aboutsummaryrefslogtreecommitdiff
path: root/cddl/contrib/opensolaris/lib/libdtrace/common/dt_lex.l
blob: 192e1e20d82ca13d745689703df5ffcd760b0ffc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
%{
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
 */
/*
 * Copyright (c) 2013 by Delphix. All rights reserved.
 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
 */

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <ctype.h>
#include <errno.h>

#include <dt_impl.h>
#include <dt_grammar.h>
#include <dt_parser.h>
#include <dt_string.h>

/*
 * We need to undefine lex's input and unput macros so that references to these
 * call the functions provided at the end of this source file.
 */
#ifdef illumos
#undef input
#undef unput
#else
/*
 * Define YY_INPUT for flex since input() can't be re-defined.
 */
#define YY_INPUT(buf,result,max_size) \
	if (yypcb->pcb_fileptr != NULL) { \
		if (((result = fread(buf, 1, max_size, yypcb->pcb_fileptr)) == 0) \
		    && ferror(yypcb->pcb_fileptr)) \
			longjmp(yypcb->pcb_jmpbuf, EDT_FIO); \
	} else { \
		int n; \
		for (n = 0; n < max_size && \
		    yypcb->pcb_strptr < yypcb->pcb_string + yypcb->pcb_strlen; n++) \
			buf[n] = *yypcb->pcb_strptr++; \
		result = n; \
	}
/*
 * Do not EOF let tokens to be put back. This does not work with flex.
 * On the other hand, leaving current buffer in same state it was when
 * last EOF was received guarantees that input() will keep returning EOF
 * for all subsequent invocations, which is the effect desired.
 */
#undef  unput
#define unput(c)					\
	do {						\
		int _c = c;				\
		if (_c != EOF)				\
			yyunput(_c, yytext_ptr);	\
	} while(0)
#endif

static int id_or_type(const char *);
#ifdef illumos
static int input(void);
static void unput(int);
#endif

/*
 * We first define a set of labeled states for use in the D lexer and then a
 * set of regular expressions to simplify things below. The lexer states are:
 *
 * S0 - D program clause and expression lexing
 * S1 - D comments (i.e. skip everything until end of comment)
 * S2 - D program outer scope (probe specifiers and declarations)
 * S3 - D control line parsing (i.e. after ^# is seen but before \n)
 * S4 - D control line scan (locate control directives only and invoke S3)
 */
%}

%e 1500		/* maximum nodes */
%p 4900		/* maximum positions */
%n 600		/* maximum states */
%a 3000		/* maximum transitions */

%s S0 S1 S2 S3 S4

RGX_AGG		"@"[a-zA-Z_][0-9a-zA-Z_]*
RGX_PSPEC	[-$:a-zA-Z_.?*\\\[\]!][-$:0-9a-zA-Z_.`?*\\\[\]!]*
RGX_ALTIDENT	[a-zA-Z_][0-9a-zA-Z_]*
RGX_LMID	LM[0-9a-fA-F]+`
RGX_MOD_IDENT	[a-zA-Z_`][0-9a-z.A-Z_`]*`
RGX_IDENT	[a-zA-Z_`][0-9a-zA-Z_`]*
RGX_INT		([0-9]+|0[xX][0-9A-Fa-f]+)[uU]?[lL]?[lL]?
RGX_FP		([0-9]+("."?)[0-9]*|"."[0-9]+)((e|E)("+"|-)?[0-9]+)?[fFlL]?
RGX_WS		[\f\n\r\t\v ]
RGX_STR		([^"\\\n]|\\[^"\n]|\\\")*
RGX_CHR		([^'\\\n]|\\[^'\n]|\\')*
RGX_INTERP	^[\f\t\v ]*#!.*
RGX_CTL		^[\f\t\v ]*#

