aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/AST/ExprConstant.cpp
blob: 9e4088f94015cdeba6ee783b45d1c830e0ab6b9c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr constant evaluator.
//
// Constant expression evaluation produces four main results:
//
//  * A success/failure flag indicating whether constant folding was successful.
//    This is the 'bool' return value used by most of the code in this file. A
//    'false' return value indicates that constant folding has failed, and any
//    appropriate diagnostic has already been produced.
//
//  * An evaluated result, valid only if constant folding has not failed.
//
//  * A flag indicating if evaluation encountered (unevaluated) side-effects.
//    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
//    where it is possible to determine the evaluated result regardless.
//
//  * A set of notes indicating why the evaluation was not a constant expression
//    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
//    too, why the expression could not be folded.
//
// If we are checking for a potential constant expression, failure to constant
// fold a potential constant sub-expression will be indicated by a 'false'
// return value (the expression could not be folded) and no diagnostic (the
// expression is not necessarily non-constant).
//
//===----------------------------------------------------------------------===//

#include "Interp/Context.h"
#include "Interp/Frame.h"
#include "Interp/State.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/CurrentSourceLocExprScope.h"
#include "clang/AST/Expr.h"
#include "clang/AST/OSLog.h"
#include "clang/AST/OptionalDiagnostic.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/APFixedPoint.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include <cstring>
#include <functional>

#define DEBUG_TYPE "exprconstant"

using namespace clang;
using llvm::APFixedPoint;
using llvm::APInt;
using llvm::APSInt;
using llvm::APFloat;
using llvm::FixedPointSemantics;
using llvm::Optional;

namespace {
  struct LValue;
  class CallStackFrame;
  class EvalInfo;

  using SourceLocExprScopeGuard =
      CurrentSourceLocExprScope::SourceLocExprScopeGuard;

  static QualType getType(APValue::LValueBase B) {
    return B.getType();
  }

  /// Get an LValue path entry, which is known to not be an array index, as a
  /// field declaration.
  static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
    return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
  }
  /// Get an LValue path entry, which is known to not be an array index, as a
  /// base class declaration.
  static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
    return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
  }
  /// Determine whether this LValue path entry for a base class names a virtual
  /// base class.
  static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
    return E.getAsBaseOrMember().getInt();
  }

  /// Given an expression, determine the type used to store the result of
  /// evaluating that expression.
  static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
    if (E->isPRValue())
      return E->getType();
    return Ctx.getLValueReferenceType(E->getType());
  }

  /// Given a CallExpr, try to get the alloc_size attribute. May return null.
  static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
    if (const FunctionDecl *DirectCallee = CE->getDirectCallee())
      return DirectCallee->getAttr<AllocSizeAttr>();
    if (const Decl *IndirectCallee = CE->getCalleeDecl())
      return IndirectCallee->getAttr<AllocSizeAttr>();
    return nullptr;
  }

  /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
  /// This will look through a single cast.
  ///
  /// Returns null if we couldn't unwrap a function with alloc_size.
  static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
    if (!E->getType()->isPointerType())
      return nullptr;

    E = E->IgnoreParens();
    // If we're doing a variable assignment from e.g. malloc(N), there will
    // probably be a cast of some kind. In exotic cases, we might also see a
    // top-level ExprWithCleanups. Ignore them either way.
    if (const auto *FE = dyn_cast<FullExpr>(E))
      E = FE->getSubExpr()->IgnoreParens();

    if (const auto *Cast = dyn_cast<CastExpr>(E))
      E = Cast->getSubExpr()->IgnoreParens();

    if (const auto *CE = dyn_cast<CallExpr>(E))
      return getAllocSizeAttr(CE) ? CE : nullptr;
    return nullptr;
  }

  /// Determines whether or not the given Base contains a call to a function
  /// with the alloc_size attribute.
  static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
    const auto *E = Base.dyn_cast<const Expr *>();
    return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
  }

  /// Determines whether the given kind of constant expression is only ever
  /// used for name mangling. If so, it's permitted to reference things that we
  /// can't generate code for (in particular, dllimported functions).
  static bool isForManglingOnly(ConstantExprKind Kind) {
    switch (Kind) {
    case ConstantExprKind::Normal:
    case ConstantExprKind::ClassTemplateArgument:
    case ConstantExprKind::ImmediateInvocation:
      // Note that non-type template arguments of class type are emitted as
      // template parameter objects.
      return false;

    case ConstantExprKind::NonClassTemplateArgument:
      return true;
    }
    llvm_unreachable("unknown ConstantExprKind");
  }

  static bool isTemplateArgument(ConstantExprKind Kind) {
    switch (Kind) {
    case ConstantExprKind::Normal:
    case ConstantExprKind::ImmediateInvocation:
      return false;

    case ConstantExprKind::ClassTemplateArgument:
    case ConstantExprKind::NonClassTemplateArgument:
      return true;
    }
    llvm_unreachable("unknown ConstantExprKind");
  }

  /// The bound to claim that an array of unknown bound has.
  /// The value in MostDerivedArraySize is undefined in this case. So, set it
  /// to an arbitrary value that's likely to loudly break things if it's used.
  static const uint64_t AssumedSizeForUnsizedArray =
      std::numeric_limits<uint64_t>::max() / 2;

  /// Determines if an LValue with the given LValueBase will have an unsized
  /// array in its designator.
  /// Find the path length and type of the most-derived subobject in the given
  /// path, and find the size of the containing array, if any.
  static unsigned
  findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
                           ArrayRef<APValue::LValuePathEntry> Path,
                           uint64_t &ArraySize, QualType &Type, bool &IsArray,
                           bool &FirstEntryIsUnsizedArray) {
    // This only accepts LValueBases from APValues, and APValues don't support
    // arrays that lack size info.
    assert(!isBaseAnAllocSizeCall(Base) &&
           "Unsized arrays shouldn't appear here");
    unsigned MostDerivedLength = 0;
    Type = getType(Base);

    for (unsigned I = 0, N = Path.size(); I != N; ++I) {
      if (Type->isArrayType()) {
        const ArrayType *AT = Ctx.getAsArrayType(Type);
        Type = AT->getElementType();
        MostDerivedLength = I + 1;
        IsArray = true;

        if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
          ArraySize = CAT->getSize().getZExtValue();
        } else {
          assert(I == 0 && "unexpected unsized array designator");
          FirstEntryIsUnsizedArray = true;
          ArraySize = AssumedSizeForUnsizedArray;
        }
      } else if (Type->isAnyComplexType()) {
        const ComplexType *CT = Type->castAs<ComplexType>();
        Type = CT->getElementType();
        ArraySize = 2;
        MostDerivedLength = I + 1;
        IsArray = true;
      } else if (const FieldDecl *FD = getAsField(Path[I])) {
        Type = FD->getType();
        ArraySize = 0;
        MostDerivedLength = I + 1;
        IsArray = false;
      } else {
        // Path[I] describes a base class.
        ArraySize = 0;
        IsArray = false;
      }
    }
    return MostDerivedLength;
  }

  /// A path from a glvalue to a subobject of that glvalue.
  struct SubobjectDesignator {
    /// True if the subobject was named in a manner not supported by C++11. Such
    /// lvalues can still be folded, but they are not core constant expressions
    /// and we cannot perform lvalue-to-rvalue conversions on them.
    unsigned Invalid : 1;

    /// Is this a pointer one past the end of an object?
    unsigned IsOnePastTheEnd : 1;

    /// Indicator of whether the first entry is an unsized array.
    unsigned FirstEntryIsAnUnsizedArray : 1;

    /// Indicator of whether the most-derived object is an array element.
    unsigned MostDerivedIsArrayElement : 1;

    /// The length of the path to the most-derived object of which this is a
    /// subobject.
    unsigned MostDerivedPathLength : 28;

    /// The size of the array of which the most-derived object is an element.
    /// This will always be 0 if the most-derived object is not an array
    /// element. 0 is not an indicator of whether or not the most-derived object
    /// is an array, however, because 0-length arrays are allowed.
    ///
    /// If the current array is an unsized array, the value of this is
    /// undefined.
    uint64_t MostDerivedArraySize;

    /// The type of the most derived object referred to by this address.
    QualType MostDerivedType;

    typedef APValue::LValuePathEntry PathEntry;

    /// The entries on the path from the glvalue to the designated subobject.
    SmallVector<PathEntry, 8> Entries;

    SubobjectDesignator() : Invalid(true) {}

    explicit SubobjectDesignator(QualType T)
        : Invalid(false), IsOnePastTheEnd(false),
          FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
          MostDerivedPathLength(0), MostDerivedArraySize(0),
          MostDerivedType(T) {}

    SubobjectDesignator(ASTContext &Ctx, const APValue &V)
        : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
          FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
          MostDerivedPathLength(0), MostDerivedArraySize(0) {
      assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
      if (!Invalid) {
        IsOnePastTheEnd = V.isLValueOnePastTheEnd();
        ArrayRef<PathEntry> VEntries = V.getLValuePath();
        Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
        if (V.getLValueBase()) {
          bool IsArray = false;
          bool FirstIsUnsizedArray = false;
          MostDerivedPathLength = findMostDerivedSubobject(
              Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
              MostDerivedType, IsArray, FirstIsUnsizedArray);
          MostDerivedIsArrayElement = IsArray;
          FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
        }
      }
    }

    void truncate(ASTContext &Ctx, APValue::LValueBase Base,
                  unsigned NewLength) {
      if (Invalid)
        return;

      assert(Base && "cannot truncate path for null pointer");
      assert(NewLength <= Entries.size() && "not a truncation");

      if (NewLength == Entries.size())
        return;
      Entries.resize(NewLength);

      bool IsArray = false;
      bool FirstIsUnsizedArray = false;
      MostDerivedPathLength = findMostDerivedSubobject(
          Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
          FirstIsUnsizedArray);
      MostDerivedIsArrayElement = IsArray;
      FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
    }

    void setInvalid() {
      Invalid = true;
      Entries.clear();
    }

    /// Determine whether the most derived subobject is an array without a
    /// known bound.
    bool isMostDerivedAnUnsizedArray() const {
      assert(!Invalid && "Calling this makes no sense on invalid designators");
      return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
    }

    /// Determine what the most derived array's size is. Results in an assertion
    /// failure if the most derived array lacks a size.
    uint64_t getMostDerivedArraySize() const {
      assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
      return MostDerivedArraySize;
    }

    /// Determine whether this is a one-past-the-end pointer.
    bool isOnePastTheEnd() const {
      assert(!Invalid);
      if (IsOnePastTheEnd)
        return true;
      if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
          Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
              MostDerivedArraySize)
        return true;
      return false;
    }

    /// Get the range of valid index adjustments in the form
    ///   {maximum value that can be subtracted from this pointer,
    ///    maximum value that can be added to this pointer}
    std::pair<uint64_t, uint64_t> validIndexAdjustments() {
      if (Invalid || isMostDerivedAnUnsizedArray())
        return {0, 0};

      // [expr.add]p4: For the purposes of these operators, a pointer to a
      // nonarray object behaves the same as a pointer to the first element of
      // an array of length one with the type of the object as its element type.
      bool IsArray = MostDerivedPathLength == Entries.size() &&
                     MostDerivedIsArrayElement;
      uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
                                    : (uint64_t)IsOnePastTheEnd;
      uint64_t ArraySize =
          IsArray ? getMostDerivedArraySize() : (uint64_t)1;
      return {ArrayIndex, ArraySize - ArrayIndex};
    }

    /// Check that this refers to a valid subobject.
    bool isValidSubobject() const {
      if (Invalid)
        return false;
      return !isOnePastTheEnd();
    }
    /// Check that this refers to a valid subobject, and if not, produce a
    /// relevant diagnostic and set the designator as invalid.
    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);

    /// Get the type of the designated object.
    QualType getType(ASTContext &Ctx) const {
      assert(!Invalid && "invalid designator has no subobject type");
      return MostDerivedPathLength == Entries.size()
                 ? MostDerivedType
                 : Ctx.getRecordType(getAsBaseClass(Entries.back()));
    }

    /// Update this designator to refer to the first element within this array.
    void addArrayUnchecked(const ConstantArrayType *CAT) {
      Entries.push_back(PathEntry::ArrayIndex(0));

      // This is a most-derived object.
      MostDerivedType = CAT->getElementType();
      MostDerivedIsArrayElement = true;
      MostDerivedArraySize = CAT->getSize().getZExtValue();
      MostDerivedPathLength = Entries.size();
    }
    /// Update this designator to refer to the first element within the array of
    /// elements of type T. This is an array of unknown size.
    void addUnsizedArrayUnchecked(QualType ElemTy) {
      Entries.push_back(PathEntry::ArrayIndex(0));

      MostDerivedType = ElemTy;
      MostDerivedIsArrayElement = true;
      // The value in MostDerivedArraySize is undefined in this case. So, set it
      // to an arbitrary value that's likely to loudly break things if it's
      // used.
      MostDerivedArraySize = AssumedSizeForUnsizedArray;
      MostDerivedPathLength = Entries.size();
    }
    /// Update this designator to refer to the given base or member of this
    /// object.
    void addDeclUnchecked(const Decl *D, bool Virtual = false) {
      Entries.push_back(APValue::BaseOrMemberType(D, Virtual));

      // If this isn't a base class, it's a new most-derived object.
      if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
        MostDerivedType = FD->getType();
        MostDerivedIsArrayElement = false;
        MostDerivedArraySize = 0;
        MostDerivedPathLength = Entries.size();
      }
    }
    /// Update this designator to refer to the given complex component.
    void addComplexUnchecked(QualType EltTy, bool Imag) {
      Entries.push_back(PathEntry::ArrayIndex(Imag));

      // This is technically a most-derived object, though in practice this
      // is unlikely to matter.
      MostDerivedType = EltTy;
      MostDerivedIsArrayElement = true;
      MostDerivedArraySize = 2;
      MostDerivedPathLength = Entries.size();
    }
    void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
    void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
                                   const APSInt &N);
    /// Add N to the address of this subobject.
    void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
      if (Invalid || !N) return;
      uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
      if (isMostDerivedAnUnsizedArray()) {
        diagnoseUnsizedArrayPointerArithmetic(Info, E);
        // Can't verify -- trust that the user is doing the right thing (or if
        // not, trust that the caller will catch the bad behavior).
        // FIXME: Should we reject if this overflows, at least?
        Entries.back() = PathEntry::ArrayIndex(
            Entries.back().getAsArrayIndex() + TruncatedN);
        return;
      }

      // [expr.add]p4: For the purposes of these operators, a pointer to a
      // nonarray object behaves the same as a pointer to the first element of
      // an array of length one with the type of the object as its element type.
      bool IsArray = MostDerivedPathLength == Entries.size() &&
                     MostDerivedIsArrayElement;
      uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
                                    : (uint64_t)IsOnePastTheEnd;
      uint64_t ArraySize =
          IsArray ? getMostDerivedArraySize() : (uint64_t)1;

      if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
        // Calculate the actual index in a wide enough type, so we can include
        // it in the note.
        N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
        (llvm::APInt&)N += ArrayIndex;
        assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
        diagnosePointerArithmetic(Info, E, N);
        setInvalid();
        return;
      }

      ArrayIndex += TruncatedN;
      assert(ArrayIndex <= ArraySize &&
             "bounds check succeeded for out-of-bounds index");

      if (IsArray)
        Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
      else
        IsOnePastTheEnd = (ArrayIndex != 0);
    }
  };

  /// A scope at the end of which an object can need to be destroyed.
  enum class ScopeKind {
    Block,
    FullExpression,
    Call
  };

  /// A reference to a particular call and its arguments.
  struct CallRef {
    CallRef() : OrigCallee(), CallIndex(0), Version() {}
    CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
        : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}

    explicit operator bool() const { return OrigCallee; }

    /// Get the parameter that the caller initialized, corresponding to the
    /// given parameter in the callee.
    const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
      return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex())
                        : PVD;
    }

    /// The callee at the point where the arguments were evaluated. This might
    /// be different from the actual callee (a different redeclaration, or a
    /// virtual override), but this function's parameters are the ones that
    /// appear in the parameter map.
    const FunctionDecl *OrigCallee;
    /// The call index of the frame that holds the argument values.
    unsigned CallIndex;
    /// The version of the parameters corresponding to this call.
    unsigned Version;
  };

  /// A stack frame in the constexpr call stack.
  class CallStackFrame : public interp::Frame {
  public:
    EvalInfo &Info;

    /// Parent - The caller of this stack frame.
    CallStackFrame *Caller;

    /// Callee - The function which was called.
    const FunctionDecl *Callee;

    /// This - The binding for the this pointer in this call, if any.
    const LValue *This;

    /// Information on how to find the arguments to this call. Our arguments
    /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
    /// key and this value as the version.
    CallRef Arguments;

    /// Source location information about the default argument or default
    /// initializer expression we're evaluating, if any.
    CurrentSourceLocExprScope CurSourceLocExprScope;

    // Note that we intentionally use std::map here so that references to
    // values are stable.
    typedef std::pair<const void *, unsigned> MapKeyTy;
    typedef std::map<MapKeyTy, APValue> MapTy;
    /// Temporaries - Temporary lvalues materialized within this stack frame.
    MapTy Temporaries;

    /// CallLoc - The location of the call expression for this call.
    SourceLocation CallLoc;

    /// Index - The call index of this call.
    unsigned Index;

    /// The stack of integers for tracking version numbers for temporaries.
    SmallVector<unsigned, 2> TempVersionStack = {1};
    unsigned CurTempVersion = TempVersionStack.back();

    unsigned getTempVersion() const { return TempVersionStack.back(); }

    void pushTempVersion() {
      TempVersionStack.push_back(++CurTempVersion);
    }

    void popTempVersion() {
      TempVersionStack.pop_back();
    }

    CallRef createCall(const FunctionDecl *Callee) {
      return {Callee, Index, ++CurTempVersion};
    }

    // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
    // on the overall stack usage of deeply-recursing constexpr evaluations.
    // (We should cache this map rather than recomputing it repeatedly.)
    // But let's try this and see how it goes; we can look into caching the map
    // as a later change.

    /// LambdaCaptureFields - Mapping from captured variables/this to
    /// corresponding data members in the closure class.
    llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
    FieldDecl *LambdaThisCaptureField;

    CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
                   const FunctionDecl *Callee, const LValue *This,
                   CallRef Arguments);
    ~CallStackFrame();

    // Return the temporary for Key whose version number is Version.
    APValue *getTemporary(const void *Key, unsigned Version) {
      MapKeyTy KV(Key, Version);
      auto LB = Temporaries.lower_bound(KV);
      if (LB != Temporaries.end() && LB->first == KV)
        return &LB->second;
      // Pair (Key,Version) wasn't found in the map. Check that no elements
      // in the map have 'Key' as their key.
      assert((LB == Temporaries.end() || LB->first.first != Key) &&
             (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) &&
             "Element with key 'Key' found in map");
      return nullptr;
    }

    // Return the current temporary for Key in the map.
    APValue *getCurrentTemporary(const void *Key) {
      auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
      if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
        return &std::prev(UB)->second;
      return nullptr;
    }

    // Return the version number of the current temporary for Key.
    unsigned getCurrentTemporaryVersion(const void *Key) const {
      auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
      if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
        return std::prev(UB)->first.second;
      return 0;
    }

    /// Allocate storage for an object of type T in this stack frame.
    /// Populates LV with a handle to the created object. Key identifies
    /// the temporary within the stack frame, and must not be reused without
    /// bumping the temporary version number.
    template<typename KeyT>
    APValue &createTemporary(const KeyT *Key, QualType T,
                             ScopeKind Scope, LValue &LV);

    /// Allocate storage for a parameter of a function call made in this frame.
    APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);

    void describe(llvm::raw_ostream &OS) override;

    Frame *getCaller() const override { return Caller; }
    SourceLocation getCallLocation() const override { return CallLoc; }
    const FunctionDecl *getCallee() const override { return Callee; }

    bool isStdFunction() const {
      for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
        if (DC->isStdNamespace())
          return true;
      return false;
    }

  private:
    APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
                         ScopeKind Scope);
  };

  /// Temporarily override 'this'.
  class ThisOverrideRAII {
  public:
    ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
        : Frame(Frame), OldThis(Frame.This) {
      if (Enable)
        Frame.This = NewThis;
    }
    ~ThisOverrideRAII() {
      Frame.This = OldThis;
    }
  private:
    CallStackFrame &Frame;
    const LValue *OldThis;
  };
}

static bool HandleDestruction(EvalInfo &Info, const Expr *E,
                              const LValue &This, QualType ThisType);
static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
                              APValue::LValueBase LVBase, APValue &Value,
                              QualType T);

namespace {
  /// A cleanup, and a flag indicating whether it is lifetime-extended.
  class Cleanup {
    llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
    APValue::LValueBase Base;
    QualType T;

  public:
    Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
            ScopeKind Scope)
        : Value(Val, Scope), Base(Base), T(T) {}

    /// Determine whether this cleanup should be performed at the end of the
    /// given kind of scope.
    bool isDestroyedAtEndOf(ScopeKind K) const {
      return (int)Value.getInt() >= (int)K;
    }
    bool endLifetime(EvalInfo &Info, bool RunDestructors) {
      if (RunDestructors) {
        SourceLocation Loc;
        if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
          Loc = VD->getLocation();
        else if (const Expr *E = Base.dyn_cast<const Expr*>())
          Loc = E->getExprLoc();
        return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
      }
      *Value.getPointer() = APValue();
      return true;
    }

    bool hasSideEffect() {
      return T.isDestructedType();
    }
  };

  /// A reference to an object whose construction we are currently evaluating.
  struct ObjectUnderConstruction {
    APValue::LValueBase Base;
    ArrayRef<APValue::LValuePathEntry> Path;
    friend bool operator==(const ObjectUnderConstruction &LHS,
                           const ObjectUnderConstruction &RHS) {
      return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
    }
    friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
      return llvm::hash_combine(Obj.Base, Obj.Path);
    }
  };
  enum class ConstructionPhase {
    None,
    Bases,
    AfterBases,
    AfterFields,
    Destroying,
    DestroyingBases
  };
}

namespace llvm {
template<> struct DenseMapInfo<ObjectUnderConstruction> {
  using Base = DenseMapInfo<APValue::LValueBase>;
  static ObjectUnderConstruction getEmptyKey() {
    return {Base::getEmptyKey(), {}}; }
  static ObjectUnderConstruction getTombstoneKey() {
    return {Base::getTombstoneKey(), {}};
  }
  static unsigned getHashValue(const ObjectUnderConstruction &Object) {
    return hash_value(Object);
  }
  static bool isEqual(const ObjectUnderConstruction &LHS,
                      const ObjectUnderConstruction &RHS) {
    return LHS == RHS;
  }
};
}

namespace {
  /// A dynamically-allocated heap object.
  struct DynAlloc {
    /// The value of this heap-allocated object.
    APValue Value;
    /// The allocating expression; used for diagnostics. Either a CXXNewExpr
    /// or a CallExpr (the latter is for direct calls to operator new inside
    /// std::allocator<T>::allocate).
    const Expr *AllocExpr = nullptr;

    enum Kind {
      New,
      ArrayNew,
      StdAllocator
    };

    /// Get the kind of the allocation. This must match between allocation
    /// and deallocation.
    Kind getKind() const {
      if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
        return NE->isArray() ? ArrayNew : New;
      assert(isa<CallExpr>(AllocExpr));
      return StdAllocator;
    }
  };

  struct DynAllocOrder {
    bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
      return L.getIndex() < R.getIndex();
    }
  };

  /// EvalInfo - This is a private struct used by the evaluator to capture
  /// information about a subexpression as it is folded.  It retains information
  /// about the AST context, but also maintains information about the folded
  /// expression.
  ///
  /// If an expression could be evaluated, it is still possible it is not a C
  /// "integer constant expression" or constant expression.  If not, this struct
  /// captures information about how and why not.
  ///
  /// One bit of information passed *into* the request for constant folding
  /// indicates whether the subexpression is "evaluated" or not according to C
  /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
  /// evaluate the expression regardless of what the RHS is, but C only allows
  /// certain things in certain situations.
  class EvalInfo : public interp::State {
  public:
    ASTContext &Ctx;

    /// EvalStatus - Contains information about the evaluation.
    Expr::EvalStatus &EvalStatus;

    /// CurrentCall - The top of the constexpr call stack.
    CallStackFrame *CurrentCall;

    /// CallStackDepth - The number of calls in the call stack right now.
    unsigned CallStackDepth;

    /// NextCallIndex - The next call index to assign.
    unsigned NextCallIndex;

    /// StepsLeft - The remaining number of evaluation steps we're permitted
    /// to perform. This is essentially a limit for the number of statements
    /// we will evaluate.
    unsigned StepsLeft;

    /// Enable the experimental new constant interpreter. If an expression is
    /// not supported by the interpreter, an error is triggered.
    bool EnableNewConstInterp;

    /// BottomFrame - The frame in which evaluation started. This must be
    /// initialized after CurrentCall and CallStackDepth.
    CallStackFrame BottomFrame;

    /// A stack of values whose lifetimes end at the end of some surrounding
    /// evaluation frame.
    llvm::SmallVector<Cleanup, 16> CleanupStack;

    /// EvaluatingDecl - This is the declaration whose initializer is being
    /// evaluated, if any.
    APValue::LValueBase EvaluatingDecl;

    enum class EvaluatingDeclKind {
      None,
      /// We're evaluating the construction of EvaluatingDecl.
      Ctor,
      /// We're evaluating the destruction of EvaluatingDecl.
      Dtor,
    };
    EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;

    /// EvaluatingDeclValue - This is the value being constructed for the
    /// declaration whose initializer is being evaluated, if any.
    APValue *EvaluatingDeclValue;

    /// Set of objects that are currently being constructed.
    llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
        ObjectsUnderConstruction;

    /// Current heap allocations, along with the location where each was
    /// allocated. We use std::map here because we need stable addresses
    /// for the stored APValues.
    std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;

    /// The number of heap allocations performed so far in this evaluation.
    unsigned NumHeapAllocs = 0;

    struct EvaluatingConstructorRAII {
      EvalInfo &EI;
      ObjectUnderConstruction Object;
      bool DidInsert;
      EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
                                bool HasBases)
          : EI(EI), Object(Object) {
        DidInsert =
            EI.ObjectsUnderConstruction
                .insert({Object, HasBases ? ConstructionPhase::Bases
                                          : ConstructionPhase::AfterBases})
                .second;
      }
      void finishedConstructingBases() {
        EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
      }
      void finishedConstructingFields() {
        EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
      }
      ~EvaluatingConstructorRAII() {
        if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
      }
    };

    struct EvaluatingDestructorRAII {
      EvalInfo &EI;
      ObjectUnderConstruction Object;
      bool DidInsert;
      EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
          : EI(EI), Object(Object) {
        DidInsert = EI.ObjectsUnderConstruction
                        .insert({Object, ConstructionPhase::Destroying})
                        .second;
      }
      void startedDestroyingBases() {
        EI.ObjectsUnderConstruction[Object] =
            ConstructionPhase::DestroyingBases;
      }
      ~EvaluatingDestructorRAII() {
        if (DidInsert)
          EI.ObjectsUnderConstruction.erase(Object);
      }
    };

    ConstructionPhase
    isEvaluatingCtorDtor(APValue::LValueBase Base,
                         ArrayRef<APValue::LValuePathEntry> Path) {
      return ObjectsUnderConstruction.lookup({Base, Path});
    }

    /// If we're currently speculatively evaluating, the outermost call stack
    /// depth at which we can mutate state, otherwise 0.
    unsigned SpeculativeEvaluationDepth = 0;

    /// The current array initialization index, if we're performing array
    /// initialization.
    uint64_t ArrayInitIndex = -1;

    /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
    /// notes attached to it will also be stored, otherwise they will not be.
    bool HasActiveDiagnostic;

    /// Have we emitted a diagnostic explaining why we couldn't constant
    /// fold (not just why it's not strictly a constant expression)?
    bool HasFoldFailureDiagnostic;

    /// Whether or not we're in a context where the front end requires a
    /// constant value.
    bool InConstantContext;

    /// Whether we're checking that an expression is a potential constant
    /// expression. If so, do not fail on constructs that could become constant
    /// later on (such as a use of an undefined global).
    bool CheckingPotentialConstantExpression = false;

    /// Whether we're checking for an expression that has undefined behavior.
    /// If so, we will produce warnings if we encounter an operation that is
    /// always undefined.
    ///
    /// Note that we still need to evaluate the expression normally when this
    /// is set; this is used when evaluating ICEs in C.
    bool CheckingForUndefinedBehavior = false;

    enum EvaluationMode {
      /// Evaluate as a constant expression. Stop if we find that the expression
      /// is not a constant expression.
      EM_ConstantExpression,

      /// Evaluate as a constant expression. Stop if we find that the expression
      /// is not a constant expression. Some expressions can be retried in the
      /// optimizer if we don't constant fold them here, but in an unevaluated
      /// context we try to fold them immediately since the optimizer never
      /// gets a chance to look at it.
      EM_ConstantExpressionUnevaluated,

      /// Fold the expression to a constant. Stop if we hit a side-effect that
      /// we can't model.
      EM_ConstantFold,

      /// Evaluate in any way we know how. Don't worry about side-effects that
      /// can't be modeled.
      EM_IgnoreSideEffects,
    } EvalMode;

    /// Are we checking whether the expression is a potential constant
    /// expression?
    bool checkingPotentialConstantExpression() const override  {
      return CheckingPotentialConstantExpression;
    }

    /// Are we checking an expression for overflow?
    // FIXME: We should check for any kind of undefined or suspicious behavior
    // in such constructs, not just overflow.
    bool checkingForUndefinedBehavior() const override {
      return CheckingForUndefinedBehavior;
    }

    EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
        : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
          CallStackDepth(0), NextCallIndex(1),
          StepsLeft(C.getLangOpts().ConstexprStepLimit),
          EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
          BottomFrame(*this, SourceLocation(), nullptr, nullptr, CallRef()),
          EvaluatingDecl((const ValueDecl *)nullptr),
          EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
          HasFoldFailureDiagnostic(false), InConstantContext(false),
          EvalMode(Mode) {}

    ~EvalInfo() {
      discardCleanups();
    }

    ASTContext &getCtx() const override { return Ctx; }

    void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
                           EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
      EvaluatingDecl = Base;
      IsEvaluatingDecl = EDK;
      EvaluatingDeclValue = &Value;
    }

    bool CheckCallLimit(SourceLocation Loc) {
      // Don't perform any constexpr calls (other than the call we're checking)
      // when checking a potential constant expression.
      if (checkingPotentialConstantExpression() && CallStackDepth > 1)
        return false;
      if (NextCallIndex == 0) {
        // NextCallIndex has wrapped around.
        FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
        return false;
      }
      if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
        return true;
      FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
        << getLangOpts().ConstexprCallDepth;
      return false;
    }

    std::pair<CallStackFrame *, unsigned>
    getCallFrameAndDepth(unsigned CallIndex) {
      assert(CallIndex && "no call index in getCallFrameAndDepth");
      // We will eventually hit BottomFrame, which has Index 1, so Frame can't
      // be null in this loop.
      unsigned Depth = CallStackDepth;
      CallStackFrame *Frame = CurrentCall;
      while (Frame->Index > CallIndex) {
        Frame = Frame->Caller;
        --Depth;
      }
      if (Frame->Index == CallIndex)
        return {Frame, Depth};
      return {nullptr, 0};
    }

    bool nextStep(const Stmt *S) {
      if (!StepsLeft) {
        FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
        return false;
      }
      --StepsLeft;
      return true;
    }

    APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);

    Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) {
      Optional<DynAlloc*> Result;
      auto It = HeapAllocs.find(DA);
      if (It != HeapAllocs.end())
        Result = &It->second;
      return Result;
    }

    /// Get the allocated storage for the given parameter of the given call.
    APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
      CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first;
      return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version)
                   : nullptr;
    }

    /// Information about a stack frame for std::allocator<T>::[de]allocate.
    struct StdAllocatorCaller {
      unsigned FrameIndex;
      QualType ElemType;
      explicit operator bool() const { return FrameIndex != 0; };
    };

    StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
      for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
           Call = Call->Caller) {
        const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
        if (!MD)
          continue;
        const IdentifierInfo *FnII = MD->getIdentifier();
        if (!FnII || !FnII->isStr(FnName))
          continue;

        const auto *CTSD =
            dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
        if (!CTSD)
          continue;

        const IdentifierInfo *ClassII = CTSD->getIdentifier();
        const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
        if (CTSD->isInStdNamespace() && ClassII &&
            ClassII->isStr("allocator") && TAL.size() >= 1 &&
            TAL[0].getKind() == TemplateArgument::Type)
          return {Call->Index, TAL[0].getAsType()};
      }

      return {};
    }

    void performLifetimeExtension() {
      // Disable the cleanups for lifetime-extended temporaries.
      llvm::erase_if(CleanupStack, [](Cleanup &C) {
        return !C.isDestroyedAtEndOf(ScopeKind::FullExpression);
      });
    }

    /// Throw away any remaining cleanups at the end of evaluation. If any
    /// cleanups would have had a side-effect, note that as an unmodeled
    /// side-effect and return false. Otherwise, return true.
    bool discardCleanups() {
      for (Cleanup &C : CleanupStack) {
        if (C.hasSideEffect() && !noteSideEffect()) {
          CleanupStack.clear();
          return false;
        }
      }
      CleanupStack.clear();
      return true;
    }

  private:
    interp::Frame *getCurrentFrame() override { return CurrentCall; }
    const interp::Frame *getBottomFrame() const override { return &BottomFrame; }

    bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
    void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }

    void setFoldFailureDiagnostic(bool Flag) override {
      HasFoldFailureDiagnostic = Flag;
    }

    Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }

    // If we have a prior diagnostic, it will be noting that the expression
    // isn't a constant expression. This diagnostic is more important,
    // unless we require this evaluation to produce a constant expression.
    //
    // FIXME: We might want to show both diagnostics to the user in
    // EM_ConstantFold mode.
    bool hasPriorDiagnostic() override {
      if (!EvalStatus.Diag->empty()) {
        switch (EvalMode) {
        case EM_ConstantFold:
        case EM_IgnoreSideEffects:
          if (!HasFoldFailureDiagnostic)
            break;
          // We've already failed to fold something. Keep that diagnostic.
          LLVM_FALLTHROUGH;
        case EM_ConstantExpression:
        case EM_ConstantExpressionUnevaluated:
          setActiveDiagnostic(false);
          return true;
        }
      }
      return false;
    }

    unsigned getCallStackDepth() override { return CallStackDepth; }

  public:
    /// Should we continue evaluation after encountering a side-effect that we
    /// couldn't model?
    bool keepEvaluatingAfterSideEffect() {
      switch (EvalMode) {
      case EM_IgnoreSideEffects:
        return true;

      case EM_ConstantExpression:
      case EM_ConstantExpressionUnevaluated:
      case EM_ConstantFold:
        // By default, assume any side effect might be valid in some other
        // evaluation of this expression from a different context.
        return checkingPotentialConstantExpression() ||
               checkingForUndefinedBehavior();
      }
      llvm_unreachable("Missed EvalMode case");
    }

    /// Note that we have had a side-effect, and determine whether we should
    /// keep evaluating.
    bool noteSideEffect() {
      EvalStatus.HasSideEffects = true;
      return keepEvaluatingAfterSideEffect();
    }

    /// Should we continue evaluation after encountering undefined behavior?
    bool keepEvaluatingAfterUndefinedBehavior() {
      switch (EvalMode) {
      case EM_IgnoreSideEffects:
      case EM_ConstantFold:
        return true;

      case EM_ConstantExpression:
      case EM_ConstantExpressionUnevaluated:
        return checkingForUndefinedBehavior();
      }
      llvm_unreachable("Missed EvalMode case");
    }

    /// Note that we hit something that was technically undefined behavior, but
    /// that we can evaluate past it (such as signed overflow or floating-point
    /// division by zero.)
    bool noteUndefinedBehavior() override {
      EvalStatus.HasUndefinedBehavior = true;
      return keepEvaluatingAfterUndefinedBehavior();
    }

    /// Should we continue evaluation as much as possible after encountering a
    /// construct which can't be reduced to a value?
    bool keepEvaluatingAfterFailure() const override {
      if (!StepsLeft)
        return false;

      switch (EvalMode) {
      case EM_ConstantExpression:
      case EM_ConstantExpressionUnevaluated:
      case EM_ConstantFold:
      case EM_IgnoreSideEffects:
        return checkingPotentialConstantExpression() ||
               checkingForUndefinedBehavior();
      }
      llvm_unreachable("Missed EvalMode case");
    }

    /// Notes that we failed to evaluate an expression that other expressions
    /// directly depend on, and determine if we should keep evaluating. This
    /// should only be called if we actually intend to keep evaluating.
    ///
    /// Call noteSideEffect() instead if we may be able to ignore the value that
    /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
    ///
    /// (Foo(), 1)      // use noteSideEffect
    /// (Foo() || true) // use noteSideEffect
    /// Foo() + 1       // use noteFailure
    LLVM_NODISCARD bool noteFailure() {
      // Failure when evaluating some expression often means there is some
      // subexpression whose evaluation was skipped. Therefore, (because we
      // don't track whether we skipped an expression when unwinding after an
      // evaluation failure) every evaluation failure that bubbles up from a
      // subexpression implies that a side-effect has potentially happened. We
      // skip setting the HasSideEffects flag to true until we decide to
      // continue evaluating after that point, which happens here.
      bool KeepGoing = keepEvaluatingAfterFailure();
      EvalStatus.HasSideEffects |= KeepGoing;
      return KeepGoing;
    }

    class ArrayInitLoopIndex {
      EvalInfo &Info;
      uint64_t OuterIndex;

    public:
      ArrayInitLoopIndex(EvalInfo &Info)
          : Info(Info), OuterIndex(Info.ArrayInitIndex) {
        Info.ArrayInitIndex = 0;
      }
      ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }

      operator uint64_t&() { return Info.ArrayInitIndex; }
    };
  };

  /// Object used to treat all foldable expressions as constant expressions.
  struct FoldConstant {
    EvalInfo &Info;
    bool Enabled;
    bool HadNoPriorDiags;
    EvalInfo::EvaluationMode OldMode;

    explicit FoldConstant(EvalInfo &Info, bool Enabled)
      : Info(Info),
        Enabled(Enabled),
        HadNoPriorDiags(Info.EvalStatus.Diag &&
                        Info.EvalStatus.Diag->empty() &&
                        !Info.EvalStatus.HasSideEffects),
        OldMode(Info.EvalMode) {
      if (Enabled)
        Info.EvalMode = EvalInfo::EM_ConstantFold;
    }
    void keepDiagnostics() { Enabled = false; }
    ~FoldConstant() {
      if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
          !Info.EvalStatus.HasSideEffects)
        Info.EvalStatus.Diag->clear();
      Info.EvalMode = OldMode;
    }
  };

  /// RAII object used to set the current evaluation mode to ignore
  /// side-effects.
  struct IgnoreSideEffectsRAII {
    EvalInfo &Info;
    EvalInfo::EvaluationMode OldMode;
    explicit IgnoreSideEffectsRAII(EvalInfo &Info)
        : Info(Info), OldMode(Info.EvalMode) {
      Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
    }

    ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
  };

