aboutsummaryrefslogtreecommitdiff
path: root/COFF/Chunks.cpp
blob: 557b026544261d1e50c07e1dbc253a0ce4db5c4d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
//===- Chunks.cpp ---------------------------------------------------------===//
//
//                             The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "Chunks.h"
#include "InputFiles.h"
#include "Symbols.h"
#include "Writer.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/COFF.h"
#include "llvm/Object/COFF.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>

using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::COFF;
using llvm::support::ulittle32_t;

namespace lld {
namespace coff {

SectionChunk::SectionChunk(ObjFile *F, const coff_section *H)
    : Chunk(SectionKind), Repl(this), Header(H), File(F),
      Relocs(File->getCOFFObj()->getRelocations(Header)),
      NumRelocs(std::distance(Relocs.begin(), Relocs.end())) {
  // Initialize SectionName.
  File->getCOFFObj()->getSectionName(Header, SectionName);

  Alignment = Header->getAlignment();

  // If linker GC is disabled, every chunk starts out alive.  If linker GC is
  // enabled, treat non-comdat sections as roots. Generally optimized object
  // files will be built with -ffunction-sections or /Gy, so most things worth
  // stripping will be in a comdat.
  Live = !Config->DoGC || !isCOMDAT();
}

static void add16(uint8_t *P, int16_t V) { write16le(P, read16le(P) + V); }
static void add32(uint8_t *P, int32_t V) { write32le(P, read32le(P) + V); }
static void add64(uint8_t *P, int64_t V) { write64le(P, read64le(P) + V); }
static void or16(uint8_t *P, uint16_t V) { write16le(P, read16le(P) | V); }
static void or32(uint8_t *P, uint32_t V) { write32le(P, read32le(P) | V); }

static void applySecRel(const SectionChunk *Sec, uint8_t *Off,
                        OutputSection *OS, uint64_t S) {
  if (!OS) {
    if (Sec->isCodeView())
      return;
    fatal("SECREL relocation cannot be applied to absolute symbols");
  }
  uint64_t SecRel = S - OS->getRVA();
  if (SecRel > UINT32_MAX) {
    error("overflow in SECREL relocation in section: " + Sec->getSectionName());
    return;
  }
  add32(Off, SecRel);
}

static void applySecIdx(uint8_t *Off, OutputSection *OS) {
  // If we have no output section, this must be an absolute symbol. Use the
  // sentinel absolute symbol section index.
  uint16_t SecIdx = OS ? OS->SectionIndex : DefinedAbsolute::OutputSectionIndex;
  add16(Off, SecIdx);
}

void SectionChunk::applyRelX64(uint8_t *Off, uint16_t Type, OutputSection *OS,
                               uint64_t S, uint64_t P) const {
  switch (Type) {
  case IMAGE_REL_AMD64_ADDR32:   add32(Off, S + Config->ImageBase); break;
  case IMAGE_REL_AMD64_ADDR64:   add64(Off, S + Config->ImageBase); break;
  case IMAGE_REL_AMD64_ADDR32NB: add32(Off, S); break;
  case IMAGE_REL_AMD64_REL32:    add32(Off, S - P - 4); break;
  case IMAGE_REL_AMD64_REL32_1:  add32(Off, S - P - 5); break;
  case IMAGE_REL_AMD64_REL32_2:  add32(Off, S - P - 6); break;
  case IMAGE_REL_AMD64_REL32_3:  add32(Off, S - P - 7); break;
  case IMAGE_REL_AMD64_REL32_4:  add32(Off, S - P - 8); break;
  case IMAGE_REL_AMD64_REL32_5:  add32(Off, S - P - 9); break;
  case IMAGE_REL_AMD64_SECTION:  applySecIdx(Off, OS); break;
  case IMAGE_REL_AMD64_SECREL:   applySecRel(this, Off, OS, S); break;
  default:
    fatal("unsupported relocation type 0x" + Twine::utohexstr(Type));
  }
}