%%

%{

/*
 * We insert a special prologue into yylex() itself: if the pcb contains a
 * context token, we return that prior to running the normal lexer.  This
 * allows libdtrace to force yacc into one of our three parsing contexts: D
 * expression (DT_CTX_DEXPR), D program (DT_CTX_DPROG) or D type (DT_CTX_DTYPE).
 * Once the token is returned, we clear it so this only happens once.
 */
if (yypcb->pcb_token != 0) {
	int tok = yypcb->pcb_token;
	yypcb->pcb_token = 0;
	return (tok);
}

%}

<S0>auto	return (DT_KEY_AUTO);
<S0>break	return (DT_KEY_BREAK);
<S0>case	return (DT_KEY_CASE);
<S0>char	return (DT_KEY_CHAR);
<S0>const	return (DT_KEY_CONST);
<S0>continue	return (DT_KEY_CONTINUE);
<S0>counter	return (DT_KEY_COUNTER);
<S0>default	return (DT_KEY_DEFAULT);
<S0>do		return (DT_KEY_DO);
<S0>double	return (DT_KEY_DOUBLE);
<S0>else	return (DT_KEY_ELSE);
<S0>enum	return (DT_KEY_ENUM);
<S0>extern	return (DT_KEY_EXTERN);
<S0>float	return (DT_KEY_FLOAT);
<S0>for		return (DT_KEY_FOR);
<S0>goto	return (DT_KEY_GOTO);
<S0>if		return (DT_KEY_IF);
<S0>import	return (DT_KEY_IMPORT);
<S0>inline	return (DT_KEY_INLINE);
<S0>int		return (DT_KEY_INT);
<S0>long	return (DT_KEY_LONG);
<S0>offsetof	return (DT_TOK_OFFSETOF);
<S0>probe	return (DT_KEY_PROBE);
<S0>provider	return (DT_KEY_PROVIDER);
<S0>register	return (DT_KEY_REGISTER);
<S0>restrict	return (DT_KEY_RESTRICT);
<S0>return	return (DT_KEY_RETURN);
<S0>self	return (DT_KEY_SELF);
<S0>short	return (DT_KEY_SHORT);
<S0>signed	return (DT_KEY_SIGNED);
<S0>sizeof	return (DT_TOK_SIZEOF);
<S0>static	return (DT_KEY_STATIC);
<S0>string	return (DT_KEY_STRING);
<S0>stringof	return (DT_TOK_STRINGOF);
<S0>struct	return (DT_KEY_STRUCT);
<S0>switch	return (DT_KEY_SWITCH);
<S0>this	return (DT_KEY_THIS);
<S0>translator	return (DT_KEY_XLATOR);
<S0>typedef	return (DT_KEY_TYPEDEF);
<S0>union	return (DT_KEY_UNION);
<S0>unsigned	return (DT_KEY_UNSIGNED);
<S0>userland	return (DT_KEY_USERLAND);
<S0>void	return (DT_KEY_VOID);
<S0>volatile	return (DT_KEY_VOLATILE);
<S0>while	return (DT_KEY_WHILE);
<S0>xlate	return (DT_TOK_XLATE);