  /// RAII object used to optionally suppress diagnostics and side-effects from
  /// a speculative evaluation.
  class SpeculativeEvaluationRAII {
    EvalInfo *Info = nullptr;
    Expr::EvalStatus OldStatus;
    unsigned OldSpeculativeEvaluationDepth;

    void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
      Info = Other.Info;
      OldStatus = Other.OldStatus;
      OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
      Other.Info = nullptr;
    }

    void maybeRestoreState() {
      if (!Info)
        return;

      Info->EvalStatus = OldStatus;
      Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
    }

  public:
    SpeculativeEvaluationRAII() = default;

    SpeculativeEvaluationRAII(
        EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
        : Info(&Info), OldStatus(Info.EvalStatus),
          OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
      Info.EvalStatus.Diag = NewDiag;
      Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
    }

    SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
    SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
      moveFromAndCancel(std::move(Other));
    }

    SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
      maybeRestoreState();
      moveFromAndCancel(std::move(Other));
      return *this;
    }

    ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
  };

  /// RAII object wrapping a full-expression or block scope, and handling
  /// the ending of the lifetime of temporaries created within it.
  template<ScopeKind Kind>
  class ScopeRAII {
    EvalInfo &Info;
    unsigned OldStackSize;
  public:
    ScopeRAII(EvalInfo &Info)
        : Info(Info), OldStackSize(Info.CleanupStack.size()) {
      // Push a new temporary version. This is needed to distinguish between
      // temporaries created in different iterations of a loop.
      Info.CurrentCall->pushTempVersion();
    }
    bool destroy(bool RunDestructors = true) {
      bool OK = cleanup(Info, RunDestructors, OldStackSize);
      OldStackSize = -1U;
      return OK;
    }
    ~ScopeRAII() {
      if (OldStackSize != -1U)
        destroy(false);
      // Body moved to a static method to encourage the compiler to inline away
      // instances of this class.
      Info.CurrentCall->popTempVersion();
    }
  private:
    static bool cleanup(EvalInfo &Info, bool RunDestructors,
                        unsigned OldStackSize) {
      assert(OldStackSize <= Info.CleanupStack.size() &&
             "running cleanups out of order?");

      // Run all cleanups for a block scope, and non-lifetime-extended cleanups
      // for a full-expression scope.
      bool Success = true;
      for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
        if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) {
          if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
            Success = false;
            break;
          }
        }
      }

      // Compact any retained cleanups.
      auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
      if (Kind != ScopeKind::Block)
        NewEnd =
            std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
              return C.isDestroyedAtEndOf(Kind);
            });
      Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
      return Success;
    }
  };
  typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
  typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
  typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
}

bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
                                         CheckSubobjectKind CSK) {
  if (Invalid)
    return false;
  if (isOnePastTheEnd()) {
    Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
      << CSK;
    setInvalid();
    return false;
  }
  // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
  // must actually be at least one array element; even a VLA cannot have a
  // bound of zero. And if our index is nonzero, we already had a CCEDiag.
  return true;
}

void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
                                                                const Expr *E) {
  Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
  // Do not set the designator as invalid: we can represent this situation,
  // and correct handling of __builtin_object_size requires us to do so.
}

void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
                                                    const Expr *E,
                                                    const APSInt &N) {
  // If we're complaining, we must be able to statically determine the size of
  // the most derived array.
  if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
    Info.CCEDiag(E, diag::note_constexpr_array_index)
      << N << /*array*/ 0
      << static_cast<unsigned>(getMostDerivedArraySize());
  else
    Info.CCEDiag(E, diag::note_constexpr_array_index)
      << N << /*non-array*/ 1;
  setInvalid();
}

CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
                               const FunctionDecl *Callee, const LValue *This,
                               CallRef Call)
    : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
      Arguments(Call), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
  Info.CurrentCall = this;
  ++Info.CallStackDepth;
}

CallStackFrame::~CallStackFrame() {
  assert(Info.CurrentCall == this && "calls retired out of order");
  --Info.CallStackDepth;
  Info.CurrentCall = Caller;
}

static bool isRead(AccessKinds AK) {
  return AK == AK_Read || AK == AK_ReadObjectRepresentation;
}

static bool isModification(AccessKinds AK) {
  switch (AK) {
  case AK_Read:
  case AK_ReadObjectRepresentation:
  case AK_MemberCall:
  case AK_DynamicCast:
  case AK_TypeId:
    return false;
  case AK_Assign:
  case AK_Increment:
  case AK_Decrement:
  case AK_Construct:
  case AK_Destroy:
    return true;
  }
  llvm_unreachable("unknown access kind");
}

static bool isAnyAccess(AccessKinds AK) {
  return isRead(AK) || isModification(AK);
}

/// Is this an access per the C++ definition?
static bool isFormalAccess(AccessKinds AK) {
  return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
}

/// Is this kind of axcess valid on an indeterminate object value?
static bool isValidIndeterminateAccess(AccessKinds AK) {
  switch (AK) {
  case AK_Read:
  case AK_Increment:
  case AK_Decrement:
    // These need the object's value.
    return false;

  case AK_ReadObjectRepresentation:
  case AK_Assign:
  case AK_Construct:
  case AK_Destroy:
    // Construction and destruction don't need the value.
    return true;

  case AK_MemberCall:
  case AK_DynamicCast:
  case AK_TypeId:
    // These aren't really meaningful on scalars.
    return true;
  }
  llvm_unreachable("unknown access kind");
}

namespace {
  struct ComplexValue {
  private:
    bool IsInt;

  public:
    APSInt IntReal, IntImag;
    APFloat FloatReal, FloatImag;

    ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}

    void makeComplexFloat() { IsInt = false; }
    bool isComplexFloat() const { return !IsInt; }
    APFloat &getComplexFloatReal() { return FloatReal; }
    APFloat &getComplexFloatImag() { return FloatImag; }

    void makeComplexInt() { IsInt = true; }
    bool isComplexInt() const { return IsInt; }
    APSInt &getComplexIntReal() { return IntReal; }
    APSInt &getComplexIntImag() { return IntImag; }

    void moveInto(APValue &v) const {
      if (isComplexFloat())
        v = APValue(FloatReal, FloatImag);
      else
        v = APValue(IntReal, IntImag);
    }
    void setFrom(const APValue &v) {
      assert(v.isComplexFloat() || v.isComplexInt());
      if (v.isComplexFloat()) {
        makeComplexFloat();
        FloatReal = v.getComplexFloatReal();
        FloatImag = v.getComplexFloatImag();
      } else {
        makeComplexInt();
        IntReal = v.getComplexIntReal();
        IntImag = v.getComplexIntImag();
      }
    }
  };

  struct LValue {
    APValue::LValueBase Base;
    CharUnits Offset;
    SubobjectDesignator Designator;
    bool IsNullPtr : 1;
    bool InvalidBase : 1;

    const APValue::LValueBase getLValueBase() const { return Base; }
    CharUnits &getLValueOffset() { return Offset; }
    const CharUnits &getLValueOffset() const { return Offset; }
    SubobjectDesignator &getLValueDesignator() { return Designator; }
    const SubobjectDesignator &getLValueDesignator() const { return Designator;}
    bool isNullPointer() const { return IsNullPtr;}

    unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
    unsigned getLValueVersion() const { return Base.getVersion(); }

    void moveInto(APValue &V) const {
      if (Designator.Invalid)
        V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
      else {
        assert(!InvalidBase && "APValues can't handle invalid LValue bases");
        V = APValue(Base, Offset, Designator.Entries,
                    Designator.IsOnePastTheEnd, IsNullPtr);
      }
    }
    void setFrom(ASTContext &Ctx, const APValue &V) {
      assert(V.isLValue() && "Setting LValue from a non-LValue?");
      Base = V.getLValueBase();
      Offset = V.getLValueOffset();
      InvalidBase = false;
      Designator = SubobjectDesignator(Ctx, V);
      IsNullPtr = V.isNullPointer();
    }

    void set(APValue::LValueBase B, bool BInvalid = false) {
#ifndef NDEBUG
      // We only allow a few types of invalid bases. Enforce that here.
      if (BInvalid) {
        const auto *E = B.get<const Expr *>();
        assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
               "Unexpected type of invalid base");
      }
#endif

      Base = B;
      Offset = CharUnits::fromQuantity(0);
      InvalidBase = BInvalid;
      Designator = SubobjectDesignator(getType(B));
      IsNullPtr = false;
    }

    void setNull(ASTContext &Ctx, QualType PointerTy) {
      Base = (const ValueDecl *)nullptr;
      Offset =
          CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
      InvalidBase = false;
      Designator = SubobjectDesignator(PointerTy->getPointeeType());
      IsNullPtr = true;
    }

    void setInvalid(APValue::LValueBase B, unsigned I = 0) {
      set(B, true);
    }

    std::string toString(ASTContext &Ctx, QualType T) const {
      APValue Printable;
      moveInto(Printable);
      return Printable.getAsString(Ctx, T);
    }

  private:
    // Check that this LValue is not based on a null pointer. If it is, produce
    // a diagnostic and mark the designator as invalid.
    template <typename GenDiagType>
    bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
      if (Designator.Invalid)
        return false;
      if (IsNullPtr) {
        GenDiag();
        Designator.setInvalid();
        return false;
      }
      return true;
    }

  public:
    bool checkNullPointer(EvalInfo &Info, const Expr *E,
                          CheckSubobjectKind CSK) {
      return checkNullPointerDiagnosingWith([&Info, E, CSK] {
        Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
      });
    }

    bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
                                       AccessKinds AK) {
      return checkNullPointerDiagnosingWith([&Info, E, AK] {
        Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
      });
    }

    // Check this LValue refers to an object. If not, set the designator to be
    // invalid and emit a diagnostic.
    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
      return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
             Designator.checkSubobject(Info, E, CSK);
    }

    void addDecl(EvalInfo &Info, const Expr *E,
                 const Decl *D, bool Virtual = false) {
      if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
        Designator.addDeclUnchecked(D, Virtual);
    }
    void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
      if (!Designator.Entries.empty()) {
        Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
        Designator.setInvalid();
        return;
      }
      if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
        assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
        Designator.FirstEntryIsAnUnsizedArray = true;
        Designator.addUnsizedArrayUnchecked(ElemTy);
      }
    }
    void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
      if (checkSubobject(Info, E, CSK_ArrayToPointer))
        Designator.addArrayUnchecked(CAT);
    }
    void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
      if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
        Designator.addComplexUnchecked(EltTy, Imag);
    }
    void clearIsNullPointer() {
      IsNullPtr = false;
    }
    void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
                              const APSInt &Index, CharUnits ElementSize) {
      // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
      // but we're not required to diagnose it and it's valid in C++.)
      if (!Index)
        return;

      // Compute the new offset in the appropriate width, wrapping at 64 bits.
      // FIXME: When compiling for a 32-bit target, we should use 32-bit
      // offsets.
      uint64_t Offset64 = Offset.getQuantity();
      uint64_t ElemSize64 = ElementSize.getQuantity();
      uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
      Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);

      if (checkNullPointer(Info, E, CSK_ArrayIndex))
        Designator.adjustIndex(Info, E, Index);
      clearIsNullPointer();
    }
    void adjustOffset(CharUnits N) {
      Offset += N;
      if (N.getQuantity())
        clearIsNullPointer();
    }
  };

  struct MemberPtr {
    MemberPtr() {}
    explicit MemberPtr(const ValueDecl *Decl)
        : DeclAndIsDerivedMember(Decl, false) {}

    /// The member or (direct or indirect) field referred to by this member
    /// pointer, or 0 if this is a null member pointer.
    const ValueDecl *getDecl() const {
      return DeclAndIsDerivedMember.getPointer();
    }
    /// Is this actually a member of some type derived from the relevant class?
    bool isDerivedMember() const {
      return DeclAndIsDerivedMember.getInt();
    }
    /// Get the class which the declaration actually lives in.
    const CXXRecordDecl *getContainingRecord() const {
      return cast<CXXRecordDecl>(
          DeclAndIsDerivedMember.getPointer()->getDeclContext());
    }

    void moveInto(APValue &V) const {
      V = APValue(getDecl(), isDerivedMember(), Path);
    }
    void setFrom(const APValue &V) {
      assert(V.isMemberPointer());
      DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
      DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
      Path.clear();
      ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
      Path.insert(Path.end(), P.begin(), P.end());
    }

    /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
    /// whether the member is a member of some class derived from the class type
    /// of the member pointer.
    llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
    /// Path - The path of base/derived classes from the member declaration's
    /// class (exclusive) to the class type of the member pointer (inclusive).
    SmallVector<const CXXRecordDecl*, 4> Path;

    /// Perform a cast towards the class of the Decl (either up or down the
    /// hierarchy).
    bool castBack(const CXXRecordDecl *Class) {
      assert(!Path.empty());
      const CXXRecordDecl *Expected;
      if (Path.size() >= 2)
        Expected = Path[Path.size() - 2];
      else
        Expected = getContainingRecord();
      if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
        // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
        // if B does not contain the original member and is not a base or
        // derived class of the class containing the original member, the result
        // of the cast is undefined.
        // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
        // (D::*). We consider that to be a language defect.
        return false;
      }
      Path.pop_back();
      return true;
    }
    /// Perform a base-to-derived member pointer cast.
    bool castToDerived(const CXXRecordDecl *Derived) {
      if (!getDecl())
        return true;
      if (!isDerivedMember()) {
        Path.push_back(Derived);
        return true;
      }
      if (!castBack(Derived))
        return false;
      if (Path.empty())
        DeclAndIsDerivedMember.setInt(false);
      return true;
    }
    /// Perform a derived-to-base member pointer cast.
    bool castToBase(const CXXRecordDecl *Base) {
      if (!getDecl())
        return true;
      if (Path.empty())
        DeclAndIsDerivedMember.setInt(true);
      if (isDerivedMember()) {
        Path.push_back(Base);
        return true;
      }
      return castBack(Base);
    }
  };

  /// Compare two member pointers, which are assumed to be of the same type.
  static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
    if (!LHS.getDecl() || !RHS.getDecl())
      return !LHS.getDecl() && !RHS.getDecl();
    if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
      return false;
    return LHS.Path == RHS.Path;
  }
}

static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
                            const LValue &This, const Expr *E,
                            bool AllowNonLiteralTypes = false);
static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
                           bool InvalidBaseOK = false);
static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
                            bool InvalidBaseOK = false);
static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
                                  EvalInfo &Info);
static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
                                    EvalInfo &Info);
static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
                           EvalInfo &Info);
static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
                                  EvalInfo &Info);

/// Evaluate an integer or fixed point expression into an APResult.
static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
                                        EvalInfo &Info);

/// Evaluate only a fixed point expression into an APResult.
static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
                               EvalInfo &Info);

//===----------------------------------------------------------------------===//
// Misc utilities
//===----------------------------------------------------------------------===//

/// Negate an APSInt in place, converting it to a signed form if necessary, and
/// preserving its value (by extending by up to one bit as needed).
static void negateAsSigned(APSInt &Int) {
  if (Int.isUnsigned() || Int.isMinSignedValue()) {
    Int = Int.extend(Int.getBitWidth() + 1);
    Int.setIsSigned(true);
  }
  Int = -Int;
}

template<typename KeyT>
APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
                                         ScopeKind Scope, LValue &LV) {
  unsigned Version = getTempVersion();
  APValue::LValueBase Base(Key, Index, Version);
  LV.set(Base);
  return createLocal(Base, Key, T, Scope);
}

/// Allocate storage for a parameter of a function call made in this frame.
APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
                                     LValue &LV) {
  assert(Args.CallIndex == Index && "creating parameter in wrong frame");
  APValue::LValueBase Base(PVD, Index, Args.Version);
  LV.set(Base);
  // We always destroy parameters at the end of the call, even if we'd allow
  // them to live to the end of the full-expression at runtime, in order to
  // give portable results and match other compilers.
  return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call);
}

APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
                                     QualType T, ScopeKind Scope) {
  assert(Base.getCallIndex() == Index && "lvalue for wrong frame");
  unsigned Version = Base.getVersion();
  APValue &Result = Temporaries[MapKeyTy(Key, Version)];
  assert(Result.isAbsent() && "local created multiple times");

  // If we're creating a local immediately in the operand of a speculative
  // evaluation, don't register a cleanup to be run outside the speculative
  // evaluation context, since we won't actually be able to initialize this
  // object.
  if (Index <= Info.SpeculativeEvaluationDepth) {
    if (T.isDestructedType())
      Info.noteSideEffect();
  } else {
    Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope));
  }
  return Result;
}

APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
  if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
    FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
    return nullptr;
  }

  DynamicAllocLValue DA(NumHeapAllocs++);
  LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
  auto Result = HeapAllocs.emplace(std::piecewise_construct,
                                   std::forward_as_tuple(DA), std::tuple<>());
  assert(Result.second && "reused a heap alloc index?");
  Result.first->second.AllocExpr = E;
  return &Result.first->second.Value;
}

/// Produce a string describing the given constexpr call.
void CallStackFrame::describe(raw_ostream &Out) {
  unsigned ArgIndex = 0;
  bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
                      !isa<CXXConstructorDecl>(Callee) &&
                      cast<CXXMethodDecl>(Callee)->isInstance();

  if (!IsMemberCall)
    Out << *Callee << '(';

  if (This && IsMemberCall) {
    APValue Val;
    This->moveInto(Val);
    Val.printPretty(Out, Info.Ctx,
                    This->Designator.MostDerivedType);
    // FIXME: Add parens around Val if needed.
    Out << "->" << *Callee << '(';
    IsMemberCall = false;
  }

  for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
       E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
    if (ArgIndex > (unsigned)IsMemberCall)
      Out << ", ";

    const ParmVarDecl *Param = *I;
    APValue *V = Info.getParamSlot(Arguments, Param);
    if (V)
      V->printPretty(Out, Info.Ctx, Param->getType());
    else
      Out << "<...>";

    if (ArgIndex == 0 && IsMemberCall)
      Out << "->" << *Callee << '(';
  }

  Out << ')';
}

/// Evaluate an expression to see if it had side-effects, and discard its
/// result.
/// \return \c true if the caller should keep evaluating.
static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
  assert(!E->isValueDependent());
  APValue Scratch;
  if (!Evaluate(Scratch, Info, E))
    // We don't need the value, but we might have skipped a side effect here.
    return Info.noteSideEffect();
  return true;
}

/// Should this call expression be treated as a constant?
static bool IsConstantCall(const CallExpr *E) {
  unsigned Builtin = E->getBuiltinCallee();
  return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
          Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
          Builtin == Builtin::BI__builtin_function_start);
}

static bool IsGlobalLValue(APValue::LValueBase B) {
  // C++11 [expr.const]p3 An address constant expression is a prvalue core
  // constant expression of pointer type that evaluates to...

  // ... a null pointer value, or a prvalue core constant expression of type
  // std::nullptr_t.
  if (!B) return true;

  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
    // ... the address of an object with static storage duration,
    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
      return VD->hasGlobalStorage();
    if (isa<TemplateParamObjectDecl>(D))
      return true;
    // ... the address of a function,
    // ... the address of a GUID [MS extension],
    return isa<FunctionDecl>(D) || isa<MSGuidDecl>(D);
  }

  if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
    return true;

  const Expr *E = B.get<const Expr*>();
  switch (E->getStmtClass()) {
  default:
    return false;
  case Expr::CompoundLiteralExprClass: {
    const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
    return CLE->isFileScope() && CLE->isLValue();
  }
  case Expr::MaterializeTemporaryExprClass:
    // A materialized temporary might have been lifetime-extended to static
    // storage duration.
    return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
  // A string literal has static storage duration.
  case Expr::StringLiteralClass:
  case Expr::PredefinedExprClass:
  case Expr::ObjCStringLiteralClass:
  case Expr::ObjCEncodeExprClass:
    return true;
  case Expr::ObjCBoxedExprClass:
    return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
  case Expr::CallExprClass:
    return IsConstantCall(cast<CallExpr>(E));
  // For GCC compatibility, &&label has static storage duration.
  case Expr::AddrLabelExprClass:
    return true;
  // A Block literal expression may be used as the initialization value for
  // Block variables at global or local static scope.
  case Expr::BlockExprClass:
    return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
  case Expr::ImplicitValueInitExprClass:
    // FIXME:
    // We can never form an lvalue with an implicit value initialization as its
    // base through expression evaluation, so these only appear in one case: the
    // implicit variable declaration we invent when checking whether a constexpr
    // constructor can produce a constant expression. We must assume that such
    // an expression might be a global lvalue.
    return true;
  }
}

static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
  return LVal.Base.dyn_cast<const ValueDecl*>();
}

static bool IsLiteralLValue(const LValue &Value) {
  if (Value.getLValueCallIndex())
    return false;
  const Expr *E = Value.Base.dyn_cast<const Expr*>();
  return E && !isa<MaterializeTemporaryExpr>(E);
}

static bool IsWeakLValue(const LValue &Value) {
  const ValueDecl *Decl = GetLValueBaseDecl(Value);
  return Decl && Decl->isWeak();
}

static bool isZeroSized(const LValue &Value) {
  const ValueDecl *Decl = GetLValueBaseDecl(Value);
  if (Decl && isa<VarDecl>(Decl)) {
    QualType Ty = Decl->getType();
    if (Ty->isArrayType())
      return Ty->isIncompleteType() ||
             Decl->getASTContext().getTypeSize(Ty) == 0;
  }
  return false;
}

static bool HasSameBase(const LValue &A, const LValue &B) {
  if (!A.getLValueBase())
    return !B.getLValueBase();
  if (!B.getLValueBase())
    return false;

  if (A.getLValueBase().getOpaqueValue() !=
      B.getLValueBase().getOpaqueValue())
    return false;

  return A.getLValueCallIndex() == B.getLValueCallIndex() &&
         A.getLValueVersion() == B.getLValueVersion();
}

static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
  assert(Base && "no location for a null lvalue");
  const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();

  // For a parameter, find the corresponding call stack frame (if it still
  // exists), and point at the parameter of the function definition we actually
  // invoked.
  if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) {
    unsigned Idx = PVD->getFunctionScopeIndex();
    for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
      if (F->Arguments.CallIndex == Base.getCallIndex() &&
          F->Arguments.Version == Base.getVersion() && F->Callee &&
          Idx < F->Callee->getNumParams()) {
        VD = F->Callee->getParamDecl(Idx);
        break;
      }
    }
  }

  if (VD)
    Info.Note(VD->getLocation(), diag::note_declared_at);
  else if (const Expr *E = Base.dyn_cast<const Expr*>())
    Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
  else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
    // FIXME: Produce a note for dangling pointers too.
    if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA))
      Info.Note((*Alloc)->AllocExpr->getExprLoc(),
                diag::note_constexpr_dynamic_alloc_here);
  }
  // We have no information to show for a typeid(T) object.
}

enum class CheckEvaluationResultKind {
  ConstantExpression,
  FullyInitialized,
};

/// Materialized temporaries that we've already checked to determine if they're
/// initializsed by a constant expression.
using CheckedTemporaries =
    llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;

static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
                                  EvalInfo &Info, SourceLocation DiagLoc,
                                  QualType Type, const APValue &Value,
                                  ConstantExprKind Kind,
                                  SourceLocation SubobjectLoc,
                                  CheckedTemporaries &CheckedTemps);

/// Check that this reference or pointer core constant expression is a valid
/// value for an address or reference constant expression. Return true if we
/// can fold this expression, whether or not it's a constant expression.
static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
                                          QualType Type, const LValue &LVal,
                                          ConstantExprKind Kind,
                                          CheckedTemporaries &CheckedTemps) {
  bool IsReferenceType = Type->isReferenceType();

  APValue::LValueBase Base = LVal.getLValueBase();
  const SubobjectDesignator &Designator = LVal.getLValueDesignator();

  const Expr *BaseE = Base.dyn_cast<const Expr *>();
  const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>();

  // Additional restrictions apply in a template argument. We only enforce the
  // C++20 restrictions here; additional syntactic and semantic restrictions
  // are applied elsewhere.
  if (isTemplateArgument(Kind)) {
    int InvalidBaseKind = -1;
    StringRef Ident;
    if (Base.is<TypeInfoLValue>())
      InvalidBaseKind = 0;
    else if (isa_and_nonnull<StringLiteral>(BaseE))
      InvalidBaseKind = 1;
    else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) ||
             isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD))
      InvalidBaseKind = 2;
    else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) {
      InvalidBaseKind = 3;
      Ident = PE->getIdentKindName();
    }

    if (InvalidBaseKind != -1) {
      Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg)
          << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind
          << Ident;
      return false;
    }
  }

  if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD)) {
    if (FD->isConsteval()) {
      Info.FFDiag(Loc, diag::note_consteval_address_accessible)
          << !Type->isAnyPointerType();
      Info.Note(FD->getLocation(), diag::note_declared_at);
      return false;
    }
  }

  // Check that the object is a global. Note that the fake 'this' object we
  // manufacture when checking potential constant expressions is conservatively
  // assumed to be global here.
  if (!IsGlobalLValue(Base)) {
    if (Info.getLangOpts().CPlusPlus11) {
      const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
      Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
        << IsReferenceType << !Designator.Entries.empty()
        << !!VD << VD;

      auto *VarD = dyn_cast_or_null<VarDecl>(VD);
      if (VarD && VarD->isConstexpr()) {
        // Non-static local constexpr variables have unintuitive semantics:
        //   constexpr int a = 1;
        //   constexpr const int *p = &a;
        // ... is invalid because the address of 'a' is not constant. Suggest
        // adding a 'static' in this case.
        Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)
            << VarD
            << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");
      } else {
        NoteLValueLocation(Info, Base);
      }
    } else {
      Info.FFDiag(Loc);
    }
    // Don't allow references to temporaries to escape.
    return false;
  }
  assert((Info.checkingPotentialConstantExpression() ||
          LVal.getLValueCallIndex() == 0) &&
         "have call index for global lvalue");

  if (Base.is<DynamicAllocLValue>()) {
    Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
        << IsReferenceType << !Designator.Entries.empty();
    NoteLValueLocation(Info, Base);
    return false;
  }

  if (BaseVD) {
    if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) {
      // Check if this is a thread-local variable.
      if (Var->getTLSKind())
        // FIXME: Diagnostic!
        return false;

      // A dllimport variable never acts like a constant, unless we're
      // evaluating a value for use only in name mangling.
      if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>())
        // FIXME: Diagnostic!
        return false;

      // In CUDA/HIP device compilation, only device side variables have
      // constant addresses.
      if (Info.getCtx().getLangOpts().CUDA &&
          Info.getCtx().getLangOpts().CUDAIsDevice &&
          Info.getCtx().CUDAConstantEvalCtx.NoWrongSidedVars) {
        if ((!Var->hasAttr<CUDADeviceAttr>() &&
             !Var->hasAttr<CUDAConstantAttr>() &&
             !Var->getType()->isCUDADeviceBuiltinSurfaceType() &&
             !Var->getType()->isCUDADeviceBuiltinTextureType()) ||
            Var->hasAttr<HIPManagedAttr>())
          return false;
      }
    }
    if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) {
      // __declspec(dllimport) must be handled very carefully:
      // We must never initialize an expression with the thunk in C++.
      // Doing otherwise would allow the same id-expression to yield
      // different addresses for the same function in different translation
      // units.  However, this means that we must dynamically initialize the
      // expression with the contents of the import address table at runtime.
      //
      // The C language has no notion of ODR; furthermore, it has no notion of
      // dynamic initialization.  This means that we are permitted to
      // perform initialization with the address of the thunk.
      if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) &&
          FD->hasAttr<DLLImportAttr>())
        // FIXME: Diagnostic!
        return false;
    }
  } else if (const auto *MTE =
                 dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) {
    if (CheckedTemps.insert(MTE).second) {
      QualType TempType = getType(Base);
      if (TempType.isDestructedType()) {
        Info.FFDiag(MTE->getExprLoc(),
                    diag::note_constexpr_unsupported_temporary_nontrivial_dtor)
            << TempType;
        return false;
      }

      APValue *V = MTE->getOrCreateValue(false);
      assert(V && "evasluation result refers to uninitialised temporary");
      if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
                                 Info, MTE->getExprLoc(), TempType, *V,
                                 Kind, SourceLocation(), CheckedTemps))
        return false;
    }
  }

  // Allow address constant expressions to be past-the-end pointers. This is
  // an extension: the standard requires them to point to an object.
  if (!IsReferenceType)
    return true;

  // A reference constant expression must refer to an object.
  if (!Base) {
    // FIXME: diagnostic
    Info.CCEDiag(Loc);
    return true;
  }

  // Does this refer one past the end of some object?
  if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
    Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
      << !Designator.Entries.empty() << !!BaseVD << BaseVD;
    NoteLValueLocation(Info, Base);
  }

  return true;
}

/// Member pointers are constant expressions unless they point to a
/// non-virtual dllimport member function.
static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
                                                 SourceLocation Loc,
                                                 QualType Type,
                                                 const APValue &Value,
                                                 ConstantExprKind Kind) {
  const ValueDecl *Member = Value.getMemberPointerDecl();
  const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
  if (!FD)
    return true;
  if (FD->isConsteval()) {
    Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
    Info.Note(FD->getLocation(), diag::note_declared_at);
    return false;
  }
  return isForManglingOnly(Kind) || FD->isVirtual() ||
         !FD->hasAttr<DLLImportAttr>();
}

/// Check that this core constant expression is of literal type, and if not,
/// produce an appropriate diagnostic.
static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
                             const LValue *This = nullptr) {
  if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx))
    return true;

  // C++1y: A constant initializer for an object o [...] may also invoke
  // constexpr constructors for o and its subobjects even if those objects
  // are of non-literal class types.
  //
  // C++11 missed this detail for aggregates, so classes like this:
  //   struct foo_t { union { int i; volatile int j; } u; };
  // are not (obviously) initializable like so:
  //   __attribute__((__require_constant_initialization__))
  //   static const foo_t x = {{0}};
  // because "i" is a subobject with non-literal initialization (due to the
  // volatile member of the union). See:
  //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
  // Therefore, we use the C++1y behavior.
  if (This && Info.EvaluatingDecl == This->getLValueBase())
    return true;

  // Prvalue constant expressions must be of literal types.
  if (Info.getLangOpts().CPlusPlus11)
    Info.FFDiag(E, diag::note_constexpr_nonliteral)
      << E->getType();
  else
    Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
  return false;
}

static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
                                  EvalInfo &Info, SourceLocation DiagLoc,
                                  QualType Type, const APValue &Value,
                                  ConstantExprKind Kind,
                                  SourceLocation SubobjectLoc,
                                  CheckedTemporaries &CheckedTemps) {
  if (!Value.hasValue()) {
    Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
      << true << Type;
    if (SubobjectLoc.isValid())
      Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here);
    return false;
  }

  // We allow _Atomic(T) to be initialized from anything that T can be
  // initialized from.
  if (const AtomicType *AT = Type->getAs<AtomicType>())
    Type = AT->getValueType();

  // Core issue 1454: For a literal constant expression of array or class type,
  // each subobject of its value shall have been initialized by a constant
  // expression.
  if (Value.isArray()) {
    QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
    for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
      if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
                                 Value.getArrayInitializedElt(I), Kind,
                                 SubobjectLoc, CheckedTemps))
        return false;
    }
    if (!Value.hasArrayFiller())
      return true;
    return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
                                 Value.getArrayFiller(), Kind, SubobjectLoc,
                                 CheckedTemps);
  }
  if (Value.isUnion() && Value.getUnionField()) {
    return CheckEvaluationResult(
        CERK, Info, DiagLoc, Value.getUnionField()->getType(),
        Value.getUnionValue(), Kind, Value.getUnionField()->getLocation(),
        CheckedTemps);
  }
  if (Value.isStruct()) {
    RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
    if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
      unsigned BaseIndex = 0;
      for (const CXXBaseSpecifier &BS : CD->bases()) {
        if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(),
                                   Value.getStructBase(BaseIndex), Kind,
                                   BS.getBeginLoc(), CheckedTemps))
          return false;
        ++BaseIndex;
      }
    }
    for (const auto *I : RD->fields()) {
      if (I->isUnnamedBitfield())
        continue;

      if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
                                 Value.getStructField(I->getFieldIndex()),
                                 Kind, I->getLocation(), CheckedTemps))
        return false;
    }
  }

  if (Value.isLValue() &&
      CERK == CheckEvaluationResultKind::ConstantExpression) {
    LValue LVal;
    LVal.setFrom(Info.Ctx, Value);
    return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind,
                                         CheckedTemps);
  }

  if (Value.isMemberPointer() &&
      CERK == CheckEvaluationResultKind::ConstantExpression)
    return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind);

  // Everything else is fine.
  return true;
}

/// Check that this core constant expression value is a valid value for a
/// constant expression. If not, report an appropriate diagnostic. Does not
/// check that the expression is of literal type.
static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
                                    QualType Type, const APValue &Value,
                                    ConstantExprKind Kind) {
  // Nothing to check for a constant expression of type 'cv void'.
  if (Type->isVoidType())
    return true;

  CheckedTemporaries CheckedTemps;
  return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
                               Info, DiagLoc, Type, Value, Kind,
                               SourceLocation(), CheckedTemps);
}

/// Check that this evaluated value is fully-initialized and can be loaded by
/// an lvalue-to-rvalue conversion.
static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
                                  QualType Type, const APValue &Value) {
  CheckedTemporaries CheckedTemps;
  return CheckEvaluationResult(
      CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
      ConstantExprKind::Normal, SourceLocation(), CheckedTemps);
}

/// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
/// "the allocated storage is deallocated within the evaluation".
static bool CheckMemoryLeaks(EvalInfo &Info) {
  if (!Info.HeapAllocs.empty()) {
    // We can still fold to a constant despite a compile-time memory leak,
    // so long as the heap allocation isn't referenced in the result (we check
    // that in CheckConstantExpression).
    Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
                 diag::note_constexpr_memory_leak)
        << unsigned(Info.HeapAllocs.size() - 1);
  }
  return true;
}

static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
  // A null base expression indicates a null pointer.  These are always
  // evaluatable, and they are false unless the offset is zero.
  if (!Value.getLValueBase()) {
    Result = !Value.getLValueOffset().isZero();
    return true;
  }

  // We have a non-null base.  These are generally known to be true, but if it's
  // a weak declaration it can be null at runtime.
  Result = true;
  const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
  return !Decl || !Decl->isWeak();
}

static bool HandleConversionToBool(const APValue &Val, bool &Result) {
  switch (Val.getKind()) {
  case APValue::None:
  case APValue::Indeterminate:
    return false;
  case APValue::Int:
    Result = Val.getInt().getBoolValue();
    return true;
  case APValue::FixedPoint:
    Result = Val.getFixedPoint().getBoolValue();
    return true;
  case APValue::Float:
    Result = !Val.getFloat().isZero();
    return true;
  case APValue::ComplexInt:
    Result = Val.getComplexIntReal().getBoolValue() ||
             Val.getComplexIntImag().getBoolValue();
    return true;
  case APValue::ComplexFloat:
    Result = !Val.getComplexFloatReal().isZero() ||
             !Val.getComplexFloatImag().isZero();
    return true;
  case APValue::LValue:
    return EvalPointerValueAsBool(Val, Result);
  case APValue::MemberPointer:
    Result = Val.getMemberPointerDecl();
    return true;
  case APValue::Vector:
  case APValue::Array:
  case APValue::Struct:
  case APValue::Union:
  case APValue::AddrLabelDiff:
    return false;
  }

  llvm_unreachable("unknown APValue kind");
}

static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
                                       EvalInfo &Info) {
  assert(!E->isValueDependent());
  assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition");
  APValue Val;
  if (!Evaluate(Val, Info, E))
    return false;
  return HandleConversionToBool(Val, Result);
}

template<typename T>
static bool HandleOverflow(EvalInfo &Info, const Expr *E,
                           const T &SrcValue, QualType DestType) {
  Info.CCEDiag(E, diag::note_constexpr_overflow)
    << SrcValue << DestType;
  return Info.noteUndefinedBehavior();
}

static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
                                 QualType SrcType, const APFloat &Value,
                                 QualType DestType, APSInt &Result) {
  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
  // Determine whether we are converting to unsigned or signed.
  bool DestSigned = DestType->isSignedIntegerOrEnumerationType();

  Result = APSInt(DestWidth, !DestSigned);
  bool ignored;
  if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
      & APFloat::opInvalidOp)
    return HandleOverflow(Info, E, Value, DestType);
  return true;
}

/// Get rounding mode used for evaluation of the specified expression.
/// \param[out] DynamicRM Is set to true is the requested rounding mode is
///                       dynamic.
/// If rounding mode is unknown at compile time, still try to evaluate the
/// expression. If the result is exact, it does not depend on rounding mode.
/// So return "tonearest" mode instead of "dynamic".
static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E,
                                                bool &DynamicRM) {
  llvm::RoundingMode RM =
      E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode();
  DynamicRM = (RM == llvm::RoundingMode::Dynamic);
  if (DynamicRM)
    RM = llvm::RoundingMode::NearestTiesToEven;
  return RM;
}

/// Check if the given evaluation result is allowed for constant evaluation.
static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E,
                                     APFloat::opStatus St) {
  // In a constant context, assume that any dynamic rounding mode or FP
  // exception state matches the default floating-point environment.
  if (Info.InConstantContext)
    return true;

  FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
  if ((St & APFloat::opInexact) &&
      FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
    // Inexact result means that it depends on rounding mode. If the requested
    // mode is dynamic, the evaluation cannot be made in compile time.
    Info.FFDiag(E, diag::note_constexpr_dynamic_rounding);
    return false;
  }

  if ((St != APFloat::opOK) &&
      (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
       FPO.getFPExceptionMode() != LangOptions::FPE_Ignore ||
       FPO.getAllowFEnvAccess())) {
    Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
    return false;
  }

  if ((St & APFloat::opStatus::opInvalidOp) &&
      FPO.getFPExceptionMode() != LangOptions::FPE_Ignore) {
    // There is no usefully definable result.
    Info.FFDiag(E);
    return false;
  }

  // FIXME: if:
  // - evaluation triggered other FP exception, and
  // - exception mode is not "ignore", and
  // - the expression being evaluated is not a part of global variable
  //   initializer,
  // the evaluation probably need to be rejected.
  return true;
}

static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
                                   QualType SrcType, QualType DestType,
                                   APFloat &Result) {
  assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E));
  bool DynamicRM;
  llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM);
  APFloat::opStatus St;
  APFloat Value = Result;
  bool ignored;
  St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored);
  return checkFloatingPointResult(Info, E, St);
}

static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
                                 QualType DestType, QualType SrcType,
                                 const APSInt &Value) {
  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
  // Figure out if this is a truncate, extend or noop cast.
  // If the input is signed, do a sign extend, noop, or truncate.
  APSInt Result = Value.extOrTrunc(DestWidth);
  Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
  if (DestType->isBooleanType())
    Result = Value.getBoolValue();
  return Result;
}

static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
                                 const FPOptions FPO,
                                 QualType SrcType, const APSInt &Value,
                                 QualType DestType, APFloat &Result) {
  Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
  APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(),
       APFloat::rmNearestTiesToEven);
  if (!Info.InConstantContext && St != llvm::APFloatBase::opOK &&
      FPO.isFPConstrained()) {
    Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
    return false;
  }
  return true;
}

static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
                                  APValue &Value, const FieldDecl *FD) {
  assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");

  if (!Value.isInt()) {
    // Trying to store a pointer-cast-to-integer into a bitfield.
    // FIXME: In this case, we should provide the diagnostic for casting
    // a pointer to an integer.
    assert(Value.isLValue() && "integral value neither int nor lvalue?");
    Info.FFDiag(E);
    return false;
  }

