aboutsummaryrefslogtreecommitdiff
path: root/ELF/Relocations.cpp
blob: 96e409578f5c214a5189abafa2f8550c78bc1160 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
//===- Relocations.cpp ----------------------------------------------------===//
//
//                             The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains platform-independent functions to process relocations.
// I'll describe the overview of this file here.
//
// Simple relocations are easy to handle for the linker. For example,
// for R_X86_64_PC64 relocs, the linker just has to fix up locations
// with the relative offsets to the target symbols. It would just be
// reading records from relocation sections and applying them to output.
//
// But not all relocations are that easy to handle. For example, for
// R_386_GOTOFF relocs, the linker has to create new GOT entries for
// symbols if they don't exist, and fix up locations with GOT entry
// offsets from the beginning of GOT section. So there is more than
// fixing addresses in relocation processing.
//
// ELF defines a large number of complex relocations.
//
// The functions in this file analyze relocations and do whatever needs
// to be done. It includes, but not limited to, the following.
//
//  - create GOT/PLT entries
//  - create new relocations in .dynsym to let the dynamic linker resolve
//    them at runtime (since ELF supports dynamic linking, not all
//    relocations can be resolved at link-time)
//  - create COPY relocs and reserve space in .bss
//  - replace expensive relocs (in terms of runtime cost) with cheap ones
//  - error out infeasible combinations such as PIC and non-relative relocs
//
// Note that the functions in this file don't actually apply relocations
// because it doesn't know about the output file nor the output file buffer.
// It instead stores Relocation objects to InputSection's Relocations
// vector to let it apply later in InputSection::writeTo.
//
//===----------------------------------------------------------------------===//

#include "Relocations.h"
#include "Config.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "Strings.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "lld/Common/Memory.h"

#include "llvm/Support/Endian.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support::endian;

using namespace lld;
using namespace lld::elf;

// Construct a message in the following format.
//
// >>> defined in /home/alice/src/foo.o
// >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
// >>>               /home/alice/src/bar.o:(.text+0x1)
template <class ELFT>
static std::string getLocation(InputSectionBase &S, const Symbol &Sym,
                               uint64_t Off) {
  std::string Msg =
      "\n>>> defined in " + toString(Sym.File) + "\n>>> referenced by ";
  std::string Src = S.getSrcMsg<ELFT>(Sym, Off);
  if (!Src.empty())
    Msg += Src + "\n>>>               ";
  return Msg + S.getObjMsg(Off);
}

// This is a MIPS-specific rule.
//
// In case of MIPS GP-relative relocations always resolve to a definition
// in a regular input file, ignoring the one-definition rule. So we,
// for example, should not attempt to create a dynamic relocation even
// if the target symbol is preemptible. There are two two MIPS GP-relative
// relocations R_MIPS_GPREL16 and R_MIPS_GPREL32. But only R_MIPS_GPREL16
// can be against a preemptible symbol.
//
// To get MIPS relocation type we apply 0xff mask. In case of O32 ABI all
// relocation types occupy eight bit. In case of N64 ABI we extract first
// relocation from 3-in-1 packet because only the first relocation can
// be against a real symbol.
static bool isMipsGprel(RelType Type) {
  if (Config->EMachine != EM_MIPS)
    return false;
  Type &= 0xff;
  return Type == R_MIPS_GPREL16 || Type == R_MICROMIPS_GPREL16 ||
         Type == R_MICROMIPS_GPREL7_S2;
}

// This function is similar to the `handleTlsRelocation`. MIPS does not
// support any relaxations for TLS relocations so by factoring out MIPS
// handling in to the separate function we can simplify the code and do not
// pollute other `handleTlsRelocation` by MIPS `ifs` statements.
// Mips has a custom MipsGotSection that handles the writing of GOT entries
// without dynamic relocations.
template <class ELFT>
static unsigned handleMipsTlsRelocation(RelType Type, Symbol &Sym,
                                        InputSectionBase &C, uint64_t Offset,
                                        int64_t Addend, RelExpr Expr) {
  if (Expr == R_MIPS_TLSLD) {
    if (InX::MipsGot->addTlsIndex() && Config->Pic)
      InX::RelaDyn->addReloc({Target->TlsModuleIndexRel, InX::MipsGot,
                              InX::MipsGot->getTlsIndexOff(), false, nullptr,
                              0});
    C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
    return 1;
  }

  if (Expr == R_MIPS_TLSGD) {
    if (InX::MipsGot->addDynTlsEntry(Sym) && Sym.IsPreemptible) {
      uint64_t Off = InX::MipsGot->getGlobalDynOffset(Sym);
      InX::RelaDyn->addReloc(
          {Target->TlsModuleIndexRel, InX::MipsGot, Off, false, &Sym, 0});
      if (Sym.IsPreemptible)
        InX::RelaDyn->addReloc({Target->TlsOffsetRel, InX::MipsGot,
                                Off + Config->Wordsize, false, &Sym, 0});
    }
    C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
    return 1;
  }
  return 0;
}

// This function is similar to the `handleMipsTlsRelocation`. ARM also does not
// support any relaxations for TLS relocations. ARM is logically similar to Mips
// in how it handles TLS, but Mips uses its own custom GOT which handles some
// of the cases that ARM uses GOT relocations for.
//
// We look for TLS global dynamic and local dynamic relocations, these may
// require the generation of a pair of GOT entries that have associated
// dynamic relocations. When the results of the dynamic relocations can be
// resolved at static link time we do so. This is necessary for static linking
// as there will be no dynamic loader to resolve them at load-time.
//
// The pair of GOT entries created are of the form
// GOT[e0] Module Index (Used to find pointer to TLS block at run-time)
// GOT[e1] Offset of symbol in TLS block
template <class ELFT>
static unsigned handleARMTlsRelocation(RelType Type, Symbol &Sym,
                                       InputSectionBase &C, uint64_t Offset,
                                       int64_t Addend, RelExpr Expr) {
  // The Dynamic TLS Module Index Relocation for a symbol defined in an
  // executable is always 1. If the target Symbol is not preemptible then
  // we know the offset into the TLS block at static link time.
  bool NeedDynId = Sym.IsPreemptible || Config->Shared;
  bool NeedDynOff = Sym.IsPreemptible;

  auto AddTlsReloc = [&](uint64_t Off, RelType Type, Symbol *Dest, bool Dyn) {
    if (Dyn)
      InX::RelaDyn->addReloc({Type, InX::Got, Off, false, Dest, 0});
    else
      InX::Got->Relocations.push_back({R_ABS, Type, Off, 0, Dest});
  };

  // Local Dynamic is for access to module local TLS variables, while still
  // being suitable for being dynamically loaded via dlopen.
  // GOT[e0] is the module index, with a special value of 0 for the current
  // module. GOT[e1] is unused. There only needs to be one module index entry.
  if (Expr == R_TLSLD_PC && InX::Got->addTlsIndex()) {
    AddTlsReloc(InX::Got->getTlsIndexOff(), Target->TlsModuleIndexRel,
                NeedDynId ? nullptr : &Sym, NeedDynId);
    C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
    return 1;
  }