<S2>auto	{ yybegin(YYS_EXPR);	return (DT_KEY_AUTO); }
<S2>char	{ yybegin(YYS_EXPR);	return (DT_KEY_CHAR); }
<S2>const	{ yybegin(YYS_EXPR);	return (DT_KEY_CONST); }
<S2>counter	{ yybegin(YYS_DEFINE);	return (DT_KEY_COUNTER); }
<S2>double	{ yybegin(YYS_EXPR);	return (DT_KEY_DOUBLE); }
<S2>enum	{ yybegin(YYS_EXPR);	return (DT_KEY_ENUM); }
<S2>extern	{ yybegin(YYS_EXPR);	return (DT_KEY_EXTERN); }
<S2>float	{ yybegin(YYS_EXPR);	return (DT_KEY_FLOAT); }
<S2>import	{ yybegin(YYS_EXPR);	return (DT_KEY_IMPORT); }
<S2>inline	{ yybegin(YYS_DEFINE);	return (DT_KEY_INLINE); }
<S2>int		{ yybegin(YYS_EXPR);	return (DT_KEY_INT); }
<S2>long	{ yybegin(YYS_EXPR);	return (DT_KEY_LONG); }
<S2>provider	{ yybegin(YYS_DEFINE);	return (DT_KEY_PROVIDER); }
<S2>register	{ yybegin(YYS_EXPR);	return (DT_KEY_REGISTER); }
<S2>restrict	{ yybegin(YYS_EXPR);	return (DT_KEY_RESTRICT); }
<S2>self	{ yybegin(YYS_EXPR);	return (DT_KEY_SELF); }
<S2>short	{ yybegin(YYS_EXPR);	return (DT_KEY_SHORT); }
<S2>signed	{ yybegin(YYS_EXPR);	return (DT_KEY_SIGNED); }
<S2>static	{ yybegin(YYS_EXPR);	return (DT_KEY_STATIC); }
<S2>string	{ yybegin(YYS_EXPR);	return (DT_KEY_STRING); }
<S2>struct	{ yybegin(YYS_EXPR);	return (DT_KEY_STRUCT); }
<S2>this	{ yybegin(YYS_EXPR);	return (DT_KEY_THIS); }
<S2>translator	{ yybegin(YYS_DEFINE);	return (DT_KEY_XLATOR); }
<S2>typedef	{ yybegin(YYS_EXPR);	return (DT_KEY_TYPEDEF); }
<S2>union	{ yybegin(YYS_EXPR);	return (DT_KEY_UNION); }
<S2>unsigned	{ yybegin(YYS_EXPR);	return (DT_KEY_UNSIGNED); }
<S2>void	{ yybegin(YYS_EXPR);	return (DT_KEY_VOID); }
<S2>volatile	{ yybegin(YYS_EXPR);	return (DT_KEY_VOLATILE); }

<S0>"$$"[0-9]+	{
			int i = atoi(yytext + 2);
			char *v = "";

			/*
			 * A macro argument reference substitutes the text of
			 * an argument in place of the current token.  When we
			 * see $$<d> we fetch the saved string from pcb_sargv
			 * (or use the default argument if the option has been
			 * set and the argument hasn't been specified) and
			 * return a token corresponding to this string.
			 */
			if (i < 0 || (i >= yypcb->pcb_sargc &&
			    !(yypcb->pcb_cflags & DTRACE_C_DEFARG))) {
				xyerror(D_MACRO_UNDEF, "macro argument %s is "
				    "not defined\n", yytext);
			}

			if (i < yypcb->pcb_sargc) {
				v = yypcb->pcb_sargv[i]; /* get val from pcb */
				yypcb->pcb_sflagv[i] |= DT_IDFLG_REF;
			}

			if ((yylval.l_str = strdup(v)) == NULL)
				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

			(void) stresc2chr(yylval.l_str);
			return (DT_TOK_STRING);
		}

<S0>"$"[0-9]+	{
			int i = atoi(yytext + 1);
			char *p, *v = "0";

			/*
			 * A macro argument reference substitutes the text of
			 * one identifier or integer pattern for another.  When
			 * we see $<d> we fetch the saved string from pcb_sargv
			 * (or use the default argument if the option has been
			 * set and the argument hasn't been specified) and
			 * return a token corresponding to this string.
			 */
			if (i < 0 || (i >= yypcb->pcb_sargc &&
			    !(yypcb->pcb_cflags & DTRACE_C_DEFARG))) {
				xyerror(D_MACRO_UNDEF, "macro argument %s is "
				    "not defined\n", yytext);
			}

			if (i < yypcb->pcb_sargc) {
				v = yypcb->pcb_sargv[i]; /* get val from pcb */
				yypcb->pcb_sflagv[i] |= DT_IDFLG_REF;
			}

			/*
			 * If the macro text is not a valid integer or ident,
			 * then we treat it as a string.  The string may be
			 * optionally enclosed in quotes, which we strip.
			 */
			if (strbadidnum(v)) {
				size_t len = strlen(v);

				if (len != 1 && *v == '"' && v[len - 1] == '"')
					yylval.l_str = strndup(v + 1, len - 2);
				else
					yylval.l_str = strndup(v, len);

				if (yylval.l_str == NULL)
					longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