  APSInt &Int = Value.getInt();
  unsigned OldBitWidth = Int.getBitWidth();
  unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
  if (NewBitWidth < OldBitWidth)
    Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
  return true;
}

static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
                                  llvm::APInt &Res) {
  APValue SVal;
  if (!Evaluate(SVal, Info, E))
    return false;
  if (SVal.isInt()) {
    Res = SVal.getInt();
    return true;
  }
  if (SVal.isFloat()) {
    Res = SVal.getFloat().bitcastToAPInt();
    return true;
  }
  if (SVal.isVector()) {
    QualType VecTy = E->getType();
    unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
    QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
    Res = llvm::APInt::getZero(VecSize);
    for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
      APValue &Elt = SVal.getVectorElt(i);
      llvm::APInt EltAsInt;
      if (Elt.isInt()) {
        EltAsInt = Elt.getInt();
      } else if (Elt.isFloat()) {
        EltAsInt = Elt.getFloat().bitcastToAPInt();
      } else {
        // Don't try to handle vectors of anything other than int or float
        // (not sure if it's possible to hit this case).
        Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
        return false;
      }
      unsigned BaseEltSize = EltAsInt.getBitWidth();
      if (BigEndian)
        Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
      else
        Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
    }
    return true;
  }
  // Give up if the input isn't an int, float, or vector.  For example, we
  // reject "(v4i16)(intptr_t)&a".
  Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
  return false;
}

/// Perform the given integer operation, which is known to need at most BitWidth
/// bits, and check for overflow in the original type (if that type was not an
/// unsigned type).
template<typename Operation>
static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
                                 const APSInt &LHS, const APSInt &RHS,
                                 unsigned BitWidth, Operation Op,
                                 APSInt &Result) {
  if (LHS.isUnsigned()) {
    Result = Op(LHS, RHS);
    return true;
  }

  APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
  Result = Value.trunc(LHS.getBitWidth());
  if (Result.extend(BitWidth) != Value) {
    if (Info.checkingForUndefinedBehavior())
      Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
                                       diag::warn_integer_constant_overflow)
          << toString(Result, 10) << E->getType();
    return HandleOverflow(Info, E, Value, E->getType());
  }
  return true;
}

/// Perform the given binary integer operation.
static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
                              BinaryOperatorKind Opcode, APSInt RHS,
                              APSInt &Result) {
  switch (Opcode) {
  default:
    Info.FFDiag(E);
    return false;
  case BO_Mul:
    return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
                                std::multiplies<APSInt>(), Result);
  case BO_Add:
    return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
                                std::plus<APSInt>(), Result);
  case BO_Sub:
    return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
                                std::minus<APSInt>(), Result);
  case BO_And: Result = LHS & RHS; return true;
  case BO_Xor: Result = LHS ^ RHS; return true;
  case BO_Or:  Result = LHS | RHS; return true;
  case BO_Div:
  case BO_Rem:
    if (RHS == 0) {
      Info.FFDiag(E, diag::note_expr_divide_by_zero);
      return false;
    }
    Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
    // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
    // this operation and gives the two's complement result.
    if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() &&
        LHS.isMinSignedValue())
      return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
                            E->getType());
    return true;
  case BO_Shl: {
    if (Info.getLangOpts().OpenCL)
      // OpenCL 6.3j: shift values are effectively % word size of LHS.
      RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
                    static_cast<uint64_t>(LHS.getBitWidth() - 1)),
                    RHS.isUnsigned());
    else if (RHS.isSigned() && RHS.isNegative()) {
      // During constant-folding, a negative shift is an opposite shift. Such
      // a shift is not a constant expression.
      Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
      RHS = -RHS;
      goto shift_right;
    }
  shift_left:
    // C++11 [expr.shift]p1: Shift width must be less than the bit width of
    // the shifted type.
    unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
    if (SA != RHS) {
      Info.CCEDiag(E, diag::note_constexpr_large_shift)
        << RHS << E->getType() << LHS.getBitWidth();
    } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
      // C++11 [expr.shift]p2: A signed left shift must have a non-negative
      // operand, and must not overflow the corresponding unsigned type.
      // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
      // E1 x 2^E2 module 2^N.
      if (LHS.isNegative())
        Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
      else if (LHS.countLeadingZeros() < SA)
        Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
    }
    Result = LHS << SA;
    return true;
  }
  case BO_Shr: {
    if (Info.getLangOpts().OpenCL)
      // OpenCL 6.3j: shift values are effectively % word size of LHS.
      RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
                    static_cast<uint64_t>(LHS.getBitWidth() - 1)),
                    RHS.isUnsigned());
    else if (RHS.isSigned() && RHS.isNegative()) {
      // During constant-folding, a negative shift is an opposite shift. Such a
      // shift is not a constant expression.
      Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
      RHS = -RHS;
      goto shift_left;
    }
  shift_right:
    // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
    // shifted type.
    unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
    if (SA != RHS)
      Info.CCEDiag(E, diag::note_constexpr_large_shift)
        << RHS << E->getType() << LHS.getBitWidth();
    Result = LHS >> SA;
    return true;
  }

  case BO_LT: Result = LHS < RHS; return true;
  case BO_GT: Result = LHS > RHS; return true;
  case BO_LE: Result = LHS <= RHS; return true;
  case BO_GE: Result = LHS >= RHS; return true;
  case BO_EQ: Result = LHS == RHS; return true;
  case BO_NE: Result = LHS != RHS; return true;
  case BO_Cmp:
    llvm_unreachable("BO_Cmp should be handled elsewhere");
  }
}

/// Perform the given binary floating-point operation, in-place, on LHS.
static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E,
                                  APFloat &LHS, BinaryOperatorKind Opcode,
                                  const APFloat &RHS) {
  bool DynamicRM;
  llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM);
  APFloat::opStatus St;
  switch (Opcode) {
  default:
    Info.FFDiag(E);
    return false;
  case BO_Mul:
    St = LHS.multiply(RHS, RM);
    break;
  case BO_Add:
    St = LHS.add(RHS, RM);
    break;
  case BO_Sub:
    St = LHS.subtract(RHS, RM);
    break;
  case BO_Div:
    // [expr.mul]p4:
    //   If the second operand of / or % is zero the behavior is undefined.
    if (RHS.isZero())
      Info.CCEDiag(E, diag::note_expr_divide_by_zero);
    St = LHS.divide(RHS, RM);
    break;
  }

  // [expr.pre]p4:
  //   If during the evaluation of an expression, the result is not
  //   mathematically defined [...], the behavior is undefined.
  // FIXME: C++ rules require us to not conform to IEEE 754 here.
  if (LHS.isNaN()) {
    Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
    return Info.noteUndefinedBehavior();
  }

  return checkFloatingPointResult(Info, E, St);
}

static bool handleLogicalOpForVector(const APInt &LHSValue,
                                     BinaryOperatorKind Opcode,
                                     const APInt &RHSValue, APInt &Result) {
  bool LHS = (LHSValue != 0);
  bool RHS = (RHSValue != 0);

  if (Opcode == BO_LAnd)
    Result = LHS && RHS;
  else
    Result = LHS || RHS;
  return true;
}
static bool handleLogicalOpForVector(const APFloat &LHSValue,
                                     BinaryOperatorKind Opcode,
                                     const APFloat &RHSValue, APInt &Result) {
  bool LHS = !LHSValue.isZero();
  bool RHS = !RHSValue.isZero();

  if (Opcode == BO_LAnd)
    Result = LHS && RHS;
  else
    Result = LHS || RHS;
  return true;
}

static bool handleLogicalOpForVector(const APValue &LHSValue,
                                     BinaryOperatorKind Opcode,
                                     const APValue &RHSValue, APInt &Result) {
  // The result is always an int type, however operands match the first.
  if (LHSValue.getKind() == APValue::Int)
    return handleLogicalOpForVector(LHSValue.getInt(), Opcode,
                                    RHSValue.getInt(), Result);
  assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
  return handleLogicalOpForVector(LHSValue.getFloat(), Opcode,
                                  RHSValue.getFloat(), Result);
}

template <typename APTy>
static bool
handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
                               const APTy &RHSValue, APInt &Result) {
  switch (Opcode) {
  default:
    llvm_unreachable("unsupported binary operator");
  case BO_EQ:
    Result = (LHSValue == RHSValue);
    break;
  case BO_NE:
    Result = (LHSValue != RHSValue);
    break;
  case BO_LT:
    Result = (LHSValue < RHSValue);
    break;
  case BO_GT:
    Result = (LHSValue > RHSValue);
    break;
  case BO_LE:
    Result = (LHSValue <= RHSValue);
    break;
  case BO_GE:
    Result = (LHSValue >= RHSValue);
    break;
  }

  // The boolean operations on these vector types use an instruction that
  // results in a mask of '-1' for the 'truth' value.  Ensure that we negate 1
  // to -1 to make sure that we produce the correct value.
  Result.negate();

  return true;
}

static bool handleCompareOpForVector(const APValue &LHSValue,
                                     BinaryOperatorKind Opcode,
                                     const APValue &RHSValue, APInt &Result) {
  // The result is always an int type, however operands match the first.
  if (LHSValue.getKind() == APValue::Int)
    return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode,
                                          RHSValue.getInt(), Result);
  assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
  return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode,
                                        RHSValue.getFloat(), Result);
}

// Perform binary operations for vector types, in place on the LHS.
static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E,
                                    BinaryOperatorKind Opcode,
                                    APValue &LHSValue,
                                    const APValue &RHSValue) {
  assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&
         "Operation not supported on vector types");

  const auto *VT = E->getType()->castAs<VectorType>();
  unsigned NumElements = VT->getNumElements();
  QualType EltTy = VT->getElementType();

  // In the cases (typically C as I've observed) where we aren't evaluating
  // constexpr but are checking for cases where the LHS isn't yet evaluatable,
  // just give up.
  if (!LHSValue.isVector()) {
    assert(LHSValue.isLValue() &&
           "A vector result that isn't a vector OR uncalculated LValue");
    Info.FFDiag(E);
    return false;
  }

  assert(LHSValue.getVectorLength() == NumElements &&
         RHSValue.getVectorLength() == NumElements && "Different vector sizes");

  SmallVector<APValue, 4> ResultElements;

  for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
    APValue LHSElt = LHSValue.getVectorElt(EltNum);
    APValue RHSElt = RHSValue.getVectorElt(EltNum);

    if (EltTy->isIntegerType()) {
      APSInt EltResult{Info.Ctx.getIntWidth(EltTy),
                       EltTy->isUnsignedIntegerType()};
      bool Success = true;

      if (BinaryOperator::isLogicalOp(Opcode))
        Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult);
      else if (BinaryOperator::isComparisonOp(Opcode))
        Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult);
      else
        Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode,
                                    RHSElt.getInt(), EltResult);

      if (!Success) {
        Info.FFDiag(E);
        return false;
      }
      ResultElements.emplace_back(EltResult);

    } else if (EltTy->isFloatingType()) {
      assert(LHSElt.getKind() == APValue::Float &&
             RHSElt.getKind() == APValue::Float &&
             "Mismatched LHS/RHS/Result Type");
      APFloat LHSFloat = LHSElt.getFloat();

      if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode,
                                 RHSElt.getFloat())) {
        Info.FFDiag(E);
        return false;
      }

      ResultElements.emplace_back(LHSFloat);
    }
  }

  LHSValue = APValue(ResultElements.data(), ResultElements.size());
  return true;
}

/// Cast an lvalue referring to a base subobject to a derived class, by
/// truncating the lvalue's path to the given length.
static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
                               const RecordDecl *TruncatedType,
                               unsigned TruncatedElements) {
  SubobjectDesignator &D = Result.Designator;

  // Check we actually point to a derived class object.
  if (TruncatedElements == D.Entries.size())
    return true;
  assert(TruncatedElements >= D.MostDerivedPathLength &&
         "not casting to a derived class");
  if (!Result.checkSubobject(Info, E, CSK_Derived))
    return false;

  // Truncate the path to the subobject, and remove any derived-to-base offsets.
  const RecordDecl *RD = TruncatedType;
  for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
    if (RD->isInvalidDecl()) return false;
    const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
    const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
    if (isVirtualBaseClass(D.Entries[I]))
      Result.Offset -= Layout.getVBaseClassOffset(Base);
    else
      Result.Offset -= Layout.getBaseClassOffset(Base);
    RD = Base;
  }
  D.Entries.resize(TruncatedElements);
  return true;
}

static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
                                   const CXXRecordDecl *Derived,
                                   const CXXRecordDecl *Base,
                                   const ASTRecordLayout *RL = nullptr) {
  if (!RL) {
    if (Derived->isInvalidDecl()) return false;
    RL = &Info.Ctx.getASTRecordLayout(Derived);
  }

  Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
  Obj.addDecl(Info, E, Base, /*Virtual*/ false);
  return true;
}

static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
                             const CXXRecordDecl *DerivedDecl,
                             const CXXBaseSpecifier *Base) {
  const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();

  if (!Base->isVirtual())
    return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);

  SubobjectDesignator &D = Obj.Designator;
  if (D.Invalid)
    return false;

  // Extract most-derived object and corresponding type.
  DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
  if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
    return false;

  // Find the virtual base class.
  if (DerivedDecl->isInvalidDecl()) return false;
  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
  Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
  Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
  return true;
}

static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
                                 QualType Type, LValue &Result) {
  for (CastExpr::path_const_iterator PathI = E->path_begin(),
                                     PathE = E->path_end();
       PathI != PathE; ++PathI) {
    if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
                          *PathI))
      return false;
    Type = (*PathI)->getType();
  }
  return true;
}

/// Cast an lvalue referring to a derived class to a known base subobject.
static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
                            const CXXRecordDecl *DerivedRD,
                            const CXXRecordDecl *BaseRD) {
  CXXBasePaths Paths(/*FindAmbiguities=*/false,
                     /*RecordPaths=*/true, /*DetectVirtual=*/false);
  if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
    llvm_unreachable("Class must be derived from the passed in base class!");

  for (CXXBasePathElement &Elem : Paths.front())
    if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
      return false;
  return true;
}

/// Update LVal to refer to the given field, which must be a member of the type
/// currently described by LVal.
static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
                               const FieldDecl *FD,
                               const ASTRecordLayout *RL = nullptr) {
  if (!RL) {
    if (FD->getParent()->isInvalidDecl()) return false;
    RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
  }

  unsigned I = FD->getFieldIndex();
  LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
  LVal.addDecl(Info, E, FD);
  return true;
}

/// Update LVal to refer to the given indirect field.
static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
                                       LValue &LVal,
                                       const IndirectFieldDecl *IFD) {
  for (const auto *C : IFD->chain())
    if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
      return false;
  return true;
}

/// Get the size of the given type in char units.
static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
                         QualType Type, CharUnits &Size) {
  // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
  // extension.
  if (Type->isVoidType() || Type->isFunctionType()) {
    Size = CharUnits::One();
    return true;
  }

  if (Type->isDependentType()) {
    Info.FFDiag(Loc);
    return false;
  }

  if (!Type->isConstantSizeType()) {
    // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
    // FIXME: Better diagnostic.
    Info.FFDiag(Loc);
    return false;
  }

  Size = Info.Ctx.getTypeSizeInChars(Type);
  return true;
}

/// Update a pointer value to model pointer arithmetic.
/// \param Info - Information about the ongoing evaluation.
/// \param E - The expression being evaluated, for diagnostic purposes.
/// \param LVal - The pointer value to be updated.
/// \param EltTy - The pointee type represented by LVal.
/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
                                        LValue &LVal, QualType EltTy,
                                        APSInt Adjustment) {
  CharUnits SizeOfPointee;
  if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
    return false;

  LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
  return true;
}

static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
                                        LValue &LVal, QualType EltTy,
                                        int64_t Adjustment) {
  return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
                                     APSInt::get(Adjustment));
}

/// Update an lvalue to refer to a component of a complex number.
/// \param Info - Information about the ongoing evaluation.
/// \param LVal - The lvalue to be updated.
/// \param EltTy - The complex number's component type.
/// \param Imag - False for the real component, true for the imaginary.
static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
                                       LValue &LVal, QualType EltTy,
                                       bool Imag) {
  if (Imag) {
    CharUnits SizeOfComponent;
    if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
      return false;
    LVal.Offset += SizeOfComponent;
  }
  LVal.addComplex(Info, E, EltTy, Imag);
  return true;
}

/// Try to evaluate the initializer for a variable declaration.
///
/// \param Info   Information about the ongoing evaluation.
/// \param E      An expression to be used when printing diagnostics.
/// \param VD     The variable whose initializer should be obtained.
/// \param Version The version of the variable within the frame.
/// \param Frame  The frame in which the variable was created. Must be null
///               if this variable is not local to the evaluation.
/// \param Result Filled in with a pointer to the value of the variable.
static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
                                const VarDecl *VD, CallStackFrame *Frame,
                                unsigned Version, APValue *&Result) {
  APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);

  // If this is a local variable, dig out its value.
  if (Frame) {
    Result = Frame->getTemporary(VD, Version);
    if (Result)
      return true;

    if (!isa<ParmVarDecl>(VD)) {
      // Assume variables referenced within a lambda's call operator that were
      // not declared within the call operator are captures and during checking
      // of a potential constant expression, assume they are unknown constant
      // expressions.
      assert(isLambdaCallOperator(Frame->Callee) &&
             (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
             "missing value for local variable");
      if (Info.checkingPotentialConstantExpression())
        return false;
      // FIXME: This diagnostic is bogus; we do support captures. Is this code
      // still reachable at all?
      Info.FFDiag(E->getBeginLoc(),
                  diag::note_unimplemented_constexpr_lambda_feature_ast)
          << "captures not currently allowed";
      return false;
    }
  }

  // If we're currently evaluating the initializer of this declaration, use that
  // in-flight value.
  if (Info.EvaluatingDecl == Base) {
    Result = Info.EvaluatingDeclValue;
    return true;
  }

  if (isa<ParmVarDecl>(VD)) {
    // Assume parameters of a potential constant expression are usable in
    // constant expressions.
    if (!Info.checkingPotentialConstantExpression() ||
        !Info.CurrentCall->Callee ||
        !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
      if (Info.getLangOpts().CPlusPlus11) {
        Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
            << VD;
        NoteLValueLocation(Info, Base);
      } else {
        Info.FFDiag(E);
      }
    }
    return false;
  }

  // Dig out the initializer, and use the declaration which it's attached to.
  // FIXME: We should eventually check whether the variable has a reachable
  // initializing declaration.
  const Expr *Init = VD->getAnyInitializer(VD);
  if (!Init) {
    // Don't diagnose during potential constant expression checking; an
    // initializer might be added later.
    if (!Info.checkingPotentialConstantExpression()) {
      Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
        << VD;
      NoteLValueLocation(Info, Base);
    }
    return false;
  }

  if (Init->isValueDependent()) {
    // The DeclRefExpr is not value-dependent, but the variable it refers to
    // has a value-dependent initializer. This should only happen in
    // constant-folding cases, where the variable is not actually of a suitable
    // type for use in a constant expression (otherwise the DeclRefExpr would
    // have been value-dependent too), so diagnose that.
    assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx));
    if (!Info.checkingPotentialConstantExpression()) {
      Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
                         ? diag::note_constexpr_ltor_non_constexpr
                         : diag::note_constexpr_ltor_non_integral, 1)
          << VD << VD->getType();
      NoteLValueLocation(Info, Base);
    }
    return false;
  }

  // Check that we can fold the initializer. In C++, we will have already done
  // this in the cases where it matters for conformance.
  if (!VD->evaluateValue()) {
    Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
    NoteLValueLocation(Info, Base);
    return false;
  }

  // Check that the variable is actually usable in constant expressions. For a
  // const integral variable or a reference, we might have a non-constant
  // initializer that we can nonetheless evaluate the initializer for. Such
  // variables are not usable in constant expressions. In C++98, the
  // initializer also syntactically needs to be an ICE.
  //
  // FIXME: We don't diagnose cases that aren't potentially usable in constant
  // expressions here; doing so would regress diagnostics for things like
  // reading from a volatile constexpr variable.
  if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() &&
       VD->mightBeUsableInConstantExpressions(Info.Ctx)) ||
      ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) &&
       !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) {
    Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
    NoteLValueLocation(Info, Base);
  }

  // Never use the initializer of a weak variable, not even for constant
  // folding. We can't be sure that this is the definition that will be used.
  if (VD->isWeak()) {
    Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
    NoteLValueLocation(Info, Base);
    return false;
  }

  Result = VD->getEvaluatedValue();
  return true;
}

/// Get the base index of the given base class within an APValue representing
/// the given derived class.
static unsigned getBaseIndex(const CXXRecordDecl *Derived,
                             const CXXRecordDecl *Base) {
  Base = Base->getCanonicalDecl();
  unsigned Index = 0;
  for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
         E = Derived->bases_end(); I != E; ++I, ++Index) {
    if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
      return Index;
  }

  llvm_unreachable("base class missing from derived class's bases list");
}

/// Extract the value of a character from a string literal.
static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
                                            uint64_t Index) {
  assert(!isa<SourceLocExpr>(Lit) &&
         "SourceLocExpr should have already been converted to a StringLiteral");

  // FIXME: Support MakeStringConstant
  if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
    std::string Str;
    Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
    assert(Index <= Str.size() && "Index too large");
    return APSInt::getUnsigned(Str.c_str()[Index]);
  }

  if (auto PE = dyn_cast<PredefinedExpr>(Lit))
    Lit = PE->getFunctionName();
  const StringLiteral *S = cast<StringLiteral>(Lit);
  const ConstantArrayType *CAT =
      Info.Ctx.getAsConstantArrayType(S->getType());
  assert(CAT && "string literal isn't an array");
  QualType CharType = CAT->getElementType();
  assert(CharType->isIntegerType() && "unexpected character type");

  APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
               CharType->isUnsignedIntegerType());
  if (Index < S->getLength())
    Value = S->getCodeUnit(Index);
  return Value;
}

// Expand a string literal into an array of characters.
//
// FIXME: This is inefficient; we should probably introduce something similar
// to the LLVM ConstantDataArray to make this cheaper.
static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
                                APValue &Result,
                                QualType AllocType = QualType()) {
  const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
      AllocType.isNull() ? S->getType() : AllocType);
  assert(CAT && "string literal isn't an array");
  QualType CharType = CAT->getElementType();
  assert(CharType->isIntegerType() && "unexpected character type");

  unsigned Elts = CAT->getSize().getZExtValue();
  Result = APValue(APValue::UninitArray(),
                   std::min(S->getLength(), Elts), Elts);
  APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
               CharType->isUnsignedIntegerType());
  if (Result.hasArrayFiller())
    Result.getArrayFiller() = APValue(Value);
  for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
    Value = S->getCodeUnit(I);
    Result.getArrayInitializedElt(I) = APValue(Value);
  }
}

// Expand an array so that it has more than Index filled elements.
static void expandArray(APValue &Array, unsigned Index) {
  unsigned Size = Array.getArraySize();
  assert(Index < Size);

  // Always at least double the number of elements for which we store a value.
  unsigned OldElts = Array.getArrayInitializedElts();
  unsigned NewElts = std::max(Index+1, OldElts * 2);
  NewElts = std::min(Size, std::max(NewElts, 8u));

  // Copy the data across.
  APValue NewValue(APValue::UninitArray(), NewElts, Size);
  for (unsigned I = 0; I != OldElts; ++I)
    NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
  for (unsigned I = OldElts; I != NewElts; ++I)
    NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
  if (NewValue.hasArrayFiller())
    NewValue.getArrayFiller() = Array.getArrayFiller();
  Array.swap(NewValue);
}

/// Determine whether a type would actually be read by an lvalue-to-rvalue
/// conversion. If it's of class type, we may assume that the copy operation
/// is trivial. Note that this is never true for a union type with fields
/// (because the copy always "reads" the active member) and always true for
/// a non-class type.
static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
static bool isReadByLvalueToRvalueConversion(QualType T) {
  CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
  return !RD || isReadByLvalueToRvalueConversion(RD);
}
static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
  // FIXME: A trivial copy of a union copies the object representation, even if
  // the union is empty.
  if (RD->isUnion())
    return !RD->field_empty();
  if (RD->isEmpty())
    return false;

  for (auto *Field : RD->fields())
    if (!Field->isUnnamedBitfield() &&
        isReadByLvalueToRvalueConversion(Field->getType()))
      return true;

  for (auto &BaseSpec : RD->bases())
    if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
      return true;

  return false;
}

/// Diagnose an attempt to read from any unreadable field within the specified
/// type, which might be a class type.
static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
                                  QualType T) {
  CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
  if (!RD)
    return false;

  if (!RD->hasMutableFields())
    return false;

  for (auto *Field : RD->fields()) {
    // If we're actually going to read this field in some way, then it can't
    // be mutable. If we're in a union, then assigning to a mutable field
    // (even an empty one) can change the active member, so that's not OK.
    // FIXME: Add core issue number for the union case.
    if (Field->isMutable() &&
        (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
      Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
      Info.Note(Field->getLocation(), diag::note_declared_at);
      return true;
    }

    if (diagnoseMutableFields(Info, E, AK, Field->getType()))
      return true;
  }

  for (auto &BaseSpec : RD->bases())
    if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
      return true;

  // All mutable fields were empty, and thus not actually read.
  return false;
}

static bool lifetimeStartedInEvaluation(EvalInfo &Info,
                                        APValue::LValueBase Base,
                                        bool MutableSubobject = false) {
  // A temporary or transient heap allocation we created.
  if (Base.getCallIndex() || Base.is<DynamicAllocLValue>())
    return true;

  switch (Info.IsEvaluatingDecl) {
  case EvalInfo::EvaluatingDeclKind::None:
    return false;

  case EvalInfo::EvaluatingDeclKind::Ctor:
    // The variable whose initializer we're evaluating.
    if (Info.EvaluatingDecl == Base)
      return true;

    // A temporary lifetime-extended by the variable whose initializer we're
    // evaluating.
    if (auto *BaseE = Base.dyn_cast<const Expr *>())
      if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
        return Info.EvaluatingDecl == BaseMTE->getExtendingDecl();
    return false;

  case EvalInfo::EvaluatingDeclKind::Dtor:
    // C++2a [expr.const]p6:
    //   [during constant destruction] the lifetime of a and its non-mutable
    //   subobjects (but not its mutable subobjects) [are] considered to start
    //   within e.
    if (MutableSubobject || Base != Info.EvaluatingDecl)
      return false;
    // FIXME: We can meaningfully extend this to cover non-const objects, but
    // we will need special handling: we should be able to access only
    // subobjects of such objects that are themselves declared const.
    QualType T = getType(Base);
    return T.isConstQualified() || T->isReferenceType();
  }

  llvm_unreachable("unknown evaluating decl kind");
}

namespace {
/// A handle to a complete object (an object that is not a subobject of
/// another object).
struct CompleteObject {
  /// The identity of the object.
  APValue::LValueBase Base;
  /// The value of the complete object.
  APValue *Value;
  /// The type of the complete object.
  QualType Type;

  CompleteObject() : Value(nullptr) {}
  CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
      : Base(Base), Value(Value), Type(Type) {}

  bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
    // If this isn't a "real" access (eg, if it's just accessing the type
    // info), allow it. We assume the type doesn't change dynamically for
    // subobjects of constexpr objects (even though we'd hit UB here if it
    // did). FIXME: Is this right?
    if (!isAnyAccess(AK))
      return true;

    // In C++14 onwards, it is permitted to read a mutable member whose
    // lifetime began within the evaluation.
    // FIXME: Should we also allow this in C++11?
    if (!Info.getLangOpts().CPlusPlus14)
      return false;
    return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
  }

  explicit operator bool() const { return !Type.isNull(); }
};
} // end anonymous namespace

static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
                                 bool IsMutable = false) {
  // C++ [basic.type.qualifier]p1:
  // - A const object is an object of type const T or a non-mutable subobject
  //   of a const object.
  if (ObjType.isConstQualified() && !IsMutable)
    SubobjType.addConst();
  // - A volatile object is an object of type const T or a subobject of a
  //   volatile object.
  if (ObjType.isVolatileQualified())
    SubobjType.addVolatile();
  return SubobjType;
}

/// Find the designated sub-object of an rvalue.
template<typename SubobjectHandler>
typename SubobjectHandler::result_type
findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
              const SubobjectDesignator &Sub, SubobjectHandler &handler) {
  if (Sub.Invalid)
    // A diagnostic will have already been produced.
    return handler.failed();
  if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
    if (Info.getLangOpts().CPlusPlus11)
      Info.FFDiag(E, Sub.isOnePastTheEnd()
                         ? diag::note_constexpr_access_past_end
                         : diag::note_constexpr_access_unsized_array)
          << handler.AccessKind;
    else
      Info.FFDiag(E);
    return handler.failed();
  }

  APValue *O = Obj.Value;
  QualType ObjType = Obj.Type;
  const FieldDecl *LastField = nullptr;
  const FieldDecl *VolatileField = nullptr;

  // Walk the designator's path to find the subobject.
  for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
    // Reading an indeterminate value is undefined, but assigning over one is OK.
    if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
        (O->isIndeterminate() &&
         !isValidIndeterminateAccess(handler.AccessKind))) {
      if (!Info.checkingPotentialConstantExpression())
        Info.FFDiag(E, diag::note_constexpr_access_uninit)
            << handler.AccessKind << O->isIndeterminate();
      return handler.failed();
    }

    // C++ [class.ctor]p5, C++ [class.dtor]p5:
    //    const and volatile semantics are not applied on an object under
    //    {con,de}struction.
    if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
        ObjType->isRecordType() &&
        Info.isEvaluatingCtorDtor(
            Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(),
                                         Sub.Entries.begin() + I)) !=
                          ConstructionPhase::None) {
      ObjType = Info.Ctx.getCanonicalType(ObjType);
      ObjType.removeLocalConst();
      ObjType.removeLocalVolatile();
    }

    // If this is our last pass, check that the final object type is OK.
    if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
      // Accesses to volatile objects are prohibited.
      if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
        if (Info.getLangOpts().CPlusPlus) {
          int DiagKind;
          SourceLocation Loc;
          const NamedDecl *Decl = nullptr;
          if (VolatileField) {
            DiagKind = 2;
            Loc = VolatileField->getLocation();
            Decl = VolatileField;
          } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
            DiagKind = 1;
            Loc = VD->getLocation();
            Decl = VD;
          } else {
            DiagKind = 0;
            if (auto *E = Obj.Base.dyn_cast<const Expr *>())
              Loc = E->getExprLoc();
          }
          Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
              << handler.AccessKind << DiagKind << Decl;
          Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
        } else {
          Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
        }
        return handler.failed();
      }

      // If we are reading an object of class type, there may still be more
      // things we need to check: if there are any mutable subobjects, we
      // cannot perform this read. (This only happens when performing a trivial
      // copy or assignment.)
      if (ObjType->isRecordType() &&
          !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
          diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
        return handler.failed();
    }

    if (I == N) {
      if (!handler.found(*O, ObjType))
        return false;

      // If we modified a bit-field, truncate it to the right width.
      if (isModification(handler.AccessKind) &&
          LastField && LastField->isBitField() &&
          !truncateBitfieldValue(Info, E, *O, LastField))
        return false;

      return true;
    }

    LastField = nullptr;
    if (ObjType->isArrayType()) {
      // Next subobject is an array element.
      const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
      assert(CAT && "vla in literal type?");
      uint64_t Index = Sub.Entries[I].getAsArrayIndex();
      if (CAT->getSize().ule(Index)) {
        // Note, it should not be possible to form a pointer with a valid
        // designator which points more than one past the end of the array.
        if (Info.getLangOpts().CPlusPlus11)
          Info.FFDiag(E, diag::note_constexpr_access_past_end)
            << handler.AccessKind;
        else
          Info.FFDiag(E);
        return handler.failed();
      }

      ObjType = CAT->getElementType();

      if (O->getArrayInitializedElts() > Index)
        O = &O->getArrayInitializedElt(Index);
      else if (!isRead(handler.AccessKind)) {
        expandArray(*O, Index);
        O = &O->getArrayInitializedElt(Index);
      } else
        O = &O->getArrayFiller();
    } else if (ObjType->isAnyComplexType()) {
      // Next subobject is a complex number.
      uint64_t Index = Sub.Entries[I].getAsArrayIndex();
      if (Index > 1) {
        if (Info.getLangOpts().CPlusPlus11)
          Info.FFDiag(E, diag::note_constexpr_access_past_end)
            << handler.AccessKind;
        else
          Info.FFDiag(E);
        return handler.failed();
      }

      ObjType = getSubobjectType(
          ObjType, ObjType->castAs<ComplexType>()->getElementType());

      assert(I == N - 1 && "extracting subobject of scalar?");
      if (O->isComplexInt()) {
        return handler.found(Index ? O->getComplexIntImag()
                                   : O->getComplexIntReal(), ObjType);
      } else {
        assert(O->isComplexFloat());
        return handler.found(Index ? O->getComplexFloatImag()
                                   : O->getComplexFloatReal(), ObjType);
      }
    } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
      if (Field->isMutable() &&
          !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
        Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
          << handler.AccessKind << Field;
        Info.Note(Field->getLocation(), diag::note_declared_at);
        return handler.failed();
      }

      // Next subobject is a class, struct or union field.
      RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
      if (RD->isUnion()) {
        const FieldDecl *UnionField = O->getUnionField();
        if (!UnionField ||
            UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
          if (I == N - 1 && handler.AccessKind == AK_Construct) {
            // Placement new onto an inactive union member makes it active.
            O->setUnion(Field, APValue());
          } else {
            // FIXME: If O->getUnionValue() is absent, report that there's no
            // active union member rather than reporting the prior active union
            // member. We'll need to fix nullptr_t to not use APValue() as its
            // representation first.
            Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
                << handler.AccessKind << Field << !UnionField << UnionField;
            return handler.failed();
          }
        }
        O = &O->getUnionValue();
      } else
        O = &O->getStructField(Field->getFieldIndex());

      ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
      LastField = Field;
      if (Field->getType().isVolatileQualified())
        VolatileField = Field;
    } else {
      // Next subobject is a base class.
      const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
      const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
      O = &O->getStructBase(getBaseIndex(Derived, Base));

      ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
    }
  }
}

namespace {
struct ExtractSubobjectHandler {
  EvalInfo &Info;
  const Expr *E;
  APValue &Result;
  const AccessKinds AccessKind;

  typedef bool result_type;
  bool failed() { return false; }
  bool found(APValue &Subobj, QualType SubobjType) {
    Result = Subobj;
    if (AccessKind == AK_ReadObjectRepresentation)
      return true;
    return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
  }
  bool found(APSInt &Value, QualType SubobjType) {
    Result = APValue(Value);
    return true;
  }
  bool found(APFloat &Value, QualType SubobjType) {
    Result = APValue(Value);
    return true;
  }
};
} // end anonymous namespace

/// Extract the designated sub-object of an rvalue.
static bool extractSubobject(EvalInfo &Info, const Expr *E,
                             const CompleteObject &Obj,
                             const SubobjectDesignator &Sub, APValue &Result,
                             AccessKinds AK = AK_Read) {
  assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
  ExtractSubobjectHandler Handler = {Info, E, Result, AK};
  return findSubobject(Info, E, Obj, Sub, Handler);
}

namespace {
struct ModifySubobjectHandler {
  EvalInfo &Info;
  APValue &NewVal;
  const Expr *E;

  typedef bool result_type;
  static const AccessKinds AccessKind = AK_Assign;

  bool checkConst(QualType QT) {
    // Assigning to a const object has undefined behavior.
    if (QT.isConstQualified()) {
      Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
      return false;
    }
    return true;
  }

  bool failed() { return false; }
  bool found(APValue &Subobj, QualType SubobjType) {
    if (!checkConst(SubobjType))
      return false;
    // We've been given ownership of NewVal, so just swap it in.
    Subobj.swap(NewVal);
    return true;
  }
  bool found(APSInt &Value, QualType SubobjType) {
    if (!checkConst(SubobjType))
      return false;
    if (!NewVal.isInt()) {
      // Maybe trying to write a cast pointer value into a complex?
      Info.FFDiag(E);
      return false;
    }
    Value = NewVal.getInt();
    return true;
  }
  bool found(APFloat &Value, QualType SubobjType) {
    if (!checkConst(SubobjType))
      return false;
    Value = NewVal.getFloat();
    return true;
  }
};
} // end anonymous namespace

const AccessKinds ModifySubobjectHandler::AccessKind;

/// Update the designated sub-object of an rvalue to the given value.
static bool modifySubobject(EvalInfo &Info, const Expr *E,
                            const CompleteObject &Obj,
                            const SubobjectDesignator &Sub,
                            APValue &NewVal) {
  ModifySubobjectHandler Handler = { Info, NewVal, E };
  return findSubobject(Info, E, Obj, Sub, Handler);
}

/// Find the position where two subobject designators diverge, or equivalently
/// the length of the common initial subsequence.
static unsigned FindDesignatorMismatch(QualType ObjType,
                                       const SubobjectDesignator &A,
                                       const SubobjectDesignator &B,
                                       bool &WasArrayIndex) {
  unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
  for (/**/; I != N; ++I) {
    if (!ObjType.isNull() &&
        (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
      // Next subobject is an array element.
      if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
        WasArrayIndex = true;
        return I;
      }
      if (ObjType->isAnyComplexType())
        ObjType = ObjType->castAs<ComplexType>()->getElementType();
      else
        ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
    } else {
      if (A.Entries[I].getAsBaseOrMember() !=
          B.Entries[I].getAsBaseOrMember()) {
        WasArrayIndex = false;
        return I;
      }
      if (const FieldDecl *FD = getAsField(A.Entries[I]))
        // Next subobject is a field.
        ObjType = FD->getType();
      else
        // Next subobject is a base class.
        ObjType = QualType();
    }
  }
  WasArrayIndex = false;
  return I;
}

/// Determine whether the given subobject designators refer to elements of the
/// same array object.
static bool AreElementsOfSameArray(QualType ObjType,
                                   const SubobjectDesignator &A,
                                   const SubobjectDesignator &B) {
  if (A.Entries.size() != B.Entries.size())
    return false;

  bool IsArray = A.MostDerivedIsArrayElement;
  if (IsArray && A.MostDerivedPathLength != A.Entries.size())
    // A is a subobject of the array element.
    return false;

  // If A (and B) designates an array element, the last entry will be the array
  // index. That doesn't have to match. Otherwise, we're in the 'implicit array
  // of length 1' case, and the entire path must match.
  bool WasArrayIndex;
  unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
  return CommonLength >= A.Entries.size() - IsArray;
}

/// Find the complete object to which an LValue refers.
static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
                                         AccessKinds AK, const LValue &LVal,
                                         QualType LValType) {
  if (LVal.InvalidBase) {
    Info.FFDiag(E);
    return CompleteObject();
  }

  if (!LVal.Base) {
    Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
    return CompleteObject();
  }

  CallStackFrame *Frame = nullptr;
  unsigned Depth = 0;
  if (LVal.getLValueCallIndex()) {
    std::tie(Frame, Depth) =
        Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
    if (!Frame) {
      Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
        << AK << LVal.Base.is<const ValueDecl*>();
      NoteLValueLocation(Info, LVal.Base);
      return CompleteObject();
    }
  }

  bool IsAccess = isAnyAccess(AK);

  // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
  // is not a constant expression (even if the object is non-volatile). We also
  // apply this rule to C++98, in order to conform to the expected 'volatile'
  // semantics.
  if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
    if (Info.getLangOpts().CPlusPlus)
      Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
        << AK << LValType;
    else
      Info.FFDiag(E);
    return CompleteObject();
  }

  // Compute value storage location and type of base object.
  APValue *BaseVal = nullptr;
  QualType BaseType = getType(LVal.Base);

  if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl &&
      lifetimeStartedInEvaluation(Info, LVal.Base)) {
    // This is the object whose initializer we're evaluating, so its lifetime
    // started in the current evaluation.
    BaseVal = Info.EvaluatingDeclValue;
  } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
    // Allow reading from a GUID declaration.
    if (auto *GD = dyn_cast<MSGuidDecl>(D)) {
      if (isModification(AK)) {
        // All the remaining cases do not permit modification of the object.
        Info.FFDiag(E, diag::note_constexpr_modify_global);
        return CompleteObject();
      }
      APValue &V = GD->getAsAPValue();
      if (V.isAbsent()) {
        Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
            << GD->getType();
        return CompleteObject();
      }
      return CompleteObject(LVal.Base, &V, GD->getType());
    }

    // Allow reading from template parameter objects.
    if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
      if (isModification(AK)) {
        Info.FFDiag(E, diag::note_constexpr_modify_global);
        return CompleteObject();
      }
      return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()),
                            TPO->getType());
    }

    // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
    // In C++11, constexpr, non-volatile variables initialized with constant
    // expressions are constant expressions too. Inside constexpr functions,
    // parameters are constant expressions even if they're non-const.
    // In C++1y, objects local to a constant expression (those with a Frame) are
    // both readable and writable inside constant expressions.
    // In C, such things can also be folded, although they are not ICEs.
    const VarDecl *VD = dyn_cast<VarDecl>(D);
    if (VD) {
      if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
        VD = VDef;
    }
    if (!VD || VD->isInvalidDecl()) {
      Info.FFDiag(E);
      return CompleteObject();
    }

    bool IsConstant = BaseType.isConstant(Info.Ctx);

    // Unless we're looking at a local variable or argument in a constexpr call,
    // the variable we're reading must be const.
    if (!Frame) {
      if (IsAccess && isa<ParmVarDecl>(VD)) {
        // Access of a parameter that's not associated with a frame isn't going
        // to work out, but we can leave it to evaluateVarDeclInit to provide a
        // suitable diagnostic.
      } else if (Info.getLangOpts().CPlusPlus14 &&
                 lifetimeStartedInEvaluation(Info, LVal.Base)) {
        // OK, we can read and modify an object if we're in the process of
        // evaluating its initializer, because its lifetime began in this
        // evaluation.
      } else if (isModification(AK)) {
        // All the remaining cases do not permit modification of the object.
        Info.FFDiag(E, diag::note_constexpr_modify_global);
        return CompleteObject();
      } else if (VD->isConstexpr()) {
        // OK, we can read this variable.
      } else if (BaseType->isIntegralOrEnumerationType()) {
        if (!IsConstant) {
          if (!IsAccess)
            return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
          if (Info.getLangOpts().CPlusPlus) {
            Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
            Info.Note(VD->getLocation(), diag::note_declared_at);
          } else {
            Info.FFDiag(E);
          }
          return CompleteObject();
        }
      } else if (!IsAccess) {
        return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
      } else if (IsConstant && Info.checkingPotentialConstantExpression() &&
                 BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) {
        // This variable might end up being constexpr. Don't diagnose it yet.
      } else if (IsConstant) {
        // Keep evaluating to see what we can do. In particular, we support
        // folding of const floating-point types, in order to make static const
        // data members of such types (supported as an extension) more useful.
        if (Info.getLangOpts().CPlusPlus) {
          Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
                              ? diag::note_constexpr_ltor_non_constexpr
                              : diag::note_constexpr_ltor_non_integral, 1)
              << VD << BaseType;
          Info.Note(VD->getLocation(), diag::note_declared_at);
        } else {
          Info.CCEDiag(E);
        }
      } else {
        // Never allow reading a non-const value.
        if (Info.getLangOpts().CPlusPlus) {
          Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
                             ? diag::note_constexpr_ltor_non_constexpr
                             : diag::note_constexpr_ltor_non_integral, 1)
              << VD << BaseType;
          Info.Note(VD->getLocation(), diag::note_declared_at);
        } else {
          Info.FFDiag(E);
        }
        return CompleteObject();
      }
    }

    if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal))
      return CompleteObject();
  } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
    Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA);
    if (!Alloc) {
      Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
      return CompleteObject();
    }
    return CompleteObject(LVal.Base, &(*Alloc)->Value,
                          LVal.Base.getDynamicAllocType());
  } else {
    const Expr *Base = LVal.Base.dyn_cast<const Expr*>();

    if (!Frame) {
      if (const MaterializeTemporaryExpr *MTE =
              dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
        assert(MTE->getStorageDuration() == SD_Static &&
               "should have a frame for a non-global materialized temporary");

        // C++20 [expr.const]p4: [DR2126]
        //   An object or reference is usable in constant expressions if it is
        //   - a temporary object of non-volatile const-qualified literal type
        //     whose lifetime is extended to that of a variable that is usable
        //     in constant expressions
        //
        // C++20 [expr.const]p5:
        //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
        //   - a non-volatile glvalue that refers to an object that is usable
        //     in constant expressions, or
        //   - a non-volatile glvalue of literal type that refers to a
        //     non-volatile object whose lifetime began within the evaluation
        //     of E;
        //
        // C++11 misses the 'began within the evaluation of e' check and
        // instead allows all temporaries, including things like:
        //   int &&r = 1;
        //   int x = ++r;
        //   constexpr int k = r;
        // Therefore we use the C++14-onwards rules in C++11 too.
        //
        // Note that temporaries whose lifetimes began while evaluating a
        // variable's constructor are not usable while evaluating the
        // corresponding destructor, not even if they're of const-qualified
        // types.
        if (!MTE->isUsableInConstantExpressions(Info.Ctx) &&
            !lifetimeStartedInEvaluation(Info, LVal.Base)) {
          if (!IsAccess)
            return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
          Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
          Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
          return CompleteObject();
        }

        BaseVal = MTE->getOrCreateValue(false);
        assert(BaseVal && "got reference to unevaluated temporary");
      } else {
        if (!IsAccess)
          return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
        APValue Val;
        LVal.moveInto(Val);
        Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
            << AK
            << Val.getAsString(Info.Ctx,
                               Info.Ctx.getLValueReferenceType(LValType));
        NoteLValueLocation(Info, LVal.Base);
        return CompleteObject();
      }
    } else {
      BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
      assert(BaseVal && "missing value for temporary");
    }
  }

  // In C++14, we can't safely access any mutable state when we might be
  // evaluating after an unmodeled side effect. Parameters are modeled as state
  // in the caller, but aren't visible once the call returns, so they can be
  // modified in a speculatively-evaluated call.
  //
  // FIXME: Not all local state is mutable. Allow local constant subobjects
  // to be read here (but take care with 'mutable' fields).
  unsigned VisibleDepth = Depth;
  if (llvm::isa_and_nonnull<ParmVarDecl>(
          LVal.Base.dyn_cast<const ValueDecl *>()))
    ++VisibleDepth;
  if ((Frame && Info.getLangOpts().CPlusPlus14 &&
       Info.EvalStatus.HasSideEffects) ||
      (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
    return CompleteObject();

  return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
}

/// Perform an lvalue-to-rvalue conversion on the given glvalue. This
/// can also be used for 'lvalue-to-lvalue' conversions for looking up the
/// glvalue referred to by an entity of reference type.
///
/// \param Info - Information about the ongoing evaluation.
/// \param Conv - The expression for which we are performing the conversion.
///               Used for diagnostics.
/// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
///               case of a non-class type).
/// \param LVal - The glvalue on which we are attempting to perform this action.
/// \param RVal - The produced value will be placed here.
/// \param WantObjectRepresentation - If true, we're looking for the object
///               representation rather than the value, and in particular,
///               there is no requirement that the result be fully initialized.
static bool
handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
                               const LValue &LVal, APValue &RVal,
                               bool WantObjectRepresentation = false) {
  if (LVal.Designator.Invalid)
    return false;

  // Check for special cases where there is no existing APValue to look at.
  const Expr *Base = LVal.Base.dyn_cast<const Expr*>();

  AccessKinds AK =
      WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;

  if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
    if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
      // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
      // initializer until now for such expressions. Such an expression can't be
      // an ICE in C, so this only matters for fold.
      if (Type.isVolatileQualified()) {
        Info.FFDiag(Conv);
        return false;
      }
      APValue Lit;
      if (!Evaluate(Lit, Info, CLE->getInitializer()))
        return false;
      CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
      return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
    } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
      // Special-case character extraction so we don't have to construct an
      // APValue for the whole string.
      assert(LVal.Designator.Entries.size() <= 1 &&
             "Can only read characters from string literals");
      if (LVal.Designator.Entries.empty()) {
        // Fail for now for LValue to RValue conversion of an array.
        // (This shouldn't show up in C/C++, but it could be triggered by a
        // weird EvaluateAsRValue call from a tool.)
        Info.FFDiag(Conv);
        return false;
      }
      if (LVal.Designator.isOnePastTheEnd()) {
        if (Info.getLangOpts().CPlusPlus11)
          Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
        else
          Info.FFDiag(Conv);
        return false;
      }
      uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
      RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
      return true;
    }
  }

  CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
  return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
}

/// Perform an assignment of Val to LVal. Takes ownership of Val.
static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
                             QualType LValType, APValue &Val) {
  if (LVal.Designator.Invalid)
    return false;

  if (!Info.getLangOpts().CPlusPlus14) {
    Info.FFDiag(E);
    return false;
  }

  CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
  return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
}

namespace {
struct CompoundAssignSubobjectHandler {
  EvalInfo &Info;
  const CompoundAssignOperator *E;
  QualType PromotedLHSType;
  BinaryOperatorKind Opcode;
  const APValue &RHS;

  static const AccessKinds AccessKind = AK_Assign;

  typedef bool result_type;

  bool checkConst(QualType QT) {
    // Assigning to a const object has undefined behavior.
    if (QT.isConstQualified()) {
      Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
      return false;
    }
    return true;
  }

  bool failed() { return false; }
  bool found(APValue &Subobj, QualType SubobjType) {
    switch (Subobj.getKind()) {
    case APValue::Int:
      return found(Subobj.getInt(), SubobjType);
    case APValue::Float:
      return found(Subobj.getFloat(), SubobjType);
    case APValue::ComplexInt:
    case APValue::ComplexFloat:
      // FIXME: Implement complex compound assignment.
      Info.FFDiag(E);
      return false;
    case APValue::LValue:
      return foundPointer(Subobj, SubobjType);
    case APValue::Vector:
      return foundVector(Subobj, SubobjType);
    default:
      // FIXME: can this happen?
      Info.FFDiag(E);
      return false;
    }
  }

  bool foundVector(APValue &Value, QualType SubobjType) {
    if (!checkConst(SubobjType))
      return false;

    if (!SubobjType->isVectorType()) {
      Info.FFDiag(E);
      return false;
    }
    return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
  }

  bool found(APSInt &Value, QualType SubobjType) {
    if (!checkConst(SubobjType))
      return false;

    if (!SubobjType->isIntegerType()) {
      // We don't support compound assignment on integer-cast-to-pointer
      // values.
      Info.FFDiag(E);
      return false;
    }

    if (RHS.isInt()) {
      APSInt LHS =
          HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
      if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
        return false;
      Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
      return true;
    } else if (RHS.isFloat()) {
      const FPOptions FPO = E->getFPFeaturesInEffect(
                                    Info.Ctx.getLangOpts());
      APFloat FValue(0.0);
      return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value,
                                  PromotedLHSType, FValue) &&
             handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
             HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
                                  Value);
    }

    Info.FFDiag(E);
    return false;
  }
  bool found(APFloat &Value, QualType SubobjType) {
    return checkConst(SubobjType) &&
           HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
                                  Value) &&
           handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
           HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
  }
  bool foundPointer(APValue &Subobj, QualType SubobjType) {
    if (!checkConst(SubobjType))
      return false;

    QualType PointeeType;
    if (const PointerType *PT = SubobjType->getAs<PointerType>())
      PointeeType = PT->getPointeeType();

    if (PointeeType.isNull() || !RHS.isInt() ||
        (Opcode != BO_Add && Opcode != BO_Sub)) {
      Info.FFDiag(E);
      return false;
    }

    APSInt Offset = RHS.getInt();
    if (Opcode == BO_Sub)
      negateAsSigned(Offset);

    LValue LVal;
    LVal.setFrom(Info.Ctx, Subobj);
    if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
      return false;
    LVal.moveInto(Subobj);
    return true;
  }
};
} // end anonymous namespace

const AccessKinds CompoundAssignSubobjectHandler::AccessKind;

/// Perform a compound assignment of LVal <op>= RVal.
static bool handleCompoundAssignment(EvalInfo &Info,
                                     const CompoundAssignOperator *E,
                                     const LValue &LVal, QualType LValType,
                                     QualType PromotedLValType,
                                     BinaryOperatorKind Opcode,
                                     const APValue &RVal) {
  if (LVal.Designator.Invalid)
    return false;

  if (!Info.getLangOpts().CPlusPlus14) {
    Info.FFDiag(E);
    return false;
  }

  CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
  CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
                                             RVal };
  return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
}

namespace {
struct IncDecSubobjectHandler {
  EvalInfo &Info;
  const UnaryOperator *E;
  AccessKinds AccessKind;
  APValue *Old;

  typedef bool result_type;

  bool checkConst(QualType QT) {
    // Assigning to a const object has undefined behavior.
    if (QT.isConstQualified()) {
      Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
      return false;
    }
    return true;
  }

  bool failed() { return false; }
  bool found(APValue &Subobj, QualType SubobjType) {
    // Stash the old value. Also clear Old, so we don't clobber it later
    // if we're post-incrementing a complex.
    if (Old) {
      *Old = Subobj;
      Old = nullptr;
    }

    switch (Subobj.getKind()) {
    case APValue::Int:
      return found(Subobj.getInt(), SubobjType);
    case APValue::Float:
      return found(Subobj.getFloat(), SubobjType);
    case APValue::ComplexInt:
      return found(Subobj.getComplexIntReal(),
                   SubobjType->castAs<ComplexType>()->getElementType()
                     .withCVRQualifiers(SubobjType.getCVRQualifiers()));
    case APValue::ComplexFloat:
      return found(Subobj.getComplexFloatReal(),
                   SubobjType->castAs<ComplexType>()->getElementType()
                     .withCVRQualifiers(SubobjType.getCVRQualifiers()));
    case APValue::LValue:
      return foundPointer(Subobj, SubobjType);
    default:
      // FIXME: can this happen?
      Info.FFDiag(E);
      return false;
    }
  }
  bool found(APSInt &Value, QualType SubobjType) {
    if (!checkConst(SubobjType))
      return false;

    if (!SubobjType->isIntegerType()) {
      // We don't support increment / decrement on integer-cast-to-pointer
      // values.
      Info.FFDiag(E);
      return false;
    }

    if (Old) *Old = APValue(Value);

    // bool arithmetic promotes to int, and the conversion back to bool
    // doesn't reduce mod 2^n, so special-case it.
    if (SubobjType->isBooleanType()) {
      if (AccessKind == AK_Increment)
        Value = 1;
      else
        Value = !Value;
      return true;
    }

    bool WasNegative = Value.isNegative();
    if (AccessKind == AK_Increment) {
      ++Value;

      if (!WasNegative && Value.isNegative() && E->canOverflow()) {
        APSInt ActualValue(Value, /*IsUnsigned*/true);
        return HandleOverflow(Info, E, ActualValue, SubobjType);
      }
    } else {
      --Value;

      if (WasNegative && !Value.isNegative() && E->canOverflow()) {
        unsigned BitWidth = Value.getBitWidth();
        APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
        ActualValue.setBit(BitWidth);
        return HandleOverflow(Info, E, ActualValue, SubobjType);
      }
    }
    return true;
  }
  bool found(APFloat &Value, QualType SubobjType) {
    if (!checkConst(SubobjType))
      return false;

    if (Old) *Old = APValue(Value);

    APFloat One(Value.getSemantics(), 1);
    if (AccessKind == AK_Increment)
      Value.add(One, APFloat::rmNearestTiesToEven);
    else
      Value.subtract(One, APFloat::rmNearestTiesToEven);
    return true;
  }
  bool foundPointer(APValue &Subobj, QualType SubobjType) {
    if (!checkConst(SubobjType))
      return false;

    QualType PointeeType;
    if (const PointerType *PT = SubobjType->getAs<PointerType>())
      PointeeType = PT->getPointeeType();
    else {
      Info.FFDiag(E);
      return false;
    }

    LValue LVal;
    LVal.setFrom(Info.Ctx, Subobj);
    if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
                                     AccessKind == AK_Increment ? 1 : -1))
      return false;
    LVal.moveInto(Subobj);
    return true;
  }
};
} // end anonymous namespace

/// Perform an increment or decrement on LVal.
static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
                         QualType LValType, bool IsIncrement, APValue *Old) {
  if (LVal.Designator.Invalid)
    return false;

  if (!Info.getLangOpts().CPlusPlus14) {
    Info.FFDiag(E);
    return false;
  }

  AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
  CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
  IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
  return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
}

/// Build an lvalue for the object argument of a member function call.
static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
                                   LValue &This) {
  if (Object->getType()->isPointerType() && Object->isPRValue())
    return EvaluatePointer(Object, This, Info);

  if (Object->isGLValue())
    return EvaluateLValue(Object, This, Info);

  if (Object->getType()->isLiteralType(Info.Ctx))
    return EvaluateTemporary(Object, This, Info);

  Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
  return false;
}

/// HandleMemberPointerAccess - Evaluate a member access operation and build an
/// lvalue referring to the result.
///
/// \param Info - Information about the ongoing evaluation.
/// \param LV - An lvalue referring to the base of the member pointer.
/// \param RHS - The member pointer expression.
/// \param IncludeMember - Specifies whether the member itself is included in
///        the resulting LValue subobject designator. This is not possible when
///        creating a bound member function.
/// \return The field or method declaration to which the member pointer refers,
///         or 0 if evaluation fails.
static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
                                                  QualType LVType,
                                                  LValue &LV,
                                                  const Expr *RHS,
                                                  bool IncludeMember = true) {
  MemberPtr MemPtr;
  if (!EvaluateMemberPointer(RHS, MemPtr, Info))
    return nullptr;

  // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
  // member value, the behavior is undefined.
  if (!MemPtr.getDecl()) {
    // FIXME: Specific diagnostic.
    Info.FFDiag(RHS);
    return nullptr;
  }

  if (MemPtr.isDerivedMember()) {
    // This is a member of some derived class. Truncate LV appropriately.
    // The end of the derived-to-base path for the base object must match the
    // derived-to-base path for the member pointer.
    if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
        LV.Designator.Entries.size()) {
      Info.FFDiag(RHS);
      return nullptr;
    }
    unsigned PathLengthToMember =
        LV.Designator.Entries.size() - MemPtr.Path.size();
    for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
      const CXXRecordDecl *LVDecl = getAsBaseClass(
          LV.Designator.Entries[PathLengthToMember + I]);
      const CXXRecordDecl *MPDecl = MemPtr.Path[I];
      if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
        Info.FFDiag(RHS);
        return nullptr;
      }
    }

    // Truncate the lvalue to the appropriate derived class.
    if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
                            PathLengthToMember))
      return nullptr;
  } else if (!MemPtr.Path.empty()) {
    // Extend the LValue path with the member pointer's path.
    LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
                                  MemPtr.Path.size() + IncludeMember);

    // Walk down to the appropriate base class.
    if (const PointerType *PT = LVType->getAs<PointerType>())
      LVType = PT->getPointeeType();
    const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
    assert(RD && "member pointer access on non-class-type expression");
    // The first class in the path is that of the lvalue.
    for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
      const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
      if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
        return nullptr;
      RD = Base;
    }
    // Finally cast to the class containing the member.
    if (!HandleLValueDirectBase(Info, RHS, LV, RD,
                                MemPtr.getContainingRecord()))
      return nullptr;
  }

  // Add the member. Note that we cannot build bound member functions here.
  if (IncludeMember) {
    if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
      if (!HandleLValueMember(Info, RHS, LV, FD))
        return nullptr;
    } else if (const IndirectFieldDecl *IFD =
                 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
      if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
        return nullptr;
    } else {
      llvm_unreachable("can't construct reference to bound member function");
    }
  }

  return MemPtr.getDecl();
}

static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
                                                  const BinaryOperator *BO,
                                                  LValue &LV,
                                                  bool IncludeMember = true) {
  assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);

  if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
    if (Info.noteFailure()) {
      MemberPtr MemPtr;
      EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
    }
    return nullptr;
  }

  return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
                                   BO->getRHS(), IncludeMember);
}

/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
/// the provided lvalue, which currently refers to the base object.
static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
                                    LValue &Result) {
  SubobjectDesignator &D = Result.Designator;
  if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
    return false;

  QualType TargetQT = E->getType();
  if (const PointerType *PT = TargetQT->getAs<PointerType>())
    TargetQT = PT->getPointeeType();

  // Check this cast lands within the final derived-to-base subobject path.
  if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
      << D.MostDerivedType << TargetQT;
    return false;
  }

  // Check the type of the final cast. We don't need to check the path,
  // since a cast can only be formed if the path is unique.
  unsigned NewEntriesSize = D.Entries.size() - E->path_size();
  const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
  const CXXRecordDecl *FinalType;
  if (NewEntriesSize == D.MostDerivedPathLength)
    FinalType = D.MostDerivedType->getAsCXXRecordDecl();
  else
    FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
  if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
      << D.MostDerivedType << TargetQT;
    return false;
  }

  // Truncate the lvalue to the appropriate derived class.
  return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
}

/// Get the value to use for a default-initialized object of type T.
/// Return false if it encounters something invalid.
static bool getDefaultInitValue(QualType T, APValue &Result) {
  bool Success = true;
  if (auto *RD = T->getAsCXXRecordDecl()) {
    if (RD->isInvalidDecl()) {
      Result = APValue();
      return false;
    }
    if (RD->isUnion()) {
      Result = APValue((const FieldDecl *)nullptr);
      return true;
    }
    Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
                     std::distance(RD->field_begin(), RD->field_end()));

    unsigned Index = 0;
    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
                                                  End = RD->bases_end();
         I != End; ++I, ++Index)
      Success &= getDefaultInitValue(I->getType(), Result.getStructBase(Index));

    for (const auto *I : RD->fields()) {
      if (I->isUnnamedBitfield())
        continue;
      Success &= getDefaultInitValue(I->getType(),
                                     Result.getStructField(I->getFieldIndex()));
    }
    return Success;
  }

  if (auto *AT =
          dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
    Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
    if (Result.hasArrayFiller())
      Success &=
          getDefaultInitValue(AT->getElementType(), Result.getArrayFiller());

    return Success;
  }

  Result = APValue::IndeterminateValue();
  return true;
}

namespace {
enum EvalStmtResult {
  /// Evaluation failed.
  ESR_Failed,
  /// Hit a 'return' statement.
  ESR_Returned,
  /// Evaluation succeeded.
  ESR_Succeeded,
  /// Hit a 'continue' statement.
  ESR_Continue,
  /// Hit a 'break' statement.
  ESR_Break,
  /// Still scanning for 'case' or 'default' statement.
  ESR_CaseNotFound
};
}

static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
  // We don't need to evaluate the initializer for a static local.
  if (!VD->hasLocalStorage())
    return true;

  LValue Result;
  APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
                                                   ScopeKind::Block, Result);

  const Expr *InitE = VD->getInit();
  if (!InitE) {
    if (VD->getType()->isDependentType())
      return Info.noteSideEffect();
    return getDefaultInitValue(VD->getType(), Val);
  }
  if (InitE->isValueDependent())
    return false;

  if (!EvaluateInPlace(Val, Info, Result, InitE)) {
    // Wipe out any partially-computed value, to allow tracking that this
    // evaluation failed.
    Val = APValue();
    return false;
  }

  return true;
}

static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
  bool OK = true;

  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
    OK &= EvaluateVarDecl(Info, VD);

  if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
    for (auto *BD : DD->bindings())
      if (auto *VD = BD->getHoldingVar())
        OK &= EvaluateDecl(Info, VD);

  return OK;
}

static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) {
  assert(E->isValueDependent());
  if (Info.noteSideEffect())
    return true;
  assert(E->containsErrors() && "valid value-dependent expression should never "
                                "reach invalid code path.");
  return false;
}

/// Evaluate a condition (either a variable declaration or an expression).
static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
                         const Expr *Cond, bool &Result) {
  if (Cond->isValueDependent())
    return false;
  FullExpressionRAII Scope(Info);
  if (CondDecl && !EvaluateDecl(Info, CondDecl))
    return false;
  if (!EvaluateAsBooleanCondition(Cond, Result, Info))
    return false;
  return Scope.destroy();
}

namespace {
/// A location where the result (returned value) of evaluating a
/// statement should be stored.
struct StmtResult {
  /// The APValue that should be filled in with the returned value.
  APValue &Value;
  /// The location containing the result, if any (used to support RVO).
  const LValue *Slot;
};

struct TempVersionRAII {
  CallStackFrame &Frame;

  TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
    Frame.pushTempVersion();
  }

  ~TempVersionRAII() {
    Frame.popTempVersion();
  }
};

}

static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
                                   const Stmt *S,
                                   const SwitchCase *SC = nullptr);

/// Evaluate the body of a loop, and translate the result as appropriate.
static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
                                       const Stmt *Body,
                                       const SwitchCase *Case = nullptr) {
  BlockScopeRAII Scope(Info);

  EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
  if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
    ESR = ESR_Failed;

  switch (ESR) {
  case ESR_Break:
    return ESR_Succeeded;
  case ESR_Succeeded:
  case ESR_Continue:
    return ESR_Continue;
  case ESR_Failed:
  case ESR_Returned:
  case ESR_CaseNotFound:
    return ESR;
  }
  llvm_unreachable("Invalid EvalStmtResult!");
}

/// Evaluate a switch statement.
static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
                                     const SwitchStmt *SS) {
  BlockScopeRAII Scope(Info);

  // Evaluate the switch condition.
  APSInt Value;
  {
    if (const Stmt *Init = SS->getInit()) {
      EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
      if (ESR != ESR_Succeeded) {
        if (ESR != ESR_Failed && !Scope.destroy())
          ESR = ESR_Failed;
        return ESR;
      }
    }

    FullExpressionRAII CondScope(Info);
    if (SS->getConditionVariable() &&
        !EvaluateDecl(Info, SS->getConditionVariable()))
      return ESR_Failed;
    if (SS->getCond()->isValueDependent()) {
      if (!EvaluateDependentExpr(SS->getCond(), Info))
        return ESR_Failed;
    } else {
      if (!EvaluateInteger(SS->getCond(), Value, Info))
        return ESR_Failed;
    }
    if (!CondScope.destroy())
      return ESR_Failed;
  }

  // Find the switch case corresponding to the value of the condition.
  // FIXME: Cache this lookup.
  const SwitchCase *Found = nullptr;
  for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
       SC = SC->getNextSwitchCase()) {
    if (isa<DefaultStmt>(SC)) {
      Found = SC;
      continue;
    }

    const CaseStmt *CS = cast<CaseStmt>(SC);
    APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
    APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
                              : LHS;
    if (LHS <= Value && Value <= RHS) {
      Found = SC;
      break;
    }
  }

  if (!Found)
    return Scope.destroy() ? ESR_Succeeded : ESR_Failed;

  // Search the switch body for the switch case and evaluate it from there.
  EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
  if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
    return ESR_Failed;

  switch (ESR) {
  case ESR_Break:
    return ESR_Succeeded;
  case ESR_Succeeded:
  case ESR_Continue:
  case ESR_Failed:
  case ESR_Returned:
    return ESR;
  case ESR_CaseNotFound:
    // This can only happen if the switch case is nested within a statement
    // expression. We have no intention of supporting that.
    Info.FFDiag(Found->getBeginLoc(),
                diag::note_constexpr_stmt_expr_unsupported);
    return ESR_Failed;
  }
  llvm_unreachable("Invalid EvalStmtResult!");
}

// Evaluate a statement.
static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
                                   const Stmt *S, const SwitchCase *Case) {
  if (!Info.nextStep(S))
    return ESR_Failed;

  // If we're hunting down a 'case' or 'default' label, recurse through
  // substatements until we hit the label.
  if (Case) {
    switch (S->getStmtClass()) {
    case Stmt::CompoundStmtClass:
      // FIXME: Precompute which substatement of a compound statement we
      // would jump to, and go straight there rather than performing a
      // linear scan each time.
    case Stmt::LabelStmtClass:
    case Stmt::AttributedStmtClass:
    case Stmt::DoStmtClass:
      break;

    case Stmt::CaseStmtClass:
    case Stmt::DefaultStmtClass:
      if (Case == S)
        Case = nullptr;
      break;

    case Stmt::IfStmtClass: {
      // FIXME: Precompute which side of an 'if' we would jump to, and go
      // straight there rather than scanning both sides.
      const IfStmt *IS = cast<IfStmt>(S);

      // Wrap the evaluation in a block scope, in case it's a DeclStmt
      // preceded by our switch label.
      BlockScopeRAII Scope(Info);

      // Step into the init statement in case it brings an (uninitialized)
      // variable into scope.
      if (const Stmt *Init = IS->getInit()) {
        EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
        if (ESR != ESR_CaseNotFound) {
          assert(ESR != ESR_Succeeded);
          return ESR;
        }
      }

      // Condition variable must be initialized if it exists.
      // FIXME: We can skip evaluating the body if there's a condition
      // variable, as there can't be any case labels within it.
      // (The same is true for 'for' statements.)

      EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
      if (ESR == ESR_Failed)
        return ESR;
      if (ESR != ESR_CaseNotFound)
        return Scope.destroy() ? ESR : ESR_Failed;
      if (!IS->getElse())
        return ESR_CaseNotFound;

      ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
      if (ESR == ESR_Failed)
        return ESR;
      if (ESR != ESR_CaseNotFound)
        return Scope.destroy() ? ESR : ESR_Failed;
      return ESR_CaseNotFound;
    }

    case Stmt::WhileStmtClass: {
      EvalStmtResult ESR =
          EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
      if (ESR != ESR_Continue)
        return ESR;
      break;
    }

    case Stmt::ForStmtClass: {
      const ForStmt *FS = cast<ForStmt>(S);
      BlockScopeRAII Scope(Info);

      // Step into the init statement in case it brings an (uninitialized)
      // variable into scope.
      if (const Stmt *Init = FS->getInit()) {
        EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
        if (ESR != ESR_CaseNotFound) {
          assert(ESR != ESR_Succeeded);
          return ESR;
        }
      }

      EvalStmtResult ESR =
          EvaluateLoopBody(Result, Info, FS->getBody(), Case);
      if (ESR != ESR_Continue)
        return ESR;
      if (const auto *Inc = FS->getInc()) {
        if (Inc->isValueDependent()) {
          if (!EvaluateDependentExpr(Inc, Info))
            return ESR_Failed;
        } else {
          FullExpressionRAII IncScope(Info);
          if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
            return ESR_Failed;
        }
      }
      break;
    }

    case Stmt::DeclStmtClass: {
      // Start the lifetime of any uninitialized variables we encounter. They
      // might be used by the selected branch of the switch.
      const DeclStmt *DS = cast<DeclStmt>(S);
      for (const auto *D : DS->decls()) {
        if (const auto *VD = dyn_cast<VarDecl>(D)) {
          if (VD->hasLocalStorage() && !VD->getInit())
            if (!EvaluateVarDecl(Info, VD))
              return ESR_Failed;
          // FIXME: If the variable has initialization that can't be jumped
          // over, bail out of any immediately-surrounding compound-statement
          // too. There can't be any case labels here.
        }
      }
      return ESR_CaseNotFound;
    }

    default:
      return ESR_CaseNotFound;
    }
  }

  switch (S->getStmtClass()) {
  default:
    if (const Expr *E = dyn_cast<Expr>(S)) {
      if (E->isValueDependent()) {
        if (!EvaluateDependentExpr(E, Info))
          return ESR_Failed;
      } else {
        // Don't bother evaluating beyond an expression-statement which couldn't
        // be evaluated.
        // FIXME: Do we need the FullExpressionRAII object here?
        // VisitExprWithCleanups should create one when necessary.
        FullExpressionRAII Scope(Info);
        if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
          return ESR_Failed;
      }
      return ESR_Succeeded;
    }

    Info.FFDiag(S->getBeginLoc());
    return ESR_Failed;

  case Stmt::NullStmtClass:
    return ESR_Succeeded;

  case Stmt::DeclStmtClass: {
    const DeclStmt *DS = cast<DeclStmt>(S);
    for (const auto *D : DS->decls()) {
      // Each declaration initialization is its own full-expression.
      FullExpressionRAII Scope(Info);
      if (!EvaluateDecl(Info, D) && !Info.noteFailure())
        return ESR_Failed;
      if (!Scope.destroy())
        return ESR_Failed;
    }
    return ESR_Succeeded;
  }

  case Stmt::ReturnStmtClass: {
    const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
    FullExpressionRAII Scope(Info);
    if (RetExpr && RetExpr->isValueDependent()) {
      EvaluateDependentExpr(RetExpr, Info);
      // We know we returned, but we don't know what the value is.
      return ESR_Failed;
    }
    if (RetExpr &&
        !(Result.Slot
              ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
              : Evaluate(Result.Value, Info, RetExpr)))
      return ESR_Failed;
    return Scope.destroy() ? ESR_Returned : ESR_Failed;
  }

  case Stmt::CompoundStmtClass: {
    BlockScopeRAII Scope(Info);

    const CompoundStmt *CS = cast<CompoundStmt>(S);
    for (const auto *BI : CS->body()) {
      EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
      if (ESR == ESR_Succeeded)
        Case = nullptr;
      else if (ESR != ESR_CaseNotFound) {
        if (ESR != ESR_Failed && !Scope.destroy())
          return ESR_Failed;
        return ESR;
      }
    }
    if (Case)
      return ESR_CaseNotFound;
    return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
  }

  case Stmt::IfStmtClass: {
    const IfStmt *IS = cast<IfStmt>(S);

    // Evaluate the condition, as either a var decl or as an expression.
    BlockScopeRAII Scope(Info);
    if (const Stmt *Init = IS->getInit()) {
      EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
      if (ESR != ESR_Succeeded) {
        if (ESR != ESR_Failed && !Scope.destroy())
          return ESR_Failed;
        return ESR;
      }
    }
    bool Cond;
    if (IS->isConsteval())
      Cond = IS->isNonNegatedConsteval();
    else if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(),
                           Cond))
      return ESR_Failed;

    if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
      EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
      if (ESR != ESR_Succeeded) {
        if (ESR != ESR_Failed && !Scope.destroy())
          return ESR_Failed;
        return ESR;
      }
    }
    return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
  }

  case Stmt::WhileStmtClass: {
    const WhileStmt *WS = cast<WhileStmt>(S);
    while (true) {
      BlockScopeRAII Scope(Info);
      bool Continue;
      if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
                        Continue))
        return ESR_Failed;
      if (!Continue)
        break;

      EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
      if (ESR != ESR_Continue) {
        if (ESR != ESR_Failed && !Scope.destroy())
          return ESR_Failed;
        return ESR;
      }
      if (!Scope.destroy())
        return ESR_Failed;
    }
    return ESR_Succeeded;
  }

  case Stmt::DoStmtClass: {
    const DoStmt *DS = cast<DoStmt>(S);
    bool Continue;
    do {
      EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
      if (ESR != ESR_Continue)
        return ESR;
      Case = nullptr;

      if (DS->getCond()->isValueDependent()) {
        EvaluateDependentExpr(DS->getCond(), Info);
        // Bailout as we don't know whether to keep going or terminate the loop.
        return ESR_Failed;
      }
      FullExpressionRAII CondScope(Info);
      if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
          !CondScope.destroy())
        return ESR_Failed;
    } while (Continue);
    return ESR_Succeeded;
  }

  case Stmt::ForStmtClass: {
    const ForStmt *FS = cast<ForStmt>(S);
    BlockScopeRAII ForScope(Info);
    if (FS->getInit()) {
      EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
      if (ESR != ESR_Succeeded) {
        if (ESR != ESR_Failed && !ForScope.destroy())
          return ESR_Failed;
        return ESR;
      }
    }
    while (true) {
      BlockScopeRAII IterScope(Info);
      bool Continue = true;
      if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
                                         FS->getCond(), Continue))
        return ESR_Failed;
      if (!Continue)
        break;

      EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
      if (ESR != ESR_Continue) {
        if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
          return ESR_Failed;
        return ESR;
      }

      if (const auto *Inc = FS->getInc()) {
        if (Inc->isValueDependent()) {
          if (!EvaluateDependentExpr(Inc, Info))
            return ESR_Failed;
        } else {
          FullExpressionRAII IncScope(Info);
          if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
            return ESR_Failed;
        }
      }

      if (!IterScope.destroy())
        return ESR_Failed;
    }
    return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
  }

  case Stmt::CXXForRangeStmtClass: {
    const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
    BlockScopeRAII Scope(Info);

    // Evaluate the init-statement if present.
    if (FS->getInit()) {
      EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
      if (ESR != ESR_Succeeded) {
        if (ESR != ESR_Failed && !Scope.destroy())
          return ESR_Failed;
        return ESR;
      }
    }

    // Initialize the __range variable.
    EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
    if (ESR != ESR_Succeeded) {
      if (ESR != ESR_Failed && !Scope.destroy())
        return ESR_Failed;
      return ESR;
    }

    // In error-recovery cases it's possible to get here even if we failed to
    // synthesize the __begin and __end variables.
    if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond())
      return ESR_Failed;

    // Create the __begin and __end iterators.
    ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
    if (ESR != ESR_Succeeded) {
      if (ESR != ESR_Failed && !Scope.destroy())
        return ESR_Failed;
      return ESR;
    }
    ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
    if (ESR != ESR_Succeeded) {
      if (ESR != ESR_Failed && !Scope.destroy())
        return ESR_Failed;
      return ESR;
    }

    while (true) {
      // Condition: __begin != __end.
      {
        if (FS->getCond()->isValueDependent()) {
          EvaluateDependentExpr(FS->getCond(), Info);
          // We don't know whether to keep going or terminate the loop.
          return ESR_Failed;
        }
        bool Continue = true;
        FullExpressionRAII CondExpr(Info);
        if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
          return ESR_Failed;
        if (!Continue)
          break;
      }

      // User's variable declaration, initialized by *__begin.
      BlockScopeRAII InnerScope(Info);
      ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
      if (ESR != ESR_Succeeded) {
        if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
          return ESR_Failed;
        return ESR;
      }

