/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2014 Neel Natu * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bhyverun.h" #include "debug.h" /* * Using 'struct i386tss' is tempting but causes myriad sign extension * issues because all of its fields are defined as signed integers. */ struct tss32 { uint16_t tss_link; uint16_t rsvd1; uint32_t tss_esp0; uint16_t tss_ss0; uint16_t rsvd2; uint32_t tss_esp1; uint16_t tss_ss1; uint16_t rsvd3; uint32_t tss_esp2; uint16_t tss_ss2; uint16_t rsvd4; uint32_t tss_cr3; uint32_t tss_eip; uint32_t tss_eflags; uint32_t tss_eax; uint32_t tss_ecx; uint32_t tss_edx; uint32_t tss_ebx; uint32_t tss_esp; uint32_t tss_ebp; uint32_t tss_esi; uint32_t tss_edi; uint16_t tss_es; uint16_t rsvd5; uint16_t tss_cs; uint16_t rsvd6; uint16_t tss_ss; uint16_t rsvd7; uint16_t tss_ds; uint16_t rsvd8; uint16_t tss_fs; uint16_t rsvd9; uint16_t tss_gs; uint16_t rsvd10; uint16_t tss_ldt; uint16_t rsvd11; uint16_t tss_trap; uint16_t tss_iomap; }; static_assert(sizeof(struct tss32) == 104, "compile-time assertion failed"); #define SEL_START(sel) (((sel) & ~0x7)) #define SEL_LIMIT(sel) (((sel) | 0x7)) #define TSS_BUSY(type) (((type) & 0x2) != 0) static uint64_t GETREG(struct vmctx *ctx, int vcpu, int reg) { uint64_t val; int error; error = vm_get_register(ctx, vcpu, reg, &val); assert(error == 0); return (val); } static void SETREG(struct vmctx *ctx, int vcpu, int reg, uint64_t val) { int error; error = vm_set_register(ctx, vcpu, reg, val); assert(error == 0); } static struct seg_desc usd_to_seg_desc(struct user_segment_descriptor *usd) { struct seg_desc seg_desc; seg_desc.base = (u_int)USD_GETBASE(usd); if (usd->sd_gran) seg_desc.limit = (u_int)(USD_GETLIMIT(usd) << 12) | 0xfff; else seg_desc.limit = (u_int)USD_GETLIMIT(usd); seg_desc.access = usd->sd_type | usd->sd_dpl << 5 | usd->sd_p << 7; seg_desc.access |= usd->sd_xx << 12; seg_desc.access |= usd->sd_def32 << 14; seg_desc.access |= usd->sd_gran << 15; return (seg_desc); } /* * Inject an exception with an error code that is a segment selector. * The format of the error code is described in section 6.13, "Error Code", * Intel SDM volume 3. * * Bit 0 (EXT) denotes whether the exception occurred during delivery * of an external event like an interrupt. * * Bit 1 (IDT) indicates whether the selector points to a gate descriptor * in the IDT. * * Bit 2(GDT/LDT) has the usual interpretation of Table Indicator (TI). */ static void sel_exception(struct vmctx *ctx, int vcpu, int vector, uint16_t sel, int ext) { /* * Bit 2 from the selector is retained as-is in the error code. * * Bit 1 can be safely cleared because none of the selectors * encountered during task switch emulation refer to a task * gate in the IDT. * * Bit 0 is set depending on the value of 'ext'. */ sel &= ~0x3; if (ext) sel |= 0x1; vm_inject_fault(ctx, vcpu, vector, 1, sel); } /* * Return 0 if the selector 'sel' in within the limits of the GDT/LDT * and non-zero otherwise. */ static int desc_table_limit_check(struct vmctx *ctx, int vcpu, uint16_t sel) { uint64_t base; uint32_t limit, access; int error, reg; reg = ISLDT(sel) ? VM_REG_GUEST_LDTR : VM_REG_GUEST_GDTR; error = vm_get_desc(ctx, vcpu, reg, &base, &limit, &access); assert(error == 0); if (reg == VM_REG_GUEST_LDTR) { if (SEG_DESC_UNUSABLE(access) || !SEG_DESC_PRESENT(access)) return (-1); } if (limit < SEL_LIMIT(sel)) return (-1); else return (0); } /* * Read/write the segment descriptor 'desc' into the GDT/LDT slot referenced * by the selector 'sel'. * * Returns 0 on success. * Returns 1 if an exception was injected into the guest. * Returns -1 otherwise. */ static int desc_table_rw(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, uint16_t sel, struct user_segment_descriptor *desc, bool doread, int *faultptr) { struct iovec iov[2]; uint64_t base; uint32_t limit, access; int error, reg; reg = ISLDT(sel) ? VM_REG_GUEST_LDTR : VM_REG_GUEST_GDTR; error = vm_get_desc(ctx, vcpu, reg, &base, &limit, &access); assert(error == 0); assert(limit >= SEL_LIMIT(sel)); error = vm_copy_setup(ctx, vcpu, paging, base + SEL_START(sel), sizeof(*desc), doread ? PROT_READ : PROT_WRITE, iov, nitems(iov), faultptr); if (error || *faultptr) return (error); if (doread) vm_copyin(ctx, vcpu, iov, desc, sizeof(*desc)); else vm_copyout(ctx, vcpu, desc, iov, sizeof(*desc)); return (0); } static int desc_table_read(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, uint16_t sel, struct user_segment_descriptor *desc, int *faultptr) { return (desc_table_rw(ctx, vcpu, paging, sel, desc, true, faultptr)); } static int desc_table_write(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, uint16_t sel, struct user_segment_descriptor *desc, int *faultptr) { return (desc_table_rw(ctx, vcpu, paging, sel, desc, false, faultptr)); } /* * Read the TSS descriptor referenced by 'sel' into 'desc'. * * Returns 0 on success. * Returns 1 if an exception was injected into the guest. * Returns -1 otherwise. */ static int read_tss_descriptor(struct vmctx *ctx, int vcpu, struct vm_task_switch *ts, uint16_t sel, struct user_segment_descriptor *desc, int *faultptr) { struct vm_guest_paging sup_paging; int error; assert(!ISLDT(sel)); assert(IDXSEL(sel) != 0); /* Fetch the new TSS descriptor */ if (desc_table_limit_check(ctx, vcpu, sel)) { if (ts->reason == TSR_IRET) sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext); else sel_exception(ctx, vcpu, IDT_GP, sel, ts->ext); return (1); } sup_paging = ts->paging; sup_paging.cpl = 0; /* implicit supervisor mode */ error = desc_table_read(ctx, vcpu, &sup_paging, sel, desc, faultptr); return (error); } static bool code_desc(int sd_type) { /* code descriptor */ return ((sd_type & 0x18) == 0x18); } static bool stack_desc(int sd_type) { /* writable data descriptor */ return ((sd_type & 0x1A) == 0x12); } static bool data_desc(int sd_type) { /* data descriptor or a readable code descriptor */ return ((sd_type & 0x18) == 0x10 || (sd_type & 0x1A) == 0x1A); } static bool ldt_desc(int sd_type) { return (sd_type == SDT_SYSLDT); } /* * Validate the descriptor 'seg_desc' associated with 'segment'. */ static int validate_seg_desc(struct vmctx *ctx, int vcpu, struct vm_task_switch *ts, int segment, struct seg_desc *seg_desc, int *faultptr) { struct vm_guest_paging sup_paging; struct user_segment_descriptor usd; int error, idtvec; int cpl, dpl, rpl; uint16_t sel, cs; bool ldtseg, codeseg, stackseg, dataseg, conforming; ldtseg = codeseg = stackseg = dataseg = false; switch (segment) { case VM_REG_GUEST_LDTR: ldtseg = true; break; case VM_REG_GUEST_CS: codeseg = true; break; case VM_REG_GUEST_SS: stackseg = true; break; case VM_REG_GUEST_DS: case VM_REG_GUEST_ES: case VM_REG_GUEST_FS: case VM_REG_GUEST_GS: dataseg = true; break; default: