aboutsummaryrefslogtreecommitdiff
path: root/ELF/Target.cpp
blob: 8d54c93570facf010d9d740a0bf1314ddfe67217 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
//===- Target.cpp ---------------------------------------------------------===//
//
//                             The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Machine-specific things, such as applying relocations, creation of
// GOT or PLT entries, etc., are handled in this file.
//
// Refer the ELF spec for the single letter varaibles, S, A or P, used
// in this file. SA is S+A.
//
//===----------------------------------------------------------------------===//

#include "Target.h"
#include "Error.h"
#include "OutputSections.h"
#include "Symbols.h"

#include "llvm/ADT/ArrayRef.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ELF.h"

using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;

namespace lld {
namespace elf2 {

std::unique_ptr<TargetInfo> Target;

template <endianness E> static void add32(void *P, int32_t V) {
  write32<E>(P, read32<E>(P) + V);
}

static void add32le(uint8_t *P, int32_t V) { add32<support::little>(P, V); }
static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); }

template <unsigned N> static void checkInt(int64_t V, uint32_t Type) {
  if (isInt<N>(V))
    return;
  StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
  error("Relocation " + S + " out of range");
}

template <unsigned N> static void checkUInt(uint64_t V, uint32_t Type) {
  if (isUInt<N>(V))
    return;
  StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
  error("Relocation " + S + " out of range");
}

template <unsigned N> static void checkIntUInt(uint64_t V, uint32_t Type) {
  if (isInt<N>(V) || isUInt<N>(V))
    return;
  StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
  error("Relocation " + S + " out of range");
}

template <unsigned N> static void checkAlignment(uint64_t V, uint32_t Type) {
  if ((V & (N - 1)) == 0)
    return;
  StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
  error("Improper alignment for relocation " + S);
}

template <class ELFT> bool isGnuIFunc(const SymbolBody &S) {
  if (auto *SS = dyn_cast<DefinedElf<ELFT>>(&S))
    return SS->Sym.getType() == STT_GNU_IFUNC;
  return false;
}

template bool isGnuIFunc<ELF32LE>(const SymbolBody &S);
template bool isGnuIFunc<ELF32BE>(const SymbolBody &S);
template bool isGnuIFunc<ELF64LE>(const SymbolBody &S);
template bool isGnuIFunc<ELF64BE>(const SymbolBody &S);

namespace {
class X86TargetInfo final : public TargetInfo {
public:
  X86TargetInfo();
  void writeGotPltHeaderEntries(uint8_t *Buf) const override;
  unsigned getDynReloc(unsigned Type) const override;
  unsigned getTlsGotReloc(unsigned Type) const override;
  bool isTlsDynReloc(unsigned Type, const SymbolBody &S) const override;
  void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
  void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
                         uint64_t PltEntryAddr) const override;
  void writePltEntry(uint8_t *Buf, uint64_t GotAddr, uint64_t GotEntryAddr,
                     uint64_t PltEntryAddr, int32_t Index,
                     unsigned RelOff) const override;
  bool needsCopyRel(uint32_t Type, const SymbolBody &S) const override;
  bool relocNeedsDynRelative(unsigned Type) const override;
  bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
  bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
  void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
                   uint64_t SA, uint64_t ZA = 0,
                   uint8_t *PairedLoc = nullptr) const override;
  bool isTlsOptimized(unsigned Type, const SymbolBody *S) const override;
  unsigned relocateTlsOptimize(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
                               uint64_t P, uint64_t SA,
                               const SymbolBody &S) const override;
  bool isGotRelative(uint32_t Type) const override;

private:
  void relocateTlsLdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
                         uint64_t SA) const;
  void relocateTlsGdToIe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
                         uint64_t SA) const;
  void relocateTlsGdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
                         uint64_t SA) const;
  void relocateTlsIeToLe(unsigned Type, uint8_t *Loc, uint8_t *BufEnd,
                         uint64_t P, uint64_t SA) const;
};

class X86_64TargetInfo final : public TargetInfo {
public:
  X86_64TargetInfo();
  unsigned getPltRefReloc(unsigned Type) const override;
  bool isTlsDynReloc(unsigned Type, const SymbolBody &S) const override;
  void writeGotPltHeaderEntries(uint8_t *Buf) const override;
  void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
  void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
                         uint64_t PltEntryAddr) const override;
  void writePltEntry(uint8_t *Buf, uint64_t GotAddr, uint64_t GotEntryAddr,
                     uint64_t PltEntryAddr, int32_t Index,
                     unsigned RelOff) const override;
  bool needsCopyRel(uint32_t Type, const SymbolBody &S) const override;
  bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
  bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
  void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
                   uint64_t SA, uint64_t ZA = 0,
                   uint8_t *PairedLoc = nullptr) const override;
  bool isRelRelative(uint32_t Type) const override;
  bool isTlsOptimized(unsigned Type, const SymbolBody *S) const override;
  bool isSizeDynReloc(uint32_t Type, const SymbolBody &S) const override;
  unsigned relocateTlsOptimize(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
                               uint64_t P, uint64_t SA,
                               const SymbolBody &S) const override;

private:
  void relocateTlsLdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
                         uint64_t SA) const;
  void relocateTlsGdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
                         uint64_t SA) const;
  void relocateTlsGdToIe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
                         uint64_t SA) const;
  void relocateTlsIeToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
                         uint64_t SA) const;
};

class PPC64TargetInfo final : public TargetInfo {
public:
  PPC64TargetInfo();
  void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
  void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
                         uint64_t PltEntryAddr) const override;
  void writePltEntry(uint8_t *Buf, uint64_t GotAddr, uint64_t GotEntryAddr,
                     uint64_t PltEntryAddr, int32_t Index,
                     unsigned RelOff) const override;
  bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
  bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
  void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
                   uint64_t SA, uint64_t ZA = 0,
                   uint8_t *PairedLoc = nullptr) const override;
  bool isRelRelative(uint32_t Type) const override;
};

class AArch64TargetInfo final : public TargetInfo {
public:
  AArch64TargetInfo();
  unsigned getDynReloc(unsigned Type) const override;
  unsigned getPltRefReloc(unsigned Type) const override;
  void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
  void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
                         uint64_t PltEntryAddr) const override;
  void writePltEntry(uint8_t *Buf, uint64_t GotAddr, uint64_t GotEntryAddr,
                     uint64_t PltEntryAddr, int32_t Index,
                     unsigned RelOff) const override;
  bool needsCopyRel(uint32_t Type, const SymbolBody &S) const override;
  bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
  bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
  void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
                   uint64_t SA, uint64_t ZA = 0,
                   uint8_t *PairedLoc = nullptr) const override;
};

template <class ELFT> class MipsTargetInfo final : public TargetInfo {
public:
  MipsTargetInfo();
  void writeGotHeaderEntries(uint8_t *Buf) const override;
  void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
  void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
                         uint64_t PltEntryAddr) const override;
  void writePltEntry(uint8_t *Buf, uint64_t GotAddr, uint64_t GotEntryAddr,
                     uint64_t PltEntryAddr, int32_t Index,
                     unsigned RelOff) const override;
  bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
  bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
  void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
                   uint64_t SA, uint64_t ZA = 0,
                   uint8_t *PairedLoc = nullptr) const override;
  bool isRelRelative(uint32_t Type) const override;
};
} // anonymous namespace