      // Loop body.
      ESR = EvaluateLoopBody(Result, Info, FS->getBody());
      if (ESR != ESR_Continue) {
        if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
          return ESR_Failed;
        return ESR;
      }
      if (FS->getInc()->isValueDependent()) {
        if (!EvaluateDependentExpr(FS->getInc(), Info))
          return ESR_Failed;
      } else {
        // Increment: ++__begin
        if (!EvaluateIgnoredValue(Info, FS->getInc()))
          return ESR_Failed;
      }

      if (!InnerScope.destroy())
        return ESR_Failed;
    }

    return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
  }

  case Stmt::SwitchStmtClass:
    return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));

  case Stmt::ContinueStmtClass:
    return ESR_Continue;

  case Stmt::BreakStmtClass:
    return ESR_Break;

  case Stmt::LabelStmtClass:
    return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);

  case Stmt::AttributedStmtClass:
    // As a general principle, C++11 attributes can be ignored without
    // any semantic impact.
    return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
                        Case);

  case Stmt::CaseStmtClass:
  case Stmt::DefaultStmtClass:
    return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
  case Stmt::CXXTryStmtClass:
    // Evaluate try blocks by evaluating all sub statements.
    return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
  }
}

/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
/// default constructor. If so, we'll fold it whether or not it's marked as
/// constexpr. If it is marked as constexpr, we will never implicitly define it,
/// so we need special handling.
static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
                                           const CXXConstructorDecl *CD,
                                           bool IsValueInitialization) {
  if (!CD->isTrivial() || !CD->isDefaultConstructor())
    return false;

  // Value-initialization does not call a trivial default constructor, so such a
  // call is a core constant expression whether or not the constructor is
  // constexpr.
  if (!CD->isConstexpr() && !IsValueInitialization) {
    if (Info.getLangOpts().CPlusPlus11) {
      // FIXME: If DiagDecl is an implicitly-declared special member function,
      // we should be much more explicit about why it's not constexpr.
      Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
        << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
      Info.Note(CD->getLocation(), diag::note_declared_at);
    } else {
      Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
    }
  }
  return true;
}

/// CheckConstexprFunction - Check that a function can be called in a constant
/// expression.
static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
                                   const FunctionDecl *Declaration,
                                   const FunctionDecl *Definition,
                                   const Stmt *Body) {
  // Potential constant expressions can contain calls to declared, but not yet
  // defined, constexpr functions.
  if (Info.checkingPotentialConstantExpression() && !Definition &&
      Declaration->isConstexpr())
    return false;

  // Bail out if the function declaration itself is invalid.  We will
  // have produced a relevant diagnostic while parsing it, so just
  // note the problematic sub-expression.
  if (Declaration->isInvalidDecl()) {
    Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
    return false;
  }

  // DR1872: An instantiated virtual constexpr function can't be called in a
  // constant expression (prior to C++20). We can still constant-fold such a
  // call.
  if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
      cast<CXXMethodDecl>(Declaration)->isVirtual())
    Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);

  if (Definition && Definition->isInvalidDecl()) {
    Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
    return false;
  }

  // Can we evaluate this function call?
  if (Definition && Definition->isConstexpr() && Body)
    return true;

  if (Info.getLangOpts().CPlusPlus11) {
    const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;

    // If this function is not constexpr because it is an inherited
    // non-constexpr constructor, diagnose that directly.
    auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
    if (CD && CD->isInheritingConstructor()) {
      auto *Inherited = CD->getInheritedConstructor().getConstructor();
      if (!Inherited->isConstexpr())
        DiagDecl = CD = Inherited;
    }

    // FIXME: If DiagDecl is an implicitly-declared special member function
    // or an inheriting constructor, we should be much more explicit about why
    // it's not constexpr.
    if (CD && CD->isInheritingConstructor())
      Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
        << CD->getInheritedConstructor().getConstructor()->getParent();
    else
      Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
        << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
    Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
  } else {
    Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
  }
  return false;
}

namespace {
struct CheckDynamicTypeHandler {
  AccessKinds AccessKind;
  typedef bool result_type;
  bool failed() { return false; }
  bool found(APValue &Subobj, QualType SubobjType) { return true; }
  bool found(APSInt &Value, QualType SubobjType) { return true; }
  bool found(APFloat &Value, QualType SubobjType) { return true; }
};
} // end anonymous namespace

/// Check that we can access the notional vptr of an object / determine its
/// dynamic type.
static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
                             AccessKinds AK, bool Polymorphic) {
  if (This.Designator.Invalid)
    return false;

  CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());

  if (!Obj)
    return false;

  if (!Obj.Value) {
    // The object is not usable in constant expressions, so we can't inspect
    // its value to see if it's in-lifetime or what the active union members
    // are. We can still check for a one-past-the-end lvalue.
    if (This.Designator.isOnePastTheEnd() ||
        This.Designator.isMostDerivedAnUnsizedArray()) {
      Info.FFDiag(E, This.Designator.isOnePastTheEnd()
                         ? diag::note_constexpr_access_past_end
                         : diag::note_constexpr_access_unsized_array)
          << AK;
      return false;
    } else if (Polymorphic) {
      // Conservatively refuse to perform a polymorphic operation if we would
      // not be able to read a notional 'vptr' value.
      APValue Val;
      This.moveInto(Val);
      QualType StarThisType =
          Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
      Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
          << AK << Val.getAsString(Info.Ctx, StarThisType);
      return false;
    }
    return true;
  }

  CheckDynamicTypeHandler Handler{AK};
  return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
}

/// Check that the pointee of the 'this' pointer in a member function call is
/// either within its lifetime or in its period of construction or destruction.
static bool
checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
                                     const LValue &This,
                                     const CXXMethodDecl *NamedMember) {
  return checkDynamicType(
      Info, E, This,
      isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
}

struct DynamicType {
  /// The dynamic class type of the object.
  const CXXRecordDecl *Type;
  /// The corresponding path length in the lvalue.
  unsigned PathLength;
};

static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
                                             unsigned PathLength) {
  assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
      Designator.Entries.size() && "invalid path length");
  return (PathLength == Designator.MostDerivedPathLength)
             ? Designator.MostDerivedType->getAsCXXRecordDecl()
             : getAsBaseClass(Designator.Entries[PathLength - 1]);
}

/// Determine the dynamic type of an object.
static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E,
                                                LValue &This, AccessKinds AK) {
  // If we don't have an lvalue denoting an object of class type, there is no
  // meaningful dynamic type. (We consider objects of non-class type to have no
  // dynamic type.)
  if (!checkDynamicType(Info, E, This, AK, true))
    return None;

  // Refuse to compute a dynamic type in the presence of virtual bases. This
  // shouldn't happen other than in constant-folding situations, since literal
  // types can't have virtual bases.
  //
  // Note that consumers of DynamicType assume that the type has no virtual
  // bases, and will need modifications if this restriction is relaxed.
  const CXXRecordDecl *Class =
      This.Designator.MostDerivedType->getAsCXXRecordDecl();
  if (!Class || Class->getNumVBases()) {
    Info.FFDiag(E);
    return None;
  }

  // FIXME: For very deep class hierarchies, it might be beneficial to use a
  // binary search here instead. But the overwhelmingly common case is that
  // we're not in the middle of a constructor, so it probably doesn't matter
  // in practice.
  ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
  for (unsigned PathLength = This.Designator.MostDerivedPathLength;
       PathLength <= Path.size(); ++PathLength) {
    switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
                                      Path.slice(0, PathLength))) {
    case ConstructionPhase::Bases:
    case ConstructionPhase::DestroyingBases:
      // We're constructing or destroying a base class. This is not the dynamic
      // type.
      break;

    case ConstructionPhase::None:
    case ConstructionPhase::AfterBases:
    case ConstructionPhase::AfterFields:
    case ConstructionPhase::Destroying:
      // We've finished constructing the base classes and not yet started
      // destroying them again, so this is the dynamic type.
      return DynamicType{getBaseClassType(This.Designator, PathLength),
                         PathLength};
    }
  }

  // CWG issue 1517: we're constructing a base class of the object described by
  // 'This', so that object has not yet begun its period of construction and
  // any polymorphic operation on it results in undefined behavior.
  Info.FFDiag(E);
  return None;
}

/// Perform virtual dispatch.
static const CXXMethodDecl *HandleVirtualDispatch(
    EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
    llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
  Optional<DynamicType> DynType = ComputeDynamicType(
      Info, E, This,
      isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
  if (!DynType)
    return nullptr;

  // Find the final overrider. It must be declared in one of the classes on the
  // path from the dynamic type to the static type.
  // FIXME: If we ever allow literal types to have virtual base classes, that
  // won't be true.
  const CXXMethodDecl *Callee = Found;
  unsigned PathLength = DynType->PathLength;
  for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
    const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
    const CXXMethodDecl *Overrider =
        Found->getCorrespondingMethodDeclaredInClass(Class, false);
    if (Overrider) {
      Callee = Overrider;
      break;
    }
  }

  // C++2a [class.abstract]p6:
  //   the effect of making a virtual call to a pure virtual function [...] is
  //   undefined
  if (Callee->isPure()) {
    Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
    Info.Note(Callee->getLocation(), diag::note_declared_at);
    return nullptr;
  }

  // If necessary, walk the rest of the path to determine the sequence of
  // covariant adjustment steps to apply.
  if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
                                       Found->getReturnType())) {
    CovariantAdjustmentPath.push_back(Callee->getReturnType());
    for (unsigned CovariantPathLength = PathLength + 1;
         CovariantPathLength != This.Designator.Entries.size();
         ++CovariantPathLength) {
      const CXXRecordDecl *NextClass =
          getBaseClassType(This.Designator, CovariantPathLength);
      const CXXMethodDecl *Next =
          Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
      if (Next && !Info.Ctx.hasSameUnqualifiedType(
                      Next->getReturnType(), CovariantAdjustmentPath.back()))
        CovariantAdjustmentPath.push_back(Next->getReturnType());
    }
    if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
                                         CovariantAdjustmentPath.back()))
      CovariantAdjustmentPath.push_back(Found->getReturnType());
  }

  // Perform 'this' adjustment.
  if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
    return nullptr;

  return Callee;
}

/// Perform the adjustment from a value returned by a virtual function to
/// a value of the statically expected type, which may be a pointer or
/// reference to a base class of the returned type.
static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
                                            APValue &Result,
                                            ArrayRef<QualType> Path) {
  assert(Result.isLValue() &&
         "unexpected kind of APValue for covariant return");
  if (Result.isNullPointer())
    return true;

  LValue LVal;
  LVal.setFrom(Info.Ctx, Result);

  const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
  for (unsigned I = 1; I != Path.size(); ++I) {
    const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
    assert(OldClass && NewClass && "unexpected kind of covariant return");
    if (OldClass != NewClass &&
        !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
      return false;
    OldClass = NewClass;
  }

  LVal.moveInto(Result);
  return true;
}

/// Determine whether \p Base, which is known to be a direct base class of
/// \p Derived, is a public base class.
static bool isBaseClassPublic(const CXXRecordDecl *Derived,
                              const CXXRecordDecl *Base) {
  for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
    auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
    if (BaseClass && declaresSameEntity(BaseClass, Base))
      return BaseSpec.getAccessSpecifier() == AS_public;
  }
  llvm_unreachable("Base is not a direct base of Derived");
}

/// Apply the given dynamic cast operation on the provided lvalue.
///
/// This implements the hard case of dynamic_cast, requiring a "runtime check"
/// to find a suitable target subobject.
static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
                              LValue &Ptr) {
  // We can't do anything with a non-symbolic pointer value.
  SubobjectDesignator &D = Ptr.Designator;
  if (D.Invalid)
    return false;

  // C++ [expr.dynamic.cast]p6:
  //   If v is a null pointer value, the result is a null pointer value.
  if (Ptr.isNullPointer() && !E->isGLValue())
    return true;

  // For all the other cases, we need the pointer to point to an object within
  // its lifetime / period of construction / destruction, and we need to know
  // its dynamic type.
  Optional<DynamicType> DynType =
      ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
  if (!DynType)
    return false;

  // C++ [expr.dynamic.cast]p7:
  //   If T is "pointer to cv void", then the result is a pointer to the most
  //   derived object
  if (E->getType()->isVoidPointerType())
    return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);

  const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
  assert(C && "dynamic_cast target is not void pointer nor class");
  CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));

  auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
    // C++ [expr.dynamic.cast]p9:
    if (!E->isGLValue()) {
      //   The value of a failed cast to pointer type is the null pointer value
      //   of the required result type.
      Ptr.setNull(Info.Ctx, E->getType());
      return true;
    }

    //   A failed cast to reference type throws [...] std::bad_cast.
    unsigned DiagKind;
    if (!Paths && (declaresSameEntity(DynType->Type, C) ||
                   DynType->Type->isDerivedFrom(C)))
      DiagKind = 0;
    else if (!Paths || Paths->begin() == Paths->end())
      DiagKind = 1;
    else if (Paths->isAmbiguous(CQT))
      DiagKind = 2;
    else {
      assert(Paths->front().Access != AS_public && "why did the cast fail?");
      DiagKind = 3;
    }
    Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
        << DiagKind << Ptr.Designator.getType(Info.Ctx)
        << Info.Ctx.getRecordType(DynType->Type)
        << E->getType().getUnqualifiedType();
    return false;
  };

  // Runtime check, phase 1:
  //   Walk from the base subobject towards the derived object looking for the
  //   target type.
  for (int PathLength = Ptr.Designator.Entries.size();
       PathLength >= (int)DynType->PathLength; --PathLength) {
    const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
    if (declaresSameEntity(Class, C))
      return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
    // We can only walk across public inheritance edges.
    if (PathLength > (int)DynType->PathLength &&
        !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
                           Class))
      return RuntimeCheckFailed(nullptr);
  }

  // Runtime check, phase 2:
  //   Search the dynamic type for an unambiguous public base of type C.
  CXXBasePaths Paths(/*FindAmbiguities=*/true,
                     /*RecordPaths=*/true, /*DetectVirtual=*/false);
  if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
      Paths.front().Access == AS_public) {
    // Downcast to the dynamic type...
    if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
      return false;
    // ... then upcast to the chosen base class subobject.
    for (CXXBasePathElement &Elem : Paths.front())
      if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
        return false;
    return true;
  }

  // Otherwise, the runtime check fails.
  return RuntimeCheckFailed(&Paths);
}

namespace {
struct StartLifetimeOfUnionMemberHandler {
  EvalInfo &Info;
  const Expr *LHSExpr;
  const FieldDecl *Field;
  bool DuringInit;
  bool Failed = false;
  static const AccessKinds AccessKind = AK_Assign;

  typedef bool result_type;
  bool failed() { return Failed; }
  bool found(APValue &Subobj, QualType SubobjType) {
    // We are supposed to perform no initialization but begin the lifetime of
    // the object. We interpret that as meaning to do what default
    // initialization of the object would do if all constructors involved were
    // trivial:
    //  * All base, non-variant member, and array element subobjects' lifetimes
    //    begin
    //  * No variant members' lifetimes begin
    //  * All scalar subobjects whose lifetimes begin have indeterminate values
    assert(SubobjType->isUnionType());
    if (declaresSameEntity(Subobj.getUnionField(), Field)) {
      // This union member is already active. If it's also in-lifetime, there's
      // nothing to do.
      if (Subobj.getUnionValue().hasValue())
        return true;
    } else if (DuringInit) {
      // We're currently in the process of initializing a different union
      // member.  If we carried on, that initialization would attempt to
      // store to an inactive union member, resulting in undefined behavior.
      Info.FFDiag(LHSExpr,
                  diag::note_constexpr_union_member_change_during_init);
      return false;
    }
    APValue Result;
    Failed = !getDefaultInitValue(Field->getType(), Result);
    Subobj.setUnion(Field, Result);
    return true;
  }
  bool found(APSInt &Value, QualType SubobjType) {
    llvm_unreachable("wrong value kind for union object");
  }
  bool found(APFloat &Value, QualType SubobjType) {
    llvm_unreachable("wrong value kind for union object");
  }
};
} // end anonymous namespace

const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;

/// Handle a builtin simple-assignment or a call to a trivial assignment
/// operator whose left-hand side might involve a union member access. If it
/// does, implicitly start the lifetime of any accessed union elements per
/// C++20 [class.union]5.
static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
                                          const LValue &LHS) {
  if (LHS.InvalidBase || LHS.Designator.Invalid)
    return false;

  llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
  // C++ [class.union]p5:
  //   define the set S(E) of subexpressions of E as follows:
  unsigned PathLength = LHS.Designator.Entries.size();
  for (const Expr *E = LHSExpr; E != nullptr;) {
    //   -- If E is of the form A.B, S(E) contains the elements of S(A)...
    if (auto *ME = dyn_cast<MemberExpr>(E)) {
      auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
      // Note that we can't implicitly start the lifetime of a reference,
      // so we don't need to proceed any further if we reach one.
      if (!FD || FD->getType()->isReferenceType())
        break;

      //    ... and also contains A.B if B names a union member ...
      if (FD->getParent()->isUnion()) {
        //    ... of a non-class, non-array type, or of a class type with a
        //    trivial default constructor that is not deleted, or an array of
        //    such types.
        auto *RD =
            FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
        if (!RD || RD->hasTrivialDefaultConstructor())
          UnionPathLengths.push_back({PathLength - 1, FD});
      }

      E = ME->getBase();
      --PathLength;
      assert(declaresSameEntity(FD,
                                LHS.Designator.Entries[PathLength]
                                    .getAsBaseOrMember().getPointer()));

      //   -- If E is of the form A[B] and is interpreted as a built-in array
      //      subscripting operator, S(E) is [S(the array operand, if any)].
    } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
      // Step over an ArrayToPointerDecay implicit cast.
      auto *Base = ASE->getBase()->IgnoreImplicit();
      if (!Base->getType()->isArrayType())
        break;

      E = Base;
      --PathLength;

    } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
      // Step over a derived-to-base conversion.
      E = ICE->getSubExpr();
      if (ICE->getCastKind() == CK_NoOp)
        continue;
      if (ICE->getCastKind() != CK_DerivedToBase &&
          ICE->getCastKind() != CK_UncheckedDerivedToBase)
        break;
      // Walk path backwards as we walk up from the base to the derived class.
      for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
        --PathLength;
        (void)Elt;
        assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
                                  LHS.Designator.Entries[PathLength]
                                      .getAsBaseOrMember().getPointer()));
      }

    //   -- Otherwise, S(E) is empty.
    } else {
      break;
    }
  }

  // Common case: no unions' lifetimes are started.
  if (UnionPathLengths.empty())
    return true;

  //   if modification of X [would access an inactive union member], an object
  //   of the type of X is implicitly created
  CompleteObject Obj =
      findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
  if (!Obj)
    return false;
  for (std::pair<unsigned, const FieldDecl *> LengthAndField :
           llvm::reverse(UnionPathLengths)) {
    // Form a designator for the union object.
    SubobjectDesignator D = LHS.Designator;
    D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);

    bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) ==
                      ConstructionPhase::AfterBases;
    StartLifetimeOfUnionMemberHandler StartLifetime{
        Info, LHSExpr, LengthAndField.second, DuringInit};
    if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
      return false;
  }

  return true;
}

static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
                            CallRef Call, EvalInfo &Info,
                            bool NonNull = false) {
  LValue LV;
  // Create the parameter slot and register its destruction. For a vararg
  // argument, create a temporary.
  // FIXME: For calling conventions that destroy parameters in the callee,
  // should we consider performing destruction when the function returns
  // instead?
  APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV)
                   : Info.CurrentCall->createTemporary(Arg, Arg->getType(),
                                                       ScopeKind::Call, LV);
  if (!EvaluateInPlace(V, Info, LV, Arg))
    return false;

  // Passing a null pointer to an __attribute__((nonnull)) parameter results in
  // undefined behavior, so is non-constant.
  if (NonNull && V.isLValue() && V.isNullPointer()) {
    Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
    return false;
  }

  return true;
}

/// Evaluate the arguments to a function call.
static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
                         EvalInfo &Info, const FunctionDecl *Callee,
                         bool RightToLeft = false) {
  bool Success = true;
  llvm::SmallBitVector ForbiddenNullArgs;
  if (Callee->hasAttr<NonNullAttr>()) {
    ForbiddenNullArgs.resize(Args.size());
    for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
      if (!Attr->args_size()) {
        ForbiddenNullArgs.set();
        break;
      } else
        for (auto Idx : Attr->args()) {
          unsigned ASTIdx = Idx.getASTIndex();
          if (ASTIdx >= Args.size())
            continue;
          ForbiddenNullArgs[ASTIdx] = true;
        }
    }
  }
  for (unsigned I = 0; I < Args.size(); I++) {
    unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
    const ParmVarDecl *PVD =
        Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr;
    bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
    if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) {
      // If we're checking for a potential constant expression, evaluate all
      // initializers even if some of them fail.
      if (!Info.noteFailure())
        return false;
      Success = false;
    }
  }
  return Success;
}

/// Perform a trivial copy from Param, which is the parameter of a copy or move
/// constructor or assignment operator.
static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
                              const Expr *E, APValue &Result,
                              bool CopyObjectRepresentation) {
  // Find the reference argument.
  CallStackFrame *Frame = Info.CurrentCall;
  APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param);
  if (!RefValue) {
    Info.FFDiag(E);
    return false;
  }

  // Copy out the contents of the RHS object.
  LValue RefLValue;
  RefLValue.setFrom(Info.Ctx, *RefValue);
  return handleLValueToRValueConversion(
      Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
      CopyObjectRepresentation);
}

/// Evaluate a function call.
static bool HandleFunctionCall(SourceLocation CallLoc,
                               const FunctionDecl *Callee, const LValue *This,
                               ArrayRef<const Expr *> Args, CallRef Call,
                               const Stmt *Body, EvalInfo &Info,
                               APValue &Result, const LValue *ResultSlot) {
  if (!Info.CheckCallLimit(CallLoc))
    return false;

  CallStackFrame Frame(Info, CallLoc, Callee, This, Call);

  // For a trivial copy or move assignment, perform an APValue copy. This is
  // essential for unions, where the operations performed by the assignment
  // operator cannot be represented as statements.
  //
  // Skip this for non-union classes with no fields; in that case, the defaulted
  // copy/move does not actually read the object.
  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
  if (MD && MD->isDefaulted() &&
      (MD->getParent()->isUnion() ||
       (MD->isTrivial() &&
        isReadByLvalueToRvalueConversion(MD->getParent())))) {
    assert(This &&
           (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
    APValue RHSValue;
    if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
                           MD->getParent()->isUnion()))
      return false;
    if (Info.getLangOpts().CPlusPlus20 && MD->isTrivial() &&
        !HandleUnionActiveMemberChange(Info, Args[0], *This))
      return false;
    if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
                          RHSValue))
      return false;
    This->moveInto(Result);
    return true;
  } else if (MD && isLambdaCallOperator(MD)) {
    // We're in a lambda; determine the lambda capture field maps unless we're
    // just constexpr checking a lambda's call operator. constexpr checking is
    // done before the captures have been added to the closure object (unless
    // we're inferring constexpr-ness), so we don't have access to them in this
    // case. But since we don't need the captures to constexpr check, we can
    // just ignore them.
    if (!Info.checkingPotentialConstantExpression())
      MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
                                        Frame.LambdaThisCaptureField);
  }

  StmtResult Ret = {Result, ResultSlot};
  EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
  if (ESR == ESR_Succeeded) {
    if (Callee->getReturnType()->isVoidType())
      return true;
    Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
  }
  return ESR == ESR_Returned;
}

/// Evaluate a constructor call.
static bool HandleConstructorCall(const Expr *E, const LValue &This,
                                  CallRef Call,
                                  const CXXConstructorDecl *Definition,
                                  EvalInfo &Info, APValue &Result) {
  SourceLocation CallLoc = E->getExprLoc();
  if (!Info.CheckCallLimit(CallLoc))
    return false;

  const CXXRecordDecl *RD = Definition->getParent();
  if (RD->getNumVBases()) {
    Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
    return false;
  }

  EvalInfo::EvaluatingConstructorRAII EvalObj(
      Info,
      ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
      RD->getNumBases());
  CallStackFrame Frame(Info, CallLoc, Definition, &This, Call);

  // FIXME: Creating an APValue just to hold a nonexistent return value is
  // wasteful.
  APValue RetVal;
  StmtResult Ret = {RetVal, nullptr};

  // If it's a delegating constructor, delegate.
  if (Definition->isDelegatingConstructor()) {
    CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
    if ((*I)->getInit()->isValueDependent()) {
      if (!EvaluateDependentExpr((*I)->getInit(), Info))
        return false;
    } else {
      FullExpressionRAII InitScope(Info);
      if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
          !InitScope.destroy())
        return false;
    }
    return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
  }

  // For a trivial copy or move constructor, perform an APValue copy. This is
  // essential for unions (or classes with anonymous union members), where the
  // operations performed by the constructor cannot be represented by
  // ctor-initializers.
  //
  // Skip this for empty non-union classes; we should not perform an
  // lvalue-to-rvalue conversion on them because their copy constructor does not
  // actually read them.
  if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
      (Definition->getParent()->isUnion() ||
       (Definition->isTrivial() &&
        isReadByLvalueToRvalueConversion(Definition->getParent())))) {
    return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
                             Definition->getParent()->isUnion());
  }

  // Reserve space for the struct members.
  if (!Result.hasValue()) {
    if (!RD->isUnion())
      Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
                       std::distance(RD->field_begin(), RD->field_end()));
    else
      // A union starts with no active member.
      Result = APValue((const FieldDecl*)nullptr);
  }

  if (RD->isInvalidDecl()) return false;
  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);

  // A scope for temporaries lifetime-extended by reference members.
  BlockScopeRAII LifetimeExtendedScope(Info);

  bool Success = true;
  unsigned BasesSeen = 0;
#ifndef NDEBUG
  CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
#endif
  CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
  auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
    // We might be initializing the same field again if this is an indirect
    // field initialization.
    if (FieldIt == RD->field_end() ||
        FieldIt->getFieldIndex() > FD->getFieldIndex()) {
      assert(Indirect && "fields out of order?");
      return;
    }

    // Default-initialize any fields with no explicit initializer.
    for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
      assert(FieldIt != RD->field_end() && "missing field?");
      if (!FieldIt->isUnnamedBitfield())
        Success &= getDefaultInitValue(
            FieldIt->getType(),
            Result.getStructField(FieldIt->getFieldIndex()));
    }
    ++FieldIt;
  };
  for (const auto *I : Definition->inits()) {
    LValue Subobject = This;
    LValue SubobjectParent = This;
    APValue *Value = &Result;

    // Determine the subobject to initialize.
    FieldDecl *FD = nullptr;
    if (I->isBaseInitializer()) {
      QualType BaseType(I->getBaseClass(), 0);
#ifndef NDEBUG
      // Non-virtual base classes are initialized in the order in the class
      // definition. We have already checked for virtual base classes.
      assert(!BaseIt->isVirtual() && "virtual base for literal type");
      assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
             "base class initializers not in expected order");
      ++BaseIt;
#endif
      if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
                                  BaseType->getAsCXXRecordDecl(), &Layout))
        return false;
      Value = &Result.getStructBase(BasesSeen++);
    } else if ((FD = I->getMember())) {
      if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
        return false;
      if (RD->isUnion()) {
        Result = APValue(FD);
        Value = &Result.getUnionValue();
      } else {
        SkipToField(FD, false);
        Value = &Result.getStructField(FD->getFieldIndex());
      }
    } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
      // Walk the indirect field decl's chain to find the object to initialize,
      // and make sure we've initialized every step along it.
      auto IndirectFieldChain = IFD->chain();
      for (auto *C : IndirectFieldChain) {
        FD = cast<FieldDecl>(C);
        CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
        // Switch the union field if it differs. This happens if we had
        // preceding zero-initialization, and we're now initializing a union
        // subobject other than the first.
        // FIXME: In this case, the values of the other subobjects are
        // specified, since zero-initialization sets all padding bits to zero.
        if (!Value->hasValue() ||
            (Value->isUnion() && Value->getUnionField() != FD)) {
          if (CD->isUnion())
            *Value = APValue(FD);
          else
            // FIXME: This immediately starts the lifetime of all members of
            // an anonymous struct. It would be preferable to strictly start
            // member lifetime in initialization order.
            Success &= getDefaultInitValue(Info.Ctx.getRecordType(CD), *Value);
        }
        // Store Subobject as its parent before updating it for the last element
        // in the chain.
        if (C == IndirectFieldChain.back())
          SubobjectParent = Subobject;
        if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
          return false;
        if (CD->isUnion())
          Value = &Value->getUnionValue();
        else {
          if (C == IndirectFieldChain.front() && !RD->isUnion())
            SkipToField(FD, true);
          Value = &Value->getStructField(FD->getFieldIndex());
        }
      }
    } else {
      llvm_unreachable("unknown base initializer kind");
    }

    // Need to override This for implicit field initializers as in this case
    // This refers to innermost anonymous struct/union containing initializer,
    // not to currently constructed class.
    const Expr *Init = I->getInit();
    if (Init->isValueDependent()) {
      if (!EvaluateDependentExpr(Init, Info))
        return false;
    } else {
      ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
                                    isa<CXXDefaultInitExpr>(Init));
      FullExpressionRAII InitScope(Info);
      if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
          (FD && FD->isBitField() &&
           !truncateBitfieldValue(Info, Init, *Value, FD))) {
        // If we're checking for a potential constant expression, evaluate all
        // initializers even if some of them fail.
        if (!Info.noteFailure())
          return false;
        Success = false;
      }
    }

    // This is the point at which the dynamic type of the object becomes this
    // class type.
    if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
      EvalObj.finishedConstructingBases();
  }

  // Default-initialize any remaining fields.
  if (!RD->isUnion()) {
    for (; FieldIt != RD->field_end(); ++FieldIt) {
      if (!FieldIt->isUnnamedBitfield())
        Success &= getDefaultInitValue(
            FieldIt->getType(),
            Result.getStructField(FieldIt->getFieldIndex()));
    }
  }

  EvalObj.finishedConstructingFields();

  return Success &&
         EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
         LifetimeExtendedScope.destroy();
}

static bool HandleConstructorCall(const Expr *E, const LValue &This,
                                  ArrayRef<const Expr*> Args,
                                  const CXXConstructorDecl *Definition,
                                  EvalInfo &Info, APValue &Result) {
  CallScopeRAII CallScope(Info);
  CallRef Call = Info.CurrentCall->createCall(Definition);
  if (!EvaluateArgs(Args, Call, Info, Definition))
    return false;

  return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
         CallScope.destroy();
}

static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
                                  const LValue &This, APValue &Value,
                                  QualType T) {
  // Objects can only be destroyed while they're within their lifetimes.
  // FIXME: We have no representation for whether an object of type nullptr_t
  // is in its lifetime; it usually doesn't matter. Perhaps we should model it
  // as indeterminate instead?
  if (Value.isAbsent() && !T->isNullPtrType()) {
    APValue Printable;
    This.moveInto(Printable);
    Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime)
      << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
    return false;
  }

  // Invent an expression for location purposes.
  // FIXME: We shouldn't need to do this.
  OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_PRValue);

  // For arrays, destroy elements right-to-left.
  if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
    uint64_t Size = CAT->getSize().getZExtValue();
    QualType ElemT = CAT->getElementType();

    LValue ElemLV = This;
    ElemLV.addArray(Info, &LocE, CAT);
    if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
      return false;

    // Ensure that we have actual array elements available to destroy; the
    // destructors might mutate the value, so we can't run them on the array
    // filler.
    if (Size && Size > Value.getArrayInitializedElts())
      expandArray(Value, Value.getArraySize() - 1);

    for (; Size != 0; --Size) {
      APValue &Elem = Value.getArrayInitializedElt(Size - 1);
      if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
          !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT))
        return false;
    }

    // End the lifetime of this array now.
    Value = APValue();
    return true;
  }

  const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
  if (!RD) {
    if (T.isDestructedType()) {
      Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T;
      return false;
    }

    Value = APValue();
    return true;
  }

  if (RD->getNumVBases()) {
    Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
    return false;
  }

  const CXXDestructorDecl *DD = RD->getDestructor();
  if (!DD && !RD->hasTrivialDestructor()) {
    Info.FFDiag(CallLoc);
    return false;
  }

  if (!DD || DD->isTrivial() ||
      (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
    // A trivial destructor just ends the lifetime of the object. Check for
    // this case before checking for a body, because we might not bother
    // building a body for a trivial destructor. Note that it doesn't matter
    // whether the destructor is constexpr in this case; all trivial
    // destructors are constexpr.
    //
    // If an anonymous union would be destroyed, some enclosing destructor must
    // have been explicitly defined, and the anonymous union destruction should
    // have no effect.
    Value = APValue();
    return true;
  }

  if (!Info.CheckCallLimit(CallLoc))
    return false;

  const FunctionDecl *Definition = nullptr;
  const Stmt *Body = DD->getBody(Definition);

  if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
    return false;

  CallStackFrame Frame(Info, CallLoc, Definition, &This, CallRef());

  // We're now in the period of destruction of this object.
  unsigned BasesLeft = RD->getNumBases();
  EvalInfo::EvaluatingDestructorRAII EvalObj(
      Info,
      ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
  if (!EvalObj.DidInsert) {
    // C++2a [class.dtor]p19:
    //   the behavior is undefined if the destructor is invoked for an object
    //   whose lifetime has ended
    // (Note that formally the lifetime ends when the period of destruction
    // begins, even though certain uses of the object remain valid until the
    // period of destruction ends.)
    Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy);
    return false;
  }

  // FIXME: Creating an APValue just to hold a nonexistent return value is
  // wasteful.
  APValue RetVal;
  StmtResult Ret = {RetVal, nullptr};
  if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
    return false;

  // A union destructor does not implicitly destroy its members.
  if (RD->isUnion())
    return true;

  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);

  // We don't have a good way to iterate fields in reverse, so collect all the
  // fields first and then walk them backwards.
  SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end());
  for (const FieldDecl *FD : llvm::reverse(Fields)) {
    if (FD->isUnnamedBitfield())
      continue;

    LValue Subobject = This;
    if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
      return false;

    APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
    if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
                               FD->getType()))
      return false;
  }

  if (BasesLeft != 0)
    EvalObj.startedDestroyingBases();

  // Destroy base classes in reverse order.
  for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
    --BasesLeft;

    QualType BaseType = Base.getType();
    LValue Subobject = This;
    if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
                                BaseType->getAsCXXRecordDecl(), &Layout))
      return false;

    APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
    if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
                               BaseType))
      return false;
  }
  assert(BasesLeft == 0 && "NumBases was wrong?");

  // The period of destruction ends now. The object is gone.
  Value = APValue();
  return true;
}

namespace {
struct DestroyObjectHandler {
  EvalInfo &Info;
  const Expr *E;
  const LValue &This;
  const AccessKinds AccessKind;

  typedef bool result_type;
  bool failed() { return false; }
  bool found(APValue &Subobj, QualType SubobjType) {
    return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj,
                                 SubobjType);
  }
  bool found(APSInt &Value, QualType SubobjType) {
    Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
    return false;
  }
  bool found(APFloat &Value, QualType SubobjType) {
    Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
    return false;
  }
};
}

/// Perform a destructor or pseudo-destructor call on the given object, which
/// might in general not be a complete object.
static bool HandleDestruction(EvalInfo &Info, const Expr *E,
                              const LValue &This, QualType ThisType) {
  CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
  DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
  return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
}

/// Destroy and end the lifetime of the given complete object.
static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
                              APValue::LValueBase LVBase, APValue &Value,
                              QualType T) {
  // If we've had an unmodeled side-effect, we can't rely on mutable state
  // (such as the object we're about to destroy) being correct.
  if (Info.EvalStatus.HasSideEffects)
    return false;

  LValue LV;
  LV.set({LVBase});
  return HandleDestructionImpl(Info, Loc, LV, Value, T);
}

/// Perform a call to 'perator new' or to `__builtin_operator_new'.
static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
                                  LValue &Result) {
  if (Info.checkingPotentialConstantExpression() ||
      Info.SpeculativeEvaluationDepth)
    return false;

  // This is permitted only within a call to std::allocator<T>::allocate.
  auto Caller = Info.getStdAllocatorCaller("allocate");
  if (!Caller) {
    Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
                                     ? diag::note_constexpr_new_untyped
                                     : diag::note_constexpr_new);
    return false;
  }

  QualType ElemType = Caller.ElemType;
  if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
    Info.FFDiag(E->getExprLoc(),
                diag::note_constexpr_new_not_complete_object_type)
        << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
    return false;
  }

  APSInt ByteSize;
  if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
    return false;
  bool IsNothrow = false;
  for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
    EvaluateIgnoredValue(Info, E->getArg(I));
    IsNothrow |= E->getType()->isNothrowT();
  }

  CharUnits ElemSize;
  if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
    return false;
  APInt Size, Remainder;
  APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
  APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
  if (Remainder != 0) {
    // This likely indicates a bug in the implementation of 'std::allocator'.
    Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
        << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
    return false;
  }

  if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
    if (IsNothrow) {
      Result.setNull(Info.Ctx, E->getType());
      return true;
    }

    Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true);
    return false;
  }

  QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr,
                                                     ArrayType::Normal, 0);
  APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
  *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
  Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
  return true;
}

static bool hasVirtualDestructor(QualType T) {
  if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
    if (CXXDestructorDecl *DD = RD->getDestructor())
      return DD->isVirtual();
  return false;
}

static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
  if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
    if (CXXDestructorDecl *DD = RD->getDestructor())
      return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
  return nullptr;
}

/// Check that the given object is a suitable pointer to a heap allocation that
/// still exists and is of the right kind for the purpose of a deletion.
///
/// On success, returns the heap allocation to deallocate. On failure, produces
/// a diagnostic and returns None.
static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
                                            const LValue &Pointer,
                                            DynAlloc::Kind DeallocKind) {
  auto PointerAsString = [&] {
    return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
  };

  DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
  if (!DA) {
    Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
        << PointerAsString();
    if (Pointer.Base)
      NoteLValueLocation(Info, Pointer.Base);
    return None;
  }

  Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
  if (!Alloc) {
    Info.FFDiag(E, diag::note_constexpr_double_delete);
    return None;
  }

  QualType AllocType = Pointer.Base.getDynamicAllocType();
  if (DeallocKind != (*Alloc)->getKind()) {
    Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
        << DeallocKind << (*Alloc)->getKind() << AllocType;
    NoteLValueLocation(Info, Pointer.Base);
    return None;
  }

  bool Subobject = false;
  if (DeallocKind == DynAlloc::New) {
    Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
                Pointer.Designator.isOnePastTheEnd();
  } else {
    Subobject = Pointer.Designator.Entries.size() != 1 ||
                Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
  }
  if (Subobject) {
    Info.FFDiag(E, diag::note_constexpr_delete_subobject)
        << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
    return None;
  }

  return Alloc;
}

// Perform a call to 'operator delete' or '__builtin_operator_delete'.
bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
  if (Info.checkingPotentialConstantExpression() ||
      Info.SpeculativeEvaluationDepth)
    return false;

  // This is permitted only within a call to std::allocator<T>::deallocate.
  if (!Info.getStdAllocatorCaller("deallocate")) {
    Info.FFDiag(E->getExprLoc());
    return true;
  }

  LValue Pointer;
  if (!EvaluatePointer(E->getArg(0), Pointer, Info))
    return false;
  for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
    EvaluateIgnoredValue(Info, E->getArg(I));

  if (Pointer.Designator.Invalid)
    return false;

  // Deleting a null pointer would have no effect, but it's not permitted by
  // std::allocator<T>::deallocate's contract.
  if (Pointer.isNullPointer()) {
    Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null);
    return true;
  }

  if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
    return false;

  Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
  return true;
}

//===----------------------------------------------------------------------===//
// Generic Evaluation
//===----------------------------------------------------------------------===//
namespace {

class BitCastBuffer {
  // FIXME: We're going to need bit-level granularity when we support
  // bit-fields.
  // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
  // we don't support a host or target where that is the case. Still, we should
  // use a more generic type in case we ever do.
  SmallVector<Optional<unsigned char>, 32> Bytes;

  static_assert(std::numeric_limits<unsigned char>::digits >= 8,
                "Need at least 8 bit unsigned char");

  bool TargetIsLittleEndian;

public:
  BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
      : Bytes(Width.getQuantity()),
        TargetIsLittleEndian(TargetIsLittleEndian) {}

  LLVM_NODISCARD
  bool readObject(CharUnits Offset, CharUnits Width,
                  SmallVectorImpl<unsigned char> &Output) const {
    for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
      // If a byte of an integer is uninitialized, then the whole integer is
      // uninitialized.
      if (!Bytes[I.getQuantity()])
        return false;
      Output.push_back(*Bytes[I.getQuantity()]);
    }
    if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
      std::reverse(Output.begin(), Output.end());
    return true;
  }

  void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
    if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
      std::reverse(Input.begin(), Input.end());

    size_t Index = 0;
    for (unsigned char Byte : Input) {
      assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
      Bytes[Offset.getQuantity() + Index] = Byte;
      ++Index;
    }
  }

  size_t size() { return Bytes.size(); }
};

/// Traverse an APValue to produce an BitCastBuffer, emulating how the current
/// target would represent the value at runtime.
class APValueToBufferConverter {
  EvalInfo &Info;
  BitCastBuffer Buffer;
  const CastExpr *BCE;

  APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
                           const CastExpr *BCE)
      : Info(Info),
        Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
        BCE(BCE) {}

  bool visit(const APValue &Val, QualType Ty) {
    return visit(Val, Ty, CharUnits::fromQuantity(0));
  }

  // Write out Val with type Ty into Buffer starting at Offset.
  bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
    assert((size_t)Offset.getQuantity() <= Buffer.size());

    // As a special case, nullptr_t has an indeterminate value.
    if (Ty->isNullPtrType())
      return true;

    // Dig through Src to find the byte at SrcOffset.
    switch (Val.getKind()) {
    case APValue::Indeterminate:
    case APValue::None:
      return true;

    case APValue::Int:
      return visitInt(Val.getInt(), Ty, Offset);
    case APValue::Float:
      return visitFloat(Val.getFloat(), Ty, Offset);
    case APValue::Array:
      return visitArray(Val, Ty, Offset);
    case APValue::Struct:
      return visitRecord(Val, Ty, Offset);

    case APValue::ComplexInt:
    case APValue::ComplexFloat:
    case APValue::Vector:
    case APValue::FixedPoint:
      // FIXME: We should support these.

    case APValue::Union:
    case APValue::MemberPointer:
    case APValue::AddrLabelDiff: {
      Info.FFDiag(BCE->getBeginLoc(),
                  diag::note_constexpr_bit_cast_unsupported_type)
          << Ty;
      return false;
    }

    case APValue::LValue:
      llvm_unreachable("LValue subobject in bit_cast?");
    }
    llvm_unreachable("Unhandled APValue::ValueKind");
  }

  bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
    const RecordDecl *RD = Ty->getAsRecordDecl();
    const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);

    // Visit the base classes.
    if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
      for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
        const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
        CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();

        if (!visitRecord(Val.getStructBase(I), BS.getType(),
                         Layout.getBaseClassOffset(BaseDecl) + Offset))
          return false;
      }
    }

    // Visit the fields.
    unsigned FieldIdx = 0;
    for (FieldDecl *FD : RD->fields()) {
      if (FD->isBitField()) {
        Info.FFDiag(BCE->getBeginLoc(),
                    diag::note_constexpr_bit_cast_unsupported_bitfield);
        return false;
      }

      uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);

      assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
             "only bit-fields can have sub-char alignment");
      CharUnits FieldOffset =
          Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
      QualType FieldTy = FD->getType();
      if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
        return false;
      ++FieldIdx;
    }

    return true;
  }

  bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
    const auto *CAT =
        dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
    if (!CAT)
      return false;

    CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
    unsigned NumInitializedElts = Val.getArrayInitializedElts();
    unsigned ArraySize = Val.getArraySize();
    // First, initialize the initialized elements.
    for (unsigned I = 0; I != NumInitializedElts; ++I) {
      const APValue &SubObj = Val.getArrayInitializedElt(I);
      if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
        return false;
    }

    // Next, initialize the rest of the array using the filler.
    if (Val.hasArrayFiller()) {
      const APValue &Filler = Val.getArrayFiller();
      for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
        if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
          return false;
      }
    }

    return true;
  }

  bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
    APSInt AdjustedVal = Val;
    unsigned Width = AdjustedVal.getBitWidth();
    if (Ty->isBooleanType()) {
      Width = Info.Ctx.getTypeSize(Ty);
      AdjustedVal = AdjustedVal.extend(Width);
    }

    SmallVector<unsigned char, 8> Bytes(Width / 8);
    llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8);
    Buffer.writeObject(Offset, Bytes);
    return true;
  }

  bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
    APSInt AsInt(Val.bitcastToAPInt());
    return visitInt(AsInt, Ty, Offset);
  }

public:
  static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src,
                                         const CastExpr *BCE) {
    CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
    APValueToBufferConverter Converter(Info, DstSize, BCE);
    if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
      return None;
    return Converter.Buffer;
  }
};

/// Write an BitCastBuffer into an APValue.
class BufferToAPValueConverter {
  EvalInfo &Info;
  const BitCastBuffer &Buffer;
  const CastExpr *BCE;

  BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
                           const CastExpr *BCE)
      : Info(Info), Buffer(Buffer), BCE(BCE) {}

  // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
  // with an invalid type, so anything left is a deficiency on our part (FIXME).
  // Ideally this will be unreachable.
  llvm::NoneType unsupportedType(QualType Ty) {
    Info.FFDiag(BCE->getBeginLoc(),
                diag::note_constexpr_bit_cast_unsupported_type)
        << Ty;
    return None;
  }

  llvm::NoneType unrepresentableValue(QualType Ty, const APSInt &Val) {
    Info.FFDiag(BCE->getBeginLoc(),
                diag::note_constexpr_bit_cast_unrepresentable_value)
        << Ty << toString(Val, /*Radix=*/10);
    return None;
  }

  Optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
                          const EnumType *EnumSugar = nullptr) {
    if (T->isNullPtrType()) {
      uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
      return APValue((Expr *)nullptr,
                     /*Offset=*/CharUnits::fromQuantity(NullValue),
                     APValue::NoLValuePath{}, /*IsNullPtr=*/true);
    }

    CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);

    // Work around floating point types that contain unused padding bytes. This
    // is really just `long double` on x86, which is the only fundamental type
    // with padding bytes.
    if (T->isRealFloatingType()) {
      const llvm::fltSemantics &Semantics =
          Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
      unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics);
      assert(NumBits % 8 == 0);
      CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8);
      if (NumBytes != SizeOf)
        SizeOf = NumBytes;
    }

    SmallVector<uint8_t, 8> Bytes;
    if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
      // If this is std::byte or unsigned char, then its okay to store an
      // indeterminate value.
      bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
      bool IsUChar =
          !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
                         T->isSpecificBuiltinType(BuiltinType::Char_U));
      if (!IsStdByte && !IsUChar) {
        QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
        Info.FFDiag(BCE->getExprLoc(),
                    diag::note_constexpr_bit_cast_indet_dest)
            << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
        return None;
      }

      return APValue::IndeterminateValue();
    }

    APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
    llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());

    if (T->isIntegralOrEnumerationType()) {
      Val.setIsSigned(T->isSignedIntegerOrEnumerationType());

      unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0));
      if (IntWidth != Val.getBitWidth()) {
        APSInt Truncated = Val.trunc(IntWidth);
        if (Truncated.extend(Val.getBitWidth()) != Val)
          return unrepresentableValue(QualType(T, 0), Val);
        Val = Truncated;
      }

      return APValue(Val);
    }

    if (T->isRealFloatingType()) {
      const llvm::fltSemantics &Semantics =
          Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
      return APValue(APFloat(Semantics, Val));
    }

    return unsupportedType(QualType(T, 0));
  }

  Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
    const RecordDecl *RD = RTy->getAsRecordDecl();
    const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);

    unsigned NumBases = 0;
    if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
      NumBases = CXXRD->getNumBases();

    APValue ResultVal(APValue::UninitStruct(), NumBases,
                      std::distance(RD->field_begin(), RD->field_end()));

    // Visit the base classes.
    if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
      for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
        const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
        CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
        if (BaseDecl->isEmpty() ||
            Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
          continue;

        Optional<APValue> SubObj = visitType(
            BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
        if (!SubObj)
          return None;
        ResultVal.getStructBase(I) = *SubObj;
      }
    }

    // Visit the fields.
    unsigned FieldIdx = 0;
    for (FieldDecl *FD : RD->fields()) {
      // FIXME: We don't currently support bit-fields. A lot of the logic for
      // this is in CodeGen, so we need to factor it around.
      if (FD->isBitField()) {
        Info.FFDiag(BCE->getBeginLoc(),
                    diag::note_constexpr_bit_cast_unsupported_bitfield);
        return None;
      }

      uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
      assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);

      CharUnits FieldOffset =
          CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
          Offset;
      QualType FieldTy = FD->getType();
      Optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
      if (!SubObj)
        return None;
      ResultVal.getStructField(FieldIdx) = *SubObj;
      ++FieldIdx;
    }

    return ResultVal;
  }

  Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
    QualType RepresentationType = Ty->getDecl()->getIntegerType();
    assert(!RepresentationType.isNull() &&
           "enum forward decl should be caught by Sema");
    const auto *AsBuiltin =
        RepresentationType.getCanonicalType()->castAs<BuiltinType>();
    // Recurse into the underlying type. Treat std::byte transparently as
    // unsigned char.
    return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
  }

  Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
    size_t Size = Ty->getSize().getLimitedValue();
    CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());

    APValue ArrayValue(APValue::UninitArray(), Size, Size);
    for (size_t I = 0; I != Size; ++I) {
      Optional<APValue> ElementValue =
          visitType(Ty->getElementType(), Offset + I * ElementWidth);
      if (!ElementValue)
        return None;
      ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
    }

    return ArrayValue;
  }

  Optional<APValue> visit(const Type *Ty, CharUnits Offset) {
    return unsupportedType(QualType(Ty, 0));
  }

  Optional<APValue> visitType(QualType Ty, CharUnits Offset) {
    QualType Can = Ty.getCanonicalType();

    switch (Can->getTypeClass()) {
#define TYPE(Class, Base)                                                      \
  case Type::Class:                                                            \
    return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base)                                        \
  case Type::Class:                                                            \
    llvm_unreachable("non-canonical type should be impossible!");
#define DEPENDENT_TYPE(Class, Base)                                            \
  case Type::Class:                                                            \
    llvm_unreachable(                                                          \
        "dependent types aren't supported in the constant evaluator!");
#define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base)                            \
  case Type::Class:                                                            \
    llvm_unreachable("either dependent or not canonical!");
#include "clang/AST/TypeNodes.inc"
    }
    llvm_unreachable("Unhandled Type::TypeClass");
  }

public:
  // Pull out a full value of type DstType.
  static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
                                   const CastExpr *BCE) {
    BufferToAPValueConverter Converter(Info, Buffer, BCE);
    return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
  }
};

static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
                                                 QualType Ty, EvalInfo *Info,
                                                 const ASTContext &Ctx,
                                                 bool CheckingDest) {
  Ty = Ty.getCanonicalType();

  auto diag = [&](int Reason) {
    if (Info)
      Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
          << CheckingDest << (Reason == 4) << Reason;
    return false;
  };
  auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
    if (Info)
      Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
          << NoteTy << Construct << Ty;
    return false;
  };

  if (Ty->isUnionType())
    return diag(0);
  if (Ty->isPointerType())
    return diag(1);
  if (Ty->isMemberPointerType())
    return diag(2);
  if (Ty.isVolatileQualified())
    return diag(3);

  if (RecordDecl *Record = Ty->getAsRecordDecl()) {
    if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
      for (CXXBaseSpecifier &BS : CXXRD->bases())
        if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
                                                  CheckingDest))
          return note(1, BS.getType(), BS.getBeginLoc());
    }
    for (FieldDecl *FD : Record->fields()) {
      if (FD->getType()->isReferenceType())
        return diag(4);
      if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
                                                CheckingDest))
        return note(0, FD->getType(), FD->getBeginLoc());
    }
  }

  if (Ty->isArrayType() &&
      !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
                                            Info, Ctx, CheckingDest))
    return false;

  return true;
}

static bool checkBitCastConstexprEligibility(EvalInfo *Info,
                                             const ASTContext &Ctx,
                                             const CastExpr *BCE) {
  bool DestOK = checkBitCastConstexprEligibilityType(
      BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
  bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
                                BCE->getBeginLoc(),
                                BCE->getSubExpr()->getType(), Info, Ctx, false);
  return SourceOK;
}

static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
                                        APValue &SourceValue,
                                        const CastExpr *BCE) {
  assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
         "no host or target supports non 8-bit chars");
  assert(SourceValue.isLValue() &&
         "LValueToRValueBitcast requires an lvalue operand!");

  if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
    return false;

  LValue SourceLValue;
  APValue SourceRValue;
  SourceLValue.setFrom(Info.Ctx, SourceValue);
  if (!handleLValueToRValueConversion(
          Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
          SourceRValue, /*WantObjectRepresentation=*/true))
    return false;

  // Read out SourceValue into a char buffer.
  Optional<BitCastBuffer> Buffer =
      APValueToBufferConverter::convert(Info, SourceRValue, BCE);
  if (!Buffer)
    return false;

  // Write out the buffer into a new APValue.
  Optional<APValue> MaybeDestValue =
      BufferToAPValueConverter::convert(Info, *Buffer, BCE);
  if (!MaybeDestValue)
    return false;

  DestValue = std::move(*MaybeDestValue);
  return true;
}

template <class Derived>
class ExprEvaluatorBase
  : public ConstStmtVisitor<Derived, bool> {
private:
  Derived &getDerived() { return static_cast<Derived&>(*this); }
  bool DerivedSuccess(const APValue &V, const Expr *E) {
    return getDerived().Success(V, E);
  }
  bool DerivedZeroInitialization(const Expr *E) {
    return getDerived().ZeroInitialization(E);
  }

  // Check whether a conditional operator with a non-constant condition is a
  // potential constant expression. If neither arm is a potential constant
  // expression, then the conditional operator is not either.
  template<typename ConditionalOperator>
  void CheckPotentialConstantConditional(const ConditionalOperator *E) {
    assert(Info.checkingPotentialConstantExpression());

    // Speculatively evaluate both arms.
    SmallVector<PartialDiagnosticAt, 8> Diag;
    {
      SpeculativeEvaluationRAII Speculate(Info, &Diag);
      StmtVisitorTy::Visit(E->getFalseExpr());
      if (Diag.empty())
        return;
    }

    {
      SpeculativeEvaluationRAII Speculate(Info, &Diag);
      Diag.clear();
      StmtVisitorTy::Visit(E->getTrueExpr());
      if (Diag.empty())
        return;
    }

    Error(E, diag::note_constexpr_conditional_never_const);
  }


  template<typename ConditionalOperator>
  bool HandleConditionalOperator(const ConditionalOperator *E) {
    bool BoolResult;
    if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
      if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
        CheckPotentialConstantConditional(E);
        return false;
      }
      if (Info.noteFailure()) {
        StmtVisitorTy::Visit(E->getTrueExpr());
        StmtVisitorTy::Visit(E->getFalseExpr());
      }
      return false;
    }

    Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
    return StmtVisitorTy::Visit(EvalExpr);
  }

protected:
  EvalInfo &Info;
  typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
  typedef ExprEvaluatorBase ExprEvaluatorBaseTy;

  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
    return Info.CCEDiag(E, D);
  }

  bool ZeroInitialization(const Expr *E) { return Error(E); }

public:
  ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}

  EvalInfo &getEvalInfo() { return Info; }

  /// Report an evaluation error. This should only be called when an error is
  /// first discovered. When propagating an error, just return false.
  bool Error(const Expr *E, diag::kind D) {
    Info.FFDiag(E, D);
    return false;
  }
  bool Error(const Expr *E) {
    return Error(E, diag::note_invalid_subexpr_in_const_expr);
  }

  bool VisitStmt(const Stmt *) {
    llvm_unreachable("Expression evaluator should not be called on stmts");
  }
  bool VisitExpr(const Expr *E) {
    return Error(E);
  }

  bool VisitConstantExpr(const ConstantExpr *E) {
    if (E->hasAPValueResult())
      return DerivedSuccess(E->getAPValueResult(), E);

    return StmtVisitorTy::Visit(E->getSubExpr());
  }

  bool VisitParenExpr(const ParenExpr *E)
    { return StmtVisitorTy::Visit(E->getSubExpr()); }
  bool VisitUnaryExtension(const UnaryOperator *E)
    { return StmtVisitorTy::Visit(E->getSubExpr()); }
  bool VisitUnaryPlus(const UnaryOperator *E)
    { return StmtVisitorTy::Visit(E->getSubExpr()); }
  bool VisitChooseExpr(const ChooseExpr *E)
    { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
  bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
    { return StmtVisitorTy::Visit(E->getResultExpr()); }
  bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
    { return StmtVisitorTy::Visit(E->getReplacement()); }
  bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
    TempVersionRAII RAII(*Info.CurrentCall);
    SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
    return StmtVisitorTy::Visit(E->getExpr());
  }
  bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
    TempVersionRAII RAII(*Info.CurrentCall);
    // The initializer may not have been parsed yet, or might be erroneous.
    if (!E->getExpr())
      return Error(E);
    SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
    return StmtVisitorTy::Visit(E->getExpr());
  }

  bool VisitExprWithCleanups(const ExprWithCleanups *E) {
    FullExpressionRAII Scope(Info);
    return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
  }

  // Temporaries are registered when created, so we don't care about
  // CXXBindTemporaryExpr.
  bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
    return StmtVisitorTy::Visit(E->getSubExpr());
  }

  bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
    CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
    return static_cast<Derived*>(this)->VisitCastExpr(E);
  }
  bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
    if (!Info.Ctx.getLangOpts().CPlusPlus20)
      CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
    return static_cast<Derived*>(this)->VisitCastExpr(E);
  }
  bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
    return static_cast<Derived*>(this)->VisitCastExpr(E);
  }

  bool VisitBinaryOperator(const BinaryOperator *E) {
    switch (E->getOpcode()) {
    default:
      return Error(E);

    case BO_Comma:
      VisitIgnoredValue(E->getLHS());
      return StmtVisitorTy::Visit(E->getRHS());

    case BO_PtrMemD:
    case BO_PtrMemI: {
      LValue Obj;
      if (!HandleMemberPointerAccess(Info, E, Obj))
        return false;
      APValue Result;
      if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
        return false;
      return DerivedSuccess(Result, E);
    }
    }
  }

  bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
    return StmtVisitorTy::Visit(E->getSemanticForm());
  }

  bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
    // Evaluate and cache the common expression. We treat it as a temporary,
    // even though it's not quite the same thing.
    LValue CommonLV;
    if (!Evaluate(Info.CurrentCall->createTemporary(
                      E->getOpaqueValue(),
                      getStorageType(Info.Ctx, E->getOpaqueValue()),
                      ScopeKind::FullExpression, CommonLV),
                  Info, E->getCommon()))
      return false;

    return HandleConditionalOperator(E);
  }

  bool VisitConditionalOperator(const ConditionalOperator *E) {
    bool IsBcpCall = false;
    // If the condition (ignoring parens) is a __builtin_constant_p call,
    // the result is a constant expression if it can be folded without
    // side-effects. This is an important GNU extension. See GCC PR38377
    // for discussion.
    if (const CallExpr *CallCE =
          dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
      if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
        IsBcpCall = true;

    // Always assume __builtin_constant_p(...) ? ... : ... is a potential
    // constant expression; we can't check whether it's potentially foldable.
    // FIXME: We should instead treat __builtin_constant_p as non-constant if
    // it would return 'false' in this mode.
    if (Info.checkingPotentialConstantExpression() && IsBcpCall)
      return false;

    FoldConstant Fold(Info, IsBcpCall);
    if (!HandleConditionalOperator(E)) {
      Fold.keepDiagnostics();
      return false;
    }

    return true;
  }

  bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
    if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
      return DerivedSuccess(*Value, E);

    const Expr *Source = E->getSourceExpr();
    if (!Source)
      return Error(E);
    if (Source == E) {
      assert(0 && "OpaqueValueExpr recursively refers to itself");
      return Error(E);
    }
    return StmtVisitorTy::Visit(Source);
  }

  bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
    for (const Expr *SemE : E->semantics()) {
      if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
        // FIXME: We can't handle the case where an OpaqueValueExpr is also the
        // result expression: there could be two different LValues that would
        // refer to the same object in that case, and we can't model that.
        if (SemE == E->getResultExpr())
          return Error(E);

        // Unique OVEs get evaluated if and when we encounter them when
        // emitting the rest of the semantic form, rather than eagerly.
        if (OVE->isUnique())
          continue;

        LValue LV;
        if (!Evaluate(Info.CurrentCall->createTemporary(
                          OVE, getStorageType(Info.Ctx, OVE),
                          ScopeKind::FullExpression, LV),
                      Info, OVE->getSourceExpr()))
          return false;
      } else if (SemE == E->getResultExpr()) {
        if (!StmtVisitorTy::Visit(SemE))
          return false;
      } else {
        if (!EvaluateIgnoredValue(Info, SemE))
          return false;
      }
    }
    return true;
  }

  bool VisitCallExpr(const CallExpr *E) {
    APValue Result;
    if (!handleCallExpr(E, Result, nullptr))
      return false;
    return DerivedSuccess(Result, E);
  }

  bool handleCallExpr(const CallExpr *E, APValue &Result,
                     const LValue *ResultSlot) {
    CallScopeRAII CallScope(Info);

    const Expr *Callee = E->getCallee()->IgnoreParens();
    QualType CalleeType = Callee->getType();

    const FunctionDecl *FD = nullptr;
    LValue *This = nullptr, ThisVal;
    auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
    bool HasQualifier = false;

    CallRef Call;

    // Extract function decl and 'this' pointer from the callee.
    if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
      const CXXMethodDecl *Member = nullptr;
      if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
        // Explicit bound member calls, such as x.f() or p->g();
        if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
          return false;
        Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
        if (!Member)
          return Error(Callee);
        This = &ThisVal;
        HasQualifier = ME->hasQualifier();
      } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
        // Indirect bound member calls ('.*' or '->*').
        const ValueDecl *D =
            HandleMemberPointerAccess(Info, BE, ThisVal, false);
        if (!D)
          return false;
        Member = dyn_cast<CXXMethodDecl>(D);
        if (!Member)
          return Error(Callee);
        This = &ThisVal;
      } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
        if (!Info.getLangOpts().CPlusPlus20)
          Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
        return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
               HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
      } else
        return Error(Callee);
      FD = Member;
    } else if (CalleeType->isFunctionPointerType()) {
      LValue CalleeLV;
      if (!EvaluatePointer(Callee, CalleeLV, Info))
        return false;

      if (!CalleeLV.getLValueOffset().isZero())
        return Error(Callee);
      FD = dyn_cast_or_null<FunctionDecl>(
          CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
      if (!FD)
        return Error(Callee);
      // Don't call function pointers which have been cast to some other type.
      // Per DR (no number yet), the caller and callee can differ in noexcept.
      if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
        CalleeType->getPointeeType(), FD->getType())) {
        return Error(E);
      }

      // For an (overloaded) assignment expression, evaluate the RHS before the
      // LHS.
      auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
      if (OCE && OCE->isAssignmentOp()) {
        assert(Args.size() == 2 && "wrong number of arguments in assignment");
        Call = Info.CurrentCall->createCall(FD);
        if (!EvaluateArgs(isa<CXXMethodDecl>(FD) ? Args.slice(1) : Args, Call,
                          Info, FD, /*RightToLeft=*/true))
          return false;
      }

      // Overloaded operator calls to member functions are represented as normal
      // calls with '*this' as the first argument.
      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
      if (MD && !MD->isStatic()) {
        // FIXME: When selecting an implicit conversion for an overloaded
        // operator delete, we sometimes try to evaluate calls to conversion
        // operators without a 'this' parameter!
        if (Args.empty())
          return Error(E);

        if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
          return false;
        This = &ThisVal;
        Args = Args.slice(1);
      } else if (MD && MD->isLambdaStaticInvoker()) {
        // Map the static invoker for the lambda back to the call operator.
        // Conveniently, we don't have to slice out the 'this' argument (as is
        // being done for the non-static case), since a static member function
        // doesn't have an implicit argument passed in.
        const CXXRecordDecl *ClosureClass = MD->getParent();
        assert(
            ClosureClass->captures_begin() == ClosureClass->captures_end() &&
            "Number of captures must be zero for conversion to function-ptr");

        const CXXMethodDecl *LambdaCallOp =
            ClosureClass->getLambdaCallOperator();

        // Set 'FD', the function that will be called below, to the call
        // operator.  If the closure object represents a generic lambda, find
        // the corresponding specialization of the call operator.

        if (ClosureClass->isGenericLambda()) {
          assert(MD->isFunctionTemplateSpecialization() &&
                 "A generic lambda's static-invoker function must be a "
                 "template specialization");
          const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
          FunctionTemplateDecl *CallOpTemplate =
              LambdaCallOp->getDescribedFunctionTemplate();
          void *InsertPos = nullptr;
          FunctionDecl *CorrespondingCallOpSpecialization =
              CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
          assert(CorrespondingCallOpSpecialization &&
                 "We must always have a function call operator specialization "
                 "that corresponds to our static invoker specialization");
          FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
        } else
          FD = LambdaCallOp;
      } else if (FD->isReplaceableGlobalAllocationFunction()) {
        if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
            FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
          LValue Ptr;
          if (!HandleOperatorNewCall(Info, E, Ptr))
            return false;
          Ptr.moveInto(Result);
          return CallScope.destroy();
        } else {
          return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
        }
      }
    } else
      return Error(E);

    // Evaluate the arguments now if we've not already done so.
    if (!Call) {
      Call = Info.CurrentCall->createCall(FD);
      if (!EvaluateArgs(Args, Call, Info, FD))
        return false;
    }

    SmallVector<QualType, 4> CovariantAdjustmentPath;
    if (This) {
      auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
      if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
        // Perform virtual dispatch, if necessary.
        FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
                                   CovariantAdjustmentPath);
        if (!FD)
          return false;
      } else {
        // Check that the 'this' pointer points to an object of the right type.
        // FIXME: If this is an assignment operator call, we may need to change
        // the active union member before we check this.
        if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
          return false;
      }
    }

    // Destructor calls are different enough that they have their own codepath.
    if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
      assert(This && "no 'this' pointer for destructor call");
      return HandleDestruction(Info, E, *This,
                               Info.Ctx.getRecordType(DD->getParent())) &&
             CallScope.destroy();
    }

    const FunctionDecl *Definition = nullptr;
    Stmt *Body = FD->getBody(Definition);

    if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
        !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Call,
                            Body, Info, Result, ResultSlot))
      return false;

    if (!CovariantAdjustmentPath.empty() &&
        !HandleCovariantReturnAdjustment(Info, E, Result,
                                         CovariantAdjustmentPath))
      return false;

    return CallScope.destroy();
  }

  bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
    return StmtVisitorTy::Visit(E->getInitializer());
  }
  bool VisitInitListExpr(const InitListExpr *E) {
    if (E->getNumInits() == 0)
      return DerivedZeroInitialization(E);
    if (E->getNumInits() == 1)
      return StmtVisitorTy::Visit(E->getInit(0));
    return Error(E);
  }
  bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
    return DerivedZeroInitialization(E);
  }
  bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
    return DerivedZeroInitialization(E);
  }
  bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
    return DerivedZeroInitialization(E);
  }

  /// A member expression where the object is a prvalue is itself a prvalue.
  bool VisitMemberExpr(const MemberExpr *E) {
    assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
           "missing temporary materialization conversion");
    assert(!E->isArrow() && "missing call to bound member function?");

    APValue Val;
    if (!Evaluate(Val, Info, E->getBase()))
      return false;

    QualType BaseTy = E->getBase()->getType();

    const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
    if (!FD) return Error(E);
    assert(!FD->getType()->isReferenceType() && "prvalue reference?");
    assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
           FD->getParent()->getCanonicalDecl() && "record / field mismatch");

    // Note: there is no lvalue base here. But this case should only ever
    // happen in C or in C++98, where we cannot be evaluating a constexpr
    // constructor, which is the only case the base matters.
    CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
    SubobjectDesignator Designator(BaseTy);
    Designator.addDeclUnchecked(FD);

    APValue Result;
    return extractSubobject(Info, E, Obj, Designator, Result) &&
           DerivedSuccess(Result, E);
  }

  bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
    APValue Val;
    if (!Evaluate(Val, Info, E->getBase()))
      return false;

    if (Val.isVector()) {
      SmallVector<uint32_t, 4> Indices;
      E->getEncodedElementAccess(Indices);
      if (Indices.size() == 1) {
        // Return scalar.
        return DerivedSuccess(Val.getVectorElt(Indices[0]), E);
      } else {
        // Construct new APValue vector.
        SmallVector<APValue, 4> Elts;
        for (unsigned I = 0; I < Indices.size(); ++I) {
          Elts.push_back(Val.getVectorElt(Indices[I]));
        }
        APValue VecResult(Elts.data(), Indices.size());
        return DerivedSuccess(VecResult, E);
      }
    }

    return false;
  }

  bool VisitCastExpr(const CastExpr *E) {
    switch (E->getCastKind()) {
    default:
      break;

    case CK_AtomicToNonAtomic: {
      APValue AtomicVal;
      // This does not need to be done in place even for class/array types:
      // atomic-to-non-atomic conversion implies copying the object
      // representation.
      if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
        return false;
      return DerivedSuccess(AtomicVal, E);
    }

    case CK_NoOp:
    case CK_UserDefinedConversion:
      return StmtVisitorTy::Visit(E->getSubExpr());

    case CK_LValueToRValue: {
      LValue LVal;
      if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
        return false;
      APValue RVal;
      // Note, we use the subexpression's type in order to retain cv-qualifiers.
      if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
                                          LVal, RVal))
        return false;
      return DerivedSuccess(RVal, E);
    }
    case CK_LValueToRValueBitCast: {
      APValue DestValue, SourceValue;
      if (!Evaluate(SourceValue, Info, E->getSubExpr()))
        return false;
      if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
        return false;
      return DerivedSuccess(DestValue, E);
    }

    case CK_AddressSpaceConversion: {
      APValue Value;
      if (!Evaluate(Value, Info, E->getSubExpr()))
        return false;
      return DerivedSuccess(Value, E);
    }
    }

    return Error(E);
  }

  bool VisitUnaryPostInc(const UnaryOperator *UO) {
    return VisitUnaryPostIncDec(UO);
  }
  bool VisitUnaryPostDec(const UnaryOperator *UO) {
    return VisitUnaryPostIncDec(UO);
  }
  bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
    if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
      return Error(UO);

    LValue LVal;
    if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
      return false;
    APValue RVal;
    if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
                      UO->isIncrementOp(), &RVal))
      return false;
    return DerivedSuccess(RVal, UO);
  }

  bool VisitStmtExpr(const StmtExpr *E) {
    // We will have checked the full-expressions inside the statement expression
    // when they were completed, and don't need to check them again now.
    llvm::SaveAndRestore<bool> NotCheckingForUB(
        Info.CheckingForUndefinedBehavior, false);

    const CompoundStmt *CS = E->getSubStmt();
    if (CS->body_empty())
      return true;

    BlockScopeRAII Scope(Info);
    for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
                                           BE = CS->body_end();
         /**/; ++BI) {
      if (BI + 1 == BE) {
        const Expr *FinalExpr = dyn_cast<Expr>(*BI);
        if (!FinalExpr) {
          Info.FFDiag((*BI)->getBeginLoc(),
                      diag::note_constexpr_stmt_expr_unsupported);
          return false;
        }
        return this->Visit(FinalExpr) && Scope.destroy();
      }

      APValue ReturnValue;
      StmtResult Result = { ReturnValue, nullptr };
      EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
      if (ESR != ESR_Succeeded) {
        // FIXME: If the statement-expression terminated due to 'return',
        // 'break', or 'continue', it would be nice to propagate that to
        // the outer statement evaluation rather than bailing out.
        if (ESR != ESR_Failed)
          Info.FFDiag((*BI)->getBeginLoc(),
                      diag::note_constexpr_stmt_expr_unsupported);
        return false;
      }
    }

    llvm_unreachable("Return from function from the loop above.");
  }

  /// Visit a value which is evaluated, but whose value is ignored.
  void VisitIgnoredValue(const Expr *E) {
    EvaluateIgnoredValue(Info, E);
  }

  /// Potentially visit a MemberExpr's base expression.
  void VisitIgnoredBaseExpression(const Expr *E) {
    // While MSVC doesn't evaluate the base expression, it does diagnose the
    // presence of side-effecting behavior.
    if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
      return;
    VisitIgnoredValue(E);
  }
};

} // namespace

//===----------------------------------------------------------------------===//
// Common base class for lvalue and temporary evaluation.
//===----------------------------------------------------------------------===//
namespace {
template<class Derived>
class LValueExprEvaluatorBase
  : public ExprEvaluatorBase<Derived> {
protected:
  LValue &Result;
  bool InvalidBaseOK;
  typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
  typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;

  bool Success(APValue::LValueBase B) {
    Result.set(B);
    return true;
  }

  bool evaluatePointer(const Expr *E, LValue &Result) {
    return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
  }

public:
  LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
      : ExprEvaluatorBaseTy(Info), Result(Result),
        InvalidBaseOK(InvalidBaseOK) {}

  bool Success(const APValue &V, const Expr *E) {
    Result.setFrom(this->Info.Ctx, V);
    return true;
  }

  bool VisitMemberExpr(const MemberExpr *E) {
    // Handle non-static data members.
    QualType BaseTy;
    bool EvalOK;
    if (E->isArrow()) {
      EvalOK = evaluatePointer(E->getBase(), Result);
      BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
    } else if (E->getBase()->isPRValue()) {
      assert(E->getBase()->getType()->isRecordType());
      EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
      BaseTy = E->getBase()->getType();
    } else {
      EvalOK = this->Visit(E->getBase());
      BaseTy = E->getBase()->getType();
    }
    if (!EvalOK) {
      if (!InvalidBaseOK)
        return false;
      Result.setInvalid(E);
      return true;
    }

    const ValueDecl *MD = E->getMemberDecl();
    if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
      assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
             FD->getParent()->getCanonicalDecl() && "record / field mismatch");
      (void)BaseTy;
      if (!HandleLValueMember(this->Info, E, Result, FD))
        return false;
    } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
      if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
        return false;
    } else
      return this->Error(E);

    if (MD->getType()->isReferenceType()) {
      APValue RefValue;
      if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
                                          RefValue))
        return false;
      return Success(RefValue, E);
    }
    return true;
  }

  bool VisitBinaryOperator(const BinaryOperator *E) {
    switch (E->getOpcode()) {
    default:
      return ExprEvaluatorBaseTy::VisitBinaryOperator(E);

    case BO_PtrMemD:
    case BO_PtrMemI:
      return HandleMemberPointerAccess(this->Info, E, Result);
    }
  }

  bool VisitCastExpr(const CastExpr *E) {
    switch (E->getCastKind()) {
    default:
      return ExprEvaluatorBaseTy::VisitCastExpr(E);

    case CK_DerivedToBase:
    case CK_UncheckedDerivedToBase:
      if (!this->Visit(E->getSubExpr()))
        return false;

      // Now figure out the necessary offset to add to the base LV to get from
      // the derived class to the base class.
      return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
                                  Result);
    }
  }
};
}

//===----------------------------------------------------------------------===//
// LValue Evaluation
//
// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
// function designators (in C), decl references to void objects (in C), and
// temporaries (if building with -Wno-address-of-temporary).
//
// LValue evaluation produces values comprising a base expression of one of the
// following types:
// - Declarations
//  * VarDecl
//  * FunctionDecl
// - Literals
//  * CompoundLiteralExpr in C (and in global scope in C++)
//  * StringLiteral
//  * PredefinedExpr
//  * ObjCStringLiteralExpr
//  * ObjCEncodeExpr
//  * AddrLabelExpr
//  * BlockExpr
//  * CallExpr for a MakeStringConstant builtin
// - typeid(T) expressions, as TypeInfoLValues
// - Locals and temporaries
//  * MaterializeTemporaryExpr
//  * Any Expr, with a CallIndex indicating the function in which the temporary
//    was evaluated, for cases where the MaterializeTemporaryExpr is missing
//    from the AST (FIXME).
//  * A MaterializeTemporaryExpr that has static storage duration, with no
//    CallIndex, for a lifetime-extended temporary.
//  * The ConstantExpr that is currently being evaluated during evaluation of an
//    immediate invocation.
// plus an offset in bytes.
//===----------------------------------------------------------------------===//
namespace {
class LValueExprEvaluator
  : public LValueExprEvaluatorBase<LValueExprEvaluator> {
public:
  LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
    LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}

  bool VisitVarDecl(const Expr *E, const VarDecl *VD);
  bool VisitUnaryPreIncDec(const UnaryOperator *UO);

  bool VisitDeclRefExpr(const DeclRefExpr *E);
  bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
  bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
  bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
  bool VisitMemberExpr(const MemberExpr *E);
  bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
  bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
  bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
  bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
  bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
  bool VisitUnaryDeref(const UnaryOperator *E);
  bool VisitUnaryReal(const UnaryOperator *E);
  bool VisitUnaryImag(const UnaryOperator *E);
  bool VisitUnaryPreInc(const UnaryOperator *UO) {
    return VisitUnaryPreIncDec(UO);
  }
  bool VisitUnaryPreDec(const UnaryOperator *UO) {
    return VisitUnaryPreIncDec(UO);
  }
  bool VisitBinAssign(const BinaryOperator *BO);
  bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);

  bool VisitCastExpr(const CastExpr *E) {
    switch (E->getCastKind()) {
    default:
      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);

    case CK_LValueBitCast:
      this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
      if (!Visit(E->getSubExpr()))
        return false;
      Result.Designator.setInvalid();
      return true;

    case CK_BaseToDerived:
      if (!Visit(E->getSubExpr()))
        return false;
      return HandleBaseToDerivedCast(Info, E, Result);

    case CK_Dynamic:
      if (!Visit(E->getSubExpr()))
        return false;
      return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
    }
  }
};
} // end anonymous namespace