  // Global Dynamic is the most general purpose access model. When we know
  // the module index and offset of symbol in TLS block we can fill these in
  // using static GOT relocations.
  if (Expr == R_TLSGD_PC) {
    if (InX::Got->addDynTlsEntry(Sym)) {
      uint64_t Off = InX::Got->getGlobalDynOffset(Sym);
      AddTlsReloc(Off, Target->TlsModuleIndexRel, &Sym, NeedDynId);
      AddTlsReloc(Off + Config->Wordsize, Target->TlsOffsetRel, &Sym,
                  NeedDynOff);
    }
    C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
    return 1;
  }
  return 0;
}

// Returns the number of relocations processed.
template <class ELFT>
static unsigned
handleTlsRelocation(RelType Type, Symbol &Sym, InputSectionBase &C,
                    typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) {
  if (!(C.Flags & SHF_ALLOC))
    return 0;

  if (!Sym.isTls())
    return 0;

  if (Config->EMachine == EM_ARM)
    return handleARMTlsRelocation<ELFT>(Type, Sym, C, Offset, Addend, Expr);
  if (Config->EMachine == EM_MIPS)
    return handleMipsTlsRelocation<ELFT>(Type, Sym, C, Offset, Addend, Expr);

  if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL>(Expr) &&
      Config->Shared) {
    if (InX::Got->addDynTlsEntry(Sym)) {
      uint64_t Off = InX::Got->getGlobalDynOffset(Sym);
      InX::RelaDyn->addReloc(
          {Target->TlsDescRel, InX::Got, Off, !Sym.IsPreemptible, &Sym, 0});
    }
    if (Expr != R_TLSDESC_CALL)
      C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
    return 1;
  }

  if (isRelExprOneOf<R_TLSLD_PC, R_TLSLD>(Expr)) {
    // Local-Dynamic relocs can be relaxed to Local-Exec.
    if (!Config->Shared) {
      C.Relocations.push_back(
          {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Sym});
      return 2;
    }
    if (InX::Got->addTlsIndex())
      InX::RelaDyn->addReloc({Target->TlsModuleIndexRel, InX::Got,
                              InX::Got->getTlsIndexOff(), false, nullptr, 0});
    C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
    return 1;
  }

  // Local-Dynamic relocs can be relaxed to Local-Exec.
  if (isRelExprOneOf<R_ABS, R_TLSLD, R_TLSLD_PC>(Expr) && !Config->Shared) {
    C.Relocations.push_back({R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Sym});
    return 1;
  }

  if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL, R_TLSGD,
                     R_TLSGD_PC>(Expr)) {
    if (Config->Shared) {
      if (InX::Got->addDynTlsEntry(Sym)) {
        uint64_t Off = InX::Got->getGlobalDynOffset(Sym);
        InX::RelaDyn->addReloc(
            {Target->TlsModuleIndexRel, InX::Got, Off, false, &Sym, 0});

        // If the symbol is preemptible we need the dynamic linker to write
        // the offset too.
        uint64_t OffsetOff = Off + Config->Wordsize;
        if (Sym.IsPreemptible)
          InX::RelaDyn->addReloc(
              {Target->TlsOffsetRel, InX::Got, OffsetOff, false, &Sym, 0});
        else
          InX::Got->Relocations.push_back(
              {R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Sym});
      }
      C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
      return 1;
    }

    // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
    // depending on the symbol being locally defined or not.
    if (Sym.IsPreemptible) {
      C.Relocations.push_back(
          {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type,
           Offset, Addend, &Sym});
      if (!Sym.isInGot()) {
        InX::Got->addEntry(Sym);
        InX::RelaDyn->addReloc(
            {Target->TlsGotRel, InX::Got, Sym.getGotOffset(), false, &Sym, 0});
      }
    } else {
      C.Relocations.push_back(
          {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type,
           Offset, Addend, &Sym});
    }
    return Target->TlsGdRelaxSkip;
  }

  // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
  // defined.
  if (isRelExprOneOf<R_GOT, R_GOT_FROM_END, R_GOT_PC, R_GOT_PAGE_PC>(Expr) &&
      !Config->Shared && !Sym.IsPreemptible) {
    C.Relocations.push_back({R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Sym});
    return 1;
  }

  if (Expr == R_TLSDESC_CALL)
    return 1;
  return 0;
}

static RelType getMipsPairType(RelType Type, bool IsLocal) {
  switch (Type) {
  case R_MIPS_HI16:
    return R_MIPS_LO16;
  case R_MIPS_GOT16:
    // In case of global symbol, the R_MIPS_GOT16 relocation does not
    // have a pair. Each global symbol has a unique entry in the GOT
    // and a corresponding instruction with help of the R_MIPS_GOT16
    // relocation loads an address of the symbol. In case of local
    // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
    // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
    // relocations handle low 16 bits of the address. That allows
    // to allocate only one GOT entry for every 64 KBytes of local data.
    return IsLocal ? R_MIPS_LO16 : R_MIPS_NONE;
  case R_MICROMIPS_GOT16:
    return IsLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
  case R_MIPS_PCHI16:
    return R_MIPS_PCLO16;
  case R_MICROMIPS_HI16:
    return R_MICROMIPS_LO16;
  default:
    return R_MIPS_NONE;
  }
}

// True if non-preemptable symbol always has the same value regardless of where
// the DSO is loaded.
static bool isAbsolute(const Symbol &Sym) {
  if (Sym.isUndefWeak())
    return true;
  if (const auto *DR = dyn_cast<Defined>(&Sym))
    return DR->Section == nullptr; // Absolute symbol.
  return false;
}

static bool isAbsoluteValue(const Symbol &Sym) {
  return isAbsolute(Sym) || Sym.isTls();
}

// Returns true if Expr refers a PLT entry.
static bool needsPlt(RelExpr Expr) {
  return isRelExprOneOf<R_PLT_PC, R_PPC_PLT_OPD, R_PLT, R_PLT_PAGE_PC>(Expr);
}

// Returns true if Expr refers a GOT entry. Note that this function
// returns false for TLS variables even though they need GOT, because
// TLS variables uses GOT differently than the regular variables.
static bool needsGot(RelExpr Expr) {
  return isRelExprOneOf<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
                        R_MIPS_GOT_OFF32, R_GOT_PAGE_PC, R_GOT_PC,
                        R_GOT_FROM_END>(Expr);
}

// True if this expression is of the form Sym - X, where X is a position in the
// file (PC, or GOT for example).
static bool isRelExpr(RelExpr Expr) {
  return isRelExprOneOf<R_PC, R_GOTREL, R_GOTREL_FROM_END, R_MIPS_GOTREL,
                        R_PAGE_PC, R_RELAX_GOT_PC>(Expr);
}