void SectionChunk::applyRelX86(uint8_t *Off, uint16_t Type, OutputSection *OS,
                               uint64_t S, uint64_t P) const {
  switch (Type) {
  case IMAGE_REL_I386_ABSOLUTE: break;
  case IMAGE_REL_I386_DIR32:    add32(Off, S + Config->ImageBase); break;
  case IMAGE_REL_I386_DIR32NB:  add32(Off, S); break;
  case IMAGE_REL_I386_REL32:    add32(Off, S - P - 4); break;
  case IMAGE_REL_I386_SECTION:  applySecIdx(Off, OS); break;
  case IMAGE_REL_I386_SECREL:   applySecRel(this, Off, OS, S); break;
  default:
    fatal("unsupported relocation type 0x" + Twine::utohexstr(Type));
  }
}

static void applyMOV(uint8_t *Off, uint16_t V) {
  write16le(Off, (read16le(Off) & 0xfbf0) | ((V & 0x800) >> 1) | ((V >> 12) & 0xf));
  write16le(Off + 2, (read16le(Off + 2) & 0x8f00) | ((V & 0x700) << 4) | (V & 0xff));
}

static uint16_t readMOV(uint8_t *Off) {
  uint16_t Opcode1 = read16le(Off);
  uint16_t Opcode2 = read16le(Off + 2);
  uint16_t Imm = (Opcode2 & 0x00ff) | ((Opcode2 >> 4) & 0x0700);
  Imm |= ((Opcode1 << 1) & 0x0800) | ((Opcode1 & 0x000f) << 12);
  return Imm;
}

void applyMOV32T(uint8_t *Off, uint32_t V) {
  uint16_t ImmW = readMOV(Off);     // read MOVW operand
  uint16_t ImmT = readMOV(Off + 4); // read MOVT operand
  uint32_t Imm = ImmW | (ImmT << 16);
  V += Imm;                         // add the immediate offset
  applyMOV(Off, V);           // set MOVW operand
  applyMOV(Off + 4, V >> 16); // set MOVT operand
}

static void applyBranch20T(uint8_t *Off, int32_t V) {
  if (!isInt<21>(V))
    fatal("relocation out of range");
  uint32_t S = V < 0 ? 1 : 0;
  uint32_t J1 = (V >> 19) & 1;
  uint32_t J2 = (V >> 18) & 1;
  or16(Off, (S << 10) | ((V >> 12) & 0x3f));
  or16(Off + 2, (J1 << 13) | (J2 << 11) | ((V >> 1) & 0x7ff));
}

void applyBranch24T(uint8_t *Off, int32_t V) {
  if (!isInt<25>(V))
    fatal("relocation out of range");
  uint32_t S = V < 0 ? 1 : 0;
  uint32_t J1 = ((~V >> 23) & 1) ^ S;
  uint32_t J2 = ((~V >> 22) & 1) ^ S;
  or16(Off, (S << 10) | ((V >> 12) & 0x3ff));
  // Clear out the J1 and J2 bits which may be set.
  write16le(Off + 2, (read16le(Off + 2) & 0xd000) | (J1 << 13) | (J2 << 11) | ((V >> 1) & 0x7ff));
}

void SectionChunk::applyRelARM(uint8_t *Off, uint16_t Type, OutputSection *OS,
                               uint64_t S, uint64_t P) const {
  // Pointer to thumb code must have the LSB set.
  uint64_t SX = S;
  if (OS && (OS->getPermissions() & IMAGE_SCN_MEM_EXECUTE))
    SX |= 1;
  switch (Type) {
  case IMAGE_REL_ARM_ADDR32:    add32(Off, SX + Config->ImageBase); break;
  case IMAGE_REL_ARM_ADDR32NB:  add32(Off, SX); break;
  case IMAGE_REL_ARM_MOV32T:    applyMOV32T(Off, SX + Config->ImageBase); break;
  case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(Off, SX - P - 4); break;
  case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(Off, SX - P - 4); break;
  case IMAGE_REL_ARM_BLX23T:    applyBranch24T(Off, SX - P - 4); break;
  case IMAGE_REL_ARM_SECTION:   applySecIdx(Off, OS); break;
  case IMAGE_REL_ARM_SECREL:    applySecRel(this, Off, OS, S); break;
  default:
    fatal("unsupported relocation type 0x" + Twine::utohexstr(Type));
  }
}

