

Document Number: ARM-ECM-0611873 ARM Non-Confidential

Version: 0.2 Page 1 of 13

Debug and Trace Snapshot File
Format

Development Solutions

Blackburn

Document number:

ARM-ECM-0611873 Version: 0.2

Date of Issue: 24/10/2016

Author: DSG Engineering

Authorised by:

© Copyright ARM Limited 2016. All rights reserved.

Abstract

This document describes the debug and trace snapshot file formats, used to exchange system state and trace
data between debug and trace decode tools.

Keywords

CoreSight, Trace, Debug, Snapshots

Distribution list

Name Function Name Function

Document Number: ARM-ECM-0611873 ARM Non-Confidential

Version: 0.2 Page 2 of 13

Contents

1 ABOUT THIS DOCUMENT 3

1.1 Change history 3

1.2 Terms and abbreviations 3

2 INTRODUCTION 4

2.1 Tools using or generating snapshots 4

3 SNAPSHOT FORMAT 5

3.1 snapshot.ini 6
3.1.1 “snapshot” section 6
3.1.2 “device_list” section 6
3.1.3 “clusters” section 6
3.1.4 “trace” section 6
3.1.5 Example 6

3.2 Device files 7
3.2.1 “device” section 7
3.2.2 “regs” section 8
3.2.3 “dump” sections 8
3.2.4 Core Device Example 8
3.2.5 Trace Source Device Example 9

3.3 Trace metadata 10
3.3.1 “trace_buffers” section 10
3.3.2 Trace buffer metadata sections 10
3.3.3 “core_trace_sources” section 10
3.3.4 “source_buffers” section 11
3.3.5 Example 11

4 REQUIRED CONTENTS OF SNAPSHOTS 12

4.1 Cores 12
4.1.1 ARMv7-A/R 12
4.1.2 ARMv8 12

4.1.2.1 AArch64 12
4.1.2.2 AArch32 12

4.1.3 ARMv6-M/ARMv7-M 12

4.2 Trace sources 12
4.2.1 ETMv3 12
4.2.2 PTM 13
4.2.3 ETMv4 13
4.2.4 ITM CONTROL_REGISTER 13
4.2.5 STM 13

Document Number: ARM-ECM-0611873 ARM Non-Confidential

Version: 0.2 Page 3 of 13

1 ABOUT THIS DOCUMENT

1.1 Change history

 First publication as open standard.

1.2 Terms and abbreviations

This document uses the following terms and abbreviations.

Term Meaning

CoreSight

DS-5

ARM Hardware Trace components.

ARM Debugger and Trace Decoder based on Eclipse.

OpenCSD Open source CoreSight trace Decode library – library for decompressing and
decoding captured CoreSight trace.

CSAL CoreSight Access Library – open source library for controlling CoreSight hardware
to capture trace data.

Document Number: ARM-ECM-0611873 ARM Non-Confidential

Version: 0.2 Page 4 of 13

2 INTRODUCTION

This document defines a data format that allows debug agents to export and import system state and trace data –
this is referred to as a snapshot.

The snapshot can be used to save system state and trace data for later analysis, or can be used to transfer state
between environments.

For example the CoreSight Access Library (CSAL) can be used to trace execution on a Linux system and produce
a snapshot for analysis within the ARM DS-5 debugger.

2.1 Tools using or generating snapshots

 ARM DS-5 debugger: This can generate or consume snapshot data. This will load both a debug view and
debug view + trace data snapshot.

 CSAL: This generates snapshot data – with both debug view + trace decode metadata present for import
into DS-5.

 OpenCSD: This can consume snapshot data. This uses the trace decode data only.

Document Number: ARM-ECM-0611873 ARM Non-Confidential

Version: 0.2 Page 5 of 13

3 SNAPSHOT FORMAT

The snapshot consists of a hierarchy of text files containing system data, and associated binary data files. Text
files, provided in the .ini format, are used to describe the system topology and key register values. The binary

files are used for memory and trace data.

A snapshot contains the following files:

 snapshot.ini: This mandatory file stands at the head of the hierarchy. It provides the index of available
debug devices in the form of device files and the topology of the devices.