// Returns true if a given relocation can be computed at link-time.
//
// For instance, we know the offset from a relocation to its target at
// link-time if the relocation is PC-relative and refers a
// non-interposable function in the same executable. This function
// will return true for such relocation.
//
// If this function returns false, that means we need to emit a
// dynamic relocation so that the relocation will be fixed at load-time.
template <class ELFT>
static bool isStaticLinkTimeConstant(RelExpr E, RelType Type, const Symbol &Sym,
                                     InputSectionBase &S, uint64_t RelOff) {
  // These expressions always compute a constant
  if (isRelExprOneOf<R_SIZE, R_GOT_FROM_END, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE,
                     R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC,
                     R_MIPS_TLSGD, R_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC,
                     R_GOTONLY_PC_FROM_END, R_PLT_PC, R_TLSGD_PC, R_TLSGD,
                     R_PPC_PLT_OPD, R_TLSDESC_CALL, R_TLSDESC_PAGE, R_HINT>(E))
    return true;

  // These never do, except if the entire file is position dependent or if
  // only the low bits are used.
  if (E == R_GOT || E == R_PLT || E == R_TLSDESC)
    return Target->usesOnlyLowPageBits(Type) || !Config->Pic;

  if (Sym.IsPreemptible)
    return false;
  if (!Config->Pic)
    return true;

  // For the target and the relocation, we want to know if they are
  // absolute or relative.
  bool AbsVal = isAbsoluteValue(Sym);
  bool RelE = isRelExpr(E);
  if (AbsVal && !RelE)
    return true;
  if (!AbsVal && RelE)
    return true;
  if (!AbsVal && !RelE)
    return Target->usesOnlyLowPageBits(Type);

  // Relative relocation to an absolute value. This is normally unrepresentable,
  // but if the relocation refers to a weak undefined symbol, we allow it to
  // resolve to the image base. This is a little strange, but it allows us to
  // link function calls to such symbols. Normally such a call will be guarded
  // with a comparison, which will load a zero from the GOT.
  // Another special case is MIPS _gp_disp symbol which represents offset
  // between start of a function and '_gp' value and defined as absolute just
  // to simplify the code.
  assert(AbsVal && RelE);
  if (Sym.isUndefWeak())
    return true;

  error("relocation " + toString(Type) + " cannot refer to absolute symbol: " +
        toString(Sym) + getLocation<ELFT>(S, Sym, RelOff));
  return true;
}

static RelExpr toPlt(RelExpr Expr) {
  if (Expr == R_PPC_OPD)
    return R_PPC_PLT_OPD;
  if (Expr == R_PC)
    return R_PLT_PC;
  if (Expr == R_PAGE_PC)
    return R_PLT_PAGE_PC;
  if (Expr == R_ABS)
    return R_PLT;
  return Expr;
}

static RelExpr fromPlt(RelExpr Expr) {
  // We decided not to use a plt. Optimize a reference to the plt to a
  // reference to the symbol itself.
  if (Expr == R_PLT_PC)
    return R_PC;
  if (Expr == R_PPC_PLT_OPD)
    return R_PPC_OPD;
  if (Expr == R_PLT)
    return R_ABS;
  return Expr;
}

// Returns true if a given shared symbol is in a read-only segment in a DSO.
template <class ELFT> static bool isReadOnly(SharedSymbol *SS) {
  typedef typename ELFT::Phdr Elf_Phdr;

  // Determine if the symbol is read-only by scanning the DSO's program headers.
  const SharedFile<ELFT> *File = SS->getFile<ELFT>();
  for (const Elf_Phdr &Phdr : check(File->getObj().program_headers()))
    if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) &&
        !(Phdr.p_flags & ELF::PF_W) && SS->Value >= Phdr.p_vaddr &&
        SS->Value < Phdr.p_vaddr + Phdr.p_memsz)
      return true;
  return false;
}

// Returns symbols at the same offset as a given symbol, including SS itself.
//
// If two or more symbols are at the same offset, and at least one of
// them are copied by a copy relocation, all of them need to be copied.
// Otherwise, they would refer different places at runtime.
template <class ELFT>
static std::vector<SharedSymbol *> getSymbolsAt(SharedSymbol *SS) {
  typedef typename ELFT::Sym Elf_Sym;

  SharedFile<ELFT> *File = SS->getFile<ELFT>();

  std::vector<SharedSymbol *> Ret;
  for (const Elf_Sym &S : File->getGlobalELFSyms()) {
    if (S.st_shndx == SHN_UNDEF || S.st_shndx == SHN_ABS ||
        S.st_value != SS->Value)
      continue;
    StringRef Name = check(S.getName(File->getStringTable()));
    Symbol *Sym = Symtab->find(Name);
    if (auto *Alias = dyn_cast_or_null<SharedSymbol>(Sym))
      Ret.push_back(Alias);
  }
  return Ret;
}

// Reserve space in .bss or .bss.rel.ro for copy relocation.
//
// The copy relocation is pretty much a hack. If you use a copy relocation
// in your program, not only the symbol name but the symbol's size, RW/RO
// bit and alignment become part of the ABI. In addition to that, if the
// symbol has aliases, the aliases become part of the ABI. That's subtle,
// but if you violate that implicit ABI, that can cause very counter-
// intuitive consequences.
//
// So, what is the copy relocation? It's for linking non-position
// independent code to DSOs. In an ideal world, all references to data
// exported by DSOs should go indirectly through GOT. But if object files
// are compiled as non-PIC, all data references are direct. There is no
// way for the linker to transform the code to use GOT, as machine
// instructions are already set in stone in object files. This is where
// the copy relocation takes a role.
//
// A copy relocation instructs the dynamic linker to copy data from a DSO
// to a specified address (which is usually in .bss) at load-time. If the
// static linker (that's us) finds a direct data reference to a DSO
// symbol, it creates a copy relocation, so that the symbol can be
// resolved as if it were in .bss rather than in a DSO.
//
// As you can see in this function, we create a copy relocation for the
// dynamic linker, and the relocation contains not only symbol name but
// various other informtion about the symbol. So, such attributes become a
// part of the ABI.
//
// Note for application developers: I can give you a piece of advice if
// you are writing a shared library. You probably should export only
// functions from your library. You shouldn't export variables.
//
// As an example what can happen when you export variables without knowing
// the semantics of copy relocations, assume that you have an exported
// variable of type T. It is an ABI-breaking change to add new members at
// end of T even though doing that doesn't change the layout of the
// existing members. That's because the space for the new members are not
// reserved in .bss unless you recompile the main program. That means they
// are likely to overlap with other data that happens to be laid out next
// to the variable in .bss. This kind of issue is sometimes very hard to
// debug. What's a solution? Instead of exporting a varaible V from a DSO,
// define an accessor getV().
template <class ELFT> static void addCopyRelSymbol(SharedSymbol *SS) {
  // Copy relocation against zero-sized symbol doesn't make sense.
  uint64_t SymSize = SS->getSize();
  if (SymSize == 0)
    fatal("cannot create a copy relocation for symbol " + toString(*SS));

  // See if this symbol is in a read-only segment. If so, preserve the symbol's
  // memory protection by reserving space in the .bss.rel.ro section.
  bool IsReadOnly = isReadOnly<ELFT>(SS);
  BssSection *Sec = make<BssSection>(IsReadOnly ? ".bss.rel.ro" : ".bss",
                                     SymSize, SS->Alignment);
  if (IsReadOnly)
    InX::BssRelRo->getParent()->addSection(Sec);
  else
    InX::Bss->getParent()->addSection(Sec);