				(void) stresc2chr(yylval.l_str);
				return (DT_TOK_STRING);
			}

			/*
			 * If the macro text is not a string an begins with a
			 * digit or a +/- sign, process it as an integer token.
			 */
			if (isdigit(v[0]) || v[0] == '-' || v[0] == '+') {
				if (isdigit(v[0]))
					yyintprefix = 0;
				else
					yyintprefix = *v++;

				errno = 0;
				yylval.l_int = strtoull(v, &p, 0);
				(void) strncpy(yyintsuffix, p,
				    sizeof (yyintsuffix));
				yyintdecimal = *v != '0';

				if (errno == ERANGE) {
					xyerror(D_MACRO_OFLOW, "macro argument"
					    " %s constant %s results in integer"
					    " overflow\n", yytext, v);
				}

				return (DT_TOK_INT);
			}

			return (id_or_type(v));
		}

<S0>"$$"{RGX_IDENT} {
			dt_ident_t *idp = dt_idhash_lookup(
			    yypcb->pcb_hdl->dt_macros, yytext + 2);

			char s[16]; /* enough for UINT_MAX + \0 */

			if (idp == NULL) {
				xyerror(D_MACRO_UNDEF, "macro variable %s "
				    "is not defined\n", yytext);
			}

			/*
			 * For the moment, all current macro variables are of
			 * type id_t (refer to dtrace_update() for details).
			 */
			(void) snprintf(s, sizeof (s), "%u", idp->di_id);
			if ((yylval.l_str = strdup(s)) == NULL)
				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

			return (DT_TOK_STRING);
		}

<S0>"$"{RGX_IDENT} {
			dt_ident_t *idp = dt_idhash_lookup(
			    yypcb->pcb_hdl->dt_macros, yytext + 1);

			if (idp == NULL) {
				xyerror(D_MACRO_UNDEF, "macro variable %s "
				    "is not defined\n", yytext);
			}

			/*
			 * For the moment, all current macro variables are of
			 * type id_t (refer to dtrace_update() for details).
			 */
			yylval.l_int = (intmax_t)(int)idp->di_id;
			yyintprefix = 0;
			yyintsuffix[0] = '\0';
			yyintdecimal = 1;

			return (DT_TOK_INT);
		}

<S0>{RGX_IDENT} |
<S0>{RGX_MOD_IDENT}{RGX_IDENT} |
<S0>{RGX_MOD_IDENT} {
			return (id_or_type(yytext));
		}

<S0>{RGX_AGG}	{
			if ((yylval.l_str = strdup(yytext)) == NULL)
				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
			return (DT_TOK_AGG);
		}

<S0>"@"		{
			if ((yylval.l_str = strdup("@_")) == NULL)
				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
			return (DT_TOK_AGG);
		}

<S0>{RGX_INT}	|
<S2>{RGX_INT}	|
<S3>{RGX_INT}	{
			char *p;

			errno = 0;
			yylval.l_int = strtoull(yytext, &p, 0);
			yyintprefix = 0;
			(void) strncpy(yyintsuffix, p, sizeof (yyintsuffix));
			yyintdecimal = yytext[0] != '0';

			if (errno == ERANGE) {
				xyerror(D_INT_OFLOW, "constant %s results in "
				    "integer overflow\n", yytext);
			}

			if (*p != '\0' && strchr("uUlL", *p) == NULL) {
				xyerror(D_INT_DIGIT, "constant %s contains "
				    "invalid digit %c\n", yytext, *p);
			}

			if ((YYSTATE) != S3)
				return (DT_TOK_INT);

			yypragma = dt_node_link(yypragma,
			    dt_node_int(yylval.l_int));
		}

<S0>{RGX_FP}	yyerror("floating-point constants are not permitted\n");

<S0>\"{RGX_STR}$ |
<S3>\"{RGX_STR}$ xyerror(D_STR_NL, "newline encountered in string literal");