TargetInfo *createTarget() {
  switch (Config->EMachine) {
  case EM_386:
    return new X86TargetInfo();
  case EM_AARCH64:
    return new AArch64TargetInfo();
  case EM_MIPS:
    switch (Config->EKind) {
    case ELF32LEKind:
      return new MipsTargetInfo<ELF32LE>();
    case ELF32BEKind:
      return new MipsTargetInfo<ELF32BE>();
    default:
      error("Unsupported MIPS target");
    }
  case EM_PPC64:
    return new PPC64TargetInfo();
  case EM_X86_64:
    return new X86_64TargetInfo();
  }
  error("Unknown target machine");
}

TargetInfo::~TargetInfo() {}

bool TargetInfo::isTlsOptimized(unsigned Type, const SymbolBody *S) const {
  return false;
}

uint64_t TargetInfo::getVAStart() const { return Config->Shared ? 0 : VAStart; }

bool TargetInfo::needsCopyRel(uint32_t Type, const SymbolBody &S) const {
  return false;
}

bool TargetInfo::isGotRelative(uint32_t Type) const { return false; }

unsigned TargetInfo::getPltRefReloc(unsigned Type) const { return PCRelReloc; }

bool TargetInfo::isRelRelative(uint32_t Type) const { return true; }

bool TargetInfo::isSizeDynReloc(uint32_t Type, const SymbolBody &S) const {
  return false;
}

unsigned TargetInfo::relocateTlsOptimize(uint8_t *Loc, uint8_t *BufEnd,
                                         uint32_t Type, uint64_t P, uint64_t SA,
                                         const SymbolBody &S) const {
  return 0;
}

void TargetInfo::writeGotHeaderEntries(uint8_t *Buf) const {}

void TargetInfo::writeGotPltHeaderEntries(uint8_t *Buf) const {}

X86TargetInfo::X86TargetInfo() {
  CopyReloc = R_386_COPY;
  PCRelReloc = R_386_PC32;
  GotReloc = R_386_GLOB_DAT;
  PltReloc = R_386_JUMP_SLOT;
  IRelativeReloc = R_386_IRELATIVE;
  RelativeReloc = R_386_RELATIVE;
  TlsGotReloc = R_386_TLS_TPOFF;
  TlsGlobalDynamicReloc = R_386_TLS_GD;
  TlsLocalDynamicReloc = R_386_TLS_LDM;
  TlsModuleIndexReloc = R_386_TLS_DTPMOD32;
  TlsOffsetReloc = R_386_TLS_DTPOFF32;
  LazyRelocations = true;
  PltEntrySize = 16;
  PltZeroEntrySize = 16;
}

void X86TargetInfo::writeGotPltHeaderEntries(uint8_t *Buf) const {
  write32le(Buf, Out<ELF32LE>::Dynamic->getVA());
}

void X86TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {
  // Skip 6 bytes of "pushl (GOT+4)"
  write32le(Buf, Plt + 6);
}

unsigned X86TargetInfo::getDynReloc(unsigned Type) const {
  if (Type == R_386_TLS_LE)
    return R_386_TLS_TPOFF;
  if (Type == R_386_TLS_LE_32)
    return R_386_TLS_TPOFF32;
  return Type;
}

unsigned X86TargetInfo::getTlsGotReloc(unsigned Type) const {
  if (Type == R_386_TLS_IE)
    return Type;
  return TlsGotReloc;
}

bool X86TargetInfo::isTlsDynReloc(unsigned Type, const SymbolBody &S) const {
  if (Type == R_386_TLS_LE || Type == R_386_TLS_LE_32 ||
      Type == R_386_TLS_GOTIE)
    return Config->Shared;
  if (Type == R_386_TLS_IE)
    return canBePreempted(&S, true);
  return Type == R_386_TLS_GD;
}

void X86TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
                                      uint64_t PltEntryAddr) const {
  // Executable files and shared object files have
  // separate procedure linkage tables.
  if (Config->Shared) {
    const uint8_t V[] = {
        0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx)
        0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *8(%ebx)
        0x90, 0x90, 0x90, 0x90              // nop;nop;nop;nop
    };
    memcpy(Buf, V, sizeof(V));
    return;
  }

  const uint8_t PltData[] = {
      0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOT+4)
      0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *(GOT+8)
      0x90, 0x90, 0x90, 0x90              // nop;nop;nop;nop
  };
  memcpy(Buf, PltData, sizeof(PltData));
  write32le(Buf + 2, GotEntryAddr + 4); // GOT+4
  write32le(Buf + 8, GotEntryAddr + 8); // GOT+8
}

void X86TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotAddr,
                                  uint64_t GotEntryAddr, uint64_t PltEntryAddr,
                                  int32_t Index, unsigned RelOff) const {
  const uint8_t Inst[] = {
      0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx)
      0x68, 0x00, 0x00, 0x00, 0x00,       // pushl $reloc_offset
      0xe9, 0x00, 0x00, 0x00, 0x00        // jmp .PLT0@PC
  };
  memcpy(Buf, Inst, sizeof(Inst));
  // jmp *foo@GOT(%ebx) or jmp *foo_in_GOT
  Buf[1] = Config->Shared ? 0xa3 : 0x25;
  write32le(Buf + 2, Config->Shared ? (GotEntryAddr - GotAddr) : GotEntryAddr);
  write32le(Buf + 7, RelOff);
  write32le(Buf + 12, -Index * PltEntrySize - PltZeroEntrySize - 16);
}

bool X86TargetInfo::needsCopyRel(uint32_t Type, const SymbolBody &S) const {
  if (Type == R_386_32 || Type == R_386_16 || Type == R_386_8)
    if (auto *SS = dyn_cast<SharedSymbol<ELF32LE>>(&S))
      return SS->Sym.getType() == STT_OBJECT;
  return false;
}

bool X86TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
  if (S.isTls() && Type == R_386_TLS_GD)
    return Target->isTlsOptimized(Type, &S) && canBePreempted(&S, true);
  if (Type == R_386_TLS_GOTIE || Type == R_386_TLS_IE)
    return !isTlsOptimized(Type, &S);
  return Type == R_386_GOT32 || relocNeedsPlt(Type, S);
}

bool X86TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
  return isGnuIFunc<ELF32LE>(S) ||
         (Type == R_386_PLT32 && canBePreempted(&S, true)) ||
         (Type == R_386_PC32 && S.isShared());
}

bool X86TargetInfo::isGotRelative(uint32_t Type) const {
  // This relocation does not require got entry,
  // but it is relative to got and needs it to be created.
  // Here we request for that.
  return Type == R_386_GOTOFF;
}

void X86TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
                                uint64_t P, uint64_t SA, uint64_t ZA,
                                uint8_t *PairedLoc) const {
  switch (Type) {
  case R_386_32:
    add32le(Loc, SA);
    break;
  case R_386_GOT32:
  case R_386_GOTOFF:
    add32le(Loc, SA - Out<ELF32LE>::Got->getVA());
    break;
  case R_386_GOTPC:
    add32le(Loc, SA + Out<ELF32LE>::Got->getVA() - P);
    break;
  case R_386_PC32:
  case R_386_PLT32:
    add32le(Loc, SA - P);
    break;
  case R_386_TLS_GD:
  case R_386_TLS_LDM:
  case R_386_TLS_TPOFF: {
    uint64_t V = SA - Out<ELF32LE>::Got->getVA() -
                 Out<ELF32LE>::Got->getNumEntries() * 4;
    checkInt<32>(V, Type);
    write32le(Loc, V);
    break;
  }
  case R_386_TLS_IE:
  case R_386_TLS_LDO_32:
    write32le(Loc, SA);
    break;
  case R_386_TLS_LE:
    write32le(Loc, SA - Out<ELF32LE>::TlsPhdr->p_memsz);
    break;
  case R_386_TLS_LE_32:
    write32le(Loc, Out<ELF32LE>::TlsPhdr->p_memsz - SA);
    break;
  default:
    error("unrecognized reloc " + Twine(Type));
  }
}

