aboutsummaryrefslogtreecommitdiff
path: root/ELF/InputSection.cpp
blob: e87d92aa207c0cec74e0766bd1e71ac7b94a10c9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
//===- InputSection.cpp ---------------------------------------------------===//
//
//                             The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "InputSection.h"
#include "Config.h"
#include "EhFrame.h"
#include "Error.h"
#include "InputFiles.h"
#include "LinkerScript.h"
#include "Memory.h"
#include "OutputSections.h"
#include "Relocations.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Endian.h"
#include <mutex>

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support;
using namespace llvm::support::endian;

using namespace lld;
using namespace lld::elf;

// Returns a string to construct an error message.
template <class ELFT>
std::string lld::toString(const InputSectionBase<ELFT> *Sec) {
  return (Sec->getFile()->getName() + ":(" + Sec->Name + ")").str();
}

template <class ELFT>
static ArrayRef<uint8_t> getSectionContents(elf::ObjectFile<ELFT> *File,
                                            const typename ELFT::Shdr *Hdr) {
  if (!File || Hdr->sh_type == SHT_NOBITS)
    return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size);
  return check(File->getObj().getSectionContents(Hdr));
}

template <class ELFT>
InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File,
                                         uintX_t Flags, uint32_t Type,
                                         uintX_t Entsize, uint32_t Link,
                                         uint32_t Info, uintX_t Addralign,
                                         ArrayRef<uint8_t> Data, StringRef Name,
                                         Kind SectionKind)
    : InputSectionData(SectionKind, Name, Data,
                       !Config->GcSections || !(Flags & SHF_ALLOC)),
      File(File), Flags(Flags), Entsize(Entsize), Type(Type), Link(Link),
      Info(Info), Repl(this) {
  NumRelocations = 0;
  AreRelocsRela = false;

  // The ELF spec states that a value of 0 means the section has
  // no alignment constraits.
  uint64_t V = std::max<uint64_t>(Addralign, 1);
  if (!isPowerOf2_64(V))
    fatal(toString(File) + ": section sh_addralign is not a power of 2");

  // We reject object files having insanely large alignments even though
  // they are allowed by the spec. I think 4GB is a reasonable limitation.
  // We might want to relax this in the future.
  if (V > UINT32_MAX)
    fatal(toString(File) + ": section sh_addralign is too large");
  Alignment = V;

  // If it is not a mergeable section, overwrite the flag so that the flag
  // is consistent with the class. This inconsistency could occur when
  // string merging is disabled using -O0 flag.
  if (!Config->Relocatable && !isa<MergeInputSection<ELFT>>(this))
    this->Flags &= ~(SHF_MERGE | SHF_STRINGS);
}

template <class ELFT>
InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File,
                                         const Elf_Shdr *Hdr, StringRef Name,
                                         Kind SectionKind)
    : InputSectionBase(File, Hdr->sh_flags & ~SHF_INFO_LINK, Hdr->sh_type,
                       Hdr->sh_entsize, Hdr->sh_link, Hdr->sh_info,
                       Hdr->sh_addralign, getSectionContents(File, Hdr), Name,
                       SectionKind) {
  this->Offset = Hdr->sh_offset;
}

template <class ELFT> size_t InputSectionBase<ELFT>::getSize() const {
  if (auto *S = dyn_cast<SyntheticSection<ELFT>>(this))
    return S->getSize();

  if (auto *D = dyn_cast<InputSection<ELFT>>(this))
    if (D->getThunksSize() > 0)
      return D->getThunkOff() + D->getThunksSize();

  return Data.size();
}

// Returns a string for an error message.
template <class SectionT> static std::string getName(SectionT *Sec) {
  return (Sec->getFile()->getName() + ":(" + Sec->Name + ")").str();
}