 Device files: These provide register and memory information for each debug or trace device in the
system.

 trace.ini: Trace metadata. Provides information on the trace topology and buffers.

 Trace buffer binary files: Files containing raw trace data.

 Memory region binary files: Files containing device memory data – these may be memory dumped
direct from a target system, or offsets for the loadable binary data sections within elf files.

snapshot.ini

device0.ini
Cortex-A7_0

R0=0x1234

…

PC=0x8000

CPSR=0x1D3

Memory @
0x8000

Memory @
0xC0000000

device1.ini
Cortex-A7_1
R0=0x5678
…
PC=0x8010
CPSR=0x1D3

trace.ini ETB_0.bin

device2.ini
ETM_0

device3.ini
ETM_1

Document Number: ARM-ECM-0611873 ARM Non-Confidential

Version: 0.2 Page 6 of 13

The requirements for mandatory data within the various file sections depend on the purpose of the snapshot.
There are more detailed requirements for a snapshot that contains trace data and allows that data to be decoded,
than for a simple snapshot that represents the halt state of a debug system that is viewable in a debug tool.

The descriptions below will classify keys and data entries as either:-

 Required: required for both debug view snapshots and trace decode snapshots.

 Optional: optional in both debug view snapshots and trace decode snapshots.

 Required for trace: required in trace decode snapshots, optional otherwise.

 Required for debug: required in debug view snapshots, optional otherwise.

3.1 snapshot.ini

This file uses the .ini file format and consists of the following sections:

 “snapshot” (required)

 “device_list” (required)

 “clusters” (optional)

 “trace” (required for trace)

3.1.1 “snapshot” section

This provides information about the snapshot. This section can contain the following keys:

 “version” (required): The version of the snapshot. The interpretation of the rest of the snapshot depends
on the value of this field: readers of the snapshot must check this field first. The only valid value for this is
currently “1.0”.

 “description” (optional): Description of the contents of this snapshot.

3.1.2 “device_list” section

Each value in this section is a reference to an INI file that defines the state (registers and memory) of a
device. Devices may be cores, or trace sources such as ETM or STM. The key names aren’t used, but must
be unique. It is recommended that they are “device0”, “device1”, ...”deviceN”. The path to the ini file is
relative to the snapshot.ini file.

3.1.3 “clusters” section

Each entry in this section defines a cluster. The key is the name of the cluster, the value is a comma
separated list of devices in that cluster. If this section is not present, all cores are placed in one cluster.

3.1.4 “trace” section

This section can contain the following keys:

 “metadata” (required): relative path to another ini file that defines the metadata describing the trace
buffers and trace source associations

3.1.5 Example

[snapshot]

version=1.0

description=Example snapshot

[device_list]

device1=cortex-a15_0.ini

device2=cortex-a15_1.ini

Document Number: ARM-ECM-0611873 ARM Non-Confidential

Version: 0.2 Page 7 of 13

device3=PTM_0.ini

device4=PTM_1.ini

device5=ITM_0.ini

device6=cortex-a7_0.ini

device7=cortex-a7_1.ini

device8=cortex-a7_2.ini

device9=ETM_0.ini

device10=ETM_1.ini

device11=ETM_2.ini

[clusters]

Cluster 0=cortex-a15_0,cortex-a15_1

Cluster 1=cortex-a7_0,cortex-a7_1,cortex-a7_2

[trace]

metadata=trace.ini

3.2 Device files

These are .ini files with the following sections:

 “device”: Provides information about the device.

 “regs”: Provides register values for the device.

 “dump”: 0 or more sections, each describing a memory region. Memory regions are associated with core
type devices, or memory space type devices.

3.2.1 “device” section

This section contains the following keys:

 “name” (required): the unique name used to identify this device within the snapshot. Snapshot
generators can use any string here – it could be a device name, simple numbering (core_0, core_1, …),
functional name or user entered. No meaning should be inferred from the name (for example core type –
the “class” and “type” keys provide this). Each device in the snapshot must have a unique name.