  // Look through the DSO's dynamic symbol table for aliases and create a
  // dynamic symbol for each one. This causes the copy relocation to correctly
  // interpose any aliases.
  for (SharedSymbol *Sym : getSymbolsAt<ELFT>(SS)) {
    Sym->CopyRelSec = Sec;
    Sym->IsPreemptible = false;
    Sym->IsUsedInRegularObj = true;
    Sym->Used = true;
  }

  InX::RelaDyn->addReloc({Target->CopyRel, Sec, 0, false, SS, 0});
}

static void errorOrWarn(const Twine &Msg) {
  if (!Config->NoinhibitExec)
    error(Msg);
  else
    warn(Msg);
}

template <class ELFT>
static RelExpr adjustExpr(Symbol &Sym, RelExpr Expr, RelType Type,
                          InputSectionBase &S, uint64_t RelOff) {
  // We can create any dynamic relocation if a section is simply writable.
  if (S.Flags & SHF_WRITE)
    return Expr;

  // Or, if we are allowed to create dynamic relocations against
  // read-only sections (i.e. unless "-z notext" is given),
  // we can create a dynamic relocation as we want, too.
  if (!Config->ZText)
    return Expr;

  // If a relocation can be applied at link-time, we don't need to
  // create a dynamic relocation in the first place.
  if (isStaticLinkTimeConstant<ELFT>(Expr, Type, Sym, S, RelOff))
    return Expr;

  // If we got here we know that this relocation would require the dynamic
  // linker to write a value to read only memory.

  // If the relocation is to a weak undef, give up on it and produce a
  // non preemptible 0.
  if (Sym.isUndefWeak()) {
    Sym.IsPreemptible = false;
    return Expr;
  }

  // We can hack around it if we are producing an executable and
  // the refered symbol can be preemepted to refer to the executable.
  if (Config->Shared || (Config->Pic && !isRelExpr(Expr))) {
    error(
        "can't create dynamic relocation " + toString(Type) + " against " +
        (Sym.getName().empty() ? "local symbol" : "symbol: " + toString(Sym)) +
        " in readonly segment; recompile object files with -fPIC" +
        getLocation<ELFT>(S, Sym, RelOff));
    return Expr;
  }

  if (Sym.getVisibility() != STV_DEFAULT) {
    error("cannot preempt symbol: " + toString(Sym) +
          getLocation<ELFT>(S, Sym, RelOff));
    return Expr;
  }

  if (Sym.isObject()) {
    // Produce a copy relocation.
    auto *B = dyn_cast<SharedSymbol>(&Sym);
    if (B && !B->CopyRelSec) {
      if (Config->ZNocopyreloc)
        error("unresolvable relocation " + toString(Type) +
              " against symbol '" + toString(*B) +
              "'; recompile with -fPIC or remove '-z nocopyreloc'" +
              getLocation<ELFT>(S, Sym, RelOff));

      addCopyRelSymbol<ELFT>(B);
    }
    return Expr;
  }

  if (Sym.isFunc()) {
    // This handles a non PIC program call to function in a shared library. In
    // an ideal world, we could just report an error saying the relocation can
    // overflow at runtime. In the real world with glibc, crt1.o has a
    // R_X86_64_PC32 pointing to libc.so.
    //
    // The general idea on how to handle such cases is to create a PLT entry and
    // use that as the function value.
    //
    // For the static linking part, we just return a plt expr and everything
    // else will use the the PLT entry as the address.
    //
    // The remaining problem is making sure pointer equality still works. We
    // need the help of the dynamic linker for that. We let it know that we have
    // a direct reference to a so symbol by creating an undefined symbol with a
    // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
    // the value of the symbol we created. This is true even for got entries, so
    // pointer equality is maintained. To avoid an infinite loop, the only entry
    // that points to the real function is a dedicated got entry used by the
    // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
    // R_386_JMP_SLOT, etc).
    Sym.NeedsPltAddr = true;
    Sym.IsPreemptible = false;
    return toPlt(Expr);
  }

  errorOrWarn("symbol '" + toString(Sym) + "' defined in " +
              toString(Sym.File) + " has no type");
  return Expr;
}

// MIPS has an odd notion of "paired" relocations to calculate addends.
// For example, if a relocation is of R_MIPS_HI16, there must be a
// R_MIPS_LO16 relocation after that, and an addend is calculated using
// the two relocations.
template <class ELFT, class RelTy>
static int64_t computeMipsAddend(const RelTy &Rel, const RelTy *End,
                                 InputSectionBase &Sec, RelExpr Expr,
                                 bool IsLocal) {
  if (Expr == R_MIPS_GOTREL && IsLocal)
    return Sec.getFile<ELFT>()->MipsGp0;

  // The ABI says that the paired relocation is used only for REL.
  // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
  if (RelTy::IsRela)
    return 0;

  RelType Type = Rel.getType(Config->IsMips64EL);
  uint32_t PairTy = getMipsPairType(Type, IsLocal);
  if (PairTy == R_MIPS_NONE)
    return 0;

  const uint8_t *Buf = Sec.Data.data();
  uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL);

  // To make things worse, paired relocations might not be contiguous in
  // the relocation table, so we need to do linear search. *sigh*
  for (const RelTy *RI = &Rel; RI != End; ++RI)
    if (RI->getType(Config->IsMips64EL) == PairTy &&
        RI->getSymbol(Config->IsMips64EL) == SymIndex)
      return Target->getImplicitAddend(Buf + RI->r_offset, PairTy);

  warn("can't find matching " + toString(PairTy) + " relocation for " +
       toString(Type));
  return 0;
}

// Returns an addend of a given relocation. If it is RELA, an addend
// is in a relocation itself. If it is REL, we need to read it from an
// input section.
template <class ELFT, class RelTy>
static int64_t computeAddend(const RelTy &Rel, const RelTy *End,
                             InputSectionBase &Sec, RelExpr Expr,
                             bool IsLocal) {
  int64_t Addend;
  RelType Type = Rel.getType(Config->IsMips64EL);

  if (RelTy::IsRela) {
    Addend = getAddend<ELFT>(Rel);
  } else {
    const uint8_t *Buf = Sec.Data.data();
    Addend = Target->getImplicitAddend(Buf + Rel.r_offset, Type);
  }

  if (Config->EMachine == EM_PPC64 && Config->Pic && Type == R_PPC64_TOC)
    Addend += getPPC64TocBase();
  if (Config->EMachine == EM_MIPS)
    Addend += computeMipsAddend<ELFT>(Rel, End, Sec, Expr, IsLocal);

  return Addend;
}

// Report an undefined symbol if necessary.
// Returns true if this function printed out an error message.
template <class ELFT>
static bool maybeReportUndefined(Symbol &Sym, InputSectionBase &Sec,
                                 uint64_t Offset) {
  if (Config->UnresolvedSymbols == UnresolvedPolicy::IgnoreAll)
    return false;