<S0>\"{RGX_STR}\" |
<S3>\"{RGX_STR}\" {
			/*
			 * Quoted string -- convert C escape sequences and
			 * return the string as a token.
			 */
			yylval.l_str = strndup(yytext + 1, yyleng - 2);

			if (yylval.l_str == NULL)
				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

			(void) stresc2chr(yylval.l_str);
			if ((YYSTATE) != S3)
				return (DT_TOK_STRING);

			yypragma = dt_node_link(yypragma,
			    dt_node_string(yylval.l_str));
		}

<S0>'{RGX_CHR}$	xyerror(D_CHR_NL, "newline encountered in character constant");

<S0>'{RGX_CHR}'	{
			char *s, *p, *q;
			size_t nbytes;

			/*
			 * Character constant -- convert C escape sequences and
			 * return the character as an integer immediate value.
			 */
			if (yyleng == 2)
				xyerror(D_CHR_NULL, "empty character constant");

			s = yytext + 1;
			yytext[yyleng - 1] = '\0';
			nbytes = stresc2chr(s);
			yylval.l_int = 0;
			yyintprefix = 0;
			yyintsuffix[0] = '\0';
			yyintdecimal = 1;

			if (nbytes > sizeof (yylval.l_int)) {
				xyerror(D_CHR_OFLOW, "character constant is "
				    "too long");
			}
#if BYTE_ORDER == _LITTLE_ENDIAN
			p = ((char *)&yylval.l_int) + nbytes - 1;
			for (q = s; nbytes != 0; nbytes--)
				*p-- = *q++;
#else
			bcopy(s, ((char *)&yylval.l_int) +
			    sizeof (yylval.l_int) - nbytes, nbytes);
#endif
			return (DT_TOK_INT);
		}

<S0>"/*"	|
<S2>"/*"	{
			yypcb->pcb_cstate = (YYSTATE);
			BEGIN(S1);
		}

<S0>{RGX_INTERP} |
<S2>{RGX_INTERP} ;	/* discard any #! lines */

<S0>{RGX_CTL}	|
<S2>{RGX_CTL}	|
<S4>{RGX_CTL}	{
			assert(yypragma == NULL);
			yypcb->pcb_cstate = (YYSTATE);
			BEGIN(S3);
		}

<S4>.		;	/* discard */
<S4>"\n"	;	/* discard */

<S0>"/"		{
			int c, tok;

			/*
			 * The use of "/" as the predicate delimiter and as the
			 * integer division symbol requires special lookahead
			 * to avoid a shift/reduce conflict in the D grammar.
			 * We look ahead to the next non-whitespace character.
			 * If we encounter EOF, ";", "{", or "/", then this "/"
			 * closes the predicate and we return DT_TOK_EPRED.
			 * If we encounter anything else, it's DT_TOK_DIV.
			 */
			while ((c = input()) != 0) {
				if (strchr("\f\n\r\t\v ", c) == NULL)
					break;
			}

			if (c == 0 || c == ';' || c == '{' || c == '/') {
				if (yypcb->pcb_parens != 0) {
					yyerror("closing ) expected in "
					    "predicate before /\n");
				}
				if (yypcb->pcb_brackets != 0) {
					yyerror("closing ] expected in "
					    "predicate before /\n");
				}
				tok = DT_TOK_EPRED;
			} else
				tok = DT_TOK_DIV;

			unput(c);
			return (tok);
		}

<S0>"("		{
			yypcb->pcb_parens++;
			return (DT_TOK_LPAR);
		}

<S0>")"		{
			if (--yypcb->pcb_parens < 0)
				yyerror("extra ) in input stream\n");
			return (DT_TOK_RPAR);
		}

<S0>"["		{
			yypcb->pcb_brackets++;
			return (DT_TOK_LBRAC);
		}

<S0>"]"		{
			if (--yypcb->pcb_brackets < 0)
				yyerror("extra ] in input stream\n");
			return (DT_TOK_RBRAC);
		}