assert(0); } /* Get the segment selector */ sel = GETREG(ctx, vcpu, segment); /* LDT selector must point into the GDT */ if (ldtseg && ISLDT(sel)) { sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext); return (1); } /* Descriptor table limit check */ if (desc_table_limit_check(ctx, vcpu, sel)) { sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext); return (1); } /* NULL selector */ if (IDXSEL(sel) == 0) { /* Code and stack segment selectors cannot be NULL */ if (codeseg || stackseg) { sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext); return (1); } seg_desc->base = 0; seg_desc->limit = 0; seg_desc->access = 0x10000; /* unusable */ return (0); } /* Read the descriptor from the GDT/LDT */ sup_paging = ts->paging; sup_paging.cpl = 0; /* implicit supervisor mode */ error = desc_table_read(ctx, vcpu, &sup_paging, sel, &usd, faultptr); if (error || *faultptr) return (error); /* Verify that the descriptor type is compatible with the segment */ if ((ldtseg && !ldt_desc(usd.sd_type)) || (codeseg && !code_desc(usd.sd_type)) || (dataseg && !data_desc(usd.sd_type)) || (stackseg && !stack_desc(usd.sd_type))) { sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext); return (1); } /* Segment must be marked present */ if (!usd.sd_p) { if (ldtseg) idtvec = IDT_TS; else if (stackseg) idtvec = IDT_SS; else idtvec = IDT_NP; sel_exception(ctx, vcpu, idtvec, sel, ts->ext); return (1); } cs = GETREG(ctx, vcpu, VM_REG_GUEST_CS); cpl = cs & SEL_RPL_MASK; rpl = sel & SEL_RPL_MASK; dpl = usd.sd_dpl; if (stackseg && (rpl != cpl || dpl != cpl)) { sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext); return (1); } if (codeseg) { conforming = (usd.sd_type & 0x4) ? true : false; if ((conforming && (cpl < dpl)) || (!conforming && (cpl != dpl))) { sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext); return (1); } } if (dataseg) { /* * A data segment is always non-conforming except when it's * descriptor is a readable, conforming code segment. */ if (code_desc(usd.sd_type) && (usd.sd_type & 0x4) != 0) conforming = true; else conforming = false; if (!conforming && (rpl > dpl || cpl > dpl)) { sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext); return (1); } } *seg_desc = usd_to_seg_desc(&usd); return (0); } static void tss32_save(struct vmctx *ctx, int vcpu, struct vm_task_switch *task_switch, uint32_t eip, struct tss32 *tss, struct iovec *iov) { /* General purpose registers */ tss->tss_eax = GETREG(ctx, vcpu, VM_REG_GUEST_RAX); tss->tss_ecx = GETREG(ctx, vcpu, VM_REG_GUEST_RCX); tss->tss_edx = GETREG(ctx, vcpu, VM_REG_GUEST_RDX); tss->tss_ebx = GETREG(ctx, vcpu, VM_REG_GUEST_RBX); tss->tss_esp = GETREG(ctx, vcpu, VM_REG_GUEST_RSP); tss->tss_ebp = GETREG(ctx, vcpu, VM_REG_GUEST_RBP); tss->tss_esi = GETREG(ctx, vcpu, VM_REG_GUEST_RSI); tss->tss_edi = GETREG(ctx, vcpu, VM_REG_GUEST_RDI); /* Segment selectors */ tss->tss_es = GETREG(ctx, vcpu, VM_REG_GUEST_ES); tss->tss_cs = GETREG(ctx, vcpu, VM_REG_GUEST_CS); tss->tss_ss = GETREG(ctx, vcpu, VM_REG_GUEST_SS); tss->tss_ds = GETREG(ctx, vcpu, VM_REG_GUEST_DS); tss->tss_fs = GETREG(ctx, vcpu, VM_REG_GUEST_FS); tss->tss_gs = GETREG(ctx, vcpu, VM_REG_GUEST_GS); /* eflags and eip */ tss->tss_eflags = GETREG(ctx, vcpu, VM_REG_GUEST_RFLAGS); if (task_switch->reason == TSR_IRET) tss->tss_eflags &= ~PSL_NT; tss->tss_eip = eip; /* Copy updated old TSS into guest memory */ vm_copyout(ctx, vcpu, tss, iov, sizeof(struct tss32)); } static void update_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *sd) { int error; error = vm_set_desc(ctx, vcpu, reg, sd->base, sd->limit, sd->access); assert(error == 0); } /* * Update the vcpu registers to reflect the state of the new task. */ static int tss32_restore(struct vmctx *ctx, int vcpu, struct vm_task_switch *ts, uint16_t ot_sel, struct tss32 *tss, struct iovec *iov, int *faultptr) { struct seg_desc seg_desc, seg_desc2; uint64_t *pdpte, maxphyaddr, reserved; uint32_t eflags; int error, i; bool nested; nested = false; if (ts->reason != TSR_IRET && ts->reason != TSR_JMP) { tss->tss_link = ot_sel; nested = true; } eflags = tss->tss_eflags; if (nested) eflags |= PSL_NT; /* LDTR */ SETREG(ctx, vcpu, VM_REG_GUEST_LDTR, tss->tss_ldt); /* PBDR */ if (ts->paging.paging_mode != PAGING_MODE_FLAT) { if (ts->paging.paging_mode == PAGING_MODE_PAE) { /* * XXX Assuming 36-bit MAXPHYADDR. */ maxphyaddr = (1UL << 36) - 1; pdpte = paddr_guest2host(ctx, tss->tss_cr3 & ~0x1f, 32); for (i = 0; i < 4; i++) { /* Check reserved bits if the PDPTE is valid */ if (!(pdpte[i] & 0x1)) continue; /* * Bits 2:1, 8:5 and bits above the processor's * maximum physical address are reserved. */ reserved = ~maxphyaddr | 0x1E6; if (pdpte[i] & reserved) { vm_inject_gp(ctx, vcpu); return (1); } } SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE0, pdpte[0]); SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE1, pdpte[1]); SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE2, pdpte[2]); SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE3, pdpte[3]); } SETREG(ctx, vcpu, VM_REG_GUEST_CR3, tss->tss_cr3); ts->paging.cr3 = tss->tss_cr3; } /* eflags and eip */ SETREG(ctx, vcpu, VM_REG_GUEST_RFLAGS, eflags); SETREG(ctx, vcpu, VM_REG_GUEST_RIP, tss->tss_eip); /* General purpose registers */ SETREG(ctx, vcpu, VM_REG_GUEST_RAX, tss->tss_eax); SETREG(ctx, vcpu, VM_REG_GUEST_RCX, tss->tss_ecx); SETREG(ctx, vcpu, VM_REG_GUEST_RDX, tss->tss_edx); SETREG(ctx, vcpu, VM_REG_GUEST_RBX, tss->tss_ebx); SETREG(ctx, vcpu, VM_REG_GUEST_RSP, tss->tss_esp); SETREG(ctx, vcpu, VM_REG_GUEST_RBP, tss->tss_ebp); SETREG(ctx, vcpu, VM_REG_GUEST_RSI, tss->tss_esi); SETREG(ctx, vcpu, VM_REG_GUEST_RDI, tss->tss_edi); /* Segment selectors */ SETREG(ctx, vcpu, VM_REG_GUEST_ES, tss->tss_es); SETREG(ctx, vcpu, VM_REG_GUEST_CS, tss->tss_cs); SETREG(ctx, vcpu, VM_REG_GUEST_SS, tss->tss_ss); SETREG(ctx, vcpu, VM_REG_GUEST_DS, tss->tss_ds); SETREG(ctx, vcpu, VM_REG_GUEST_FS, tss->tss_fs); SETREG(ctx, vcpu, VM_REG_GUEST_GS, tss->tss_gs); /* * If this is a nested task then write out the new TSS to update * the previous link field. */ if (nested) vm_copyout(ctx, vcpu, tss, iov, sizeof(*tss)); /* Validate segment descriptors */ error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_LDTR, &seg_desc, faultptr); if (error || *faultptr) return (error); update_seg_desc(ctx, vcpu, VM_REG_GUEST_LDTR, &seg_desc); /* * Section "Checks on Guest Segment Registers", Intel SDM, Vol 3. * * The SS and CS attribute checks on VM-entry are inter-dependent so * we need to make sure that both segments are valid before updating * either of them. This ensures that the VMCS state can pass the * VM-entry checks so the guest can handle any exception injected * during task switch emulation. */ error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_CS, &seg_desc, faultptr); if (error || *faultptr) return (error); error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_SS, &seg_desc2, faultptr); if (error || *faultptr) return (error); update_seg_desc(ctx, vcpu, VM_REG_GUEST_CS, &seg_desc); update_seg_desc(ctx, vcpu, VM_REG_GUEST_SS, &seg_desc2); ts->paging.cpl = tss->tss_cs & SEL_RPL_MASK; error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_DS, &seg_desc, faultptr); if (error || *faultptr) return (error); update_seg_desc(ctx, vcpu, VM_REG_GUEST_DS, &seg_desc); error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_ES, &seg_desc, faultptr); if (error || *faultptr) return (error); update_seg_desc(ctx, vcpu, VM_REG_GUEST_ES, &seg_desc); error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_FS, &seg_desc, faultptr); if (error || *faultptr) return (error); update_seg_desc(ctx, vcpu, VM_REG_GUEST_FS, &seg_desc); error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_GS, &seg_desc, faultptr); if (error || *faultptr) return (error); update_seg_desc(ctx, vcpu, VM_REG_GUEST_GS, &seg_desc); return (0); } /* * Push an error code on the stack of the new task. This is needed if the * task switch was triggered by a hardware exception that causes an error * code to be saved (e.g. #PF). */ static int push_errcode(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, int task_type, uint32_t errcode, int *faultptr) { struct iovec iov[2]; struct seg_desc seg_desc; int stacksize, bytes, error; uint64_t gla, cr0, rflags; uint32_t esp; uint16_t stacksel; *faultptr = 0; cr0 = GETREG(ctx, vcpu, VM_REG_GUEST_CR0); rflags = GETREG(ctx, vcpu, VM_REG_GUEST_RFLAGS); stacksel = GETREG(ctx, vcpu, VM_REG_GUEST_SS); error = vm_get_desc(ctx, vcpu, VM_REG_GUEST_SS, &seg_desc.base, &seg_desc.limit, &seg_desc.access); assert(error == 0); /* * Section "Error Code" in the Intel SDM vol 3: the error code is * pushed on the stack as a doubleword or word (depending on the * default interrupt, trap or task gate size). */ if (task_type == SDT_SYS386BSY || task_type == SDT_SYS386TSS) bytes = 4; else bytes = 2; /* * PUSH instruction from Intel SDM vol 2: the 'B' flag in the * stack-segment descriptor determines the size of the stack * pointer outside of 64-bit mode. */ if (SEG_DESC_DEF32(seg_desc.access)) stacksize = 4; else stacksize = 2; esp = GETREG(ctx, vcpu, VM_REG_GUEST_RSP); esp -= bytes; if (vie_calculate_gla(paging->cpu_mode, VM_REG_GUEST_SS, &seg_desc, esp, bytes, stacksize, PROT_WRITE, &gla)) { sel_exception(ctx, vcpu, IDT_SS, stacksel, 1); *faultptr = 1; return (0); } if (vie_alignment_check(paging->cpl, bytes, cr0, rflags, gla)) { vm_inject_ac(ctx, vcpu, 1); *faultptr = 1; return (0); } error = vm_copy_setup(ctx, vcpu, paging, gla, bytes, PROT_WRITE, iov, nitems(iov), faultptr); if (error || *faultptr) return (error); vm_copyout(ctx, vcpu, &errcode, iov, bytes); SETREG(ctx, vcpu, VM_REG_GUEST_RSP, esp); return (0); } /* * Evaluate return value from helper functions and potentially return to * the VM run loop. */ #define CHKERR(error,fault) \ do { \ assert((error == 0) || (error == EFAULT)); \ if (error) \ return (VMEXIT_ABORT); \ else if (fault) \ return (VMEXIT_CONTINUE); \ } while (0) int vmexit_task_switch(struct vmctx *ctx, struct vm_exit *vmexit, int *pvcpu) { struct seg_desc nt; struct tss32 oldtss, newtss; struct vm_task_switch *task_switch; struct