template <class ELFT>
typename ELFT::uint InputSectionBase<ELFT>::getOffset(uintX_t Offset) const {
  switch (kind()) {
  case Regular:
    return cast<InputSection<ELFT>>(this)->OutSecOff + Offset;
  case Synthetic:
    // For synthetic sections we treat offset -1 as the end of the section.
    // The same approach is used for synthetic symbols (DefinedSynthetic).
    return cast<InputSection<ELFT>>(this)->OutSecOff +
           (Offset == uintX_t(-1) ? getSize() : Offset);
  case EHFrame:
    // The file crtbeginT.o has relocations pointing to the start of an empty
    // .eh_frame that is known to be the first in the link. It does that to
    // identify the start of the output .eh_frame.
    return Offset;
  case Merge:
    return cast<MergeInputSection<ELFT>>(this)->getOffset(Offset);
  }
  llvm_unreachable("invalid section kind");
}

template <class ELFT> bool InputSectionBase<ELFT>::isCompressed() const {
  return (Flags & SHF_COMPRESSED) || Name.startswith(".zdebug");
}

// Returns compressed data and its size when uncompressed.
template <class ELFT>
std::pair<ArrayRef<uint8_t>, uint64_t>
InputSectionBase<ELFT>::getElfCompressedData(ArrayRef<uint8_t> Data) {
  // Compressed section with Elf_Chdr is the ELF standard.
  if (Data.size() < sizeof(Elf_Chdr))
    fatal(toString(this) + ": corrupted compressed section");
  auto *Hdr = reinterpret_cast<const Elf_Chdr *>(Data.data());
  if (Hdr->ch_type != ELFCOMPRESS_ZLIB)
    fatal(toString(this) + ": unsupported compression type");
  return {Data.slice(sizeof(*Hdr)), Hdr->ch_size};
}

// Returns compressed data and its size when uncompressed.
template <class ELFT>
std::pair<ArrayRef<uint8_t>, uint64_t>
InputSectionBase<ELFT>::getRawCompressedData(ArrayRef<uint8_t> Data) {
  // Compressed sections without Elf_Chdr header contain this header
  // instead. This is a GNU extension.
  struct ZlibHeader {
    char Magic[4]; // Should be "ZLIB"
    char Size[8];  // Uncompressed size in big-endian
  };

  if (Data.size() < sizeof(ZlibHeader))
    fatal(toString(this) + ": corrupted compressed section");
  auto *Hdr = reinterpret_cast<const ZlibHeader *>(Data.data());
  if (memcmp(Hdr->Magic, "ZLIB", 4))
    fatal(toString(this) + ": broken ZLIB-compressed section");
  return {Data.slice(sizeof(*Hdr)), read64be(Hdr->Size)};
}

// Uncompress section contents. Note that this function is called
// from parallel_for_each, so it must be thread-safe.
template <class ELFT> void InputSectionBase<ELFT>::uncompress() {
  if (!zlib::isAvailable())
    fatal(toString(this) +
          ": build lld with zlib to enable compressed sections support");

  // This section is compressed. Here we decompress it. Ideally, all
  // compressed sections have SHF_COMPRESSED bit and their contents
  // start with headers of Elf_Chdr type. However, sections whose
  // names start with ".zdebug_" don't have the bit and contains a raw
  // ZLIB-compressed data (which is a bad thing because section names
  // shouldn't be significant in ELF.) We need to be able to read both.
  ArrayRef<uint8_t> Buf; // Compressed data
  size_t Size;           // Uncompressed size
  if (Flags & SHF_COMPRESSED)
    std::tie(Buf, Size) = getElfCompressedData(Data);
  else
    std::tie(Buf, Size) = getRawCompressedData(Data);

  // Uncompress Buf.
  char *OutputBuf;
  {
    static std::mutex Mu;
    std::lock_guard<std::mutex> Lock(Mu);
    OutputBuf = BAlloc.Allocate<char>(Size);
  }
  if (zlib::uncompress(toStringRef(Buf), OutputBuf, Size) != zlib::StatusOK)
    fatal(toString(this) + ": error while uncompressing section");
  Data = ArrayRef<uint8_t>((uint8_t *)OutputBuf, Size);
}

template <class ELFT>
typename ELFT::uint
InputSectionBase<ELFT>::getOffset(const DefinedRegular<ELFT> &Sym) const {
  return getOffset(Sym.Value);
}

template <class ELFT>
InputSectionBase<ELFT> *InputSectionBase<ELFT>::getLinkOrderDep() const {
  if ((Flags & SHF_LINK_ORDER) && Link != 0)
    return getFile()->getSections()[Link];
  return nullptr;
}