bool X86TargetInfo::isTlsOptimized(unsigned Type, const SymbolBody *S) const {
  if (Config->Shared || (S && !S->isTls()))
    return false;
  return Type == R_386_TLS_LDO_32 || Type == R_386_TLS_LDM ||
         Type == R_386_TLS_GD ||
         (Type == R_386_TLS_IE && !canBePreempted(S, true)) ||
         (Type == R_386_TLS_GOTIE && !canBePreempted(S, true));
}

bool X86TargetInfo::relocNeedsDynRelative(unsigned Type) const {
  return Config->Shared && Type == R_386_TLS_IE;
}

unsigned X86TargetInfo::relocateTlsOptimize(uint8_t *Loc, uint8_t *BufEnd,
                                            uint32_t Type, uint64_t P,
                                            uint64_t SA,
                                            const SymbolBody &S) const {
  switch (Type) {
  case R_386_TLS_GD:
    if (canBePreempted(&S, true))
      relocateTlsGdToIe(Loc, BufEnd, P, SA);
    else
      relocateTlsGdToLe(Loc, BufEnd, P, SA);
    // The next relocation should be against __tls_get_addr, so skip it
    return 1;
  case R_386_TLS_GOTIE:
  case R_386_TLS_IE:
    relocateTlsIeToLe(Type, Loc, BufEnd, P, SA);
    return 0;
  case R_386_TLS_LDM:
    relocateTlsLdToLe(Loc, BufEnd, P, SA);
    // The next relocation should be against __tls_get_addr, so skip it
    return 1;
  case R_386_TLS_LDO_32:
    relocateOne(Loc, BufEnd, R_386_TLS_LE, P, SA);
    return 0;
  }
  llvm_unreachable("Unknown TLS optimization");
}

// "Ulrich Drepper, ELF Handling For Thread-Local Storage" (5.1
// IA-32 Linker Optimizations, http://www.akkadia.org/drepper/tls.pdf) shows
// how GD can be optimized to IE:
//   leal x@tlsgd(, %ebx, 1),
//   call __tls_get_addr@plt
// Is converted to:
//   movl %gs:0, %eax
//   addl x@gotntpoff(%ebx), %eax
void X86TargetInfo::relocateTlsGdToIe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
                                      uint64_t SA) const {
  const uint8_t Inst[] = {
      0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
      0x03, 0x83, 0x00, 0x00, 0x00, 0x00  // addl 0(%ebx), %eax
  };
  memcpy(Loc - 3, Inst, sizeof(Inst));
  relocateOne(Loc + 5, BufEnd, R_386_32, P,
              SA - Out<ELF32LE>::Got->getVA() -
                  Out<ELF32LE>::Got->getNumEntries() * 4);
}

// GD can be optimized to LE:
//   leal x@tlsgd(, %ebx, 1),
//   call __tls_get_addr@plt
// Can be converted to:
//   movl %gs:0,%eax
//   addl $x@ntpoff,%eax
// But gold emits subl $foo@tpoff,%eax instead of addl.
// These instructions are completely equal in behavior.
// This method generates subl to be consistent with gold.
void X86TargetInfo::relocateTlsGdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
                                      uint64_t SA) const {
  const uint8_t Inst[] = {
      0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
      0x81, 0xe8, 0x00, 0x00, 0x00, 0x00  // subl 0(%ebx), %eax
  };
  memcpy(Loc - 3, Inst, sizeof(Inst));
  relocateOne(Loc + 5, BufEnd, R_386_32, P,
              Out<ELF32LE>::TlsPhdr->p_memsz - SA);
}

// LD can be optimized to LE:
//   leal foo(%reg),%eax
//   call ___tls_get_addr
// Is converted to:
//   movl %gs:0,%eax
//   nop
//   leal 0(%esi,1),%esi
void X86TargetInfo::relocateTlsLdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
                                      uint64_t SA) const {
  const uint8_t Inst[] = {
      0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
      0x90,                               // nop
      0x8d, 0x74, 0x26, 0x00              // leal 0(%esi,1),%esi
  };
  memcpy(Loc - 2, Inst, sizeof(Inst));
}

// In some conditions, relocations can be optimized to avoid using GOT.
// This function does that for Initial Exec to Local Exec case.
// Read "ELF Handling For Thread-Local Storage, 5.1
// IA-32 Linker Optimizations" (http://www.akkadia.org/drepper/tls.pdf)
// by Ulrich Drepper for details.
void X86TargetInfo::relocateTlsIeToLe(unsigned Type, uint8_t *Loc,
                                      uint8_t *BufEnd, uint64_t P,
                                      uint64_t SA) const {
  // Ulrich's document section 6.2 says that @gotntpoff can
  // be used with MOVL or ADDL instructions.
  // @indntpoff is similar to @gotntpoff, but for use in
  // position dependent code.
  uint8_t *Inst = Loc - 2;
  uint8_t *Op = Loc - 1;
  uint8_t Reg = (Loc[-1] >> 3) & 7;
  bool IsMov = *Inst == 0x8b;
  if (Type == R_386_TLS_IE) {
    // For R_386_TLS_IE relocation we perform the next transformations:
    // MOVL foo@INDNTPOFF,%EAX is transformed to MOVL $foo,%EAX
    // MOVL foo@INDNTPOFF,%REG is transformed to MOVL $foo,%REG
    // ADDL foo@INDNTPOFF,%REG is transformed to ADDL $foo,%REG
    // First one is special because when EAX is used the sequence is 5 bytes
    // long, otherwise it is 6 bytes.
    if (*Op == 0xa1) {
      *Op = 0xb8;
    } else {
      *Inst = IsMov ? 0xc7 : 0x81;
      *Op = 0xc0 | ((*Op >> 3) & 7);
    }
  } else {
    // R_386_TLS_GOTIE relocation can be optimized to
    // R_386_TLS_LE so that it does not use GOT.
    // "MOVL foo@GOTTPOFF(%RIP), %REG" is transformed to "MOVL $foo, %REG".
    // "ADDL foo@GOTNTPOFF(%RIP), %REG" is transformed to "LEAL foo(%REG), %REG"
    // Note: gold converts to ADDL instead of LEAL.
    *Inst = IsMov ? 0xc7 : 0x8d;
    if (IsMov)
      *Op = 0xc0 | ((*Op >> 3) & 7);
    else
      *Op = 0x80 | Reg | (Reg << 3);
  }
  relocateOne(Loc, BufEnd, R_386_TLS_LE, P, SA);
}