  if (Sym.isLocal() || !Sym.isUndefined() || Sym.isWeak())
    return false;

  bool CanBeExternal =
      Sym.computeBinding() != STB_LOCAL && Sym.getVisibility() == STV_DEFAULT;
  if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal)
    return false;

  std::string Msg =
      "undefined symbol: " + toString(Sym) + "\n>>> referenced by ";

  std::string Src = Sec.getSrcMsg<ELFT>(Sym, Offset);
  if (!Src.empty())
    Msg += Src + "\n>>>               ";
  Msg += Sec.getObjMsg(Offset);

  if ((Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal) ||
      Config->NoinhibitExec) {
    warn(Msg);
    return false;
  }

  error(Msg);
  return true;
}

// MIPS N32 ABI treats series of successive relocations with the same offset
// as a single relocation. The similar approach used by N64 ABI, but this ABI
// packs all relocations into the single relocation record. Here we emulate
// this for the N32 ABI. Iterate over relocation with the same offset and put
// theirs types into the single bit-set.
template <class RelTy> static RelType getMipsN32RelType(RelTy *&Rel, RelTy *End) {
  RelType Type = Rel->getType(Config->IsMips64EL);
  uint64_t Offset = Rel->r_offset;

  int N = 0;
  while (Rel + 1 != End && (Rel + 1)->r_offset == Offset)
    Type |= (++Rel)->getType(Config->IsMips64EL) << (8 * ++N);
  return Type;
}

// .eh_frame sections are mergeable input sections, so their input
// offsets are not linearly mapped to output section. For each input
// offset, we need to find a section piece containing the offset and
// add the piece's base address to the input offset to compute the
// output offset. That isn't cheap.
//
// This class is to speed up the offset computation. When we process
// relocations, we access offsets in the monotonically increasing
// order. So we can optimize for that access pattern.
//
// For sections other than .eh_frame, this class doesn't do anything.
namespace {
class OffsetGetter {
public:
  explicit OffsetGetter(InputSectionBase &Sec) {
    if (auto *Eh = dyn_cast<EhInputSection>(&Sec))
      Pieces = Eh->Pieces;
  }

  // Translates offsets in input sections to offsets in output sections.
  // Given offset must increase monotonically. We assume that Piece is
  // sorted by InputOff.
  uint64_t get(uint64_t Off) {
    if (Pieces.empty())
      return Off;

    while (I != Pieces.size() && Pieces[I].InputOff + Pieces[I].Size <= Off)
      ++I;
    if (I == Pieces.size())
      return Off;

    // Pieces must be contiguous, so there must be no holes in between.
    assert(Pieces[I].InputOff <= Off && "Relocation not in any piece");

    // Offset -1 means that the piece is dead (i.e. garbage collected).
    if (Pieces[I].OutputOff == -1)
      return -1;
    return Pieces[I].OutputOff + Off - Pieces[I].InputOff;
  }

private:
  ArrayRef<EhSectionPiece> Pieces;
  size_t I = 0;
};
} // namespace

template <class ELFT, class GotPltSection>
static void addPltEntry(PltSection *Plt, GotPltSection *GotPlt,
                        RelocationBaseSection *Rel, RelType Type, Symbol &Sym,
                        bool UseSymVA) {
  Plt->addEntry<ELFT>(Sym);
  GotPlt->addEntry(Sym);
  Rel->addReloc({Type, GotPlt, Sym.getGotPltOffset(), UseSymVA, &Sym, 0});
}

template <class ELFT> static void addGotEntry(Symbol &Sym, bool Preemptible) {
  InX::Got->addEntry(Sym);

  RelExpr Expr = Sym.isTls() ? R_TLS : R_ABS;
  uint64_t Off = Sym.getGotOffset();

  // If a GOT slot value can be calculated at link-time, which is now,
  // we can just fill that out.
  //
  // (We don't actually write a value to a GOT slot right now, but we
  // add a static relocation to a Relocations vector so that
  // InputSection::relocate will do the work for us. We may be able
  // to just write a value now, but it is a TODO.)
  bool IsLinkTimeConstant = !Preemptible && (!Config->Pic || isAbsolute(Sym));
  if (IsLinkTimeConstant) {
    InX::Got->Relocations.push_back({Expr, Target->GotRel, Off, 0, &Sym});
    return;
  }

  // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that
  // the GOT slot will be fixed at load-time.
  RelType Type;
  if (Sym.isTls())
    Type = Target->TlsGotRel;
  else if (!Preemptible && Config->Pic && !isAbsolute(Sym))
    Type = Target->RelativeRel;
  else
    Type = Target->GotRel;
  InX::RelaDyn->addReloc({Type, InX::Got, Off, !Preemptible, &Sym, 0});

  // REL type relocations don't have addend fields unlike RELAs, and
  // their addends are stored to the section to which they are applied.
  // So, store addends if we need to.
  //
  // This is ugly -- the difference between REL and RELA should be
  // handled in a better way. It's a TODO.
  if (!Config->IsRela)
    InX::Got->Relocations.push_back({R_ABS, Target->GotRel, Off, 0, &Sym});
}

// The reason we have to do this early scan is as follows
// * To mmap the output file, we need to know the size
// * For that, we need to know how many dynamic relocs we will have.
// It might be possible to avoid this by outputting the file with write:
// * Write the allocated output sections, computing addresses.
// * Apply relocations, recording which ones require a dynamic reloc.
// * Write the dynamic relocations.
// * Write the rest of the file.
// This would have some drawbacks. For example, we would only know if .rela.dyn
// is needed after applying relocations. If it is, it will go after rw and rx
// sections. Given that it is ro, we will need an extra PT_LOAD. This
// complicates things for the dynamic linker and means we would have to reserve
// space for the extra PT_LOAD even if we end up not using it.
template <class ELFT, class RelTy>
static void scanRelocs(InputSectionBase &Sec, ArrayRef<RelTy> Rels) {
  OffsetGetter GetOffset(Sec);

  // Not all relocations end up in Sec.Relocations, but a lot do.
  Sec.Relocations.reserve(Rels.size());

  for (auto I = Rels.begin(), End = Rels.end(); I != End; ++I) {
    const RelTy &Rel = *I;
    Symbol &Sym = Sec.getFile<ELFT>()->getRelocTargetSym(Rel);
    RelType Type = Rel.getType(Config->IsMips64EL);

    // Deal with MIPS oddity.
    if (Config->MipsN32Abi)
      Type = getMipsN32RelType(I, End);

    // Get an offset in an output section this relocation is applied to.
    uint64_t Offset = GetOffset.get(Rel.r_offset);
    if (Offset == uint64_t(-1))
      continue;

    // Skip if the target symbol is an erroneous undefined symbol.
    if (maybeReportUndefined<ELFT>(Sym, Sec, Rel.r_offset))
      continue;

    RelExpr Expr =
        Target->getRelExpr(Type, Sym, Sec.Data.begin() + Rel.r_offset);

    // Ignore "hint" relocations because they are only markers for relaxation.
    if (isRelExprOneOf<R_HINT, R_NONE>(Expr))
      continue;