// Interpret the existing immediate value as a byte offset to the
// target symbol, then update the instruction with the immediate as
// the page offset from the current instruction to the target.
static void applyArm64Addr(uint8_t *Off, uint64_t S, uint64_t P) {
  uint32_t Orig = read32le(Off);
  uint64_t Imm = ((Orig >> 29) & 0x3) | ((Orig >> 3) & 0x1FFFFC);
  S += Imm;
  Imm = (S >> 12) - (P >> 12);
  uint32_t ImmLo = (Imm & 0x3) << 29;
  uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
  uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
  write32le(Off, (Orig & ~Mask) | ImmLo | ImmHi);
}

// Update the immediate field in a AARCH64 ldr, str, and add instruction.
// Optionally limit the range of the written immediate by one or more bits
// (RangeLimit).
static void applyArm64Imm(uint8_t *Off, uint64_t Imm, uint32_t RangeLimit) {
  uint32_t Orig = read32le(Off);
  Imm += (Orig >> 10) & 0xFFF;
  Orig &= ~(0xFFF << 10);
  write32le(Off, Orig | ((Imm & (0xFFF >> RangeLimit)) << 10));
}

// Add the 12 bit page offset to the existing immediate.
// Ldr/str instructions store the opcode immediate scaled
// by the load/store size (giving a larger range for larger
// loads/stores). The immediate is always (both before and after
// fixing up the relocation) stored scaled similarly.
// Even if larger loads/stores have a larger range, limit the
// effective offset to 12 bit, since it is intended to be a
// page offset.
static void applyArm64Ldr(uint8_t *Off, uint64_t Imm) {
  uint32_t Orig = read32le(Off);
  uint32_t Size = Orig >> 30;
  // 0x04000000 indicates SIMD/FP registers
  // 0x00800000 indicates 128 bit
  if ((Orig & 0x4800000) == 0x4800000)
    Size += 4;
  if ((Imm & ((1 << Size) - 1)) != 0)
    fatal("misaligned ldr/str offset");
  applyArm64Imm(Off, Imm >> Size, Size);
}

void SectionChunk::applyRelARM64(uint8_t *Off, uint16_t Type, OutputSection *OS,
                                 uint64_t S, uint64_t P) const {
  switch (Type) {
  case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(Off, S, P); break;
  case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(Off, S & 0xfff, 0); break;
  case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(Off, S & 0xfff); break;
  case IMAGE_REL_ARM64_BRANCH26:       or32(Off, ((S - P) & 0x0FFFFFFC) >> 2); break;
  case IMAGE_REL_ARM64_ADDR32:         add32(Off, S + Config->ImageBase); break;
  case IMAGE_REL_ARM64_ADDR32NB:       add32(Off, S); break;
  case IMAGE_REL_ARM64_ADDR64:         add64(Off, S + Config->ImageBase); break;
  case IMAGE_REL_ARM64_SECREL:         applySecRel(this, Off, OS, S); break;
  default:
    fatal("unsupported relocation type 0x" + Twine::utohexstr(Type));
  }
}

void SectionChunk::writeTo(uint8_t *Buf) const {
  if (!hasData())
    return;
  // Copy section contents from source object file to output file.
  ArrayRef<uint8_t> A = getContents();
  memcpy(Buf + OutputSectionOff, A.data(), A.size());

