourceUsage_SourceManager_Membuffer_MMap: str = "SourceManager: mmap'ed memory buffers"; break; case CXTUResourceUsage_ExternalASTSource_Membuffer_Malloc: str = "ExternalASTSource: malloc'ed memory buffers"; break; case CXTUResourceUsage_ExternalASTSource_Membuffer_MMap: str = "ExternalASTSource: mmap'ed memory buffers"; break; case CXTUResourceUsage_Preprocessor: str = "Preprocessor: malloc'ed memory"; break; case CXTUResourceUsage_PreprocessingRecord: str = "Preprocessor: PreprocessingRecord"; break; } return str; } CXTUResourceUsage clang_getCXTUResourceUsage(CXTranslationUnit TU) { if (!TU) { CXTUResourceUsage usage = { (void*) 0, 0, 0 }; return usage; } ASTUnit *astUnit = static_cast(TU->TUData); llvm::OwningPtr entries(new MemUsageEntries()); ASTContext &astContext = astUnit->getASTContext(); // How much memory is used by AST nodes and types? createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_AST, (unsigned long) astContext.getASTAllocatedMemory()); // How much memory is used by identifiers? createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_Identifiers, (unsigned long) astContext.Idents.getAllocator().getTotalMemory()); // How much memory is used for selectors? createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_Selectors, (unsigned long) astContext.Selectors.getTotalMemory()); // How much memory is used by ASTContext's side tables? createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_AST_SideTables, (unsigned long) astContext.getSideTableAllocatedMemory()); // How much memory is used for caching global code completion results? unsigned long completionBytes = 0; if (GlobalCodeCompletionAllocator *completionAllocator = astUnit->getCachedCompletionAllocator().getPtr()) { completionBytes = completionAllocator->getTotalMemory(); } createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_GlobalCompletionResults, completionBytes); // How much memory is being used by SourceManager's content cache? createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_SourceManagerContentCache, (unsigned long) astContext.getSourceManager().getContentCacheSize()); // How much memory is being used by the MemoryBuffer's in SourceManager? const SourceManager::MemoryBufferSizes &srcBufs = astUnit->getSourceManager().getMemoryBufferSizes(); createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_SourceManager_Membuffer_Malloc, (unsigned long) srcBufs.malloc_bytes); createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_SourceManager_Membuffer_MMap, (unsigned long) srcBufs.mmap_bytes); // How much memory is being used by the ExternalASTSource? if (ExternalASTSource *esrc = astContext.getExternalSource()) { const ExternalASTSource::MemoryBufferSizes &sizes = esrc->getMemoryBufferSizes(); createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_ExternalASTSource_Membuffer_Malloc, (unsigned long) sizes.malloc_bytes); createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_ExternalASTSource_Membuffer_MMap, (unsigned long) sizes.mmap_bytes); } // How much memory is being used by the Preprocessor? Preprocessor &pp = astUnit->getPreprocessor(); createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_Preprocessor, pp.getTotalMemory()); if (PreprocessingRecord *pRec = pp.getPreprocessingRecord()) { createCXTUResourceUsageEntry(*entries, CXTUResourceUsage_PreprocessingRecord, pRec->getTotalMemory()); } CXTUResourceUsage usage = { (void*) entries.get(), (unsigned) entries->size(), entries->size() ? &(*entries)[0] : 0 }; entries.take(); return usage; } void clang_disposeCXTUResourceUsage(CXTUResourceUsage usage) { if (usage.data) delete (MemUsageEntries*) usage.data; } } // end extern "C" void clang::PrintLibclangResourceUsage(CXTranslationUnit TU) { CXTUResourceUsage Usage = clang_getCXTUResourceUsage(TU); for (unsigned I = 0; I != Usage.numEntries; ++I) fprintf(stderr, " %s: %lu\n", clang_getTUResourceUsageName(Usage.entries[I].kind), Usage.entries[I].amount); clang_disposeCXTUResourceUsage(Usage); } //===----------------------------------------------------------------------===// // Misc. utility functions. //===----------------------------------------------------------------------===// /// Default to using an 8 MB stack size on "safety" threads. static unsigned SafetyStackThreadSize = 8 << 20; namespace clang { bool RunSafely(llvm::CrashRecoveryContext &CRC, void (*Fn)(void*), void *UserData, unsigned Size) { if (!Size) Size = GetSafetyThreadStackSize(); if (Size) return CRC.RunSafelyOnThread(Fn, UserData, Size); return CRC.RunSafely(Fn, UserData); } unsigned GetSafetyThreadStackSize() { return SafetyStackThreadSize; } void SetSafetyThreadStackSize(unsigned Value) { SafetyStackThreadSize = Value; } } extern "C" { CXString clang_getClangVersion() { return createCXString(getClangFullVersion()); } } // end: extern "C"