    // Handle yet another MIPS-ness.
    if (isMipsGprel(Type)) {
      int64_t Addend = computeAddend<ELFT>(Rel, End, Sec, Expr, Sym.isLocal());
      Sec.Relocations.push_back({R_MIPS_GOTREL, Type, Offset, Addend, &Sym});
      continue;
    }

    bool Preemptible = Sym.IsPreemptible;

    // Strenghten or relax a PLT access.
    //
    // GNU ifunc symbols must be accessed via PLT because their addresses
    // are determined by runtime.
    //
    // On the other hand, if we know that a PLT entry will be resolved within
    // the same ELF module, we can skip PLT access and directly jump to the
    // destination function. For example, if we are linking a main exectuable,
    // all dynamic symbols that can be resolved within the executable will
    // actually be resolved that way at runtime, because the main exectuable
    // is always at the beginning of a search list. We can leverage that fact.
    if (Sym.isGnuIFunc())
      Expr = toPlt(Expr);
    else if (!Preemptible && Expr == R_GOT_PC && !isAbsoluteValue(Sym))
      Expr =
          Target->adjustRelaxExpr(Type, Sec.Data.data() + Rel.r_offset, Expr);
    else if (!Preemptible)
      Expr = fromPlt(Expr);

    Expr = adjustExpr<ELFT>(Sym, Expr, Type, Sec, Rel.r_offset);
    if (errorCount())
      continue;

    // This relocation does not require got entry, but it is relative to got and
    // needs it to be created. Here we request for that.
    if (isRelExprOneOf<R_GOTONLY_PC, R_GOTONLY_PC_FROM_END, R_GOTREL,
                       R_GOTREL_FROM_END, R_PPC_TOC>(Expr))
      InX::Got->HasGotOffRel = true;

    // Read an addend.
    int64_t Addend = computeAddend<ELFT>(Rel, End, Sec, Expr, Sym.isLocal());

    // Process some TLS relocations, including relaxing TLS relocations.
    // Note that this function does not handle all TLS relocations.
    if (unsigned Processed =
            handleTlsRelocation<ELFT>(Type, Sym, Sec, Offset, Addend, Expr)) {
      I += (Processed - 1);
      continue;
    }

    // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
    if (needsPlt(Expr) && !Sym.isInPlt()) {
      if (Sym.isGnuIFunc() && !Preemptible)
        addPltEntry<ELFT>(InX::Iplt, InX::IgotPlt, InX::RelaIplt,
                          Target->IRelativeRel, Sym, true);
      else
        addPltEntry<ELFT>(InX::Plt, InX::GotPlt, InX::RelaPlt, Target->PltRel,
                          Sym, !Preemptible);
    }

    // Create a GOT slot if a relocation needs GOT.
    if (needsGot(Expr)) {
      if (Config->EMachine == EM_MIPS) {
        // MIPS ABI has special rules to process GOT entries and doesn't
        // require relocation entries for them. A special case is TLS
        // relocations. In that case dynamic loader applies dynamic
        // relocations to initialize TLS GOT entries.
        // See "Global Offset Table" in Chapter 5 in the following document
        // for detailed description:
        // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
        InX::MipsGot->addEntry(Sym, Addend, Expr);
        if (Sym.isTls() && Sym.IsPreemptible)
          InX::RelaDyn->addReloc({Target->TlsGotRel, InX::MipsGot,
                                  Sym.getGotOffset(), false, &Sym, 0});
      } else if (!Sym.isInGot()) {
        addGotEntry<ELFT>(Sym, Preemptible);
      }
    }

    if (!needsPlt(Expr) && !needsGot(Expr) && Sym.IsPreemptible) {
      // We don't know anything about the finaly symbol. Just ask the dynamic
      // linker to handle the relocation for us.
      if (!Target->isPicRel(Type))
        errorOrWarn(
            "relocation " + toString(Type) +
            " cannot be used against shared object; recompile with -fPIC" +
            getLocation<ELFT>(Sec, Sym, Offset));

      InX::RelaDyn->addReloc(
          {Target->getDynRel(Type), &Sec, Offset, false, &Sym, Addend});

      // MIPS ABI turns using of GOT and dynamic relocations inside out.
      // While regular ABI uses dynamic relocations to fill up GOT entries
      // MIPS ABI requires dynamic linker to fills up GOT entries using
      // specially sorted dynamic symbol table. This affects even dynamic
      // relocations against symbols which do not require GOT entries
      // creation explicitly, i.e. do not have any GOT-relocations. So if
      // a preemptible symbol has a dynamic relocation we anyway have
      // to create a GOT entry for it.
      // If a non-preemptible symbol has a dynamic relocation against it,
      // dynamic linker takes it st_value, adds offset and writes down
      // result of the dynamic relocation. In case of preemptible symbol
      // dynamic linker performs symbol resolution, writes the symbol value
      // to the GOT entry and reads the GOT entry when it needs to perform
      // a dynamic relocation.
      // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
      if (Config->EMachine == EM_MIPS)
        InX::MipsGot->addEntry(Sym, Addend, Expr);
      continue;
    }

    // If the relocation points to something in the file, we can process it.
    bool IsConstant =
        isStaticLinkTimeConstant<ELFT>(Expr, Type, Sym, Sec, Rel.r_offset);

    // The size is not going to change, so we fold it in here.
    if (Expr == R_SIZE)
      Addend += Sym.getSize();

    // If the produced value is a constant, we just remember to write it
    // when outputting this section. We also have to do it if the format
    // uses Elf_Rel, since in that case the written value is the addend.
    if (IsConstant) {
      Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
      continue;
    }

    // If the output being produced is position independent, the final value
    // is still not known. In that case we still need some help from the
    // dynamic linker. We can however do better than just copying the incoming
    // relocation. We can process some of it and and just ask the dynamic
    // linker to add the load address.
    if (Config->IsRela) {
      InX::RelaDyn->addReloc(
          {Target->RelativeRel, &Sec, Offset, true, &Sym, Addend});
    } else {
      // In REL, addends are stored to the target section.
      InX::RelaDyn->addReloc(
          {Target->RelativeRel, &Sec, Offset, true, &Sym, 0});
      Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
    }
  }
}

template <class ELFT> void elf::scanRelocations(InputSectionBase &S) {
  if (S.AreRelocsRela)
    scanRelocs<ELFT>(S, S.relas<ELFT>());
  else
    scanRelocs<ELFT>(S, S.rels<ELFT>());
}