  // Apply relocations.
  size_t InputSize = getSize();
  for (const coff_relocation &Rel : Relocs) {
    // Check for an invalid relocation offset. This check isn't perfect, because
    // we don't have the relocation size, which is only known after checking the
    // machine and relocation type. As a result, a relocation may overwrite the
    // beginning of the following input section.
    if (Rel.VirtualAddress >= InputSize)
      fatal("relocation points beyond the end of its parent section");

    uint8_t *Off = Buf + OutputSectionOff + Rel.VirtualAddress;

    // Get the output section of the symbol for this relocation.  The output
    // section is needed to compute SECREL and SECTION relocations used in debug
    // info.
    auto *Sym =
        dyn_cast_or_null<Defined>(File->getSymbol(Rel.SymbolTableIndex));
    if (!Sym) {
      if (isCodeView() || isDWARF())
        continue;
      // Symbols in early discarded sections are represented using null pointers,
      // so we need to retrieve the name from the object file.
      COFFSymbolRef Sym =
          check(File->getCOFFObj()->getSymbol(Rel.SymbolTableIndex));
      StringRef Name;
      File->getCOFFObj()->getSymbolName(Sym, Name);
      fatal("relocation against symbol in discarded section: " + Name);
    }
    Chunk *C = Sym->getChunk();
    OutputSection *OS = C ? C->getOutputSection() : nullptr;

    // Only absolute and __ImageBase symbols lack an output section. For any
    // other symbol, this indicates that the chunk was discarded.  Normally
    // relocations against discarded sections are an error.  However, debug info
    // sections are not GC roots and can end up with these kinds of relocations.
    // Skip these relocations.
    if (!OS && !isa<DefinedAbsolute>(Sym) && !isa<DefinedSynthetic>(Sym)) {
      if (isCodeView() || isDWARF())
        continue;
      fatal("relocation against symbol in discarded section: " +
            Sym->getName());
    }
    uint64_t S = Sym->getRVA();

    // Compute the RVA of the relocation for relative relocations.
    uint64_t P = RVA + Rel.VirtualAddress;
    switch (Config->Machine) {
    case AMD64:
      applyRelX64(Off, Rel.Type, OS, S, P);
      break;
    case I386:
      applyRelX86(Off, Rel.Type, OS, S, P);
      break;
    case ARMNT:
      applyRelARM(Off, Rel.Type, OS, S, P);
      break;
    case ARM64:
      applyRelARM64(Off, Rel.Type, OS, S, P);
      break;
    default:
      llvm_unreachable("unknown machine type");
    }
  }
}

void SectionChunk::addAssociative(SectionChunk *Child) {
  AssocChildren.push_back(Child);
}

static uint8_t getBaserelType(const coff_relocation &Rel) {
  switch (Config->Machine) {
  case AMD64:
    if (Rel.Type == IMAGE_REL_AMD64_ADDR64)
      return IMAGE_REL_BASED_DIR64;
    return IMAGE_REL_BASED_ABSOLUTE;
  case I386:
    if (Rel.Type == IMAGE_REL_I386_DIR32)
      return IMAGE_REL_BASED_HIGHLOW;
    return IMAGE_REL_BASED_ABSOLUTE;
  case ARMNT:
    if (Rel.Type == IMAGE_REL_ARM_ADDR32)
      return IMAGE_REL_BASED_HIGHLOW;
    if (Rel.Type == IMAGE_REL_ARM_MOV32T)
      return IMAGE_REL_BASED_ARM_MOV32T;
    return IMAGE_REL_BASED_ABSOLUTE;
  case ARM64:
    if (Rel.Type == IMAGE_REL_ARM64_ADDR64)
      return IMAGE_REL_BASED_DIR64;
    return IMAGE_REL_BASED_ABSOLUTE;
  default:
    llvm_unreachable("unknown machine type");
  }
}