 “class” (required for trace): the general type of the device. Recognised values for this are:

o “core”: Indicates that this device represents a core

o “trace_source”: Indicates that this device represents a trace source

o “memory_space”: Indicates that this device represents a memory space, e.g. a view of an AHB or
AXI bus. A debugger may present the device as an additional address space.

o Other values are permitted for information purposes

 “type” (required for trace): the specific type of the device.

o For cores this is the name of the core, e.g. “Cortex-A9”, “Cortex-A57”, “ARM1136JF-S”. If the
specific core type is not known, the architecture version may be used, e.g. “ARMv7-A”, “ARMv8-
A”. This is not case sensitive. A debugger can use this value to determine which register set to
load, what architecture features to support etc.

o For trace sources this is the name of the trace protocol, e.g. “ETM”, “PFT”, “ITM”, “STM”
concatenated with the version of the protocol used, e.g.: “ETM3.3”, “ETM4.0”, “PFT1.1”

 “location” (optional): This describes how the agent that produced the snapshot locates the device. It
consists of a comma separated sequence of key:value entries that define a unique path to the device. For
an external debugger, this could consist of the DAP number, AP number and AP base address (e.g.
dap:2,ap:1,address:0x80010000) of the device. For self-hosted debug, this could consist of the base

Document Number: ARM-ECM-0611873 ARM Non-Confidential

Version: 0.2 Page 8 of 13

address of the device in the core’s memory space (e.g. address:0x1200010000). If specified, the location
must be unique within the snapshot.

Any other keys in this section are ignored – this allows extra client specific data to be stored.

3.2.2 “regs” section

Each key in this section consists of the register name, with optional extra information in parentheses. The extra
information is a comma separated list of keys and values, with ‘:’ separating keys from values. Supported extra
information is:

 “size”: The size in bits of the register

 “id” or unkeyed: The ID number of the register. May be hex with 0x prefix or decimal

For example:

REG_A(77) = 0x1234

REG_B(id:78) = 0x1234

REG_C(id:0x80,size:64) = 0x1234000012340000

REG_D(size:64,0x82) = 0x12340000123400000

The values are integers of the appropriate size (32-bits if no size is specified).

For CoreSight components, the register IDs can be converted to address by adding (ID * 4) to the base address of
the component.

There are specific requirements for registers that must be present in the core type devices for a debug view
snapshot, and in the trace source devices in a trace decode snapshot. These requirements which are core
architecture or trace source architecture dependent, are described in detail in section 4 below.

3.2.3 “dump” sections

0 or more dump sections may occur in the device file. The name of the section must start with “dump”, but may
optionally have a suffix to give each occurrence a unique name. ARM recommends that the unique suffix is used
to ensure compatibility between consumers of snapshots. Each defines a region of memory visible from that
device. Each section can contain the following keys:

 “file”: relative path to the file containing the memory contents

 “space” (optional): address space of the region. Supported values are: “N”, “S”, “H”, “EL1N”, "EL1S",
"EL2", “EL3”, “P”, “SP, “NP”

 “address”: address of the region

 “length” (optional): length of the region – must be less than or equal to the file size.

 “offset” (optional): offset into the file.

3.2.4 Core Device Example

This example represents a core with the code and data sections of an image visible in the memory

[device]

name=cpu_0

class=core

type=Cortex-A7

location=address:0x1200013000

[dump0]

file=ER_RW.bin

space=N

address=0x8000DD90

length=0x00000020

Document Number: ARM-ECM-0611873 ARM Non-Confidential

Version: 0.2 Page 9 of 13

[dump1]

file=ER_RO.bin

space=N

address=0x80001000

length=0x0000CD90

[dump2]

file=STACK.bin

space=N

address=0x8001D748

length=0x00000800

[dump3]

file=HEAP.bin

space=N

address=0x8000DF48

length=0x0000F7FC

[regs]

R0=0x00000000

R1=0x00000000

R2=0x10001060

R3=0x00000000

R4=0x80011990

R5=0x80011990

R6=0x00000028

R7=0x80010120

R8=0x00000000

R9=0xFFFFFFFF

R10=0x8000D53C

R11=0x00000000

R12=0x00000000

SP=0x8001DF20

LR=0x80001133

PC=0x8000A5F8

CPSR=0x600001D3

D0(id:90,size:64)=0x123456700000000

D1(92,size:64)=0x123456700000000

3.2.5 Trace Source Device Example

This example shows a trace source – ETMv4 – with the required registers for decode listed in the regs section.