/// Evaluate an expression as an lvalue. This can be legitimately called on
/// expressions which are not glvalues, in three cases:
///  * function designators in C, and
///  * "extern void" objects
///  * @selector() expressions in Objective-C
static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
                           bool InvalidBaseOK) {
  assert(!E->isValueDependent());
  assert(E->isGLValue() || E->getType()->isFunctionType() ||
         E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
  return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
}

bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
  const NamedDecl *D = E->getDecl();
  if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl>(D))
    return Success(cast<ValueDecl>(D));
  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
    return VisitVarDecl(E, VD);
  if (const BindingDecl *BD = dyn_cast<BindingDecl>(D))
    return Visit(BD->getBinding());
  return Error(E);
}


bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {

  // If we are within a lambda's call operator, check whether the 'VD' referred
  // to within 'E' actually represents a lambda-capture that maps to a
  // data-member/field within the closure object, and if so, evaluate to the
  // field or what the field refers to.
  if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
      isa<DeclRefExpr>(E) &&
      cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
    // We don't always have a complete capture-map when checking or inferring if
    // the function call operator meets the requirements of a constexpr function
    // - but we don't need to evaluate the captures to determine constexprness
    // (dcl.constexpr C++17).
    if (Info.checkingPotentialConstantExpression())
      return false;

    if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
      // Start with 'Result' referring to the complete closure object...
      Result = *Info.CurrentCall->This;
      // ... then update it to refer to the field of the closure object
      // that represents the capture.
      if (!HandleLValueMember(Info, E, Result, FD))
        return false;
      // And if the field is of reference type, update 'Result' to refer to what
      // the field refers to.
      if (FD->getType()->isReferenceType()) {
        APValue RVal;
        if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
                                            RVal))
          return false;
        Result.setFrom(Info.Ctx, RVal);
      }
      return true;
    }
  }

  CallStackFrame *Frame = nullptr;
  unsigned Version = 0;
  if (VD->hasLocalStorage()) {
    // Only if a local variable was declared in the function currently being
    // evaluated, do we expect to be able to find its value in the current
    // frame. (Otherwise it was likely declared in an enclosing context and
    // could either have a valid evaluatable value (for e.g. a constexpr
    // variable) or be ill-formed (and trigger an appropriate evaluation
    // diagnostic)).
    CallStackFrame *CurrFrame = Info.CurrentCall;
    if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) {
      // Function parameters are stored in some caller's frame. (Usually the
      // immediate caller, but for an inherited constructor they may be more
      // distant.)
      if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) {
        if (CurrFrame->Arguments) {
          VD = CurrFrame->Arguments.getOrigParam(PVD);
          Frame =
              Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first;
          Version = CurrFrame->Arguments.Version;
        }
      } else {
        Frame = CurrFrame;
        Version = CurrFrame->getCurrentTemporaryVersion(VD);
      }
    }
  }

  if (!VD->getType()->isReferenceType()) {
    if (Frame) {
      Result.set({VD, Frame->Index, Version});
      return true;
    }
    return Success(VD);
  }

  if (!Info.getLangOpts().CPlusPlus11) {
    Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1)
        << VD << VD->getType();
    Info.Note(VD->getLocation(), diag::note_declared_at);
  }

  APValue *V;
  if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V))
    return false;
  if (!V->hasValue()) {
    // FIXME: Is it possible for V to be indeterminate here? If so, we should
    // adjust the diagnostic to say that.
    if (!Info.checkingPotentialConstantExpression())
      Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
    return false;
  }
  return Success(*V, E);
}

bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
    const MaterializeTemporaryExpr *E) {
  // Walk through the expression to find the materialized temporary itself.
  SmallVector<const Expr *, 2> CommaLHSs;
  SmallVector<SubobjectAdjustment, 2> Adjustments;
  const Expr *Inner =
      E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);

  // If we passed any comma operators, evaluate their LHSs.
  for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
    if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
      return false;

  // A materialized temporary with static storage duration can appear within the
  // result of a constant expression evaluation, so we need to preserve its
  // value for use outside this evaluation.
  APValue *Value;
  if (E->getStorageDuration() == SD_Static) {
    // FIXME: What about SD_Thread?
    Value = E->getOrCreateValue(true);
    *Value = APValue();
    Result.set(E);
  } else {
    Value = &Info.CurrentCall->createTemporary(
        E, E->getType(),
        E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
                                                     : ScopeKind::Block,
        Result);
  }

  QualType Type = Inner->getType();

  // Materialize the temporary itself.
  if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
    *Value = APValue();
    return false;
  }

  // Adjust our lvalue to refer to the desired subobject.
  for (unsigned I = Adjustments.size(); I != 0; /**/) {
    --I;
    switch (Adjustments[I].Kind) {
    case SubobjectAdjustment::DerivedToBaseAdjustment:
      if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
                                Type, Result))
        return false;
      Type = Adjustments[I].DerivedToBase.BasePath->getType();
      break;

    case SubobjectAdjustment::FieldAdjustment:
      if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
        return false;
      Type = Adjustments[I].Field->getType();
      break;

    case SubobjectAdjustment::MemberPointerAdjustment:
      if (!HandleMemberPointerAccess(this->Info, Type, Result,
                                     Adjustments[I].Ptr.RHS))
        return false;
      Type = Adjustments[I].Ptr.MPT->getPointeeType();
      break;
    }
  }

  return true;
}

bool
LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
  assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
         "lvalue compound literal in c++?");
  // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
  // only see this when folding in C, so there's no standard to follow here.
  return Success(E);
}

bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
  TypeInfoLValue TypeInfo;

  if (!E->isPotentiallyEvaluated()) {
    if (E->isTypeOperand())
      TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
    else
      TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
  } else {
    if (!Info.Ctx.getLangOpts().CPlusPlus20) {
      Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
        << E->getExprOperand()->getType()
        << E->getExprOperand()->getSourceRange();
    }

    if (!Visit(E->getExprOperand()))
      return false;

    Optional<DynamicType> DynType =
        ComputeDynamicType(Info, E, Result, AK_TypeId);
    if (!DynType)
      return false;

    TypeInfo =
        TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
  }

  return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
}

bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
  return Success(E->getGuidDecl());
}

bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
  // Handle static data members.
  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
    VisitIgnoredBaseExpression(E->getBase());
    return VisitVarDecl(E, VD);
  }

  // Handle static member functions.
  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
    if (MD->isStatic()) {
      VisitIgnoredBaseExpression(E->getBase());
      return Success(MD);
    }
  }

  // Handle non-static data members.
  return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
}

bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
  // FIXME: Deal with vectors as array subscript bases.
  if (E->getBase()->getType()->isVectorType())
    return Error(E);

  APSInt Index;
  bool Success = true;

  // C++17's rules require us to evaluate the LHS first, regardless of which
  // side is the base.
  for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) {
    if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result)
                                : !EvaluateInteger(SubExpr, Index, Info)) {
      if (!Info.noteFailure())
        return false;
      Success = false;
    }
  }

  return Success &&
         HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
}

bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
  return evaluatePointer(E->getSubExpr(), Result);
}

bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
  if (!Visit(E->getSubExpr()))
    return false;
  // __real is a no-op on scalar lvalues.
  if (E->getSubExpr()->getType()->isAnyComplexType())
    HandleLValueComplexElement(Info, E, Result, E->getType(), false);
  return true;
}

bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
  assert(E->getSubExpr()->getType()->isAnyComplexType() &&
         "lvalue __imag__ on scalar?");
  if (!Visit(E->getSubExpr()))
    return false;
  HandleLValueComplexElement(Info, E, Result, E->getType(), true);
  return true;
}

bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
  if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
    return Error(UO);

  if (!this->Visit(UO->getSubExpr()))
    return false;

  return handleIncDec(
      this->Info, UO, Result, UO->getSubExpr()->getType(),
      UO->isIncrementOp(), nullptr);
}

bool LValueExprEvaluator::VisitCompoundAssignOperator(
    const CompoundAssignOperator *CAO) {
  if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
    return Error(CAO);

  bool Success = true;

  // C++17 onwards require that we evaluate the RHS first.
  APValue RHS;
  if (!Evaluate(RHS, this->Info, CAO->getRHS())) {
    if (!Info.noteFailure())
      return false;
    Success = false;
  }

  // The overall lvalue result is the result of evaluating the LHS.
  if (!this->Visit(CAO->getLHS()) || !Success)
    return false;

  return handleCompoundAssignment(
      this->Info, CAO,
      Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
      CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
}

bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
  if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
    return Error(E);

  bool Success = true;

  // C++17 onwards require that we evaluate the RHS first.
  APValue NewVal;
  if (!Evaluate(NewVal, this->Info, E->getRHS())) {
    if (!Info.noteFailure())
      return false;
    Success = false;
  }

  if (!this->Visit(E->getLHS()) || !Success)
    return false;

  if (Info.getLangOpts().CPlusPlus20 &&
      !HandleUnionActiveMemberChange(Info, E->getLHS(), Result))
    return false;

  return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
                          NewVal);
}

//===----------------------------------------------------------------------===//
// Pointer Evaluation
//===----------------------------------------------------------------------===//

/// Attempts to compute the number of bytes available at the pointer
/// returned by a function with the alloc_size attribute. Returns true if we
/// were successful. Places an unsigned number into `Result`.
///
/// This expects the given CallExpr to be a call to a function with an
/// alloc_size attribute.
static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
                                            const CallExpr *Call,
                                            llvm::APInt &Result) {
  const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);

  assert(AllocSize && AllocSize->getElemSizeParam().isValid());
  unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
  unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
  if (Call->getNumArgs() <= SizeArgNo)
    return false;

  auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
    Expr::EvalResult ExprResult;
    if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
      return false;
    Into = ExprResult.Val.getInt();
    if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
      return false;
    Into = Into.zextOrSelf(BitsInSizeT);
    return true;
  };

  APSInt SizeOfElem;
  if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
    return false;

  if (!AllocSize->getNumElemsParam().isValid()) {
    Result = std::move(SizeOfElem);
    return true;
  }

  APSInt NumberOfElems;
  unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
  if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
    return false;

  bool Overflow;
  llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
  if (Overflow)
    return false;

  Result = std::move(BytesAvailable);
  return true;
}

/// Convenience function. LVal's base must be a call to an alloc_size
/// function.
static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
                                            const LValue &LVal,
                                            llvm::APInt &Result) {
  assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
         "Can't get the size of a non alloc_size function");
  const auto *Base = LVal.getLValueBase().get<const Expr *>();
  const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
  return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
}

/// Attempts to evaluate the given LValueBase as the result of a call to
/// a function with the alloc_size attribute. If it was possible to do so, this
/// function will return true, make Result's Base point to said function call,
/// and mark Result's Base as invalid.
static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
                                      LValue &Result) {
  if (Base.isNull())
    return false;

  // Because we do no form of static analysis, we only support const variables.
  //
  // Additionally, we can't support parameters, nor can we support static
  // variables (in the latter case, use-before-assign isn't UB; in the former,
  // we have no clue what they'll be assigned to).
  const auto *VD =
      dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
  if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
    return false;

  const Expr *Init = VD->getAnyInitializer();
  if (!Init)
    return false;

  const Expr *E = Init->IgnoreParens();
  if (!tryUnwrapAllocSizeCall(E))
    return false;

  // Store E instead of E unwrapped so that the type of the LValue's base is
  // what the user wanted.
  Result.setInvalid(E);

  QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
  Result.addUnsizedArray(Info, E, Pointee);
  return true;
}

namespace {
class PointerExprEvaluator
  : public ExprEvaluatorBase<PointerExprEvaluator> {
  LValue &Result;
  bool InvalidBaseOK;

  bool Success(const Expr *E) {
    Result.set(E);
    return true;
  }

  bool evaluateLValue(const Expr *E, LValue &Result) {
    return EvaluateLValue(E, Result, Info, InvalidBaseOK);
  }

  bool evaluatePointer(const Expr *E, LValue &Result) {
    return EvaluatePointer(E, Result, Info, InvalidBaseOK);
  }

  bool visitNonBuiltinCallExpr(const CallExpr *E);
public:

  PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
      : ExprEvaluatorBaseTy(info), Result(Result),
        InvalidBaseOK(InvalidBaseOK) {}

  bool Success(const APValue &V, const Expr *E) {
    Result.setFrom(Info.Ctx, V);
    return true;
  }
  bool ZeroInitialization(const Expr *E) {
    Result.setNull(Info.Ctx, E->getType());
    return true;
  }

  bool VisitBinaryOperator(const BinaryOperator *E);
  bool VisitCastExpr(const CastExpr* E);
  bool VisitUnaryAddrOf(const UnaryOperator *E);
  bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
      { return Success(E); }
  bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
    if (E->isExpressibleAsConstantInitializer())
      return Success(E);
    if (Info.noteFailure())
      EvaluateIgnoredValue(Info, E->getSubExpr());
    return Error(E);
  }
  bool VisitAddrLabelExpr(const AddrLabelExpr *E)
      { return Success(E); }
  bool VisitCallExpr(const CallExpr *E);
  bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
  bool VisitBlockExpr(const BlockExpr *E) {
    if (!E->getBlockDecl()->hasCaptures())
      return Success(E);
    return Error(E);
  }
  bool VisitCXXThisExpr(const CXXThisExpr *E) {
    // Can't look at 'this' when checking a potential constant expression.
    if (Info.checkingPotentialConstantExpression())
      return false;
    if (!Info.CurrentCall->This) {
      if (Info.getLangOpts().CPlusPlus11)
        Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
      else
        Info.FFDiag(E);
      return false;
    }
    Result = *Info.CurrentCall->This;
    // If we are inside a lambda's call operator, the 'this' expression refers
    // to the enclosing '*this' object (either by value or reference) which is
    // either copied into the closure object's field that represents the '*this'
    // or refers to '*this'.
    if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
      // Ensure we actually have captured 'this'. (an error will have
      // been previously reported if not).
      if (!Info.CurrentCall->LambdaThisCaptureField)
        return false;

      // Update 'Result' to refer to the data member/field of the closure object
      // that represents the '*this' capture.
      if (!HandleLValueMember(Info, E, Result,
                             Info.CurrentCall->LambdaThisCaptureField))
        return false;
      // If we captured '*this' by reference, replace the field with its referent.
      if (Info.CurrentCall->LambdaThisCaptureField->getType()
              ->isPointerType()) {
        APValue RVal;
        if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
                                            RVal))
          return false;

        Result.setFrom(Info.Ctx, RVal);
      }
    }
    return true;
  }

  bool VisitCXXNewExpr(const CXXNewExpr *E);

  bool VisitSourceLocExpr(const SourceLocExpr *E) {
    assert(E->isStringType() && "SourceLocExpr isn't a pointer type?");
    APValue LValResult = E->EvaluateInContext(
        Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
    Result.setFrom(Info.Ctx, LValResult);
    return true;
  }

  bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) {
    std::string ResultStr = E->ComputeName(Info.Ctx);

    QualType CharTy = Info.Ctx.CharTy.withConst();
    APInt Size(Info.Ctx.getTypeSize(Info.Ctx.getSizeType()),
               ResultStr.size() + 1);
    QualType ArrayTy = Info.Ctx.getConstantArrayType(CharTy, Size, nullptr,
                                                     ArrayType::Normal, 0);

    StringLiteral *SL =
        StringLiteral::Create(Info.Ctx, ResultStr, StringLiteral::Ascii,
                              /*Pascal*/ false, ArrayTy, E->getLocation());

    evaluateLValue(SL, Result);
    Result.addArray(Info, E, cast<ConstantArrayType>(ArrayTy));
    return true;
  }

  // FIXME: Missing: @protocol, @selector
};
} // end anonymous namespace

static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
                            bool InvalidBaseOK) {
  assert(!E->isValueDependent());
  assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
  return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
}

bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
  if (E->getOpcode() != BO_Add &&
      E->getOpcode() != BO_Sub)
    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);

  const Expr *PExp = E->getLHS();
  const Expr *IExp = E->getRHS();
  if (IExp->getType()->isPointerType())
    std::swap(PExp, IExp);

  bool EvalPtrOK = evaluatePointer(PExp, Result);
  if (!EvalPtrOK && !Info.noteFailure())
    return false;

  llvm::APSInt Offset;
  if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
    return false;

  if (E->getOpcode() == BO_Sub)
    negateAsSigned(Offset);

  QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
  return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
}

bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
  return evaluateLValue(E->getSubExpr(), Result);
}

bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
  const Expr *SubExpr = E->getSubExpr();

  switch (E->getCastKind()) {
  default:
    break;
  case CK_BitCast:
  case CK_CPointerToObjCPointerCast:
  case CK_BlockPointerToObjCPointerCast:
  case CK_AnyPointerToBlockPointerCast:
  case CK_AddressSpaceConversion:
    if (!Visit(SubExpr))
      return false;
    // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
    // permitted in constant expressions in C++11. Bitcasts from cv void* are
    // also static_casts, but we disallow them as a resolution to DR1312.
    if (!E->getType()->isVoidPointerType()) {
      if (!Result.InvalidBase && !Result.Designator.Invalid &&
          !Result.IsNullPtr &&
          Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
                                          E->getType()->getPointeeType()) &&
          Info.getStdAllocatorCaller("allocate")) {
        // Inside a call to std::allocator::allocate and friends, we permit
        // casting from void* back to cv1 T* for a pointer that points to a
        // cv2 T.
      } else {
        Result.Designator.setInvalid();
        if (SubExpr->getType()->isVoidPointerType())
          CCEDiag(E, diag::note_constexpr_invalid_cast)
            << 3 << SubExpr->getType();
        else
          CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
      }
    }
    if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
      ZeroInitialization(E);
    return true;

  case CK_DerivedToBase:
  case CK_UncheckedDerivedToBase:
    if (!evaluatePointer(E->getSubExpr(), Result))
      return false;
    if (!Result.Base && Result.Offset.isZero())
      return true;

    // Now figure out the necessary offset to add to the base LV to get from
    // the derived class to the base class.
    return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
                                  castAs<PointerType>()->getPointeeType(),
                                Result);

  case CK_BaseToDerived:
    if (!Visit(E->getSubExpr()))
      return false;
    if (!Result.Base && Result.Offset.isZero())
      return true;
    return HandleBaseToDerivedCast(Info, E, Result);

  case CK_Dynamic:
    if (!Visit(E->getSubExpr()))
      return false;
    return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);

  case CK_NullToPointer:
    VisitIgnoredValue(E->getSubExpr());
    return ZeroInitialization(E);

  case CK_IntegralToPointer: {
    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;

    APValue Value;
    if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
      break;

    if (Value.isInt()) {
      unsigned Size = Info.Ctx.getTypeSize(E->getType());
      uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
      Result.Base = (Expr*)nullptr;
      Result.InvalidBase = false;
      Result.Offset = CharUnits::fromQuantity(N);
      Result.Designator.setInvalid();
      Result.IsNullPtr = false;
      return true;
    } else {
      // Cast is of an lvalue, no need to change value.
      Result.setFrom(Info.Ctx, Value);
      return true;
    }
  }

  case CK_ArrayToPointerDecay: {
    if (SubExpr->isGLValue()) {
      if (!evaluateLValue(SubExpr, Result))
        return false;
    } else {
      APValue &Value = Info.CurrentCall->createTemporary(
          SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result);
      if (!EvaluateInPlace(Value, Info, Result, SubExpr))
        return false;
    }
    // The result is a pointer to the first element of the array.
    auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
    if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
      Result.addArray(Info, E, CAT);
    else
      Result.addUnsizedArray(Info, E, AT->getElementType());
    return true;
  }

  case CK_FunctionToPointerDecay:
    return evaluateLValue(SubExpr, Result);

  case CK_LValueToRValue: {
    LValue LVal;
    if (!evaluateLValue(E->getSubExpr(), LVal))
      return false;

    APValue RVal;
    // Note, we use the subexpression's type in order to retain cv-qualifiers.
    if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
                                        LVal, RVal))
      return InvalidBaseOK &&
             evaluateLValueAsAllocSize(Info, LVal.Base, Result);
    return Success(RVal, E);
  }
  }

  return ExprEvaluatorBaseTy::VisitCastExpr(E);
}

static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
                                UnaryExprOrTypeTrait ExprKind) {
  // C++ [expr.alignof]p3:
  //     When alignof is applied to a reference type, the result is the
  //     alignment of the referenced type.
  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
    T = Ref->getPointeeType();

  if (T.getQualifiers().hasUnaligned())
    return CharUnits::One();

  const bool AlignOfReturnsPreferred =
      Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;

  // __alignof is defined to return the preferred alignment.
  // Before 8, clang returned the preferred alignment for alignof and _Alignof
  // as well.
  if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
    return Info.Ctx.toCharUnitsFromBits(
      Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
  // alignof and _Alignof are defined to return the ABI alignment.
  else if (ExprKind == UETT_AlignOf)
    return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
  else
    llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
}

static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
                                UnaryExprOrTypeTrait ExprKind) {
  E = E->IgnoreParens();

  // The kinds of expressions that we have special-case logic here for
  // should be kept up to date with the special checks for those
  // expressions in Sema.

  // alignof decl is always accepted, even if it doesn't make sense: we default
  // to 1 in those cases.
  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
    return Info.Ctx.getDeclAlign(DRE->getDecl(),
                                 /*RefAsPointee*/true);

  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
    return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
                                 /*RefAsPointee*/true);

  return GetAlignOfType(Info, E->getType(), ExprKind);
}

static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
  if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
    return Info.Ctx.getDeclAlign(VD);
  if (const auto *E = Value.Base.dyn_cast<const Expr *>())
    return GetAlignOfExpr(Info, E, UETT_AlignOf);
  return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf);
}

/// Evaluate the value of the alignment argument to __builtin_align_{up,down},
/// __builtin_is_aligned and __builtin_assume_aligned.
static bool getAlignmentArgument(const Expr *E, QualType ForType,
                                 EvalInfo &Info, APSInt &Alignment) {
  if (!EvaluateInteger(E, Alignment, Info))
    return false;
  if (Alignment < 0 || !Alignment.isPowerOf2()) {
    Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
    return false;
  }
  unsigned SrcWidth = Info.Ctx.getIntWidth(ForType);
  APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
  if (APSInt::compareValues(Alignment, MaxValue) > 0) {
    Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
        << MaxValue << ForType << Alignment;
    return false;
  }
  // Ensure both alignment and source value have the same bit width so that we
  // don't assert when computing the resulting value.
  APSInt ExtAlignment =
      APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true);
  assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
         "Alignment should not be changed by ext/trunc");
  Alignment = ExtAlignment;
  assert(Alignment.getBitWidth() == SrcWidth);
  return true;
}

// To be clear: this happily visits unsupported builtins. Better name welcomed.
bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
  if (ExprEvaluatorBaseTy::VisitCallExpr(E))
    return true;

  if (!(InvalidBaseOK && getAllocSizeAttr(E)))
    return false;

  Result.setInvalid(E);
  QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
  Result.addUnsizedArray(Info, E, PointeeTy);
  return true;
}

bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
  if (IsConstantCall(E))
    return Success(E);

  if (unsigned BuiltinOp = E->getBuiltinCallee())
    return VisitBuiltinCallExpr(E, BuiltinOp);

  return visitNonBuiltinCallExpr(E);
}

// Determine if T is a character type for which we guarantee that
// sizeof(T) == 1.
static bool isOneByteCharacterType(QualType T) {
  return T->isCharType() || T->isChar8Type();
}

bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
                                                unsigned BuiltinOp) {
  switch (BuiltinOp) {
  case Builtin::BI__builtin_addressof:
    return evaluateLValue(E->getArg(0), Result);
  case Builtin::BI__builtin_assume_aligned: {
    // We need to be very careful here because: if the pointer does not have the
    // asserted alignment, then the behavior is undefined, and undefined
    // behavior is non-constant.
    if (!evaluatePointer(E->getArg(0), Result))
      return false;

    LValue OffsetResult(Result);
    APSInt Alignment;
    if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
                              Alignment))
      return false;
    CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());

    if (E->getNumArgs() > 2) {
      APSInt Offset;
      if (!EvaluateInteger(E->getArg(2), Offset, Info))
        return false;

      int64_t AdditionalOffset = -Offset.getZExtValue();
      OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
    }

    // If there is a base object, then it must have the correct alignment.
    if (OffsetResult.Base) {
      CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult);

      if (BaseAlignment < Align) {
        Result.Designator.setInvalid();
        // FIXME: Add support to Diagnostic for long / long long.
        CCEDiag(E->getArg(0),
                diag::note_constexpr_baa_insufficient_alignment) << 0
          << (unsigned)BaseAlignment.getQuantity()
          << (unsigned)Align.getQuantity();
        return false;
      }
    }

    // The offset must also have the correct alignment.
    if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
      Result.Designator.setInvalid();

      (OffsetResult.Base
           ? CCEDiag(E->getArg(0),
                     diag::note_constexpr_baa_insufficient_alignment) << 1
           : CCEDiag(E->getArg(0),
                     diag::note_constexpr_baa_value_insufficient_alignment))
        << (int)OffsetResult.Offset.getQuantity()
        << (unsigned)Align.getQuantity();
      return false;
    }

    return true;
  }
  case Builtin::BI__builtin_align_up:
  case Builtin::BI__builtin_align_down: {
    if (!evaluatePointer(E->getArg(0), Result))
      return false;
    APSInt Alignment;
    if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
                              Alignment))
      return false;
    CharUnits BaseAlignment = getBaseAlignment(Info, Result);
    CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset);
    // For align_up/align_down, we can return the same value if the alignment
    // is known to be greater or equal to the requested value.
    if (PtrAlign.getQuantity() >= Alignment)
      return true;

    // The alignment could be greater than the minimum at run-time, so we cannot
    // infer much about the resulting pointer value. One case is possible:
    // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
    // can infer the correct index if the requested alignment is smaller than
    // the base alignment so we can perform the computation on the offset.
    if (BaseAlignment.getQuantity() >= Alignment) {
      assert(Alignment.getBitWidth() <= 64 &&
             "Cannot handle > 64-bit address-space");
      uint64_t Alignment64 = Alignment.getZExtValue();
      CharUnits NewOffset = CharUnits::fromQuantity(
          BuiltinOp == Builtin::BI__builtin_align_down
              ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
              : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
      Result.adjustOffset(NewOffset - Result.Offset);
      // TODO: diagnose out-of-bounds values/only allow for arrays?
      return true;
    }
    // Otherwise, we cannot constant-evaluate the result.
    Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
        << Alignment;
    return false;
  }
  case Builtin::BI__builtin_operator_new:
    return HandleOperatorNewCall(Info, E, Result);
  case Builtin::BI__builtin_launder:
    return evaluatePointer(E->getArg(0), Result);
  case Builtin::BIstrchr:
  case Builtin::BIwcschr:
  case Builtin::BImemchr:
  case Builtin::BIwmemchr:
    if (Info.getLangOpts().CPlusPlus11)
      Info.CCEDiag(E, diag::note_constexpr_invalid_function)
        << /*isConstexpr*/0 << /*isConstructor*/0
        << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
    else
      Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
    LLVM_FALLTHROUGH;
  case Builtin::BI__builtin_strchr:
  case Builtin::BI__builtin_wcschr:
  case Builtin::BI__builtin_memchr:
  case Builtin::BI__builtin_char_memchr:
  case Builtin::BI__builtin_wmemchr: {
    if (!Visit(E->getArg(0)))
      return false;
    APSInt Desired;
    if (!EvaluateInteger(E->getArg(1), Desired, Info))
      return false;
    uint64_t MaxLength = uint64_t(-1);
    if (BuiltinOp != Builtin::BIstrchr &&
        BuiltinOp != Builtin::BIwcschr &&
        BuiltinOp != Builtin::BI__builtin_strchr &&
        BuiltinOp != Builtin::BI__builtin_wcschr) {
      APSInt N;
      if (!EvaluateInteger(E->getArg(2), N, Info))
        return false;
      MaxLength = N.getExtValue();
    }
    // We cannot find the value if there are no candidates to match against.
    if (MaxLength == 0u)
      return ZeroInitialization(E);
    if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
        Result.Designator.Invalid)
      return false;
    QualType CharTy = Result.Designator.getType(Info.Ctx);
    bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
                     BuiltinOp == Builtin::BI__builtin_memchr;
    assert(IsRawByte ||
           Info.Ctx.hasSameUnqualifiedType(
               CharTy, E->getArg(0)->getType()->getPointeeType()));
    // Pointers to const void may point to objects of incomplete type.
    if (IsRawByte && CharTy->isIncompleteType()) {
      Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
      return false;
    }
    // Give up on byte-oriented matching against multibyte elements.
    // FIXME: We can compare the bytes in the correct order.
    if (IsRawByte && !isOneByteCharacterType(CharTy)) {
      Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
          << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
          << CharTy;
      return false;
    }
    // Figure out what value we're actually looking for (after converting to
    // the corresponding unsigned type if necessary).
    uint64_t DesiredVal;
    bool StopAtNull = false;
    switch (BuiltinOp) {
    case Builtin::BIstrchr:
    case Builtin::BI__builtin_strchr:
      // strchr compares directly to the passed integer, and therefore
      // always fails if given an int that is not a char.
      if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
                                                  E->getArg(1)->getType(),
                                                  Desired),
                               Desired))
        return ZeroInitialization(E);
      StopAtNull = true;
      LLVM_FALLTHROUGH;
    case Builtin::BImemchr:
    case Builtin::BI__builtin_memchr:
    case Builtin::BI__builtin_char_memchr:
      // memchr compares by converting both sides to unsigned char. That's also
      // correct for strchr if we get this far (to cope with plain char being
      // unsigned in the strchr case).
      DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
      break;

    case Builtin::BIwcschr:
    case Builtin::BI__builtin_wcschr:
      StopAtNull = true;
      LLVM_FALLTHROUGH;
    case Builtin::BIwmemchr:
    case Builtin::BI__builtin_wmemchr:
      // wcschr and wmemchr are given a wchar_t to look for. Just use it.
      DesiredVal = Desired.getZExtValue();
      break;
    }

    for (; MaxLength; --MaxLength) {
      APValue Char;
      if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
          !Char.isInt())
        return false;
      if (Char.getInt().getZExtValue() == DesiredVal)
        return true;
      if (StopAtNull && !Char.getInt())
        break;
      if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
        return false;
    }
    // Not found: return nullptr.
    return ZeroInitialization(E);
  }

  case Builtin::BImemcpy:
  case Builtin::BImemmove:
  case Builtin::BIwmemcpy:
  case Builtin::BIwmemmove:
    if (Info.getLangOpts().CPlusPlus11)
      Info.CCEDiag(E, diag::note_constexpr_invalid_function)
        << /*isConstexpr*/0 << /*isConstructor*/0
        << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
    else
      Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
    LLVM_FALLTHROUGH;
  case Builtin::BI__builtin_memcpy:
  case Builtin::BI__builtin_memmove:
  case Builtin::BI__builtin_wmemcpy:
  case Builtin::BI__builtin_wmemmove: {
    bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
                 BuiltinOp == Builtin::BIwmemmove ||
                 BuiltinOp == Builtin::BI__builtin_wmemcpy ||
                 BuiltinOp == Builtin::BI__builtin_wmemmove;
    bool Move = BuiltinOp == Builtin::BImemmove ||
                BuiltinOp == Builtin::BIwmemmove ||
                BuiltinOp == Builtin::BI__builtin_memmove ||
                BuiltinOp == Builtin::BI__builtin_wmemmove;

    // The result of mem* is the first argument.
    if (!Visit(E->getArg(0)))
      return false;
    LValue Dest = Result;

    LValue Src;
    if (!EvaluatePointer(E->getArg(1), Src, Info))
      return false;

    APSInt N;
    if (!EvaluateInteger(E->getArg(2), N, Info))
      return false;
    assert(!N.isSigned() && "memcpy and friends take an unsigned size");

    // If the size is zero, we treat this as always being a valid no-op.
    // (Even if one of the src and dest pointers is null.)
    if (!N)
      return true;

    // Otherwise, if either of the operands is null, we can't proceed. Don't
    // try to determine the type of the copied objects, because there aren't
    // any.
    if (!Src.Base || !Dest.Base) {
      APValue Val;
      (!Src.Base ? Src : Dest).moveInto(Val);
      Info.FFDiag(E, diag::note_constexpr_memcpy_null)
          << Move << WChar << !!Src.Base
          << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
      return false;
    }
    if (Src.Designator.Invalid || Dest.Designator.Invalid)
      return false;

    // We require that Src and Dest are both pointers to arrays of
    // trivially-copyable type. (For the wide version, the designator will be
    // invalid if the designated object is not a wchar_t.)
    QualType T = Dest.Designator.getType(Info.Ctx);
    QualType SrcT = Src.Designator.getType(Info.Ctx);
    if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
      // FIXME: Consider using our bit_cast implementation to support this.
      Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
      return false;
    }
    if (T->isIncompleteType()) {
      Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
      return false;
    }
    if (!T.isTriviallyCopyableType(Info.Ctx)) {
      Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
      return false;
    }

    // Figure out how many T's we're copying.
    uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
    if (!WChar) {
      uint64_t Remainder;
      llvm::APInt OrigN = N;
      llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
      if (Remainder) {
        Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
            << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false)
            << (unsigned)TSize;
        return false;
      }
    }

    // Check that the copying will remain within the arrays, just so that we
    // can give a more meaningful diagnostic. This implicitly also checks that
    // N fits into 64 bits.
    uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
    uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
    if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
      Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
          << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
          << toString(N, 10, /*Signed*/false);
      return false;
    }
    uint64_t NElems = N.getZExtValue();
    uint64_t NBytes = NElems * TSize;

    // Check for overlap.
    int Direction = 1;
    if (HasSameBase(Src, Dest)) {
      uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
      uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
      if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
        // Dest is inside the source region.
        if (!Move) {
          Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
          return false;
        }
        // For memmove and friends, copy backwards.
        if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
            !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
          return false;
        Direction = -1;
      } else if (!Move && SrcOffset >= DestOffset &&
                 SrcOffset - DestOffset < NBytes) {
        // Src is inside the destination region for memcpy: invalid.
        Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
        return false;
      }
    }

    while (true) {
      APValue Val;
      // FIXME: Set WantObjectRepresentation to true if we're copying a
      // char-like type?
      if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
          !handleAssignment(Info, E, Dest, T, Val))
        return false;
      // Do not iterate past the last element; if we're copying backwards, that
      // might take us off the start of the array.
      if (--NElems == 0)
        return true;
      if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
          !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
        return false;
    }
  }

  default:
    break;
  }

  return visitNonBuiltinCallExpr(E);
}

static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
                                     APValue &Result, const InitListExpr *ILE,
                                     QualType AllocType);
static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
                                          APValue &Result,
                                          const CXXConstructExpr *CCE,
                                          QualType AllocType);

bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
  if (!Info.getLangOpts().CPlusPlus20)
    Info.CCEDiag(E, diag::note_constexpr_new);

  // We cannot speculatively evaluate a delete expression.
  if (Info.SpeculativeEvaluationDepth)
    return false;

  FunctionDecl *OperatorNew = E->getOperatorNew();

  bool IsNothrow = false;
  bool IsPlacement = false;
  if (OperatorNew->isReservedGlobalPlacementOperator() &&
      Info.CurrentCall->isStdFunction() && !E->isArray()) {
    // FIXME Support array placement new.
    assert(E->getNumPlacementArgs() == 1);
    if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
      return false;
    if (Result.Designator.Invalid)
      return false;
    IsPlacement = true;
  } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
    Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
        << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
    return false;
  } else if (E->getNumPlacementArgs()) {
    // The only new-placement list we support is of the form (std::nothrow).
    //
    // FIXME: There is no restriction on this, but it's not clear that any
    // other form makes any sense. We get here for cases such as:
    //
    //   new (std::align_val_t{N}) X(int)
    //
    // (which should presumably be valid only if N is a multiple of
    // alignof(int), and in any case can't be deallocated unless N is
    // alignof(X) and X has new-extended alignment).
    if (E->getNumPlacementArgs() != 1 ||
        !E->getPlacementArg(0)->getType()->isNothrowT())
      return Error(E, diag::note_constexpr_new_placement);

    LValue Nothrow;
    if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
      return false;
    IsNothrow = true;
  }

  const Expr *Init = E->getInitializer();
  const InitListExpr *ResizedArrayILE = nullptr;
  const CXXConstructExpr *ResizedArrayCCE = nullptr;
  bool ValueInit = false;

  QualType AllocType = E->getAllocatedType();
  if (Optional<const Expr*> ArraySize = E->getArraySize()) {
    const Expr *Stripped = *ArraySize;
    for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
         Stripped = ICE->getSubExpr())
      if (ICE->getCastKind() != CK_NoOp &&
          ICE->getCastKind() != CK_IntegralCast)
        break;

    llvm::APSInt ArrayBound;
    if (!EvaluateInteger(Stripped, ArrayBound, Info))
      return false;

    // C++ [expr.new]p9:
    //   The expression is erroneous if:
    //   -- [...] its value before converting to size_t [or] applying the
    //      second standard conversion sequence is less than zero
    if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
      if (IsNothrow)
        return ZeroInitialization(E);

      Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
          << ArrayBound << (*ArraySize)->getSourceRange();
      return false;
    }

    //   -- its value is such that the size of the allocated object would
    //      exceed the implementation-defined limit
    if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType,
                                                ArrayBound) >
        ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
      if (IsNothrow)
        return ZeroInitialization(E);

      Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large)
        << ArrayBound << (*ArraySize)->getSourceRange();
      return false;
    }

    //   -- the new-initializer is a braced-init-list and the number of
    //      array elements for which initializers are provided [...]
    //      exceeds the number of elements to initialize
    if (!Init) {
      // No initialization is performed.
    } else if (isa<CXXScalarValueInitExpr>(Init) ||
               isa<ImplicitValueInitExpr>(Init)) {
      ValueInit = true;
    } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
      ResizedArrayCCE = CCE;
    } else {
      auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
      assert(CAT && "unexpected type for array initializer");

      unsigned Bits =
          std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
      llvm::APInt InitBound = CAT->getSize().zextOrSelf(Bits);
      llvm::APInt AllocBound = ArrayBound.zextOrSelf(Bits);
      if (InitBound.ugt(AllocBound)) {
        if (IsNothrow)
          return ZeroInitialization(E);

        Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
            << toString(AllocBound, 10, /*Signed=*/false)
            << toString(InitBound, 10, /*Signed=*/false)
            << (*ArraySize)->getSourceRange();
        return false;
      }

      // If the sizes differ, we must have an initializer list, and we need
      // special handling for this case when we initialize.
      if (InitBound != AllocBound)
        ResizedArrayILE = cast<InitListExpr>(Init);
    }

    AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
                                              ArrayType::Normal, 0);
  } else {
    assert(!AllocType->isArrayType() &&
           "array allocation with non-array new");
  }

  APValue *Val;
  if (IsPlacement) {
    AccessKinds AK = AK_Construct;
    struct FindObjectHandler {
      EvalInfo &Info;
      const Expr *E;
      QualType AllocType;
      const AccessKinds AccessKind;
      APValue *Value;

      typedef bool result_type;
      bool failed() { return false; }
      bool found(APValue &Subobj, QualType SubobjType) {
        // FIXME: Reject the cases where [basic.life]p8 would not permit the
        // old name of the object to be used to name the new object.
        if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
          Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
            SubobjType << AllocType;
          return false;
        }
        Value = &Subobj;
        return true;
      }
      bool found(APSInt &Value, QualType SubobjType) {
        Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
        return false;
      }
      bool found(APFloat &Value, QualType SubobjType) {
        Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
        return false;
      }
    } Handler = {Info, E, AllocType, AK, nullptr};

    CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
    if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
      return false;

    Val = Handler.Value;

    // [basic.life]p1:
    //   The lifetime of an object o of type T ends when [...] the storage
    //   which the object occupies is [...] reused by an object that is not
    //   nested within o (6.6.2).
    *Val = APValue();
  } else {
    // Perform the allocation and obtain a pointer to the resulting object.
    Val = Info.createHeapAlloc(E, AllocType, Result);
    if (!Val)
      return false;
  }

  if (ValueInit) {
    ImplicitValueInitExpr VIE(AllocType);
    if (!EvaluateInPlace(*Val, Info, Result, &VIE))
      return false;
  } else if (ResizedArrayILE) {
    if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
                                  AllocType))
      return false;
  } else if (ResizedArrayCCE) {
    if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE,
                                       AllocType))
      return false;
  } else if (Init) {
    if (!EvaluateInPlace(*Val, Info, Result, Init))
      return false;
  } else if (!getDefaultInitValue(AllocType, *Val)) {
    return false;
  }