X86_64TargetInfo::X86_64TargetInfo() {
  CopyReloc = R_X86_64_COPY;
  PCRelReloc = R_X86_64_PC32;
  GotReloc = R_X86_64_GLOB_DAT;
  PltReloc = R_X86_64_JUMP_SLOT;
  RelativeReloc = R_X86_64_RELATIVE;
  IRelativeReloc = R_X86_64_IRELATIVE;
  TlsGotReloc = R_X86_64_TPOFF64;
  TlsLocalDynamicReloc = R_X86_64_TLSLD;
  TlsGlobalDynamicReloc = R_X86_64_TLSGD;
  TlsModuleIndexReloc = R_X86_64_DTPMOD64;
  TlsOffsetReloc = R_X86_64_DTPOFF64;
  LazyRelocations = true;
  PltEntrySize = 16;
  PltZeroEntrySize = 16;
}

void X86_64TargetInfo::writeGotPltHeaderEntries(uint8_t *Buf) const {
  write64le(Buf, Out<ELF64LE>::Dynamic->getVA());
}

void X86_64TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {
  // Skip 6 bytes of "jmpq *got(%rip)"
  write32le(Buf, Plt + 6);
}

void X86_64TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
                                         uint64_t PltEntryAddr) const {
  const uint8_t PltData[] = {
      0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip)
      0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip)
      0x0f, 0x1f, 0x40, 0x00              // nopl 0x0(rax)
  };
  memcpy(Buf, PltData, sizeof(PltData));
  write32le(Buf + 2, GotEntryAddr - PltEntryAddr + 2); // GOT+8
  write32le(Buf + 8, GotEntryAddr - PltEntryAddr + 4); // GOT+16
}

void X86_64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotAddr,
                                     uint64_t GotEntryAddr,
                                     uint64_t PltEntryAddr, int32_t Index,
                                     unsigned RelOff) const {
  const uint8_t Inst[] = {
      0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip)
      0x68, 0x00, 0x00, 0x00, 0x00,       // pushq <relocation index>
      0xe9, 0x00, 0x00, 0x00, 0x00        // jmpq plt[0]
  };
  memcpy(Buf, Inst, sizeof(Inst));

  write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6);
  write32le(Buf + 7, Index);
  write32le(Buf + 12, -Index * PltEntrySize - PltZeroEntrySize - 16);
}

bool X86_64TargetInfo::needsCopyRel(uint32_t Type, const SymbolBody &S) const {
  if (Type == R_X86_64_32S || Type == R_X86_64_32 || Type == R_X86_64_PC32 ||
      Type == R_X86_64_64)
    if (auto *SS = dyn_cast<SharedSymbol<ELF64LE>>(&S))
      return SS->Sym.getType() == STT_OBJECT;
  return false;
}

bool X86_64TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
  if (Type == R_X86_64_TLSGD)
    return Target->isTlsOptimized(Type, &S) && canBePreempted(&S, true);
  if (Type == R_X86_64_GOTTPOFF)
    return !isTlsOptimized(Type, &S);
  return Type == R_X86_64_GOTPCREL || relocNeedsPlt(Type, S);
}

bool X86_64TargetInfo::isTlsDynReloc(unsigned Type, const SymbolBody &S) const {
  return Type == R_X86_64_GOTTPOFF || Type == R_X86_64_TLSGD;
}

unsigned X86_64TargetInfo::getPltRefReloc(unsigned Type) const {
  if (Type == R_X86_64_PLT32)
    return R_X86_64_PC32;
  return Type;
}

bool X86_64TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
  if (needsCopyRel(Type, S))
    return false;
  if (isGnuIFunc<ELF64LE>(S))
    return true;

  switch (Type) {
  default:
    return false;
  case R_X86_64_32:
  case R_X86_64_64:
  case R_X86_64_PC32:
    // This relocation is defined to have a value of (S + A - P).
    // The problems start when a non PIC program calls a function in a shared
    // library.
    // In an ideal world, we could just report an error saying the relocation
    // can overflow at runtime.
    // In the real world with glibc, crt1.o has a R_X86_64_PC32 pointing to
    // libc.so.
    //
    // The general idea on how to handle such cases is to create a PLT entry
    // and use that as the function value.
    //
    // For the static linking part, we just return true and everything else
    // will use the the PLT entry as the address.
    //
    // The remaining (unimplemented) problem is making sure pointer equality
    // still works. We need the help of the dynamic linker for that. We
    // let it know that we have a direct reference to a so symbol by creating
    // an undefined symbol with a non zero st_value. Seeing that, the
    // dynamic linker resolves the symbol to the value of the symbol we created.
    // This is true even for got entries, so pointer equality is maintained.
    // To avoid an infinite loop, the only entry that points to the
    // real function is a dedicated got entry used by the plt. That is
    // identified by special relocation types (R_X86_64_JUMP_SLOT,
    // R_386_JMP_SLOT, etc).
    return S.isShared();
  case R_X86_64_PLT32:
    return canBePreempted(&S, true);
  }
}

bool X86_64TargetInfo::isRelRelative(uint32_t Type) const {
  switch (Type) {
  default:
    return false;
  case R_X86_64_DTPOFF32:
  case R_X86_64_DTPOFF64:
  case R_X86_64_PC8:
  case R_X86_64_PC16:
  case R_X86_64_PC32:
  case R_X86_64_PC64:
  case R_X86_64_PLT32:
  case R_X86_64_SIZE32:
  case R_X86_64_SIZE64:
    return true;
  }
}

bool X86_64TargetInfo::isSizeDynReloc(uint32_t Type,
                                      const SymbolBody &S) const {
  return (Type == R_X86_64_SIZE32 || Type == R_X86_64_SIZE64) &&
         canBePreempted(&S, false);
}

bool X86_64TargetInfo::isTlsOptimized(unsigned Type,
                                      const SymbolBody *S) const {
  if (Config->Shared || (S && !S->isTls()))
    return false;
  return Type == R_X86_64_TLSGD || Type == R_X86_64_TLSLD ||
         Type == R_X86_64_DTPOFF32 ||
         (Type == R_X86_64_GOTTPOFF && !canBePreempted(S, true));
}

// "Ulrich Drepper, ELF Handling For Thread-Local Storage" (5.5
// x86-x64 linker optimizations, http://www.akkadia.org/drepper/tls.pdf) shows
// how LD can be optimized to LE:
//   leaq bar@tlsld(%rip), %rdi
//   callq __tls_get_addr@PLT
//   leaq bar@dtpoff(%rax), %rcx
// Is converted to:
//  .word 0x6666
//  .byte 0x66
//  mov %fs:0,%rax
//  leaq bar@tpoff(%rax), %rcx
void X86_64TargetInfo::relocateTlsLdToLe(uint8_t *Loc, uint8_t *BufEnd,
                                         uint64_t P, uint64_t SA) const {
  const uint8_t Inst[] = {
      0x66, 0x66,                                          //.word 0x6666
      0x66,                                                //.byte 0x66
      0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
  };
  memcpy(Loc - 3, Inst, sizeof(Inst));
}

// "Ulrich Drepper, ELF Handling For Thread-Local Storage" (5.5
// x86-x64 linker optimizations, http://www.akkadia.org/drepper/tls.pdf) shows
// how GD can be optimized to LE:
//  .byte 0x66
//  leaq x@tlsgd(%rip), %rdi
//  .word 0x6666
//  rex64
//  call __tls_get_addr@plt
// Is converted to:
//  mov %fs:0x0,%rax
//  lea x@tpoff,%rax
void X86_64TargetInfo::relocateTlsGdToLe(uint8_t *Loc, uint8_t *BufEnd,
                                         uint64_t P, uint64_t SA) const {
  const uint8_t Inst[] = {
      0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
      0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00              // lea x@tpoff,%rax
  };
  memcpy(Loc - 4, Inst, sizeof(Inst));
  relocateOne(Loc + 8, BufEnd, R_X86_64_TPOFF32, P, SA);
}