// Windows-specific.
// Collect all locations that contain absolute addresses, which need to be
// fixed by the loader if load-time relocation is needed.
// Only called when base relocation is enabled.
void SectionChunk::getBaserels(std::vector<Baserel> *Res) {
  for (const coff_relocation &Rel : Relocs) {
    uint8_t Ty = getBaserelType(Rel);
    if (Ty == IMAGE_REL_BASED_ABSOLUTE)
      continue;
    Symbol *Target = File->getSymbol(Rel.SymbolTableIndex);
    if (!Target || isa<DefinedAbsolute>(Target))
      continue;
    Res->emplace_back(RVA + Rel.VirtualAddress, Ty);
  }
}

bool SectionChunk::hasData() const {
  return !(Header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA);
}

uint32_t SectionChunk::getPermissions() const {
  return Header->Characteristics & PermMask;
}

bool SectionChunk::isCOMDAT() const {
  return Header->Characteristics & IMAGE_SCN_LNK_COMDAT;
}

void SectionChunk::printDiscardedMessage() const {
  // Removed by dead-stripping. If it's removed by ICF, ICF already
  // printed out the name, so don't repeat that here.
  if (Sym && this == Repl)
    message("Discarded " + Sym->getName());
}

StringRef SectionChunk::getDebugName() {
  if (Sym)
    return Sym->getName();
  return "";
}

ArrayRef<uint8_t> SectionChunk::getContents() const {
  ArrayRef<uint8_t> A;
  File->getCOFFObj()->getSectionContents(Header, A);
  return A;
}

void SectionChunk::replace(SectionChunk *Other) {
  Other->Repl = Repl;
  Other->Live = false;
}

CommonChunk::CommonChunk(const COFFSymbolRef S) : Sym(S) {
  // Common symbols are aligned on natural boundaries up to 32 bytes.
  // This is what MSVC link.exe does.
  Alignment = std::min(uint64_t(32), PowerOf2Ceil(Sym.getValue()));
}

uint32_t CommonChunk::getPermissions() const {
  return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ |
         IMAGE_SCN_MEM_WRITE;
}

void StringChunk::writeTo(uint8_t *Buf) const {
  memcpy(Buf + OutputSectionOff, Str.data(), Str.size());
}

ImportThunkChunkX64::ImportThunkChunkX64(Defined *S) : ImpSymbol(S) {
  // Intel Optimization Manual says that all branch targets
  // should be 16-byte aligned. MSVC linker does this too.
  Alignment = 16;
}

void ImportThunkChunkX64::writeTo(uint8_t *Buf) const {
  memcpy(Buf + OutputSectionOff, ImportThunkX86, sizeof(ImportThunkX86));
  // The first two bytes is a JMP instruction. Fill its operand.
  write32le(Buf + OutputSectionOff + 2, ImpSymbol->getRVA() - RVA - getSize());
}

void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *Res) {
  Res->emplace_back(getRVA() + 2);
}

void ImportThunkChunkX86::writeTo(uint8_t *Buf) const {
  memcpy(Buf + OutputSectionOff, ImportThunkX86, sizeof(ImportThunkX86));
  // The first two bytes is a JMP instruction. Fill its operand.
  write32le(Buf + OutputSectionOff + 2,
            ImpSymbol->getRVA() + Config->ImageBase);
}

void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *Res) {
  Res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T);
}

void ImportThunkChunkARM::writeTo(uint8_t *Buf) const {
  memcpy(Buf + OutputSectionOff, ImportThunkARM, sizeof(ImportThunkARM));
  // Fix mov.w and mov.t operands.
  applyMOV32T(Buf + OutputSectionOff, ImpSymbol->getRVA() + Config->ImageBase);
}