// Thunk Implementation
//
// Thunks (sometimes called stubs, veneers or branch islands) are small pieces
// of code that the linker inserts inbetween a caller and a callee. The thunks
// are added at link time rather than compile time as the decision on whether
// a thunk is needed, such as the caller and callee being out of range, can only
// be made at link time.
//
// It is straightforward to tell given the current state of the program when a
// thunk is needed for a particular call. The more difficult part is that
// the thunk needs to be placed in the program such that the caller can reach
// the thunk and the thunk can reach the callee; furthermore, adding thunks to
// the program alters addresses, which can mean more thunks etc.
//
// In lld we have a synthetic ThunkSection that can hold many Thunks.
// The decision to have a ThunkSection act as a container means that we can
// more easily handle the most common case of a single block of contiguous
// Thunks by inserting just a single ThunkSection.
//
// The implementation of Thunks in lld is split across these areas
// Relocations.cpp : Framework for creating and placing thunks
// Thunks.cpp : The code generated for each supported thunk
// Target.cpp : Target specific hooks that the framework uses to decide when
//              a thunk is used
// Synthetic.cpp : Implementation of ThunkSection
// Writer.cpp : Iteratively call framework until no more Thunks added
//
// Thunk placement requirements:
// Mips LA25 thunks. These must be placed immediately before the callee section
// We can assume that the caller is in range of the Thunk. These are modelled
// by Thunks that return the section they must precede with
// getTargetInputSection().
//
// ARM interworking and range extension thunks. These thunks must be placed
// within range of the caller. All implemented ARM thunks can always reach the
// callee as they use an indirect jump via a register that has no range
// restrictions.
//
// Thunk placement algorithm:
// For Mips LA25 ThunkSections; the placement is explicit, it has to be before
// getTargetInputSection().
//
// For thunks that must be placed within range of the caller there are many
// possible choices given that the maximum range from the caller is usually
// much larger than the average InputSection size. Desirable properties include:
// - Maximize reuse of thunks by multiple callers
// - Minimize number of ThunkSections to simplify insertion
// - Handle impact of already added Thunks on addresses
// - Simple to understand and implement
//
// In lld for the first pass, we pre-create one or more ThunkSections per
// InputSectionDescription at Target specific intervals. A ThunkSection is
// placed so that the estimated end of the ThunkSection is within range of the
// start of the InputSectionDescription or the previous ThunkSection. For
// example:
// InputSectionDescription
// Section 0
// ...
// Section N
// ThunkSection 0
// Section N + 1
// ...
// Section N + K
// Thunk Section 1
//
// The intention is that we can add a Thunk to a ThunkSection that is well
// spaced enough to service a number of callers without having to do a lot
// of work. An important principle is that it is not an error if a Thunk cannot
// be placed in a pre-created ThunkSection; when this happens we create a new
// ThunkSection placed next to the caller. This allows us to handle the vast
// majority of thunks simply, but also handle rare cases where the branch range
// is smaller than the target specific spacing.
//
// The algorithm is expected to create all the thunks that are needed in a
// single pass, with a small number of programs needing a second pass due to
// the insertion of thunks in the first pass increasing the offset between
// callers and callees that were only just in range.
//
// A consequence of allowing new ThunkSections to be created outside of the
// pre-created ThunkSections is that in rare cases calls to Thunks that were in
// range in pass K, are out of range in some pass > K due to the insertion of
// more Thunks in between the caller and callee. When this happens we retarget
// the relocation back to the original target and create another Thunk.

// Remove ThunkSections that are empty, this should only be the initial set
// precreated on pass 0.

// Insert the Thunks for OutputSection OS into their designated place
// in the Sections vector, and recalculate the InputSection output section
// offsets.
// This may invalidate any output section offsets stored outside of InputSection
void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> OutputSections) {
  forEachInputSectionDescription(
      OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
        if (ISD->ThunkSections.empty())
          return;

        // Remove any zero sized precreated Thunks.
        llvm::erase_if(ISD->ThunkSections,
                       [](const std::pair<ThunkSection *, uint32_t> &TS) {
                         return TS.first->getSize() == 0;
                       });
        // ISD->ThunkSections contains all created ThunkSections, including
        // those inserted in previous passes. Extract the Thunks created this
        // pass and order them in ascending OutSecOff.
        std::vector<ThunkSection *> NewThunks;
        for (const std::pair<ThunkSection *, uint32_t> TS : ISD->ThunkSections)
          if (TS.second == Pass)
            NewThunks.push_back(TS.first);
        std::stable_sort(NewThunks.begin(), NewThunks.end(),
                         [](const ThunkSection *A, const ThunkSection *B) {
                           return A->OutSecOff < B->OutSecOff;
                         });

        // Merge sorted vectors of Thunks and InputSections by OutSecOff
        std::vector<InputSection *> Tmp;
        Tmp.reserve(ISD->Sections.size() + NewThunks.size());
        auto MergeCmp = [](const InputSection *A, const InputSection *B) {
          // std::merge requires a strict weak ordering.
          if (A->OutSecOff < B->OutSecOff)
            return true;
          if (A->OutSecOff == B->OutSecOff) {
            auto *TA = dyn_cast<ThunkSection>(A);
            auto *TB = dyn_cast<ThunkSection>(B);
            // Check if Thunk is immediately before any specific Target
            // InputSection for example Mips LA25 Thunks.
            if (TA && TA->getTargetInputSection() == B)
              return true;
            if (TA && !TB && !TA->getTargetInputSection())
              // Place Thunk Sections without specific targets before
              // non-Thunk Sections.
              return true;
          }
          return false;
        };
        std::merge(ISD->Sections.begin(), ISD->Sections.end(),
                   NewThunks.begin(), NewThunks.end(), std::back_inserter(Tmp),
                   MergeCmp);
        ISD->Sections = std::move(Tmp);
      });
}

// Find or create a ThunkSection within the InputSectionDescription (ISD) that
// is in range of Src. An ISD maps to a range of InputSections described by a
// linker script section pattern such as { .text .text.* }.
ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *OS, InputSection *IS,
                                           InputSectionDescription *ISD,
                                           uint32_t Type, uint64_t Src) {
  for (std::pair<ThunkSection *, uint32_t> TP : ISD->ThunkSections) {
    ThunkSection *TS = TP.first;
    uint64_t TSBase = OS->Addr + TS->OutSecOff;
    uint64_t TSLimit = TSBase + TS->getSize();
    if (Target->inBranchRange(Type, Src, (Src > TSLimit) ? TSBase : TSLimit))
      return TS;
  }

  // No suitable ThunkSection exists. This can happen when there is a branch
  // with lower range than the ThunkSection spacing or when there are too
  // many Thunks. Create a new ThunkSection as close to the InputSection as
  // possible. Error if InputSection is so large we cannot place ThunkSection
  // anywhere in Range.
  uint64_t ThunkSecOff = IS->OutSecOff;
  if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) {
    ThunkSecOff = IS->OutSecOff + IS->getSize();
    if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff))
      fatal("InputSection too large for range extension thunk " +
            IS->getObjMsg(Src - (OS->Addr + IS->OutSecOff)));
  }
  return addThunkSection(OS, ISD, ThunkSecOff);
}

// Add a Thunk that needs to be placed in a ThunkSection that immediately
// precedes its Target.
ThunkSection *ThunkCreator::getISThunkSec(InputSection *IS) {
  ThunkSection *TS = ThunkedSections.lookup(IS);
  if (TS)
    return TS;