<S0>"{"		|
<S2>"{"		{
			yypcb->pcb_braces++;
			return ('{');
		}

<S0>"}"		{
			if (--yypcb->pcb_braces < 0)
				yyerror("extra } in input stream\n");
			return ('}');
		}

<S0>"|"		return (DT_TOK_BOR);
<S0>"^"		return (DT_TOK_XOR);
<S0>"&"		return (DT_TOK_BAND);
<S0>"&&"	return (DT_TOK_LAND);
<S0>"^^"	return (DT_TOK_LXOR);
<S0>"||"	return (DT_TOK_LOR);
<S0>"=="	return (DT_TOK_EQU);
<S0>"!="	return (DT_TOK_NEQ);
<S0>"<"		return (DT_TOK_LT);
<S0>"<="	return (DT_TOK_LE);
<S0>">"		return (DT_TOK_GT);
<S0>">="	return (DT_TOK_GE);
<S0>"<<"	return (DT_TOK_LSH);
<S0>">>"	return (DT_TOK_RSH);
<S0>"+"		return (DT_TOK_ADD);
<S0>"-"		return (DT_TOK_SUB);
<S0>"*"		return (DT_TOK_MUL);
<S0>"%"		return (DT_TOK_MOD);
<S0>"~"		return (DT_TOK_BNEG);
<S0>"!"		return (DT_TOK_LNEG);
<S0>"?"		return (DT_TOK_QUESTION);
<S0>":"		return (DT_TOK_COLON);
<S0>"."		return (DT_TOK_DOT);
<S0>"->"	return (DT_TOK_PTR);
<S0>"="		return (DT_TOK_ASGN);
<S0>"+="	return (DT_TOK_ADD_EQ);
<S0>"-="	return (DT_TOK_SUB_EQ);
<S0>"*="	return (DT_TOK_MUL_EQ);
<S0>"/="	return (DT_TOK_DIV_EQ);
<S0>"%="	return (DT_TOK_MOD_EQ);
<S0>"&="	return (DT_TOK_AND_EQ);
<S0>"^="	return (DT_TOK_XOR_EQ);
<S0>"|="	return (DT_TOK_OR_EQ);
<S0>"<<="	return (DT_TOK_LSH_EQ);
<S0>">>="	return (DT_TOK_RSH_EQ);
<S0>"++"	return (DT_TOK_ADDADD);
<S0>"--"	return (DT_TOK_SUBSUB);
<S0>"..."	return (DT_TOK_ELLIPSIS);
<S0>","		return (DT_TOK_COMMA);
<S0>";"		return (';');
<S0>{RGX_WS}	; /* discard */
<S0>"\\"\n	; /* discard */
<S0>.		yyerror("syntax error near \"%c\"\n", yytext[0]);

<S1>"/*"	yyerror("/* encountered inside a comment\n");
<S1>"*/"	BEGIN(yypcb->pcb_cstate);
<S1>.|\n	; /* discard */

<S2>{RGX_PSPEC}	{
			/*
			 * S2 has an ambiguity because RGX_PSPEC includes '*'
			 * as a glob character and '*' also can be DT_TOK_STAR.
			 * Since lex always matches the longest token, this
			 * rule can be matched by an input string like "int*",
			 * which could begin a global variable declaration such
			 * as "int*x;" or could begin a RGX_PSPEC with globbing
			 * such as "int* { trace(timestamp); }".  If C_PSPEC is
			 * not set, we must resolve the ambiguity in favor of
			 * the type and perform lexer pushback if the fragment
			 * before '*' or entire fragment matches a type name.
			 * If C_PSPEC is set, we always return a PSPEC token.
			 * If C_PSPEC is off, the user can avoid ambiguity by
			 * including a ':' delimiter in the specifier, which
			 * they should be doing anyway to specify the provider.
			 */
			if (!(yypcb->pcb_cflags & DTRACE_C_PSPEC) &&
			    strchr(yytext, ':') == NULL) {

				char *p = strchr(yytext, '*');
				char *q = yytext + yyleng - 1;