[device]

name=ETM_0

class=trace_source

type=ETM4

[regs]

TRCCONFIGR(0x004)=0x000000C1

TRCTRACEIDR(0x010)=0x00000010

Document Number: ARM-ECM-0611873 ARM Non-Confidential

Version: 0.2 Page 10 of 13

TRCAUTHSTATUS(0x3EE)=0x000000CC

TRCIDR0(0x078)=0x28000EA1

TRCIDR1(0x079)=0x4100F403

TRCIDR2(0x07A)=0x00000488

TRCIDR8(0x060)=0x00000000

TRCIDR9(0x061)=0x00000000

TRCIDR10(0x062)=0x00000000

TRCIDR11(0x063)=0x00000000

TRCIDR12(0x064)=0x00000000

TRCIDR13(0x065)=0x00000000

3.3 Trace metadata

The trace metadata file, typically “trace.ini”, will contain data required to describe the topology of the system and
interpret the trace buffers. This file contains the following sections:

 “trace_buffers” (required): Describes the trace buffers present in the snapshot

 Trace buffer metadata: Metadata about each trace buffer

 “core_trace_sources” (required): Defines the associations between cores and trace sources

 “source_buffers” (required): Defines which trace buffer contains data for each trace source

3.3.1 “trace_buffers” section

The “trace_buffers” section describes the trace buffers present in the snapshot. This section has the following
keys:

 “buffers” (required): A comma separated list of buffer IDs. Each ID should be unique and must not conflict
with other sections in this file (“core_trace_sources”, “source_buffers”). Typically these will be “buffer0”,
“buffer1”, .., “bufferN”. The metadata for each buffer will be in a section name with this ID.

3.3.2 Trace buffer metadata sections

Each buffer section can contain the following keys:

 “name” (required): The unique name of this buffer. This may be displayed to the user.

 “file” (required): This entry is a comma separated list of file paths relative to the snapshot.ini that contain
the trace data. Multiple files allow the buffer size to exceed the practical file size. Where multiple files are
used, the buffer data is the concatenation of the files in the order given, and the buffer size is the sum of
the file sizes.

 “format” (required): The format of the data. This will be one of:

o “coresight”: the data is formatted in 16 byte CoreSight frames

o “source_data”: the data is unformatted (and only contains data for a single source)

o Other values for format (e.g. DSTREAM’s raw contents) are supported, but these are not
expected to be used.

3.3.3 “core_trace_sources” section

The associations between cores and their trace sources are defined in a section called “core_trace_sources”.
Each entry in this section defines the trace source for a core. The key is the name of the core, as defined in the
associated core device file, the value is either:

 the name of the trace source, as defined in the associated trace source device file..

 “@” followed by the value of “location” of the trace source, e.g.

[core_trace_sources]

cortex-a7_0=@address:0x12308000

Document Number: ARM-ECM-0611873 ARM Non-Confidential

Version: 0.2 Page 11 of 13

The association between trace sources and the core attached to the trace source is vital in correctly decoding the
trace. As described earlier, “dump” sections describe memory areas associated with a core – these memory areas
will normally contain the program executed by that core. Without the appropriate memory area containing the
executed opcodes, the trace decode will not be able to proceed.

The core profile – Cortex-A/R or Cortex-M - also has an effect on the correct decoding of trace data, as the
appropriate instruction sets and interrupt vectors will be encoded in the trace data.

3.3.4 “source_buffers” section

Where multiple trace buffers are present, the “source_buffers” section defines which buffers the data for each
trace source may be found in. Each entry defines the buffers that may contain data for a trace source. The key is
the name of the trace source, the value is a comma separated list of buffer names. Where data for a given source
may be present in more than one buffer (e.g. a snapshot from system that replicates trace data into an ETB and
TPIU), a debugger may present the user with a choice or select one buffer (DS-5 5.21 will select the first).

This section may be omitted if there is only one trace buffer, in which case all trace sources shall use that buffer.