// "Ulrich Drepper, ELF Handling For Thread-Local Storage" (5.5
// x86-x64 linker optimizations, http://www.akkadia.org/drepper/tls.pdf) shows
// how GD can be optimized to IE:
//  .byte 0x66
//  leaq x@tlsgd(%rip), %rdi
//  .word 0x6666
//  rex64
//  call __tls_get_addr@plt
// Is converted to:
//  mov %fs:0x0,%rax
//  addq x@tpoff,%rax
void X86_64TargetInfo::relocateTlsGdToIe(uint8_t *Loc, uint8_t *BufEnd,
                                         uint64_t P, uint64_t SA) const {
  const uint8_t Inst[] = {
      0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
      0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00              // addq x@tpoff,%rax
  };
  memcpy(Loc - 4, Inst, sizeof(Inst));
  relocateOne(Loc + 8, BufEnd, R_X86_64_TPOFF64, P + 12, SA);
}

// In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
// R_X86_64_TPOFF32 so that it does not use GOT.
// This function does that. Read "ELF Handling For Thread-Local Storage,
// 5.5 x86-x64 linker optimizations" (http://www.akkadia.org/drepper/tls.pdf)
// by Ulrich Drepper for details.
void X86_64TargetInfo::relocateTlsIeToLe(uint8_t *Loc, uint8_t *BufEnd,
                                         uint64_t P, uint64_t SA) const {
  // Ulrich's document section 6.5 says that @gottpoff(%rip) must be
  // used in MOVQ or ADDQ instructions only.
  // "MOVQ foo@GOTTPOFF(%RIP), %REG" is transformed to "MOVQ $foo, %REG".
  // "ADDQ foo@GOTTPOFF(%RIP), %REG" is transformed to "LEAQ foo(%REG), %REG"
  // (if the register is not RSP/R12) or "ADDQ $foo, %RSP".
  // Opcodes info can be found at http://ref.x86asm.net/coder64.html#x48.
  uint8_t *Prefix = Loc - 3;
  uint8_t *Inst = Loc - 2;
  uint8_t *RegSlot = Loc - 1;
  uint8_t Reg = Loc[-1] >> 3;
  bool IsMov = *Inst == 0x8b;
  bool RspAdd = !IsMov && Reg == 4;
  // r12 and rsp registers requires special handling.
  // Problem is that for other registers, for example leaq 0xXXXXXXXX(%r11),%r11
  // result out is 7 bytes: 4d 8d 9b XX XX XX XX,
  // but leaq 0xXXXXXXXX(%r12),%r12 is 8 bytes: 4d 8d a4 24 XX XX XX XX.
  // The same true for rsp. So we convert to addq for them, saving 1 byte that
  // we dont have.
  if (RspAdd)
    *Inst = 0x81;
  else
    *Inst = IsMov ? 0xc7 : 0x8d;
  if (*Prefix == 0x4c)
    *Prefix = (IsMov || RspAdd) ? 0x49 : 0x4d;
  *RegSlot = (IsMov || RspAdd) ? (0xc0 | Reg) : (0x80 | Reg | (Reg << 3));
  relocateOne(Loc, BufEnd, R_X86_64_TPOFF32, P, SA);
}

// This function applies a TLS relocation with an optimization as described
// in the Ulrich's document. As a result of rewriting instructions at the
// relocation target, relocations immediately follow the TLS relocation (which
// would be applied to rewritten instructions) may have to be skipped.
// This function returns a number of relocations that need to be skipped.
unsigned X86_64TargetInfo::relocateTlsOptimize(uint8_t *Loc, uint8_t *BufEnd,
                                               uint32_t Type, uint64_t P,
                                               uint64_t SA,
                                               const SymbolBody &S) const {
  switch (Type) {
  case R_X86_64_DTPOFF32:
    relocateOne(Loc, BufEnd, R_X86_64_TPOFF32, P, SA);
    return 0;
  case R_X86_64_GOTTPOFF:
    relocateTlsIeToLe(Loc, BufEnd, P, SA);
    return 0;
  case R_X86_64_TLSGD: {
    if (canBePreempted(&S, true))
      relocateTlsGdToIe(Loc, BufEnd, P, SA);
    else
      relocateTlsGdToLe(Loc, BufEnd, P, SA);
    // The next relocation should be against __tls_get_addr, so skip it
    return 1;
  }
  case R_X86_64_TLSLD:
    relocateTlsLdToLe(Loc, BufEnd, P, SA);
    // The next relocation should be against __tls_get_addr, so skip it
    return 1;
  }
  llvm_unreachable("Unknown TLS optimization");
}

void X86_64TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
                                   uint64_t P, uint64_t SA, uint64_t ZA,
                                   uint8_t *PairedLoc) const {
  switch (Type) {
  case R_X86_64_32:
    checkUInt<32>(SA, Type);
    write32le(Loc, SA);
    break;
  case R_X86_64_32S:
    checkInt<32>(SA, Type);
    write32le(Loc, SA);
    break;
  case R_X86_64_64:
    write64le(Loc, SA);
    break;
  case R_X86_64_DTPOFF32:
    write32le(Loc, SA);
    break;
  case R_X86_64_DTPOFF64:
    write64le(Loc, SA);
    break;
  case R_X86_64_GOTPCREL:
  case R_X86_64_PC32:
  case R_X86_64_PLT32:
  case R_X86_64_TLSGD:
  case R_X86_64_TLSLD:
    write32le(Loc, SA - P);
    break;
  case R_X86_64_SIZE32:
    write32le(Loc, ZA);
    break;
  case R_X86_64_SIZE64:
    write64le(Loc, ZA);
    break;
  case R_X86_64_TPOFF32: {
    uint64_t Val = SA - Out<ELF64LE>::TlsPhdr->p_memsz;
    checkInt<32>(Val, Type);
    write32le(Loc, Val);
    break;
  }
  case R_X86_64_TPOFF64:
    write32le(Loc, SA - P);
    break;
  default:
    error("unrecognized reloc " + Twine(Type));
  }
}

// Relocation masks following the #lo(value), #hi(value), #ha(value),
// #higher(value), #highera(value), #highest(value), and #highesta(value)
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
// document.
static uint16_t applyPPCLo(uint64_t V) { return V; }
static uint16_t applyPPCHi(uint64_t V) { return V >> 16; }
static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; }
static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; }
static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; }
static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; }
static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; }

PPC64TargetInfo::PPC64TargetInfo() {
  PCRelReloc = R_PPC64_REL24;
  GotReloc = R_PPC64_GLOB_DAT;
  RelativeReloc = R_PPC64_RELATIVE;
  PltEntrySize = 32;

  // We need 64K pages (at least under glibc/Linux, the loader won't
  // set different permissions on a finer granularity than that).
  PageSize = 65536;

  // The PPC64 ELF ABI v1 spec, says:
  //
  //   It is normally desirable to put segments with different characteristics
  //   in separate 256 Mbyte portions of the address space, to give the
  //   operating system full paging flexibility in the 64-bit address space.
  //
  // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
  // use 0x10000000 as the starting address.
  VAStart = 0x10000000;
}

uint64_t getPPC64TocBase() {
  // The TOC consists of sections .got, .toc, .tocbss, .plt in that
  // order. The TOC starts where the first of these sections starts.