vm_guest_paging *paging, sup_paging; struct user_segment_descriptor nt_desc, ot_desc; struct iovec nt_iov[2], ot_iov[2]; uint64_t cr0, ot_base; uint32_t eip, ot_lim, access; int error, ext, fault, minlimit, nt_type, ot_type, vcpu; enum task_switch_reason reason; uint16_t nt_sel, ot_sel; task_switch = &vmexit->u.task_switch; nt_sel = task_switch->tsssel; ext = vmexit->u.task_switch.ext; reason = vmexit->u.task_switch.reason; paging = &vmexit->u.task_switch.paging; vcpu = *pvcpu; assert(paging->cpu_mode == CPU_MODE_PROTECTED); /* * Calculate the instruction pointer to store in the old TSS. */ eip = vmexit->rip + vmexit->inst_length; /* * Section 4.6, "Access Rights" in Intel SDM Vol 3. * The following page table accesses are implicitly supervisor mode: * - accesses to GDT or LDT to load segment descriptors * - accesses to the task state segment during task switch */ sup_paging = *paging; sup_paging.cpl = 0; /* implicit supervisor mode */ /* Fetch the new TSS descriptor */ error = read_tss_descriptor(ctx, vcpu, task_switch, nt_sel, &nt_desc, &fault); CHKERR(error, fault); nt = usd_to_seg_desc(&nt_desc); /* Verify the type of the new TSS */ nt_type = SEG_DESC_TYPE(nt.access); if (nt_type != SDT_SYS386BSY && nt_type != SDT_SYS386TSS && nt_type != SDT_SYS286BSY && nt_type != SDT_SYS286TSS) { sel_exception(ctx, vcpu, IDT_TS, nt_sel, ext); goto done; } /* TSS descriptor must have present bit set */ if (!SEG_DESC_PRESENT(nt.access)) { sel_exception(ctx, vcpu, IDT_NP, nt_sel, ext); goto done; } /* * TSS must have a minimum length of 104 bytes for a 32-bit TSS and * 44 bytes for a 16-bit TSS. */ if (nt_type == SDT_SYS386BSY || nt_type == SDT_SYS386TSS) minlimit = 104 - 1; else if (nt_type == SDT_SYS286BSY || nt_type == SDT_SYS286TSS) minlimit = 44 - 1; else minlimit = 0; assert(minlimit > 0); if (nt.limit < minlimit) { sel_exception(ctx, vcpu, IDT_TS, nt_sel, ext); goto done; } /* TSS must be busy if task switch is due to IRET */ if (reason == TSR_IRET && !TSS_BUSY(nt_type)) { sel_exception(ctx, vcpu, IDT_TS, nt_sel, ext); goto done; } /* * TSS must be available (not busy) if task switch reason is * CALL, JMP, exception or interrupt. */ if (reason != TSR_IRET && TSS_BUSY(nt_type)) { sel_exception(ctx, vcpu, IDT_GP, nt_sel, ext); goto done; } /* Fetch the new TSS */ error = vm_copy_setup(ctx, vcpu, &sup_paging, nt.base, minlimit + 1, PROT_READ | PROT_WRITE, nt_iov, nitems(nt_iov), &fault); CHKERR(error, fault); vm_copyin(ctx, vcpu, nt_iov, &newtss, minlimit + 1); /* Get the old TSS selector from the guest's task register */ ot_sel = GETREG(ctx, vcpu, VM_REG_GUEST_TR); if (ISLDT(ot_sel) || IDXSEL(ot_sel) == 0) { /* * This might happen if a task switch was attempted without * ever loading the task register with LTR. In this case the * TR would contain the values from power-on: * (sel = 0, base = 0, limit = 0xffff). */ sel_exception(ctx, vcpu, IDT_TS, ot_sel, task_switch->ext); goto done; } /* Get the old TSS base and limit from the guest's task register */ error = vm_get_desc(ctx, vcpu, VM_REG_GUEST_TR, &ot_base, &ot_lim, &access); assert(error == 0); assert(!SEG_DESC_UNUSABLE(access) && SEG_DESC_PRESENT(access)); ot_type = SEG_DESC_TYPE(access); assert(ot_type == SDT_SYS386BSY || ot_type == SDT_SYS286BSY); /* Fetch the old TSS descriptor */ error = read_tss_descriptor(ctx, vcpu, task_switch, ot_sel, &ot_desc, &fault); CHKERR(error, fault); /* Get