// Returns a source location string. Used to construct an error message.
template <class ELFT>
std::string InputSectionBase<ELFT>::getLocation(typename ELFT::uint Offset) {
  // First check if we can get desired values from debugging information.
  std::string LineInfo = File->getLineInfo(this, Offset);
  if (!LineInfo.empty())
    return LineInfo;

  // File->SourceFile contains STT_FILE symbol that contains a
  // source file name. If it's missing, we use an object file name.
  std::string SrcFile = File->SourceFile;
  if (SrcFile.empty())
    SrcFile = toString(File);

  // Find a function symbol that encloses a given location.
  for (SymbolBody *B : File->getSymbols())
    if (auto *D = dyn_cast<DefinedRegular<ELFT>>(B))
      if (D->Section == this && D->Type == STT_FUNC)
        if (D->Value <= Offset && Offset < D->Value + D->Size)
          return SrcFile + ":(function " + toString(*D) + ")";

  // If there's no symbol, print out the offset in the section.
  return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str();
}

template <class ELFT>
InputSection<ELFT>::InputSection() : InputSectionBase<ELFT>() {}

template <class ELFT>
InputSection<ELFT>::InputSection(uintX_t Flags, uint32_t Type,
                                 uintX_t Addralign, ArrayRef<uint8_t> Data,
                                 StringRef Name, Kind K)
    : InputSectionBase<ELFT>(nullptr, Flags, Type,
                             /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Addralign,
                             Data, Name, K) {}

template <class ELFT>
InputSection<ELFT>::InputSection(elf::ObjectFile<ELFT> *F,
                                 const Elf_Shdr *Header, StringRef Name)
    : InputSectionBase<ELFT>(F, Header, Name, Base::Regular) {}

template <class ELFT>
bool InputSection<ELFT>::classof(const InputSectionData *S) {
  return S->kind() == Base::Regular || S->kind() == Base::Synthetic;
}

template <class ELFT>
InputSectionBase<ELFT> *InputSection<ELFT>::getRelocatedSection() {
  assert(this->Type == SHT_RELA || this->Type == SHT_REL);
  ArrayRef<InputSectionBase<ELFT> *> Sections = this->File->getSections();
  return Sections[this->Info];
}

template <class ELFT> void InputSection<ELFT>::addThunk(const Thunk<ELFT> *T) {
  Thunks.push_back(T);
}

template <class ELFT> uint64_t InputSection<ELFT>::getThunkOff() const {
  return this->Data.size();
}

template <class ELFT> uint64_t InputSection<ELFT>::getThunksSize() const {
  uint64_t Total = 0;
  for (const Thunk<ELFT> *T : Thunks)
    Total += T->size();
  return Total;
}

// This is used for -r. We can't use memcpy to copy relocations because we need
// to update symbol table offset and section index for each relocation. So we
// copy relocations one by one.
template <class ELFT>
template <class RelTy>
void InputSection<ELFT>::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
  InputSectionBase<ELFT> *RelocatedSection = getRelocatedSection();

  for (const RelTy &Rel : Rels) {
    uint32_t Type = Rel.getType(Config->Mips64EL);
    SymbolBody &Body = this->File->getRelocTargetSym(Rel);

    Elf_Rela *P = reinterpret_cast<Elf_Rela *>(Buf);
    Buf += sizeof(RelTy);

    if (Config->Rela)
      P->r_addend = getAddend<ELFT>(Rel);
    P->r_offset = RelocatedSection->getOffset(Rel.r_offset);
    P->setSymbolAndType(Body.DynsymIndex, Type, Config->Mips64EL);
  }
}

static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A,
                                              uint32_t P) {
  switch (Type) {
  case R_ARM_THM_JUMP11:
    return P + 2;
  case R_ARM_CALL:
  case R_ARM_JUMP24:
  case R_ARM_PC24:
  case R_ARM_PLT32:
  case R_ARM_PREL31:
  case R_ARM_THM_JUMP19:
  case R_ARM_THM_JUMP24:
    return P + 4;
  case R_ARM_THM_CALL:
    // We don't want an interworking BLX to ARM
    return P + 5;
  default:
    return A;
  }
}