				if (p != NULL && p > yytext)
					*p = '\0'; /* prune yytext */

				if (dt_type_lookup(yytext, NULL) == 0) {
					yylval.l_str = strdup(yytext);

					if (yylval.l_str == NULL) {
						longjmp(yypcb->pcb_jmpbuf,
						    EDT_NOMEM);
					}

					if (p != NULL && p > yytext) {
						for (*p = '*'; q >= p; q--)
							unput(*q);
					}

					yybegin(YYS_EXPR);
					return (DT_TOK_TNAME);
				}

				if (p != NULL && p > yytext)
					*p = '*'; /* restore yytext */
			}

			if ((yylval.l_str = strdup(yytext)) == NULL)
				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

			return (DT_TOK_PSPEC);
		}

<S2>"/"		return (DT_TOK_DIV);
<S2>","		return (DT_TOK_COMMA);

<S2>{RGX_WS}	; /* discard */
<S2>.		yyerror("syntax error near \"%c\"\n", yytext[0]);

<S3>\n		{
			dt_pragma(yypragma);
			yypragma = NULL;
			BEGIN(yypcb->pcb_cstate);
		}

<S3>[\f\t\v ]+	; /* discard */

<S3>[^\f\n\t\v "]+ {
			dt_node_t *dnp;

			if ((yylval.l_str = strdup(yytext)) == NULL)
				longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

			/*
			 * We want to call dt_node_ident() here, but we can't
			 * because it will expand inlined identifiers, which we
			 * don't want to do from #pragma context in order to
			 * support pragmas that apply to the ident itself.  We
			 * call dt_node_string() and then reset dn_op instead.
			 */
			dnp = dt_node_string(yylval.l_str);
			dnp->dn_kind = DT_NODE_IDENT;
			dnp->dn_op = DT_TOK_IDENT;
			yypragma = dt_node_link(yypragma, dnp);
		}

<S3>.		yyerror("syntax error near \"%c\"\n", yytext[0]);

%%

/*
 * yybegin provides a wrapper for use from C code around the lex BEGIN() macro.
 * We use two main states for lexing because probe descriptions use a syntax
 * that is incompatible with the normal D tokens (e.g. names can contain "-").
 * yybegin also handles the job of switching between two lists of dt_nodes
 * as we allocate persistent definitions, like inlines, and transient nodes
 * that will be freed once we are done parsing the current program file.
 */
void
yybegin(yystate_t state)
{
#ifdef	YYDEBUG
	yydebug = _dtrace_debug;
#endif
	if (yypcb->pcb_yystate == state)
		return; /* nothing to do if we're in the state already */

	if (yypcb->pcb_yystate == YYS_DEFINE) {
		yypcb->pcb_list = yypcb->pcb_hold;
		yypcb->pcb_hold = NULL;
	}

	switch (state) {
	case YYS_CLAUSE:
		BEGIN(S2);
		break;
	case YYS_DEFINE:
		assert(yypcb->pcb_hold == NULL);
		yypcb->pcb_hold = yypcb->pcb_list;
		yypcb->pcb_list = NULL;
		/*FALLTHRU*/
	case YYS_EXPR:
		BEGIN(S0);
		break;
	case YYS_DONE:
		break;
	case YYS_CONTROL:
		BEGIN(S4);
		break;
	default:
		xyerror(D_UNKNOWN, "internal error -- bad yystate %d\n", state);
	}

	yypcb->pcb_yystate = state;
}

void
yyinit(dt_pcb_t *pcb)
{
	yypcb = pcb;
	yylineno = 1;
	yypragma = NULL;
#ifdef illumos
	yysptr = yysbuf;
#endif
	YY_FLUSH_BUFFER;
}

/*
 * Given a lexeme 's' (typically yytext), set yylval and return an appropriate
 * token to the parser indicating either an identifier or a typedef name.
 * User-defined global variables always take precedence over types, but we do
 * use some heuristics because D programs can look at an ever-changing set of
 * kernel types and also can implicitly instantiate variables by assignment,
 * unlike in C.  The code here is ordered carefully as lookups are not cheap.
 */
static int
id_or_type(const char *s)
{
	dtrace_hdl_t *dtp = yypcb->pcb_hdl;
	dt_decl_t *ddp = yypcb->pcb_dstack.ds_decl;
	int c0, c1, ttok = DT_TOK_TNAME;
	dt_ident_t *idp;

	if ((s = yylval.l_str = strdup(s)) == NULL)
		longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);