  // FIXME: This obviously does not do the right thing when there is no .got
  // section, but there is a .toc or .tocbss section.
  uint64_t TocVA = Out<ELF64BE>::Got->getVA();
  if (!TocVA)
    TocVA = Out<ELF64BE>::Plt->getVA();

  // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
  // thus permitting a full 64 Kbytes segment. Note that the glibc startup
  // code (crt1.o) assumes that you can get from the TOC base to the
  // start of the .toc section with only a single (signed) 16-bit relocation.
  return TocVA + 0x8000;
}

void PPC64TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {}
void PPC64TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
                                        uint64_t PltEntryAddr) const {}
void PPC64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotAddr,
                                    uint64_t GotEntryAddr,
                                    uint64_t PltEntryAddr, int32_t Index,
                                    unsigned RelOff) const {
  uint64_t Off = GotEntryAddr - getPPC64TocBase();

  // FIXME: What we should do, in theory, is get the offset of the function
  // descriptor in the .opd section, and use that as the offset from %r2 (the
  // TOC-base pointer). Instead, we have the GOT-entry offset, and that will
  // be a pointer to the function descriptor in the .opd section. Using
  // this scheme is simpler, but requires an extra indirection per PLT dispatch.

  write32be(Buf,      0xf8410028);                   // std %r2, 40(%r1)
  write32be(Buf + 4,  0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha
  write32be(Buf + 8,  0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11)
  write32be(Buf + 12, 0xe96c0000);                   // ld %r11,0(%r12)
  write32be(Buf + 16, 0x7d6903a6);                   // mtctr %r11
  write32be(Buf + 20, 0xe84c0008);                   // ld %r2,8(%r12)
  write32be(Buf + 24, 0xe96c0010);                   // ld %r11,16(%r12)
  write32be(Buf + 28, 0x4e800420);                   // bctr
}

bool PPC64TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
  if (relocNeedsPlt(Type, S))
    return true;

  switch (Type) {
  default: return false;
  case R_PPC64_GOT16:
  case R_PPC64_GOT16_DS:
  case R_PPC64_GOT16_HA:
  case R_PPC64_GOT16_HI:
  case R_PPC64_GOT16_LO:
  case R_PPC64_GOT16_LO_DS:
    return true;
  }
}

bool PPC64TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
  // These are function calls that need to be redirected through a PLT stub.
  return Type == R_PPC64_REL24 && canBePreempted(&S, false);
}

bool PPC64TargetInfo::isRelRelative(uint32_t Type) const {
  switch (Type) {
  default:
    return true;
  case R_PPC64_ADDR64:
  case R_PPC64_TOC:
    return false;
  }
}

void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
                                  uint64_t P, uint64_t SA, uint64_t ZA,
                                  uint8_t *PairedLoc) const {
  uint64_t TB = getPPC64TocBase();

  // For a TOC-relative relocation, adjust the addend and proceed in terms of
  // the corresponding ADDR16 relocation type.
  switch (Type) {
  case R_PPC64_TOC16:       Type = R_PPC64_ADDR16;       SA -= TB; break;
  case R_PPC64_TOC16_DS:    Type = R_PPC64_ADDR16_DS;    SA -= TB; break;
  case R_PPC64_TOC16_HA:    Type = R_PPC64_ADDR16_HA;    SA -= TB; break;
  case R_PPC64_TOC16_HI:    Type = R_PPC64_ADDR16_HI;    SA -= TB; break;
  case R_PPC64_TOC16_LO:    Type = R_PPC64_ADDR16_LO;    SA -= TB; break;
  case R_PPC64_TOC16_LO_DS: Type = R_PPC64_ADDR16_LO_DS; SA -= TB; break;
  default: break;
  }

  switch (Type) {
  case R_PPC64_ADDR14: {
    checkAlignment<4>(SA, Type);
    // Preserve the AA/LK bits in the branch instruction
    uint8_t AALK = Loc[3];
    write16be(Loc + 2, (AALK & 3) | (SA & 0xfffc));
    break;
  }
  case R_PPC64_ADDR16:
    checkInt<16>(SA, Type);
    write16be(Loc, SA);
    break;
  case R_PPC64_ADDR16_DS:
    checkInt<16>(SA, Type);
    write16be(Loc, (read16be(Loc) & 3) | (SA & ~3));
    break;
  case R_PPC64_ADDR16_HA:
    write16be(Loc, applyPPCHa(SA));
    break;
  case R_PPC64_ADDR16_HI:
    write16be(Loc, applyPPCHi(SA));
    break;
  case R_PPC64_ADDR16_HIGHER:
    write16be(Loc, applyPPCHigher(SA));
    break;
  case R_PPC64_ADDR16_HIGHERA:
    write16be(Loc, applyPPCHighera(SA));
    break;
  case R_PPC64_ADDR16_HIGHEST:
    write16be(Loc, applyPPCHighest(SA));
    break;
  case R_PPC64_ADDR16_HIGHESTA:
    write16be(Loc, applyPPCHighesta(SA));
    break;
  case R_PPC64_ADDR16_LO:
    write16be(Loc, applyPPCLo(SA));
    break;
  case R_PPC64_ADDR16_LO_DS:
    write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(SA) & ~3));
    break;
  case R_PPC64_ADDR32:
    checkInt<32>(SA, Type);
    write32be(Loc, SA);
    break;
  case R_PPC64_ADDR64:
    write64be(Loc, SA);
    break;
  case R_PPC64_REL16_HA:
    write16be(Loc, applyPPCHa(SA - P));
    break;
  case R_PPC64_REL16_HI:
    write16be(Loc, applyPPCHi(SA - P));
    break;
  case R_PPC64_REL16_LO:
    write16be(Loc, applyPPCLo(SA - P));
    break;
  case R_PPC64_REL24: {
    // If we have an undefined weak symbol, we might get here with a symbol
    // address of zero. That could overflow, but the code must be unreachable,
    // so don't bother doing anything at all.
    if (!SA)
      break;

    uint64_t PltStart = Out<ELF64BE>::Plt->getVA();
    uint64_t PltEnd = PltStart + Out<ELF64BE>::Plt->getSize();
    bool InPlt = PltStart <= SA && SA < PltEnd;

    if (!InPlt && Out<ELF64BE>::Opd) {
      // If this is a local call, and we currently have the address of a
      // function-descriptor, get the underlying code address instead.
      uint64_t OpdStart = Out<ELF64BE>::Opd->getVA();
      uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->getSize();
      bool InOpd = OpdStart <= SA && SA < OpdEnd;

      if (InOpd)
        SA = read64be(&Out<ELF64BE>::OpdBuf[SA - OpdStart]);
    }

    uint32_t Mask = 0x03FFFFFC;
    checkInt<24>(SA - P, Type);
    write32be(Loc, (read32be(Loc) & ~Mask) | ((SA - P) & Mask));

    uint32_t Nop = 0x60000000;
    if (InPlt && Loc + 8 <= BufEnd && read32be(Loc + 4) == Nop)
      write32be(Loc + 4, 0xe8410028); // ld %r2, 40(%r1)
    break;
  }
  case R_PPC64_REL32:
    checkInt<32>(SA - P, Type);
    write32be(Loc, SA - P);
    break;
  case R_PPC64_REL64:
    write64be(Loc, SA - P);
    break;
  case R_PPC64_TOC:
    write64be(Loc, SA);
    break;
  default:
    error("unrecognized reloc " + Twine(Type));
  }
}