static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
                                                  uint64_t P) {
  switch (Type) {
  case R_AARCH64_CALL26:
  case R_AARCH64_CONDBR19:
  case R_AARCH64_JUMP26:
  case R_AARCH64_TSTBR14:
    return P + 4;
  default:
    return A;
  }
}

template <class ELFT>
static typename ELFT::uint
getRelocTargetVA(uint32_t Type, typename ELFT::uint A, typename ELFT::uint P,
                 const SymbolBody &Body, RelExpr Expr) {
  switch (Expr) {
  case R_HINT:
  case R_TLSDESC_CALL:
    llvm_unreachable("cannot relocate hint relocs");
  case R_TLSLD:
    return In<ELFT>::Got->getTlsIndexOff() + A - In<ELFT>::Got->getSize();
  case R_TLSLD_PC:
    return In<ELFT>::Got->getTlsIndexVA() + A - P;
  case R_THUNK_ABS:
    return Body.getThunkVA<ELFT>() + A;
  case R_THUNK_PC:
  case R_THUNK_PLT_PC:
    return Body.getThunkVA<ELFT>() + A - P;
  case R_PPC_TOC:
    return getPPC64TocBase() + A;
  case R_TLSGD:
    return In<ELFT>::Got->getGlobalDynOffset(Body) + A -
           In<ELFT>::Got->getSize();
  case R_TLSGD_PC:
    return In<ELFT>::Got->getGlobalDynAddr(Body) + A - P;
  case R_TLSDESC:
    return In<ELFT>::Got->getGlobalDynAddr(Body) + A;
  case R_TLSDESC_PAGE:
    return getAArch64Page(In<ELFT>::Got->getGlobalDynAddr(Body) + A) -
           getAArch64Page(P);
  case R_PLT:
    return Body.getPltVA<ELFT>() + A;
  case R_PLT_PC:
  case R_PPC_PLT_OPD:
    return Body.getPltVA<ELFT>() + A - P;
  case R_SIZE:
    return Body.getSize<ELFT>() + A;
  case R_GOTREL:
    return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA();
  case R_GOTREL_FROM_END:
    return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA() -
           In<ELFT>::Got->getSize();
  case R_RELAX_TLS_GD_TO_IE_END:
  case R_GOT_FROM_END:
    return Body.getGotOffset<ELFT>() + A - In<ELFT>::Got->getSize();
  case R_RELAX_TLS_GD_TO_IE_ABS:
  case R_GOT:
    return Body.getGotVA<ELFT>() + A;
  case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
  case R_GOT_PAGE_PC:
    return getAArch64Page(Body.getGotVA<ELFT>() + A) - getAArch64Page(P);
  case R_RELAX_TLS_GD_TO_IE:
  case R_GOT_PC:
    return Body.getGotVA<ELFT>() + A - P;
  case R_GOTONLY_PC:
    return In<ELFT>::Got->getVA() + A - P;
  case R_GOTONLY_PC_FROM_END:
    return In<ELFT>::Got->getVA() + A - P + In<ELFT>::Got->getSize();
  case R_RELAX_TLS_LD_TO_LE:
  case R_RELAX_TLS_IE_TO_LE:
  case R_RELAX_TLS_GD_TO_LE:
  case R_TLS:
    // A weak undefined TLS symbol resolves to the base of the TLS
    // block, i.e. gets a value of zero. If we pass --gc-sections to
    // lld and .tbss is not referenced, it gets reclaimed and we don't
    // create a TLS program header. Therefore, we resolve this
    // statically to zero.
    if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) &&
        Body.symbol()->isWeak())
      return 0;
    if (Target->TcbSize)
      return Body.getVA<ELFT>(A) +
             alignTo(Target->TcbSize, Out<ELFT>::TlsPhdr->p_align);