  // Find InputSectionRange within Target Output Section (TOS) that the
  // InputSection (IS) that we need to precede is in.
  OutputSection *TOS = IS->getParent();
  for (BaseCommand *BC : TOS->SectionCommands)
    if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) {
      if (ISD->Sections.empty())
        continue;
      InputSection *first = ISD->Sections.front();
      InputSection *last = ISD->Sections.back();
      if (IS->OutSecOff >= first->OutSecOff &&
          IS->OutSecOff <= last->OutSecOff) {
        TS = addThunkSection(TOS, ISD, IS->OutSecOff);
        ThunkedSections[IS] = TS;
        break;
      }
    }
  return TS;
}

// Create one or more ThunkSections per OS that can be used to place Thunks.
// We attempt to place the ThunkSections using the following desirable
// properties:
// - Within range of the maximum number of callers
// - Minimise the number of ThunkSections
//
// We follow a simple but conservative heuristic to place ThunkSections at
// offsets that are multiples of a Target specific branch range.
// For an InputSectionRange that is smaller than the range, a single
// ThunkSection at the end of the range will do.
void ThunkCreator::createInitialThunkSections(
    ArrayRef<OutputSection *> OutputSections) {
  forEachInputSectionDescription(
      OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
        if (ISD->Sections.empty())
          return;
        uint32_t ISLimit;
        uint32_t PrevISLimit = ISD->Sections.front()->OutSecOff;
        uint32_t ThunkUpperBound = PrevISLimit + Target->ThunkSectionSpacing;

        for (const InputSection *IS : ISD->Sections) {
          ISLimit = IS->OutSecOff + IS->getSize();
          if (ISLimit > ThunkUpperBound) {
            addThunkSection(OS, ISD, PrevISLimit);
            ThunkUpperBound = PrevISLimit + Target->ThunkSectionSpacing;
          }
          PrevISLimit = ISLimit;
        }
        addThunkSection(OS, ISD, ISLimit);
      });
}

ThunkSection *ThunkCreator::addThunkSection(OutputSection *OS,
                                            InputSectionDescription *ISD,
                                            uint64_t Off) {
  auto *TS = make<ThunkSection>(OS, Off);
  ISD->ThunkSections.push_back(std::make_pair(TS, Pass));
  return TS;
}

std::pair<Thunk *, bool> ThunkCreator::getThunk(Symbol &Sym, RelType Type,
                                                uint64_t Src) {
  auto Res = ThunkedSymbols.insert({&Sym, std::vector<Thunk *>()});
  if (!Res.second) {
    // Check existing Thunks for Sym to see if they can be reused
    for (Thunk *ET : Res.first->second)
      if (ET->isCompatibleWith(Type) &&
          Target->inBranchRange(Type, Src, ET->ThunkSym->getVA()))
        return std::make_pair(ET, false);
  }
  // No existing compatible Thunk in range, create a new one
  Thunk *T = addThunk(Type, Sym);
  Res.first->second.push_back(T);
  return std::make_pair(T, true);
}

// Call Fn on every executable InputSection accessed via the linker script
// InputSectionDescription::Sections.
void ThunkCreator::forEachInputSectionDescription(
    ArrayRef<OutputSection *> OutputSections,
    std::function<void(OutputSection *, InputSectionDescription *)> Fn) {
  for (OutputSection *OS : OutputSections) {
    if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR))
      continue;
    for (BaseCommand *BC : OS->SectionCommands)
      if (auto *ISD = dyn_cast<InputSectionDescription>(BC))
        Fn(OS, ISD);
  }
}

// Return true if the relocation target is an in range Thunk.
// Return false if the relocation is not to a Thunk. If the relocation target
// was originally to a Thunk, but is no longer in range we revert the
// relocation back to its original non-Thunk target.
bool ThunkCreator::normalizeExistingThunk(Relocation &Rel, uint64_t Src) {
  if (Thunk *ET = Thunks.lookup(Rel.Sym)) {
    if (Target->inBranchRange(Rel.Type, Src, Rel.Sym->getVA()))
      return true;
    Rel.Sym = &ET->Destination;
    if (Rel.Sym->isInPlt())
      Rel.Expr = toPlt(Rel.Expr);
  }
  return false;
}

// Process all relocations from the InputSections that have been assigned
// to InputSectionDescriptions and redirect through Thunks if needed. The
// function should be called iteratively until it returns false.
//
// PreConditions:
// All InputSections that may need a Thunk are reachable from
// OutputSectionCommands.
//
// All OutputSections have an address and all InputSections have an offset
// within the OutputSection.
//
// The offsets between caller (relocation place) and callee
// (relocation target) will not be modified outside of createThunks().
//
// PostConditions:
// If return value is true then ThunkSections have been inserted into
// OutputSections. All relocations that needed a Thunk based on the information
// available to createThunks() on entry have been redirected to a Thunk. Note
// that adding Thunks changes offsets between caller and callee so more Thunks
// may be required.
//
// If return value is false then no more Thunks are needed, and createThunks has
// made no changes. If the target requires range extension thunks, currently
// ARM, then any future change in offset between caller and callee risks a
// relocation out of range error.
bool ThunkCreator::createThunks(ArrayRef<OutputSection *> OutputSections) {
  bool AddressesChanged = false;
  if (Pass == 0 && Target->ThunkSectionSpacing)
    createInitialThunkSections(OutputSections);
  else if (Pass == 10)
    // With Thunk Size much smaller than branch range we expect to
    // converge quickly; if we get to 10 something has gone wrong.
    fatal("thunk creation not converged");

  // Create all the Thunks and insert them into synthetic ThunkSections. The
  // ThunkSections are later inserted back into InputSectionDescriptions.
  // We separate the creation of ThunkSections from the insertion of the
  // ThunkSections as ThunkSections are not always inserted into the same
  // InputSectionDescription as the caller.
  forEachInputSectionDescription(
      OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
        for (InputSection *IS : ISD->Sections)
          for (Relocation &Rel : IS->Relocations) {
            uint64_t Src = OS->Addr + IS->OutSecOff + Rel.Offset;

            // If we are a relocation to an existing Thunk, check if it is
            // still in range. If not then Rel will be altered to point to its
            // original target so another Thunk can be generated.
            if (Pass > 0 && normalizeExistingThunk(Rel, Src))
              continue;

            if (!Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Src,
                                    *Rel.Sym))
              continue;
            Thunk *T;
            bool IsNew;
            std::tie(T, IsNew) = getThunk(*Rel.Sym, Rel.Type, Src);
            if (IsNew) {
              AddressesChanged = true;
              // Find or create a ThunkSection for the new Thunk
              ThunkSection *TS;
              if (auto *TIS = T->getTargetInputSection())
                TS = getISThunkSec(TIS);
              else
                TS = getISDThunkSec(OS, IS, ISD, Rel.Type, Src);
              TS->addThunk(T);
              Thunks[T->ThunkSym] = T;
            }
            // Redirect relocation to Thunk, we never go via the PLT to a Thunk
            Rel.Sym = T->ThunkSym;
            Rel.Expr = fromPlt(Rel.Expr);
          }
      });
  // Merge all created synthetic ThunkSections back into OutputSection
  mergeThunks(OutputSections);
  ++Pass;
  return AddressesChanged;
}

template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
template void elf::scanRelocations<ELF64BE>(InputSectionBase &);