AArch64TargetInfo::AArch64TargetInfo() {
  CopyReloc = R_AARCH64_COPY;
  GotReloc = R_AARCH64_GLOB_DAT;
  PltReloc = R_AARCH64_JUMP_SLOT;
  LazyRelocations = true;
  PltEntrySize = 16;
  PltZeroEntrySize = 32;
}

unsigned AArch64TargetInfo::getDynReloc(unsigned Type) const {
  if (Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64)
    return Type;
  StringRef S = getELFRelocationTypeName(EM_AARCH64, Type);
  error("Relocation " + S + " cannot be used when making a shared object; "
                            "recompile with -fPIC.");
}

unsigned AArch64TargetInfo::getPltRefReloc(unsigned Type) const { return Type; }

void AArch64TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {
  write64le(Buf, Out<ELF64LE>::Plt->getVA());
}

void AArch64TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
                                          uint64_t PltEntryAddr) const {
  const uint8_t PltData[] = {
      0xf0, 0x7b, 0xbf, 0xa9, // stp	x16, x30, [sp,#-16]!
      0x10, 0x00, 0x00, 0x90, // adrp	x16, Page(&(.plt.got[2]))
      0x11, 0x02, 0x40, 0xf9, // ldr	x17, [x16, Offset(&(.plt.got[2]))]
      0x10, 0x02, 0x00, 0x91, // add	x16, x16, Offset(&(.plt.got[2]))
      0x20, 0x02, 0x1f, 0xd6, // br	x17
      0x1f, 0x20, 0x03, 0xd5, // nop
      0x1f, 0x20, 0x03, 0xd5, // nop
      0x1f, 0x20, 0x03, 0xd5  // nop
  };
  memcpy(Buf, PltData, sizeof(PltData));

  relocateOne(Buf + 4, Buf + 8, R_AARCH64_ADR_PREL_PG_HI21, PltEntryAddr + 4,
              GotEntryAddr + 16);
  relocateOne(Buf + 8, Buf + 12, R_AARCH64_LDST64_ABS_LO12_NC, PltEntryAddr + 8,
              GotEntryAddr + 16);
  relocateOne(Buf + 12, Buf + 16, R_AARCH64_ADD_ABS_LO12_NC, PltEntryAddr + 12,
              GotEntryAddr + 16);
}

void AArch64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotAddr,
                                      uint64_t GotEntryAddr,
                                      uint64_t PltEntryAddr, int32_t Index,
                                      unsigned RelOff) const {
  const uint8_t Inst[] = {
      0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
      0x11, 0x02, 0x40, 0xf9, // ldr  x17, [x16, Offset(&(.plt.got[n]))]
      0x10, 0x02, 0x00, 0x91, // add  x16, x16, Offset(&(.plt.got[n]))
      0x20, 0x02, 0x1f, 0xd6  // br   x17
  };
  memcpy(Buf, Inst, sizeof(Inst));

  relocateOne(Buf, Buf + 4, R_AARCH64_ADR_PREL_PG_HI21, PltEntryAddr,
              GotEntryAddr);
  relocateOne(Buf + 4, Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, PltEntryAddr + 4,
              GotEntryAddr);
  relocateOne(Buf + 8, Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, PltEntryAddr + 8,
              GotEntryAddr);
}

bool AArch64TargetInfo::needsCopyRel(uint32_t Type, const SymbolBody &S) const {
  if (Config->Shared)
    return false;
  switch (Type) {
  default:
    return false;
  case R_AARCH64_ABS16:
  case R_AARCH64_ABS32:
  case R_AARCH64_ABS64:
  case R_AARCH64_ADD_ABS_LO12_NC:
  case R_AARCH64_ADR_PREL_LO21:
  case R_AARCH64_ADR_PREL_PG_HI21:
  case R_AARCH64_LDST8_ABS_LO12_NC:
  case R_AARCH64_LDST32_ABS_LO12_NC:
  case R_AARCH64_LDST64_ABS_LO12_NC:
    if (auto *SS = dyn_cast<SharedSymbol<ELF64LE>>(&S))
      return SS->Sym.getType() == STT_OBJECT;
    return false;
  }
}

bool AArch64TargetInfo::relocNeedsGot(uint32_t Type,
                                      const SymbolBody &S) const {
  return Type == R_AARCH64_ADR_GOT_PAGE || Type == R_AARCH64_LD64_GOT_LO12_NC ||
         relocNeedsPlt(Type, S);
}

bool AArch64TargetInfo::relocNeedsPlt(uint32_t Type,
                                      const SymbolBody &S) const {
  switch (Type) {
  default:
    return false;
  case R_AARCH64_CALL26:
  case R_AARCH64_JUMP26:
    return canBePreempted(&S, true);
  }
}

static void updateAArch64Adr(uint8_t *L, uint64_t Imm) {
  uint32_t ImmLo = (Imm & 0x3) << 29;
  uint32_t ImmHi = ((Imm & 0x1FFFFC) >> 2) << 5;
  uint64_t Mask = (0x3 << 29) | (0x7FFFF << 5);
  write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
}

// Page(Expr) is the page address of the expression Expr, defined
// as (Expr & ~0xFFF). (This applies even if the machine page size
// supported by the platform has a different value.)
static uint64_t getAArch64Page(uint64_t Expr) {
  return Expr & (~static_cast<uint64_t>(0xFFF));
}

void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd,
                                    uint32_t Type, uint64_t P, uint64_t SA,
                                    uint64_t ZA, uint8_t *PairedLoc) const {
  switch (Type) {
  case R_AARCH64_ABS16:
    checkIntUInt<16>(SA, Type);
    write16le(Loc, SA);
    break;
  case R_AARCH64_ABS32:
    checkIntUInt<32>(SA, Type);
    write32le(Loc, SA);
    break;
  case R_AARCH64_ABS64:
    write64le(Loc, SA);
    break;
  case R_AARCH64_ADD_ABS_LO12_NC:
    // This relocation stores 12 bits and there's no instruction
    // to do it. Instead, we do a 32 bits store of the value
    // of r_addend bitwise-or'ed Loc. This assumes that the addend
    // bits in Loc are zero.
    or32le(Loc, (SA & 0xFFF) << 10);
    break;
  case R_AARCH64_ADR_GOT_PAGE: {
    uint64_t X = getAArch64Page(SA) - getAArch64Page(P);
    checkInt<33>(X, Type);
    updateAArch64Adr(Loc, (X >> 12) & 0x1FFFFF); // X[32:12]
    break;
  }
  case R_AARCH64_ADR_PREL_LO21: {
    uint64_t X = SA - P;
    checkInt<21>(X, Type);
    updateAArch64Adr(Loc, X & 0x1FFFFF);
    break;
  }
  case R_AARCH64_ADR_PREL_PG_HI21: {
    uint64_t X = getAArch64Page(SA) - getAArch64Page(P);
    checkInt<33>(X, Type);
    updateAArch64Adr(Loc, (X >> 12) & 0x1FFFFF); // X[32:12]
    break;
  }
  case R_AARCH64_CALL26:
  case R_AARCH64_JUMP26: {
    uint64_t X = SA - P;
    checkInt<28>(X, Type);
    or32le(Loc, (X & 0x0FFFFFFC) >> 2);
    break;
  }
  case R_AARCH64_LD64_GOT_LO12_NC:
    checkAlignment<8>(SA, Type);
    or32le(Loc, (SA & 0xFF8) << 7);
    break;
  case R_AARCH64_LDST8_ABS_LO12_NC:
    or32le(Loc, (SA & 0xFFF) << 10);
    break;
  case R_AARCH64_LDST32_ABS_LO12_NC:
    or32le(Loc, (SA & 0xFFC) << 8);
    break;
  case R_AARCH64_LDST64_ABS_LO12_NC:
    or32le(Loc, (SA & 0xFF8) << 7);
    break;
  case R_AARCH64_PREL16:
    checkIntUInt<16>(SA - P, Type);
    write16le(Loc, SA - P);
    break;
  case R_AARCH64_PREL32:
    checkIntUInt<32>(SA - P, Type);
    write32le(Loc, SA - P);
    break;
  case R_AARCH64_PREL64:
    write64le(Loc, SA - P);
    break;
  default:
    error("unrecognized reloc " + Twine(Type));
  }
}