    return Body.getVA<ELFT>(A) - Out<ELFT>::TlsPhdr->p_memsz;
  case R_RELAX_TLS_GD_TO_LE_NEG:
  case R_NEG_TLS:
    return Out<ELF32LE>::TlsPhdr->p_memsz - Body.getVA<ELFT>(A);
  case R_ABS:
  case R_RELAX_GOT_PC_NOPIC:
    return Body.getVA<ELFT>(A);
  case R_GOT_OFF:
    return Body.getGotOffset<ELFT>() + A;
  case R_MIPS_GOT_LOCAL_PAGE:
    // If relocation against MIPS local symbol requires GOT entry, this entry
    // should be initialized by 'page address'. This address is high 16-bits
    // of sum the symbol's value and the addend.
    return In<ELFT>::MipsGot->getVA() +
           In<ELFT>::MipsGot->getPageEntryOffset(Body, A) -
           In<ELFT>::MipsGot->getGp();
  case R_MIPS_GOT_OFF:
  case R_MIPS_GOT_OFF32:
    // In case of MIPS if a GOT relocation has non-zero addend this addend
    // should be applied to the GOT entry content not to the GOT entry offset.
    // That is why we use separate expression type.
    return In<ELFT>::MipsGot->getVA() +
           In<ELFT>::MipsGot->getBodyEntryOffset(Body, A) -
           In<ELFT>::MipsGot->getGp();
  case R_MIPS_GOTREL:
    return Body.getVA<ELFT>(A) - In<ELFT>::MipsGot->getGp();
  case R_MIPS_TLSGD:
    return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() +
           In<ELFT>::MipsGot->getGlobalDynOffset(Body) -
           In<ELFT>::MipsGot->getGp();
  case R_MIPS_TLSLD:
    return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() +
           In<ELFT>::MipsGot->getTlsIndexOff() - In<ELFT>::MipsGot->getGp();
  case R_PPC_OPD: {
    uint64_t SymVA = Body.getVA<ELFT>(A);
    // If we have an undefined weak symbol, we might get here with a symbol
    // address of zero. That could overflow, but the code must be unreachable,
    // so don't bother doing anything at all.
    if (!SymVA)
      return 0;
    if (Out<ELF64BE>::Opd) {
      // If this is a local call, and we currently have the address of a
      // function-descriptor, get the underlying code address instead.
      uint64_t OpdStart = Out<ELF64BE>::Opd->Addr;
      uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->Size;
      bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd;
      if (InOpd)
        SymVA = read64be(&Out<ELF64BE>::OpdBuf[SymVA - OpdStart]);
    }
    return SymVA - P;
  }
  case R_PC:
    if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) {
      // On ARM and AArch64 a branch to an undefined weak resolves to the
      // next instruction, otherwise the place.
      if (Config->EMachine == EM_ARM)
        return getARMUndefinedRelativeWeakVA(Type, A, P);
      if (Config->EMachine == EM_AARCH64)
        return getAArch64UndefinedRelativeWeakVA(Type, A, P);
    }
  case R_RELAX_GOT_PC:
    return Body.getVA<ELFT>(A) - P;
  case R_PLT_PAGE_PC:
  case R_PAGE_PC:
    if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak())
      return getAArch64Page(A);
    return getAArch64Page(Body.getVA<ELFT>(A)) - getAArch64Page(P);
  }
  llvm_unreachable("Invalid expression");
}