	/*
	 * If the lexeme is a global variable or likely identifier or *not* a
	 * type_name, then it is an identifier token.
	 */
	if (dt_idstack_lookup(&yypcb->pcb_globals, s) != NULL ||
	    dt_idhash_lookup(yypcb->pcb_idents, s) != NULL ||
	    dt_type_lookup(s, NULL) != 0)
		return (DT_TOK_IDENT);

	/*
	 * If we're in the midst of parsing a declaration and a type_specifier
	 * has already been shifted, then return DT_TOK_IDENT instead of TNAME.
	 * This semantic is necessary to permit valid ISO C code such as:
	 *
	 * typedef int foo;
	 * struct s { foo foo; };
	 *
	 * without causing shift/reduce conflicts in the direct_declarator part
	 * of the grammar.  The result is that we must check for conflicting
	 * redeclarations of the same identifier as part of dt_node_decl().
	 */
	if (ddp != NULL && ddp->dd_name != NULL)
		return (DT_TOK_IDENT);

	/*
	 * If the lexeme is a type name and we are not in a program clause,
	 * then always interpret it as a type and return DT_TOK_TNAME.
	 */
	if ((YYSTATE) != S0)
		return (DT_TOK_TNAME);

	/*
	 * If the lexeme matches a type name but is in a program clause, then
	 * it could be a type or it could be an undefined variable.  Peek at
	 * the next token to decide.  If we see ++, --, [, or =, we know there
	 * might be an assignment that is trying to create a global variable,
	 * so we optimistically return DT_TOK_IDENT.  There is no harm in being
	 * wrong: a type_name followed by ++, --, [, or = is a syntax error.
	 */
	while ((c0 = input()) != 0) {
		if (strchr("\f\n\r\t\v ", c0) == NULL)
			break;
	}

	switch (c0) {
	case '+':
	case '-':
		if ((c1 = input()) == c0)
			ttok = DT_TOK_IDENT;
		unput(c1);
		break;

	case '=':
		if ((c1 = input()) != c0)
			ttok = DT_TOK_IDENT;
		unput(c1);
		break;
	case '[':
		ttok = DT_TOK_IDENT;
		break;
	}

	if (ttok == DT_TOK_IDENT) {
		idp = dt_idhash_insert(yypcb->pcb_idents, s, DT_IDENT_SCALAR, 0,
		    0, _dtrace_defattr, 0, &dt_idops_thaw, NULL, dtp->dt_gen);

		if (idp == NULL)
			longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
	}

	unput(c0);
	return (ttok);
}

#ifdef illumos
static int
input(void)
{
	int c;

	if (yysptr > yysbuf)
		c = *--yysptr;
	else if (yypcb->pcb_fileptr != NULL)
		c = fgetc(yypcb->pcb_fileptr);
	else if (yypcb->pcb_strptr < yypcb->pcb_string + yypcb->pcb_strlen)
		c = *(unsigned char *)(yypcb->pcb_strptr++);
	else
		c = EOF;

	if (c == '\n')
		yylineno++;

	if (c != EOF)
		return (c);

	if ((YYSTATE) == S1)
		yyerror("end-of-file encountered before matching */\n");

	if ((YYSTATE) == S3)
		yyerror("end-of-file encountered before end of control line\n");

	if (yypcb->pcb_fileptr != NULL && ferror(yypcb->pcb_fileptr))
		longjmp(yypcb->pcb_jmpbuf, EDT_FIO);

	return (0); /* EOF */
}

static void
unput(int c)
{
	if (c == '\n')
		yylineno--;

	*yysptr++ = c;
	yytchar = c;
}
#endif /* illumos */