template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() {
  PageSize = 65536;
  GotHeaderEntriesNum = 2;
}

template <class ELFT>
void MipsTargetInfo<ELFT>::writeGotHeaderEntries(uint8_t *Buf) const {
  typedef typename ELFFile<ELFT>::Elf_Off Elf_Off;
  auto *P = reinterpret_cast<Elf_Off *>(Buf);
  // Module pointer
  P[1] = ELFT::Is64Bits ? 0x8000000000000000 : 0x80000000;
}

template <class ELFT>
void MipsTargetInfo<ELFT>::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {}
template <class ELFT>
void MipsTargetInfo<ELFT>::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
                                       uint64_t PltEntryAddr) const {}
template <class ELFT>
void MipsTargetInfo<ELFT>::writePltEntry(uint8_t *Buf, uint64_t GotAddr,
                                         uint64_t GotEntryAddr,
                                         uint64_t PltEntryAddr, int32_t Index,
                                         unsigned RelOff) const {}

template <class ELFT>
bool MipsTargetInfo<ELFT>::relocNeedsGot(uint32_t Type,
                                         const SymbolBody &S) const {
  return Type == R_MIPS_GOT16 || Type == R_MIPS_CALL16;
}

template <class ELFT>
bool MipsTargetInfo<ELFT>::relocNeedsPlt(uint32_t Type,
                                         const SymbolBody &S) const {
  return false;
}

static uint16_t mipsHigh(uint64_t V) { return (V + 0x8000) >> 16; }

template <endianness E, uint8_t BSIZE>
static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t P,
                             uint64_t SA) {
  uint32_t Mask = ~(0xffffffff << BSIZE);
  uint32_t Instr = read32<E>(Loc);
  int64_t A = SignExtend64<BSIZE + 2>((Instr & Mask) << 2);
  checkAlignment<4>(SA + A, Type);
  int64_t V = SA + A - P;
  checkInt<BSIZE + 2>(V, Type);
  write32<E>(Loc, (Instr & ~Mask) | ((V >> 2) & Mask));
}

template <class ELFT>
void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint8_t *BufEnd,
                                       uint32_t Type, uint64_t P, uint64_t SA,
                                       uint64_t ZA, uint8_t *PairedLoc) const {
  const endianness E = ELFT::TargetEndianness;
  switch (Type) {
  case R_MIPS_32:
    add32<E>(Loc, SA);
    break;
  case R_MIPS_CALL16:
  case R_MIPS_GOT16: {
    int64_t V = SA - getMipsGpAddr<ELFT>();
    if (Type == R_MIPS_GOT16)
      checkInt<16>(V, Type);
    write32<E>(Loc, (read32<E>(Loc) & 0xffff0000) | (V & 0xffff));
    break;
  }
  case R_MIPS_GPREL16: {
    uint32_t Instr = read32<E>(Loc);
    int64_t V = SA + SignExtend64<16>(Instr & 0xffff) - getMipsGpAddr<ELFT>();
    checkInt<16>(V, Type);
    write32<E>(Loc, (Instr & 0xffff0000) | (V & 0xffff));
    break;
  }
  case R_MIPS_GPREL32:
    write32<E>(Loc, SA + int32_t(read32<E>(Loc)) - getMipsGpAddr<ELFT>());
    break;
  case R_MIPS_HI16: {
    uint32_t Instr = read32<E>(Loc);
    if (PairedLoc) {
      uint64_t AHL = ((Instr & 0xffff) << 16) +
                     SignExtend64<16>(read32<E>(PairedLoc) & 0xffff);
      write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(SA + AHL));
    } else {
      warning("Can't find matching R_MIPS_LO16 relocation for R_MIPS_HI16");
      write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(SA));
    }
    break;
  }
  case R_MIPS_JALR:
    // Ignore this optimization relocation for now
    break;
  case R_MIPS_LO16: {
    uint32_t Instr = read32<E>(Loc);
    int64_t AHL = SignExtend64<16>(Instr & 0xffff);
    write32<E>(Loc, (Instr & 0xffff0000) | ((SA + AHL) & 0xffff));
    break;
  }
  case R_MIPS_PC16:
    applyMipsPcReloc<E, 16>(Loc, Type, P, SA);
    break;
  case R_MIPS_PC19_S2:
    applyMipsPcReloc<E, 19>(Loc, Type, P, SA);
    break;
  case R_MIPS_PC21_S2:
    applyMipsPcReloc<E, 21>(Loc, Type, P, SA);
    break;
  case R_MIPS_PC26_S2:
    applyMipsPcReloc<E, 26>(Loc, Type, P, SA);
    break;
  case R_MIPS_PCHI16: {
    uint32_t Instr = read32<E>(Loc);
    if (PairedLoc) {
      uint64_t AHL = ((Instr & 0xffff) << 16) +
                     SignExtend64<16>(read32<E>(PairedLoc) & 0xffff);
      write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(SA + AHL - P));
    } else {
      warning("Can't find matching R_MIPS_PCLO16 relocation for R_MIPS_PCHI16");
      write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(SA - P));
    }
    break;
  }
  case R_MIPS_PCLO16: {
    uint32_t Instr = read32<E>(Loc);
    int64_t AHL = SignExtend64<16>(Instr & 0xffff);
    write32<E>(Loc, (Instr & 0xffff0000) | ((SA + AHL - P) & 0xffff));
    break;
  }
  default:
    error("unrecognized reloc " + Twine(Type));
  }
}

template <class ELFT>
bool MipsTargetInfo<ELFT>::isRelRelative(uint32_t Type) const {
  switch (Type) {
  default:
    return false;
  case R_MIPS_PC16:
  case R_MIPS_PC19_S2:
  case R_MIPS_PC21_S2:
  case R_MIPS_PC26_S2:
  case R_MIPS_PCHI16:
  case R_MIPS_PCLO16:
    return true;
  }
}

// _gp is a MIPS-specific ABI-defined symbol which points to
// a location that is relative to GOT. This function returns
// the value for the symbol.
template <class ELFT> typename ELFFile<ELFT>::uintX_t getMipsGpAddr() {
  unsigned GPOffset = 0x7ff0;
  if (uint64_t V = Out<ELFT>::Got->getVA())
    return V + GPOffset;
  return 0;
}

template uint32_t getMipsGpAddr<ELF32LE>();
template uint32_t getMipsGpAddr<ELF32BE>();
template uint64_t getMipsGpAddr<ELF64LE>();
template uint64_t getMipsGpAddr<ELF64BE>();
}
}