// This function applies relocations to sections without SHF_ALLOC bit.
// Such sections are never mapped to memory at runtime. Debug sections are
// an example. Relocations in non-alloc sections are much easier to
// handle than in allocated sections because it will never need complex
// treatement such as GOT or PLT (because at runtime no one refers them).
// So, we handle relocations for non-alloc sections directly in this
// function as a performance optimization.
template <class ELFT>
template <class RelTy>
void InputSection<ELFT>::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) {
  for (const RelTy &Rel : Rels) {
    uint32_t Type = Rel.getType(Config->Mips64EL);
    uintX_t Offset = this->getOffset(Rel.r_offset);
    uint8_t *BufLoc = Buf + Offset;
    uintX_t Addend = getAddend<ELFT>(Rel);
    if (!RelTy::IsRela)
      Addend += Target->getImplicitAddend(BufLoc, Type);

    SymbolBody &Sym = this->File->getRelocTargetSym(Rel);
    if (Target->getRelExpr(Type, Sym) != R_ABS) {
      error(this->getLocation(Offset) + ": has non-ABS reloc");
      return;
    }

    uintX_t AddrLoc = this->OutSec->Addr + Offset;
    uint64_t SymVA = 0;
    if (!Sym.isTls() || Out<ELFT>::TlsPhdr)
      SymVA = SignExtend64<sizeof(uintX_t) * 8>(
          getRelocTargetVA<ELFT>(Type, Addend, AddrLoc, Sym, R_ABS));
    Target->relocateOne(BufLoc, Type, SymVA);
  }
}

template <class ELFT>
void InputSectionBase<ELFT>::relocate(uint8_t *Buf, uint8_t *BufEnd) {
  // scanReloc function in Writer.cpp constructs Relocations
  // vector only for SHF_ALLOC'ed sections. For other sections,
  // we handle relocations directly here.
  auto *IS = dyn_cast<InputSection<ELFT>>(this);
  if (IS && !(IS->Flags & SHF_ALLOC)) {
    if (IS->AreRelocsRela)
      IS->relocateNonAlloc(Buf, IS->relas());
    else
      IS->relocateNonAlloc(Buf, IS->rels());
    return;
  }

  const unsigned Bits = sizeof(uintX_t) * 8;
  for (const Relocation &Rel : Relocations) {
    uintX_t Offset = getOffset(Rel.Offset);
    uint8_t *BufLoc = Buf + Offset;
    uint32_t Type = Rel.Type;
    uintX_t A = Rel.Addend;

    uintX_t AddrLoc = OutSec->Addr + Offset;
    RelExpr Expr = Rel.Expr;
    uint64_t TargetVA = SignExtend64<Bits>(
        getRelocTargetVA<ELFT>(Type, A, AddrLoc, *Rel.Sym, Expr));

    switch (Expr) {
    case R_RELAX_GOT_PC:
    case R_RELAX_GOT_PC_NOPIC:
      Target->relaxGot(BufLoc, TargetVA);
      break;
    case R_RELAX_TLS_IE_TO_LE:
      Target->relaxTlsIeToLe(BufLoc, Type, TargetVA);
      break;
    case R_RELAX_TLS_LD_TO_LE:
      Target->relaxTlsLdToLe(BufLoc, Type, TargetVA);
      break;
    case R_RELAX_TLS_GD_TO_LE:
    case R_RELAX_TLS_GD_TO_LE_NEG:
      Target->relaxTlsGdToLe(BufLoc, Type, TargetVA);
      break;
    case R_RELAX_TLS_GD_TO_IE:
    case R_RELAX_TLS_GD_TO_IE_ABS:
    case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
    case R_RELAX_TLS_GD_TO_IE_END:
      Target->relaxTlsGdToIe(BufLoc, Type, TargetVA);
      break;
    case R_PPC_PLT_OPD:
      // Patch a nop (0x60000000) to a ld.
      if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000)
        write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1)
    // fallthrough
    default:
      Target->relocateOne(BufLoc, Type, TargetVA);
      break;
    }
  }
}

template <class ELFT> void InputSection<ELFT>::writeTo(uint8_t *Buf) {
  if (this->Type == SHT_NOBITS)
    return;

  if (auto *S = dyn_cast<SyntheticSection<ELFT>>(this)) {
    S->writeTo(Buf + OutSecOff);
    return;
  }

  // If -r is given, then an InputSection may be a relocation section.
  if (this->Type == SHT_RELA) {
    copyRelocations(Buf + OutSecOff, this->template getDataAs<Elf_Rela>());
    return;
  }
  if (this->Type == SHT_REL) {
    copyRelocations(Buf + OutSecOff, this->template getDataAs<Elf_Rel>());
    return;
  }

  // Copy section contents from source object file to output file.
  ArrayRef<uint8_t> Data = this->Data;
  memcpy(Buf + OutSecOff, Data.data(), Data.size());

  // Iterate over all relocation sections that apply to this section.
  uint8_t *BufEnd = Buf + OutSecOff + Data.size();
  this->relocate(Buf, BufEnd);