the old TSS */ error = vm_copy_setup(ctx, vcpu, &sup_paging, ot_base, minlimit + 1, PROT_READ | PROT_WRITE, ot_iov, nitems(ot_iov), &fault); CHKERR(error, fault); vm_copyin(ctx, vcpu, ot_iov, &oldtss, minlimit + 1); /* * Clear the busy bit in the old TSS descriptor if the task switch * due to an IRET or JMP instruction. */ if (reason == TSR_IRET || reason == TSR_JMP) { ot_desc.sd_type &= ~0x2; error = desc_table_write(ctx, vcpu, &sup_paging, ot_sel, &ot_desc, &fault); CHKERR(error, fault); } if (nt_type == SDT_SYS286BSY || nt_type == SDT_SYS286TSS) { EPRINTLN("Task switch to 16-bit TSS not supported"); return (VMEXIT_ABORT); } /* Save processor state in old TSS */ tss32_save(ctx, vcpu, task_switch, eip, &oldtss, ot_iov); /* * If the task switch was triggered for any reason other than IRET * then set the busy bit in the new TSS descriptor. */ if (reason != TSR_IRET) { nt_desc.sd_type |= 0x2; error = desc_table_write(ctx, vcpu, &sup_paging, nt_sel, &nt_desc, &fault); CHKERR(error, fault); } /* Update task register to point at the new TSS */ SETREG(ctx, vcpu, VM_REG_GUEST_TR, nt_sel); /* Update the hidden descriptor state of the task register */ nt = usd_to_seg_desc(&nt_desc); update_seg_desc(ctx, vcpu, VM_REG_GUEST_TR, &nt); /* Set CR0.TS */ cr0 = GETREG(ctx, vcpu, VM_REG_GUEST_CR0); SETREG(ctx, vcpu, VM_REG_GUEST_CR0, cr0 | CR0_TS); /* * We are now committed to the task switch. Any exceptions encountered * after this point will be handled in the context of the new task and * the saved instruction pointer will belong to the new task. */ error = vm_set_register(ctx, vcpu, VM_REG_GUEST_RIP, newtss.tss_eip); assert(error == 0); /* Load processor state from new TSS */ error = tss32_restore(ctx, vcpu, task_switch, ot_sel, &newtss, nt_iov, &fault); CHKERR(error, fault); /* * Section "Interrupt Tasks" in Intel SDM, Vol 3: if an exception * caused an error code to be generated, this error code is copied * to the stack of the new task. */ if (task_switch->errcode_valid) { assert(task_switch->ext); assert(task_switch->reason == TSR_IDT_GATE); error = push_errcode(ctx, vcpu, &task_switch->paging, nt_type, task_switch->errcode, &fault); CHKERR(error, fault); } /* * Treatment of virtual-NMI blocking if NMI is delivered through * a task gate. * * Section "Architectural State Before A VM Exit", Intel SDM, Vol3: * If the virtual NMIs VM-execution control is 1, VM entry injects * an NMI, and delivery of the NMI causes a task switch that causes * a VM exit, virtual-NMI blocking is in effect before the VM exit * commences. * * Thus, virtual-NMI blocking is in effect at the time of the task * switch VM exit. */ /* * Treatment of virtual-NMI unblocking on IRET from NMI handler task. * * Section "Changes to Instruction Behavior in VMX Non-Root Operation" * If "virtual NMIs" control is 1 IRET removes any virtual-NMI blocking. * This unblocking of virtual-NMI occurs even if IRET causes a fault. * * Thus, virtual-NMI blocking is cleared at the time of the task switch * VM exit. */ /* * If the task switch was triggered by an event delivered through * the IDT then extinguish the pending event from the vcpu's * exitintinfo. */ if (task_switch->reason == TSR_IDT_GATE) { error = vm_set_intinfo(ctx, vcpu, 0); assert(error == 0); } /* * XXX should inject debug exception if 'T' bit is 1 */ done: return (VMEXIT_CONTINUE); }