void ImportThunkChunkARM64::writeTo(uint8_t *Buf) const {
  int64_t Off = ImpSymbol->getRVA() & 0xfff;
  memcpy(Buf + OutputSectionOff, ImportThunkARM64, sizeof(ImportThunkARM64));
  applyArm64Addr(Buf + OutputSectionOff, ImpSymbol->getRVA(), RVA);
  applyArm64Ldr(Buf + OutputSectionOff + 4, Off);
}

void LocalImportChunk::getBaserels(std::vector<Baserel> *Res) {
  Res->emplace_back(getRVA());
}

size_t LocalImportChunk::getSize() const {
  return Config->is64() ? 8 : 4;
}

void LocalImportChunk::writeTo(uint8_t *Buf) const {
  if (Config->is64()) {
    write64le(Buf + OutputSectionOff, Sym->getRVA() + Config->ImageBase);
  } else {
    write32le(Buf + OutputSectionOff, Sym->getRVA() + Config->ImageBase);
  }
}

void SEHTableChunk::writeTo(uint8_t *Buf) const {
  ulittle32_t *Begin = reinterpret_cast<ulittle32_t *>(Buf + OutputSectionOff);
  size_t Cnt = 0;
  for (Defined *D : Syms)
    Begin[Cnt++] = D->getRVA();
  std::sort(Begin, Begin + Cnt);
}

// Windows-specific. This class represents a block in .reloc section.
// The format is described here.
//
// On Windows, each DLL is linked against a fixed base address and
// usually loaded to that address. However, if there's already another
// DLL that overlaps, the loader has to relocate it. To do that, DLLs
// contain .reloc sections which contain offsets that need to be fixed
// up at runtime. If the loader finds that a DLL cannot be loaded to its
// desired base address, it loads it to somewhere else, and add <actual
// base address> - <desired base address> to each offset that is
// specified by the .reloc section. In ELF terms, .reloc sections
// contain relative relocations in REL format (as opposed to RELA.)
//
// This already significantly reduces the size of relocations compared
// to ELF .rel.dyn, but Windows does more to reduce it (probably because
// it was invented for PCs in the late '80s or early '90s.)  Offsets in
// .reloc are grouped by page where the page size is 12 bits, and
// offsets sharing the same page address are stored consecutively to
// represent them with less space. This is very similar to the page
// table which is grouped by (multiple stages of) pages.
//
// For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00,
// 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4
// bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they
// are represented like this:
//
//   0x00000  -- page address (4 bytes)
//   16       -- size of this block (4 bytes)
//     0xA030 -- entries (2 bytes each)
//     0xA500
//     0xA700
//     0xAA00
//   0x20000  -- page address (4 bytes)
//   12       -- size of this block (4 bytes)
//     0xA004 -- entries (2 bytes each)
//     0xA008
//
// Usually we have a lot of relocations for each page, so the number of
// bytes for one .reloc entry is close to 2 bytes on average.
BaserelChunk::BaserelChunk(uint32_t Page, Baserel *Begin, Baserel *End) {
  // Block header consists of 4 byte page RVA and 4 byte block size.
  // Each entry is 2 byte. Last entry may be padding.
  Data.resize(alignTo((End - Begin) * 2 + 8, 4));
  uint8_t *P = Data.data();
  write32le(P, Page);
  write32le(P + 4, Data.size());
  P += 8;
  for (Baserel *I = Begin; I != End; ++I) {
    write16le(P, (I->Type << 12) | (I->RVA - Page));
    P += 2;
  }
}

void BaserelChunk::writeTo(uint8_t *Buf) const {
  memcpy(Buf + OutputSectionOff, Data.data(), Data.size());
}

uint8_t Baserel::getDefaultType() {
  switch (Config->Machine) {
  case AMD64:
  case ARM64:
    return IMAGE_REL_BASED_DIR64;
  case I386:
  case ARMNT:
    return IMAGE_REL_BASED_HIGHLOW;
  default:
    llvm_unreachable("unknown machine type");
  }
}

} // namespace coff
} // namespace lld