  // The section might have a data/code generated by the linker and need
  // to be written after the section. Usually these are thunks - small piece
  // of code used to jump between "incompatible" functions like PIC and non-PIC
  // or if the jump target too far and its address does not fit to the short
  // jump istruction.
  if (!Thunks.empty()) {
    Buf += OutSecOff + getThunkOff();
    for (const Thunk<ELFT> *T : Thunks) {
      T->writeTo(Buf);
      Buf += T->size();
    }
  }
}

template <class ELFT>
void InputSection<ELFT>::replace(InputSection<ELFT> *Other) {
  this->Alignment = std::max(this->Alignment, Other->Alignment);
  Other->Repl = this->Repl;
  Other->Live = false;
}

template <class ELFT>
EhInputSection<ELFT>::EhInputSection(elf::ObjectFile<ELFT> *F,
                                     const Elf_Shdr *Header, StringRef Name)
    : InputSectionBase<ELFT>(F, Header, Name, InputSectionBase<ELFT>::EHFrame) {
  // Mark .eh_frame sections as live by default because there are
  // usually no relocations that point to .eh_frames. Otherwise,
  // the garbage collector would drop all .eh_frame sections.
  this->Live = true;
}

template <class ELFT>
bool EhInputSection<ELFT>::classof(const InputSectionData *S) {
  return S->kind() == InputSectionBase<ELFT>::EHFrame;
}

// Returns the index of the first relocation that points to a region between
// Begin and Begin+Size.
template <class IntTy, class RelTy>
static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels,
                         unsigned &RelocI) {
  // Start search from RelocI for fast access. That works because the
  // relocations are sorted in .eh_frame.
  for (unsigned N = Rels.size(); RelocI < N; ++RelocI) {
    const RelTy &Rel = Rels[RelocI];
    if (Rel.r_offset < Begin)
      continue;

    if (Rel.r_offset < Begin + Size)
      return RelocI;
    return -1;
  }
  return -1;
}

// .eh_frame is a sequence of CIE or FDE records.
// This function splits an input section into records and returns them.
template <class ELFT> void EhInputSection<ELFT>::split() {
  // Early exit if already split.
  if (!this->Pieces.empty())
    return;

  if (this->NumRelocations) {
    if (this->AreRelocsRela)
      split(this->relas());
    else
      split(this->rels());
    return;
  }
  split(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr));
}

template <class ELFT>
template <class RelTy>
void EhInputSection<ELFT>::split(ArrayRef<RelTy> Rels) {
  ArrayRef<uint8_t> Data = this->Data;
  unsigned RelI = 0;
  for (size_t Off = 0, End = Data.size(); Off != End;) {
    size_t Size = readEhRecordSize<ELFT>(this, Off);
    this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI));
    // The empty record is the end marker.
    if (Size == 4)
      break;
    Off += Size;
  }
}

static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) {
  // Optimize the common case.
  StringRef S((const char *)A.data(), A.size());
  if (EntSize == 1)
    return S.find(0);

  for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
    const char *B = S.begin() + I;
    if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
      return I;
  }
  return StringRef::npos;
}

// Split SHF_STRINGS section. Such section is a sequence of
// null-terminated strings.
template <class ELFT>
void MergeInputSection<ELFT>::splitStrings(ArrayRef<uint8_t> Data,
                                           size_t EntSize) {
  size_t Off = 0;
  bool IsAlloc = this->Flags & SHF_ALLOC;
  while (!Data.empty()) {
    size_t End = findNull(Data, EntSize);
    if (End == StringRef::npos)
      fatal(toString(this) + ": string is not null terminated");
    size_t Size = End + EntSize;
    Pieces.emplace_back(Off, !IsAlloc);
    Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size))));
    Data = Data.slice(Size);
    Off += Size;
  }
}

// Split non-SHF_STRINGS section. Such section is a sequence of
// fixed size records.
template <class ELFT>
void MergeInputSection<ELFT>::splitNonStrings(ArrayRef<uint8_t> Data,
                                              size_t EntSize) {
  size_t Size = Data.size();
  assert((Size % EntSize) == 0);
  bool IsAlloc = this->Flags & SHF_ALLOC;
  for (unsigned I = 0, N = Size; I != N; I += EntSize) {
    Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize))));
    Pieces.emplace_back(I, !IsAlloc);
  }
}

template <class ELFT>
MergeInputSection<ELFT>::MergeInputSection(elf::ObjectFile<ELFT> *F,
                                           const Elf_Shdr *Header,
                                           StringRef Name)
    : InputSectionBase<ELFT>(F, Header, Name, InputSectionBase<ELFT>::Merge) {}