Where a trace source has multiple streams (e.g. ETMv4 has separate instruction and data streams), a snapshot
may have the data each stream in different buffers. To specify the buffers, the source may be suffixed with
“(stream:N)”, where N is the stream number (i.e. to offset to the base ATB ID). For example with an ETMv4 with
name “ETM_0”, this will be “ETM_0(stream:0)” (instruction) and “ETM_0(stream:1)” (data). If a specific buffer is
not specified for a stream, then the unqualified source name should be used.

3.3.5 Example

This example shows trace of a two cluster system (2x Cortex-A15 and 3x Cortex-A7) where each cluster traces
into a different ETB. There is also an ITM (not associated to any core) that traces into ETB_0

[trace_buffers]

buffers=buffer0,buffer1

[buffer0]

name=ETB_0

file=ETB_0.bin

format=coresight

[buffer1]

name=ETB_1

file=ETB_1.bin

format=coresight

[core_trace_sources]

cortex-a7_0=etm_0

cortex-a7_1=etm_1

cortex-a7_2=etm_2

cortex-a15_0=ptm_0

cortex-a15_1=ptm_1

[source_buffers]

etm_0=ETB_0

etm_1=ETB_0

etm_2=ETB_0

ptm_0=ETB_1

ptm_1=ETB_1

itm_0=ETB_0

Document Number: ARM-ECM-0611873 ARM Non-Confidential

Version: 0.2 Page 12 of 13

4 REQUIRED CONTENTS OF SNAPSHOTS

A debugger will require certain data to be present in a snapshot in order to load it correctly for a debug view, and
other data to correctly decode trace data.

4.1 Cores

When loading a debug view a minimum register set is required for core type devices.

4.1.1 ARMv7-A/R

 The core registers are named R0-R15, CPSR. SP, LR, PC may be used for R13-R15.

 SP, PC and CPSR are required to determine core state.

 If security extensions are supported, SCR is used to determine Secure / Non-secure state. A debugger
will assume NS if not SCR is not present.

 If security extensions are supported, valid memory spaces are “S” and “N”. If virtualization is supported,
“H” is also valid. If no security or virtualization extensions are supported, no memory space prefix is used.

4.1.2 ARMv8

4.1.2.1 AArch64

 The core registers are named X0-X30, SP, PC. LR may be used for X30.

 CPSR, PC, SP are required to determine core state.

 If security extensions are supported, SCR is used to determine Secure / Non-secure state. A debugger
will assume NS if not SCR is not present.

 Valid memory spaces are: “EL3”, “EL2”, “EL1S”, “EL1N”

4.1.2.2 AArch32

 The core registers are named R0-R15, CPSR. SP, LR, PC may be used for R13-R15.

 SP, PC and CPSR are required to determine core state.

 If security extensions are supported, SCR is used to determine Secure / Non-secure state. A debugger
will assume NS if not SCR is not present.

 If security extensions supported, valid memory spaces are “S” and “N”. If virtualization is supported, “H” is
also valid.

4.1.3 ARMv6-M/ARMv7-M

 The core registers are named R0-R15, xPSR. SP, LR, PC may be used for R13-R15.

 xPSR, PC, SP are required to determine core state.

 Other NVIC registers may be present

 No memory space prefix is used.

4.2 Trace sources

When decoding trace data, a minimum set of registers are required from the CoreSight trace devices, dependent
on the trace architecture.

4.2.1 ETMv3

The following registers are required for trace decode

Document Number: ARM-ECM-0611873 ARM Non-Confidential

Version: 0.2 Page 13 of 13

 ETMCR

 ETMCCER

 ETMIDR

 ETMTRACEIDR

4.2.2 PTM

The following registers are required for trace decode

 ETMCR

 ETMCCER

 ETMIDR

 ETMTRACEIDR

4.2.3 ETMv4

The following registers are required for trace decode

 TRCIDR0

 TRCIDR1

 TRCIDR2

 TRCIDR8

 TRCIDR9

 TRCIDR10

 TRCIDR11

 TRCIDR12

 TRCIDR13

 TRCTRACEIDR

 TRCCONFIGR

 TRCAUTHSTATUS

4.2.4 ITM CONTROL_REGISTER

The following registers are required for trace decode

 CONTROL_REGISTER: trace stream ID is taken from bits [22:16]

4.2.5 STM

The following registers are required for trace decode

 STMTCSR: trace stream ID is taken from bits [22:16]