// This function is called after we obtain a complete list of input sections
// that need to be linked. This is responsible to split section contents
// into small chunks for further processing.
//
// Note that this function is called from parallel_for_each. This must be
// thread-safe (i.e. no memory allocation from the pools).
template <class ELFT> void MergeInputSection<ELFT>::splitIntoPieces() {
  ArrayRef<uint8_t> Data = this->Data;
  uintX_t EntSize = this->Entsize;
  if (this->Flags & SHF_STRINGS)
    splitStrings(Data, EntSize);
  else
    splitNonStrings(Data, EntSize);

  if (Config->GcSections && (this->Flags & SHF_ALLOC))
    for (uintX_t Off : LiveOffsets)
      this->getSectionPiece(Off)->Live = true;
}

template <class ELFT>
bool MergeInputSection<ELFT>::classof(const InputSectionData *S) {
  return S->kind() == InputSectionBase<ELFT>::Merge;
}

// Do binary search to get a section piece at a given input offset.
template <class ELFT>
SectionPiece *MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) {
  auto *This = static_cast<const MergeInputSection<ELFT> *>(this);
  return const_cast<SectionPiece *>(This->getSectionPiece(Offset));
}

template <class It, class T, class Compare>
static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) {
  size_t Size = std::distance(First, Last);
  assert(Size != 0);
  while (Size != 1) {
    size_t H = Size / 2;
    const It MI = First + H;
    Size -= H;
    First = Comp(Value, *MI) ? First : First + H;
  }
  return Comp(Value, *First) ? First : First + 1;
}

template <class ELFT>
const SectionPiece *
MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) const {
  uintX_t Size = this->Data.size();
  if (Offset >= Size)
    fatal(toString(this) + ": entry is past the end of the section");

  // Find the element this offset points to.
  auto I = fastUpperBound(
      Pieces.begin(), Pieces.end(), Offset,
      [](const uintX_t &A, const SectionPiece &B) { return A < B.InputOff; });
  --I;
  return &*I;
}

// Returns the offset in an output section for a given input offset.
// Because contents of a mergeable section is not contiguous in output,
// it is not just an addition to a base output offset.
template <class ELFT>
typename ELFT::uint MergeInputSection<ELFT>::getOffset(uintX_t Offset) const {
  // Initialize OffsetMap lazily.
  std::call_once(InitOffsetMap, [&] {
    OffsetMap.reserve(Pieces.size());
    for (const SectionPiece &Piece : Pieces)
      OffsetMap[Piece.InputOff] = Piece.OutputOff;
  });

  // Find a string starting at a given offset.
  auto It = OffsetMap.find(Offset);
  if (It != OffsetMap.end())
    return It->second;

  if (!this->Live)
    return 0;

  // If Offset is not at beginning of a section piece, it is not in the map.
  // In that case we need to search from the original section piece vector.
  const SectionPiece &Piece = *this->getSectionPiece(Offset);
  if (!Piece.Live)
    return 0;

  uintX_t Addend = Offset - Piece.InputOff;
  return Piece.OutputOff + Addend;
}

template class elf::InputSectionBase<ELF32LE>;
template class elf::InputSectionBase<ELF32BE>;
template class elf::InputSectionBase<ELF64LE>;
template class elf::InputSectionBase<ELF64BE>;

template class elf::InputSection<ELF32LE>;
template class elf::InputSection<ELF32BE>;
template class elf::InputSection<ELF64LE>;
template class elf::InputSection<ELF64BE>;

template class elf::EhInputSection<ELF32LE>;
template class elf::EhInputSection<ELF32BE>;
template class elf::EhInputSection<ELF64LE>;
template class elf::EhInputSection<ELF64BE>;

template class elf::MergeInputSection<ELF32LE>;
template class elf::MergeInputSection<ELF32BE>;
template class elf::MergeInputSection<ELF64LE>;
template class elf::MergeInputSection<ELF64BE>;

template std::string lld::toString(const InputSectionBase<ELF32LE> *);
template std::string lld::toString(const InputSectionBase<ELF32BE> *);
template std::string lld::toString(const InputSectionBase<ELF64LE> *);
template std::string lld::toString(const InputSectionBase<ELF64BE> *);