  // Array new returns a pointer to the first element, not a pointer to the
  // array.
  if (auto *AT = AllocType->getAsArrayTypeUnsafe())
    Result.addArray(Info, E, cast<ConstantArrayType>(AT));

  return true;
}
//===----------------------------------------------------------------------===//
// Member Pointer Evaluation
//===----------------------------------------------------------------------===//

namespace {
class MemberPointerExprEvaluator
  : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
  MemberPtr &Result;

  bool Success(const ValueDecl *D) {
    Result = MemberPtr(D);
    return true;
  }
public:

  MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
    : ExprEvaluatorBaseTy(Info), Result(Result) {}

  bool Success(const APValue &V, const Expr *E) {
    Result.setFrom(V);
    return true;
  }
  bool ZeroInitialization(const Expr *E) {
    return Success((const ValueDecl*)nullptr);
  }

  bool VisitCastExpr(const CastExpr *E);
  bool VisitUnaryAddrOf(const UnaryOperator *E);
};
} // end anonymous namespace

static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
                                  EvalInfo &Info) {
  assert(!E->isValueDependent());
  assert(E->isPRValue() && E->getType()->isMemberPointerType());
  return MemberPointerExprEvaluator(Info, Result).Visit(E);
}

bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
  switch (E->getCastKind()) {
  default:
    return ExprEvaluatorBaseTy::VisitCastExpr(E);

  case CK_NullToMemberPointer:
    VisitIgnoredValue(E->getSubExpr());
    return ZeroInitialization(E);

  case CK_BaseToDerivedMemberPointer: {
    if (!Visit(E->getSubExpr()))
      return false;
    if (E->path_empty())
      return true;
    // Base-to-derived member pointer casts store the path in derived-to-base
    // order, so iterate backwards. The CXXBaseSpecifier also provides us with
    // the wrong end of the derived->base arc, so stagger the path by one class.
    typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
    for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
         PathI != PathE; ++PathI) {
      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
      const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
      if (!Result.castToDerived(Derived))
        return Error(E);
    }
    const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
    if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
      return Error(E);
    return true;
  }

  case CK_DerivedToBaseMemberPointer:
    if (!Visit(E->getSubExpr()))
      return false;
    for (CastExpr::path_const_iterator PathI = E->path_begin(),
         PathE = E->path_end(); PathI != PathE; ++PathI) {
      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
      if (!Result.castToBase(Base))
        return Error(E);
    }
    return true;
  }
}

bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
  // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
  // member can be formed.
  return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
}

//===----------------------------------------------------------------------===//
// Record Evaluation
//===----------------------------------------------------------------------===//

namespace {
  class RecordExprEvaluator
  : public ExprEvaluatorBase<RecordExprEvaluator> {
    const LValue &This;
    APValue &Result;
  public:

    RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
      : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}

    bool Success(const APValue &V, const Expr *E) {
      Result = V;
      return true;
    }
    bool ZeroInitialization(const Expr *E) {
      return ZeroInitialization(E, E->getType());
    }
    bool ZeroInitialization(const Expr *E, QualType T);

    bool VisitCallExpr(const CallExpr *E) {
      return handleCallExpr(E, Result, &This);
    }
    bool VisitCastExpr(const CastExpr *E);
    bool VisitInitListExpr(const InitListExpr *E);
    bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
      return VisitCXXConstructExpr(E, E->getType());
    }
    bool VisitLambdaExpr(const LambdaExpr *E);
    bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
    bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
    bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
    bool VisitBinCmp(const BinaryOperator *E);
  };
}

/// Perform zero-initialization on an object of non-union class type.
/// C++11 [dcl.init]p5:
///  To zero-initialize an object or reference of type T means:
///    [...]
///    -- if T is a (possibly cv-qualified) non-union class type,
///       each non-static data member and each base-class subobject is
///       zero-initialized
static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
                                          const RecordDecl *RD,
                                          const LValue &This, APValue &Result) {
  assert(!RD->isUnion() && "Expected non-union class type");
  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
  Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
                   std::distance(RD->field_begin(), RD->field_end()));

  if (RD->isInvalidDecl()) return false;
  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);

  if (CD) {
    unsigned Index = 0;
    for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
           End = CD->bases_end(); I != End; ++I, ++Index) {
      const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
      LValue Subobject = This;
      if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
        return false;
      if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
                                         Result.getStructBase(Index)))
        return false;
    }
  }

  for (const auto *I : RD->fields()) {
    // -- if T is a reference type, no initialization is performed.
    if (I->isUnnamedBitfield() || I->getType()->isReferenceType())
      continue;

    LValue Subobject = This;
    if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
      return false;

    ImplicitValueInitExpr VIE(I->getType());
    if (!EvaluateInPlace(
          Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
      return false;
  }

  return true;
}

bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
  const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
  if (RD->isInvalidDecl()) return false;
  if (RD->isUnion()) {
    // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
    // object's first non-static named data member is zero-initialized
    RecordDecl::field_iterator I = RD->field_begin();
    while (I != RD->field_end() && (*I)->isUnnamedBitfield())
      ++I;
    if (I == RD->field_end()) {
      Result = APValue((const FieldDecl*)nullptr);
      return true;
    }

    LValue Subobject = This;
    if (!HandleLValueMember(Info, E, Subobject, *I))
      return false;
    Result = APValue(*I);
    ImplicitValueInitExpr VIE(I->getType());
    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
  }

  if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
    Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
    return false;
  }

  return HandleClassZeroInitialization(Info, E, RD, This, Result);
}

bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
  switch (E->getCastKind()) {
  default:
    return ExprEvaluatorBaseTy::VisitCastExpr(E);

  case CK_ConstructorConversion:
    return Visit(E->getSubExpr());

  case CK_DerivedToBase:
  case CK_UncheckedDerivedToBase: {
    APValue DerivedObject;
    if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
      return false;
    if (!DerivedObject.isStruct())
      return Error(E->getSubExpr());

    // Derived-to-base rvalue conversion: just slice off the derived part.
    APValue *Value = &DerivedObject;
    const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
    for (CastExpr::path_const_iterator PathI = E->path_begin(),
         PathE = E->path_end(); PathI != PathE; ++PathI) {
      assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
      Value = &Value->getStructBase(getBaseIndex(RD, Base));
      RD = Base;
    }
    Result = *Value;
    return true;
  }
  }
}

bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
  if (E->isTransparent())
    return Visit(E->getInit(0));

  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
  if (RD->isInvalidDecl()) return false;
  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
  auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);

  EvalInfo::EvaluatingConstructorRAII EvalObj(
      Info,
      ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
      CXXRD && CXXRD->getNumBases());

  if (RD->isUnion()) {
    const FieldDecl *Field = E->getInitializedFieldInUnion();
    Result = APValue(Field);
    if (!Field)
      return true;

    // If the initializer list for a union does not contain any elements, the
    // first element of the union is value-initialized.
    // FIXME: The element should be initialized from an initializer list.
    //        Is this difference ever observable for initializer lists which
    //        we don't build?
    ImplicitValueInitExpr VIE(Field->getType());
    const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;

    LValue Subobject = This;
    if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
      return false;

    // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
    ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
                                  isa<CXXDefaultInitExpr>(InitExpr));

    if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) {
      if (Field->isBitField())
        return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(),
                                     Field);
      return true;
    }

    return false;
  }

  if (!Result.hasValue())
    Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
                     std::distance(RD->field_begin(), RD->field_end()));
  unsigned ElementNo = 0;
  bool Success = true;

  // Initialize base classes.
  if (CXXRD && CXXRD->getNumBases()) {
    for (const auto &Base : CXXRD->bases()) {
      assert(ElementNo < E->getNumInits() && "missing init for base class");
      const Expr *Init = E->getInit(ElementNo);

      LValue Subobject = This;
      if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
        return false;

      APValue &FieldVal = Result.getStructBase(ElementNo);
      if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
        if (!Info.noteFailure())
          return false;
        Success = false;
      }
      ++ElementNo;
    }

    EvalObj.finishedConstructingBases();
  }

  // Initialize members.
  for (const auto *Field : RD->fields()) {
    // Anonymous bit-fields are not considered members of the class for
    // purposes of aggregate initialization.
    if (Field->isUnnamedBitfield())
      continue;

    LValue Subobject = This;

    bool HaveInit = ElementNo < E->getNumInits();

    // FIXME: Diagnostics here should point to the end of the initializer
    // list, not the start.
    if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
                            Subobject, Field, &Layout))
      return false;

    // Perform an implicit value-initialization for members beyond the end of
    // the initializer list.
    ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
    const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;

    // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
    ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
                                  isa<CXXDefaultInitExpr>(Init));

    APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
    if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
        (Field->isBitField() && !truncateBitfieldValue(Info, Init,
                                                       FieldVal, Field))) {
      if (!Info.noteFailure())
        return false;
      Success = false;
    }
  }

  EvalObj.finishedConstructingFields();

  return Success;
}

bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
                                                QualType T) {
  // Note that E's type is not necessarily the type of our class here; we might
  // be initializing an array element instead.
  const CXXConstructorDecl *FD = E->getConstructor();
  if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;

  bool ZeroInit = E->requiresZeroInitialization();
  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
    // If we've already performed zero-initialization, we're already done.
    if (Result.hasValue())
      return true;

    if (ZeroInit)
      return ZeroInitialization(E, T);

    return getDefaultInitValue(T, Result);
  }

  const FunctionDecl *Definition = nullptr;
  auto Body = FD->getBody(Definition);

  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
    return false;

  // Avoid materializing a temporary for an elidable copy/move constructor.
  if (E->isElidable() && !ZeroInit) {
    // FIXME: This only handles the simplest case, where the source object
    //        is passed directly as the first argument to the constructor.
    //        This should also handle stepping though implicit casts and
    //        and conversion sequences which involve two steps, with a
    //        conversion operator followed by a converting constructor.
    const Expr *SrcObj = E->getArg(0);
    assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent()));
    assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
    if (const MaterializeTemporaryExpr *ME =
            dyn_cast<MaterializeTemporaryExpr>(SrcObj))
      return Visit(ME->getSubExpr());
  }

  if (ZeroInit && !ZeroInitialization(E, T))
    return false;

  auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
  return HandleConstructorCall(E, This, Args,
                               cast<CXXConstructorDecl>(Definition), Info,
                               Result);
}

bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
    const CXXInheritedCtorInitExpr *E) {
  if (!Info.CurrentCall) {
    assert(Info.checkingPotentialConstantExpression());
    return false;
  }

  const CXXConstructorDecl *FD = E->getConstructor();
  if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
    return false;

  const FunctionDecl *Definition = nullptr;
  auto Body = FD->getBody(Definition);

  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
    return false;

  return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
                               cast<CXXConstructorDecl>(Definition), Info,
                               Result);
}

bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
    const CXXStdInitializerListExpr *E) {
  const ConstantArrayType *ArrayType =
      Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());

  LValue Array;
  if (!EvaluateLValue(E->getSubExpr(), Array, Info))
    return false;

  // Get a pointer to the first element of the array.
  Array.addArray(Info, E, ArrayType);

  auto InvalidType = [&] {
    Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
      << E->getType();
    return false;
  };

  // FIXME: Perform the checks on the field types in SemaInit.
  RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
  RecordDecl::field_iterator Field = Record->field_begin();
  if (Field == Record->field_end())
    return InvalidType();

  // Start pointer.
  if (!Field->getType()->isPointerType() ||
      !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
                            ArrayType->getElementType()))
    return InvalidType();

  // FIXME: What if the initializer_list type has base classes, etc?
  Result = APValue(APValue::UninitStruct(), 0, 2);
  Array.moveInto(Result.getStructField(0));

  if (++Field == Record->field_end())
    return InvalidType();

  if (Field->getType()->isPointerType() &&
      Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
                           ArrayType->getElementType())) {
    // End pointer.
    if (!HandleLValueArrayAdjustment(Info, E, Array,
                                     ArrayType->getElementType(),
                                     ArrayType->getSize().getZExtValue()))
      return false;
    Array.moveInto(Result.getStructField(1));
  } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
    // Length.
    Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
  else
    return InvalidType();

  if (++Field != Record->field_end())
    return InvalidType();

  return true;
}

bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
  const CXXRecordDecl *ClosureClass = E->getLambdaClass();
  if (ClosureClass->isInvalidDecl())
    return false;

  const size_t NumFields =
      std::distance(ClosureClass->field_begin(), ClosureClass->field_end());

  assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
                                            E->capture_init_end()) &&
         "The number of lambda capture initializers should equal the number of "
         "fields within the closure type");

  Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
  // Iterate through all the lambda's closure object's fields and initialize
  // them.
  auto *CaptureInitIt = E->capture_init_begin();
  const LambdaCapture *CaptureIt = ClosureClass->captures_begin();
  bool Success = true;
  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass);
  for (const auto *Field : ClosureClass->fields()) {
    assert(CaptureInitIt != E->capture_init_end());
    // Get the initializer for this field
    Expr *const CurFieldInit = *CaptureInitIt++;

    // If there is no initializer, either this is a VLA or an error has
    // occurred.
    if (!CurFieldInit)
      return Error(E);

    LValue Subobject = This;

    if (!HandleLValueMember(Info, E, Subobject, Field, &Layout))
      return false;

    APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
    if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) {
      if (!Info.keepEvaluatingAfterFailure())
        return false;
      Success = false;
    }
    ++CaptureIt;
  }
  return Success;
}

static bool EvaluateRecord(const Expr *E, const LValue &This,
                           APValue &Result, EvalInfo &Info) {
  assert(!E->isValueDependent());
  assert(E->isPRValue() && E->getType()->isRecordType() &&
         "can't evaluate expression as a record rvalue");
  return RecordExprEvaluator(Info, This, Result).Visit(E);
}

//===----------------------------------------------------------------------===//
// Temporary Evaluation
//
// Temporaries are represented in the AST as rvalues, but generally behave like
// lvalues. The full-object of which the temporary is a subobject is implicitly
// materialized so that a reference can bind to it.
//===----------------------------------------------------------------------===//
namespace {
class TemporaryExprEvaluator
  : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
public:
  TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
    LValueExprEvaluatorBaseTy(Info, Result, false) {}

  /// Visit an expression which constructs the value of this temporary.
  bool VisitConstructExpr(const Expr *E) {
    APValue &Value = Info.CurrentCall->createTemporary(
        E, E->getType(), ScopeKind::FullExpression, Result);
    return EvaluateInPlace(Value, Info, Result, E);
  }

  bool VisitCastExpr(const CastExpr *E) {
    switch (E->getCastKind()) {
    default:
      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);

    case CK_ConstructorConversion:
      return VisitConstructExpr(E->getSubExpr());
    }
  }
  bool VisitInitListExpr(const InitListExpr *E) {
    return VisitConstructExpr(E);
  }
  bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
    return VisitConstructExpr(E);
  }
  bool VisitCallExpr(const CallExpr *E) {
    return VisitConstructExpr(E);
  }
  bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
    return VisitConstructExpr(E);
  }
  bool VisitLambdaExpr(const LambdaExpr *E) {
    return VisitConstructExpr(E);
  }
};
} // end anonymous namespace

/// Evaluate an expression of record type as a temporary.
static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
  assert(!E->isValueDependent());
  assert(E->isPRValue() && E->getType()->isRecordType());
  return TemporaryExprEvaluator(Info, Result).Visit(E);
}

//===----------------------------------------------------------------------===//
// Vector Evaluation
//===----------------------------------------------------------------------===//

namespace {
  class VectorExprEvaluator
  : public ExprEvaluatorBase<VectorExprEvaluator> {
    APValue &Result;
  public:

    VectorExprEvaluator(EvalInfo &info, APValue &Result)
      : ExprEvaluatorBaseTy(info), Result(Result) {}

    bool Success(ArrayRef<APValue> V, const Expr *E) {
      assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
      // FIXME: remove this APValue copy.
      Result = APValue(V.data(), V.size());
      return true;
    }
    bool Success(const APValue &V, const Expr *E) {
      assert(V.isVector());
      Result = V;
      return true;
    }
    bool ZeroInitialization(const Expr *E);

    bool VisitUnaryReal(const UnaryOperator *E)
      { return Visit(E->getSubExpr()); }
    bool VisitCastExpr(const CastExpr* E);
    bool VisitInitListExpr(const InitListExpr *E);
    bool VisitUnaryImag(const UnaryOperator *E);
    bool VisitBinaryOperator(const BinaryOperator *E);
    bool VisitUnaryOperator(const UnaryOperator *E);
    // FIXME: Missing: conditional operator (for GNU
    //                 conditional select), shufflevector, ExtVectorElementExpr
  };
} // end anonymous namespace

static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
  assert(E->isPRValue() && E->getType()->isVectorType() &&
         "not a vector prvalue");
  return VectorExprEvaluator(Info, Result).Visit(E);
}

bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
  const VectorType *VTy = E->getType()->castAs<VectorType>();
  unsigned NElts = VTy->getNumElements();

  const Expr *SE = E->getSubExpr();
  QualType SETy = SE->getType();

  switch (E->getCastKind()) {
  case CK_VectorSplat: {
    APValue Val = APValue();
    if (SETy->isIntegerType()) {
      APSInt IntResult;
      if (!EvaluateInteger(SE, IntResult, Info))
        return false;
      Val = APValue(std::move(IntResult));
    } else if (SETy->isRealFloatingType()) {
      APFloat FloatResult(0.0);
      if (!EvaluateFloat(SE, FloatResult, Info))
        return false;
      Val = APValue(std::move(FloatResult));
    } else {
      return Error(E);
    }

    // Splat and create vector APValue.
    SmallVector<APValue, 4> Elts(NElts, Val);
    return Success(Elts, E);
  }
  case CK_BitCast: {
    // Evaluate the operand into an APInt we can extract from.
    llvm::APInt SValInt;
    if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
      return false;
    // Extract the elements
    QualType EltTy = VTy->getElementType();
    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
    SmallVector<APValue, 4> Elts;
    if (EltTy->isRealFloatingType()) {
      const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
      unsigned FloatEltSize = EltSize;
      if (&Sem == &APFloat::x87DoubleExtended())
        FloatEltSize = 80;
      for (unsigned i = 0; i < NElts; i++) {
        llvm::APInt Elt;
        if (BigEndian)
          Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
        else
          Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
        Elts.push_back(APValue(APFloat(Sem, Elt)));
      }
    } else if (EltTy->isIntegerType()) {
      for (unsigned i = 0; i < NElts; i++) {
        llvm::APInt Elt;
        if (BigEndian)
          Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
        else
          Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
        Elts.push_back(APValue(APSInt(Elt, !EltTy->isSignedIntegerType())));
      }
    } else {
      return Error(E);
    }
    return Success(Elts, E);
  }
  default:
    return ExprEvaluatorBaseTy::VisitCastExpr(E);
  }
}

bool
VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
  const VectorType *VT = E->getType()->castAs<VectorType>();
  unsigned NumInits = E->getNumInits();
  unsigned NumElements = VT->getNumElements();

  QualType EltTy = VT->getElementType();
  SmallVector<APValue, 4> Elements;

  // The number of initializers can be less than the number of
  // vector elements. For OpenCL, this can be due to nested vector
  // initialization. For GCC compatibility, missing trailing elements
  // should be initialized with zeroes.
  unsigned CountInits = 0, CountElts = 0;
  while (CountElts < NumElements) {
    // Handle nested vector initialization.
    if (CountInits < NumInits
        && E->getInit(CountInits)->getType()->isVectorType()) {
      APValue v;
      if (!EvaluateVector(E->getInit(CountInits), v, Info))
        return Error(E);
      unsigned vlen = v.getVectorLength();
      for (unsigned j = 0; j < vlen; j++)
        Elements.push_back(v.getVectorElt(j));
      CountElts += vlen;
    } else if (EltTy->isIntegerType()) {
      llvm::APSInt sInt(32);
      if (CountInits < NumInits) {
        if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
          return false;
      } else // trailing integer zero.
        sInt = Info.Ctx.MakeIntValue(0, EltTy);
      Elements.push_back(APValue(sInt));
      CountElts++;
    } else {
      llvm::APFloat f(0.0);
      if (CountInits < NumInits) {
        if (!EvaluateFloat(E->getInit(CountInits), f, Info))
          return false;
      } else // trailing float zero.
        f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
      Elements.push_back(APValue(f));
      CountElts++;
    }
    CountInits++;
  }
  return Success(Elements, E);
}

bool
VectorExprEvaluator::ZeroInitialization(const Expr *E) {
  const auto *VT = E->getType()->castAs<VectorType>();
  QualType EltTy = VT->getElementType();
  APValue ZeroElement;
  if (EltTy->isIntegerType())
    ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
  else
    ZeroElement =
        APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));

  SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
  return Success(Elements, E);
}

bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
  VisitIgnoredValue(E->getSubExpr());
  return ZeroInitialization(E);
}

bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
  BinaryOperatorKind Op = E->getOpcode();
  assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&
         "Operation not supported on vector types");

  if (Op == BO_Comma)
    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);

  Expr *LHS = E->getLHS();
  Expr *RHS = E->getRHS();

  assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&
         "Must both be vector types");
  // Checking JUST the types are the same would be fine, except shifts don't
  // need to have their types be the same (since you always shift by an int).
  assert(LHS->getType()->castAs<VectorType>()->getNumElements() ==
             E->getType()->castAs<VectorType>()->getNumElements() &&
         RHS->getType()->castAs<VectorType>()->getNumElements() ==
             E->getType()->castAs<VectorType>()->getNumElements() &&
         "All operands must be the same size.");

  APValue LHSValue;
  APValue RHSValue;
  bool LHSOK = Evaluate(LHSValue, Info, LHS);
  if (!LHSOK && !Info.noteFailure())
    return false;
  if (!Evaluate(RHSValue, Info, RHS) || !LHSOK)
    return false;

  if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue))
    return false;

  return Success(LHSValue, E);
}

static llvm::Optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx,
                                                         QualType ResultTy,
                                                         UnaryOperatorKind Op,
                                                         APValue Elt) {
  switch (Op) {
  case UO_Plus:
    // Nothing to do here.
    return Elt;
  case UO_Minus:
    if (Elt.getKind() == APValue::Int) {
      Elt.getInt().negate();
    } else {
      assert(Elt.getKind() == APValue::Float &&
             "Vector can only be int or float type");
      Elt.getFloat().changeSign();
    }
    return Elt;
  case UO_Not:
    // This is only valid for integral types anyway, so we don't have to handle
    // float here.
    assert(Elt.getKind() == APValue::Int &&
           "Vector operator ~ can only be int");
    Elt.getInt().flipAllBits();
    return Elt;
  case UO_LNot: {
    if (Elt.getKind() == APValue::Int) {
      Elt.getInt() = !Elt.getInt();
      // operator ! on vectors returns -1 for 'truth', so negate it.
      Elt.getInt().negate();
      return Elt;
    }
    assert(Elt.getKind() == APValue::Float &&
           "Vector can only be int or float type");
    // Float types result in an int of the same size, but -1 for true, or 0 for
    // false.
    APSInt EltResult{Ctx.getIntWidth(ResultTy),
                     ResultTy->isUnsignedIntegerType()};
    if (Elt.getFloat().isZero())
      EltResult.setAllBits();
    else
      EltResult.clearAllBits();

    return APValue{EltResult};
  }
  default:
    // FIXME: Implement the rest of the unary operators.
    return llvm::None;
  }
}

bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
  Expr *SubExpr = E->getSubExpr();
  const auto *VD = SubExpr->getType()->castAs<VectorType>();
  // This result element type differs in the case of negating a floating point
  // vector, since the result type is the a vector of the equivilant sized
  // integer.
  const QualType ResultEltTy = VD->getElementType();
  UnaryOperatorKind Op = E->getOpcode();

  APValue SubExprValue;
  if (!Evaluate(SubExprValue, Info, SubExpr))
    return false;

  // FIXME: This vector evaluator someday needs to be changed to be LValue
  // aware/keep LValue information around, rather than dealing with just vector
  // types directly. Until then, we cannot handle cases where the operand to
  // these unary operators is an LValue. The only case I've been able to see
  // cause this is operator++ assigning to a member expression (only valid in
  // altivec compilations) in C mode, so this shouldn't limit us too much.
  if (SubExprValue.isLValue())
    return false;

  assert(SubExprValue.getVectorLength() == VD->getNumElements() &&
         "Vector length doesn't match type?");

  SmallVector<APValue, 4> ResultElements;
  for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) {
    llvm::Optional<APValue> Elt = handleVectorUnaryOperator(
        Info.Ctx, ResultEltTy, Op, SubExprValue.getVectorElt(EltNum));
    if (!Elt)
      return false;
    ResultElements.push_back(*Elt);
  }
  return Success(APValue(ResultElements.data(), ResultElements.size()), E);
}

//===----------------------------------------------------------------------===//
// Array Evaluation
//===----------------------------------------------------------------------===//

namespace {
  class ArrayExprEvaluator
  : public ExprEvaluatorBase<ArrayExprEvaluator> {
    const LValue &This;
    APValue &Result;
  public:

    ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
      : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}

    bool Success(const APValue &V, const Expr *E) {
      assert(V.isArray() && "expected array");
      Result = V;
      return true;
    }

    bool ZeroInitialization(const Expr *E) {
      const ConstantArrayType *CAT =
          Info.Ctx.getAsConstantArrayType(E->getType());
      if (!CAT) {
        if (E->getType()->isIncompleteArrayType()) {
          // We can be asked to zero-initialize a flexible array member; this
          // is represented as an ImplicitValueInitExpr of incomplete array
          // type. In this case, the array has zero elements.
          Result = APValue(APValue::UninitArray(), 0, 0);
          return true;
        }
        // FIXME: We could handle VLAs here.
        return Error(E);
      }

      Result = APValue(APValue::UninitArray(), 0,
                       CAT->getSize().getZExtValue());
      if (!Result.hasArrayFiller())
        return true;

      // Zero-initialize all elements.
      LValue Subobject = This;
      Subobject.addArray(Info, E, CAT);
      ImplicitValueInitExpr VIE(CAT->getElementType());
      return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
    }

    bool VisitCallExpr(const CallExpr *E) {
      return handleCallExpr(E, Result, &This);
    }
    bool VisitInitListExpr(const InitListExpr *E,
                           QualType AllocType = QualType());
    bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
    bool VisitCXXConstructExpr(const CXXConstructExpr *E,
                               const LValue &Subobject,
                               APValue *Value, QualType Type);
    bool VisitStringLiteral(const StringLiteral *E,
                            QualType AllocType = QualType()) {
      expandStringLiteral(Info, E, Result, AllocType);
      return true;
    }
  };
} // end anonymous namespace

static bool EvaluateArray(const Expr *E, const LValue &This,
                          APValue &Result, EvalInfo &Info) {
  assert(!E->isValueDependent());
  assert(E->isPRValue() && E->getType()->isArrayType() &&
         "not an array prvalue");
  return ArrayExprEvaluator(Info, This, Result).Visit(E);
}

static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
                                     APValue &Result, const InitListExpr *ILE,
                                     QualType AllocType) {
  assert(!ILE->isValueDependent());
  assert(ILE->isPRValue() && ILE->getType()->isArrayType() &&
         "not an array prvalue");
  return ArrayExprEvaluator(Info, This, Result)
      .VisitInitListExpr(ILE, AllocType);
}

static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
                                          APValue &Result,
                                          const CXXConstructExpr *CCE,
                                          QualType AllocType) {
  assert(!CCE->isValueDependent());
  assert(CCE->isPRValue() && CCE->getType()->isArrayType() &&
         "not an array prvalue");
  return ArrayExprEvaluator(Info, This, Result)
      .VisitCXXConstructExpr(CCE, This, &Result, AllocType);
}

// Return true iff the given array filler may depend on the element index.
static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
  // For now, just allow non-class value-initialization and initialization
  // lists comprised of them.
  if (isa<ImplicitValueInitExpr>(FillerExpr))
    return false;
  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
    for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
      if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
        return true;
    }
    return false;
  }
  return true;
}

bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
                                           QualType AllocType) {
  const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
      AllocType.isNull() ? E->getType() : AllocType);
  if (!CAT)
    return Error(E);

  // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
  // an appropriately-typed string literal enclosed in braces.
  if (E->isStringLiteralInit()) {
    auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParenImpCasts());
    // FIXME: Support ObjCEncodeExpr here once we support it in
    // ArrayExprEvaluator generally.
    if (!SL)
      return Error(E);
    return VisitStringLiteral(SL, AllocType);
  }
  // Any other transparent list init will need proper handling of the
  // AllocType; we can't just recurse to the inner initializer.
  assert(!E->isTransparent() &&
         "transparent array list initialization is not string literal init?");

  bool Success = true;

  assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
         "zero-initialized array shouldn't have any initialized elts");
  APValue Filler;
  if (Result.isArray() && Result.hasArrayFiller())
    Filler = Result.getArrayFiller();

  unsigned NumEltsToInit = E->getNumInits();
  unsigned NumElts = CAT->getSize().getZExtValue();
  const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;

  // If the initializer might depend on the array index, run it for each
  // array element.
  if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr))
    NumEltsToInit = NumElts;

  LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
                          << NumEltsToInit << ".\n");

  Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);

  // If the array was previously zero-initialized, preserve the
  // zero-initialized values.
  if (Filler.hasValue()) {
    for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
      Result.getArrayInitializedElt(I) = Filler;
    if (Result.hasArrayFiller())
      Result.getArrayFiller() = Filler;
  }

  LValue Subobject = This;
  Subobject.addArray(Info, E, CAT);
  for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
    const Expr *Init =
        Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
    if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
                         Info, Subobject, Init) ||
        !HandleLValueArrayAdjustment(Info, Init, Subobject,
                                     CAT->getElementType(), 1)) {
      if (!Info.noteFailure())
        return false;
      Success = false;
    }
  }

  if (!Result.hasArrayFiller())
    return Success;

  // If we get here, we have a trivial filler, which we can just evaluate
  // once and splat over the rest of the array elements.
  assert(FillerExpr && "no array filler for incomplete init list");
  return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
                         FillerExpr) && Success;
}

bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
  LValue CommonLV;
  if (E->getCommonExpr() &&
      !Evaluate(Info.CurrentCall->createTemporary(
                    E->getCommonExpr(),
                    getStorageType(Info.Ctx, E->getCommonExpr()),
                    ScopeKind::FullExpression, CommonLV),
                Info, E->getCommonExpr()->getSourceExpr()))
    return false;

  auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());

  uint64_t Elements = CAT->getSize().getZExtValue();
  Result = APValue(APValue::UninitArray(), Elements, Elements);

  LValue Subobject = This;
  Subobject.addArray(Info, E, CAT);

  bool Success = true;
  for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
    if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
                         Info, Subobject, E->getSubExpr()) ||
        !HandleLValueArrayAdjustment(Info, E, Subobject,
                                     CAT->getElementType(), 1)) {
      if (!Info.noteFailure())
        return false;
      Success = false;
    }
  }

  return Success;
}

bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
  return VisitCXXConstructExpr(E, This, &Result, E->getType());
}

bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
                                               const LValue &Subobject,
                                               APValue *Value,
                                               QualType Type) {
  bool HadZeroInit = Value->hasValue();

  if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
    unsigned FinalSize = CAT->getSize().getZExtValue();

    // Preserve the array filler if we had prior zero-initialization.
    APValue Filler =
      HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
                                             : APValue();

    *Value = APValue(APValue::UninitArray(), 0, FinalSize);
    if (FinalSize == 0)
      return true;

    LValue ArrayElt = Subobject;
    ArrayElt.addArray(Info, E, CAT);
    // We do the whole initialization in two passes, first for just one element,
    // then for the whole array. It's possible we may find out we can't do const
    // init in the first pass, in which case we avoid allocating a potentially
    // large array. We don't do more passes because expanding array requires
    // copying the data, which is wasteful.
    for (const unsigned N : {1u, FinalSize}) {
      unsigned OldElts = Value->getArrayInitializedElts();
      if (OldElts == N)
        break;

      // Expand the array to appropriate size.
      APValue NewValue(APValue::UninitArray(), N, FinalSize);
      for (unsigned I = 0; I < OldElts; ++I)
        NewValue.getArrayInitializedElt(I).swap(
            Value->getArrayInitializedElt(I));
      Value->swap(NewValue);

      if (HadZeroInit)
        for (unsigned I = OldElts; I < N; ++I)
          Value->getArrayInitializedElt(I) = Filler;

      // Initialize the elements.
      for (unsigned I = OldElts; I < N; ++I) {
        if (!VisitCXXConstructExpr(E, ArrayElt,
                                   &Value->getArrayInitializedElt(I),
                                   CAT->getElementType()) ||
            !HandleLValueArrayAdjustment(Info, E, ArrayElt,
                                         CAT->getElementType(), 1))
          return false;
        // When checking for const initilization any diagnostic is considered
        // an error.
        if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() &&
            !Info.keepEvaluatingAfterFailure())
          return false;
      }
    }

    return true;
  }

  if (!Type->isRecordType())
    return Error(E);

  return RecordExprEvaluator(Info, Subobject, *Value)
             .VisitCXXConstructExpr(E, Type);
}

//===----------------------------------------------------------------------===//
// Integer Evaluation
//
// As a GNU extension, we support casting pointers to sufficiently-wide integer
// types and back in constant folding. Integer values are thus represented
// either as an integer-valued APValue, or as an lvalue-valued APValue.
//===----------------------------------------------------------------------===//

namespace {
class IntExprEvaluator
        : public ExprEvaluatorBase<IntExprEvaluator> {
  APValue &Result;
public:
  IntExprEvaluator(EvalInfo &info, APValue &result)
      : ExprEvaluatorBaseTy(info), Result(result) {}

  bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
    assert(E->getType()->isIntegralOrEnumerationType() &&
           "Invalid evaluation result.");
    assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
           "Invalid evaluation result.");
    assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
           "Invalid evaluation result.");
    Result = APValue(SI);
    return true;
  }
  bool Success(const llvm::APSInt &SI, const Expr *E) {
    return Success(SI, E, Result);
  }

  bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
    assert(E->getType()->isIntegralOrEnumerationType() &&
           "Invalid evaluation result.");
    assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
           "Invalid evaluation result.");
    Result = APValue(APSInt(I));
    Result.getInt().setIsUnsigned(
                            E->getType()->isUnsignedIntegerOrEnumerationType());
    return true;
  }
  bool Success(const llvm::APInt &I, const Expr *E) {
    return Success(I, E, Result);
  }

  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
    assert(E->getType()->isIntegralOrEnumerationType() &&
           "Invalid evaluation result.");
    Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
    return true;
  }
  bool Success(uint64_t Value, const Expr *E) {
    return Success(Value, E, Result);
  }

  bool Success(CharUnits Size, const Expr *E) {
    return Success(Size.getQuantity(), E);
  }

  bool Success(const APValue &V, const Expr *E) {
    if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
      Result = V;
      return true;
    }
    return Success(V.getInt(), E);
  }

  bool ZeroInitialization(const Expr *E) { return Success(0, E); }

  //===--------------------------------------------------------------------===//
  //                            Visitor Methods
  //===--------------------------------------------------------------------===//

  bool VisitIntegerLiteral(const IntegerLiteral *E) {
    return Success(E->getValue(), E);
  }
  bool VisitCharacterLiteral(const CharacterLiteral *E) {
    return Success(E->getValue(), E);
  }

  bool CheckReferencedDecl(const Expr *E, const Decl *D);
  bool VisitDeclRefExpr(const DeclRefExpr *E) {
    if (CheckReferencedDecl(E, E->getDecl()))
      return true;

    return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
  }
  bool VisitMemberExpr(const MemberExpr *E) {
    if (CheckReferencedDecl(E, E->getMemberDecl())) {
      VisitIgnoredBaseExpression(E->getBase());
      return true;
    }

    return ExprEvaluatorBaseTy::VisitMemberExpr(E);
  }

  bool VisitCallExpr(const CallExpr *E);
  bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
  bool VisitBinaryOperator(const BinaryOperator *E);
  bool VisitOffsetOfExpr(const OffsetOfExpr *E);
  bool VisitUnaryOperator(const UnaryOperator *E);

  bool VisitCastExpr(const CastExpr* E);
  bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);

  bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
    return Success(E->getValue(), E);
  }

  bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
    return Success(E->getValue(), E);
  }

  bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
    if (Info.ArrayInitIndex == uint64_t(-1)) {
      // We were asked to evaluate this subexpression independent of the
      // enclosing ArrayInitLoopExpr. We can't do that.
      Info.FFDiag(E);
      return false;
    }
    return Success(Info.ArrayInitIndex, E);
  }

  // Note, GNU defines __null as an integer, not a pointer.
  bool VisitGNUNullExpr(const GNUNullExpr *E) {
    return ZeroInitialization(E);
  }

  bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
    return Success(E->getValue(), E);
  }

  bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
    return Success(E->getValue(), E);
  }

  bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
    return Success(E->getValue(), E);
  }

  bool VisitUnaryReal(const UnaryOperator *E);
  bool VisitUnaryImag(const UnaryOperator *E);

  bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
  bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
  bool VisitSourceLocExpr(const SourceLocExpr *E);
  bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
  bool VisitRequiresExpr(const RequiresExpr *E);
  // FIXME: Missing: array subscript of vector, member of vector
};

class FixedPointExprEvaluator
    : public ExprEvaluatorBase<FixedPointExprEvaluator> {
  APValue &Result;

 public:
  FixedPointExprEvaluator(EvalInfo &info, APValue &result)
      : ExprEvaluatorBaseTy(info), Result(result) {}

  bool Success(const llvm::APInt &I, const Expr *E) {
    return Success(
        APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
  }

  bool Success(uint64_t Value, const Expr *E) {
    return Success(
        APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
  }

  bool Success(const APValue &V, const Expr *E) {
    return Success(V.getFixedPoint(), E);
  }

  bool Success(const APFixedPoint &V, const Expr *E) {
    assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
    assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
           "Invalid evaluation result.");
    Result = APValue(V);
    return true;
  }

  //===--------------------------------------------------------------------===//
  //                            Visitor Methods
  //===--------------------------------------------------------------------===//

  bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
    return Success(E->getValue(), E);
  }

  bool VisitCastExpr(const CastExpr *E);
  bool VisitUnaryOperator(const UnaryOperator *E);
  bool VisitBinaryOperator(const BinaryOperator *E);
};
} // end anonymous namespace

/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
/// produce either the integer value or a pointer.
///
/// GCC has a heinous extension which folds casts between pointer types and
/// pointer-sized integral types. We support this by allowing the evaluation of
/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
/// Some simple arithmetic on such values is supported (they are treated much
/// like char*).
static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
                                    EvalInfo &Info) {
  assert(!E->isValueDependent());
  assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType());
  return IntExprEvaluator(Info, Result).Visit(E);
}

static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
  assert(!E->isValueDependent());
  APValue Val;
  if (!EvaluateIntegerOrLValue(E, Val, Info))
    return false;
  if (!Val.isInt()) {
    // FIXME: It would be better to produce the diagnostic for casting
    //        a pointer to an integer.
    Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
    return false;
  }
  Result = Val.getInt();
  return true;
}

bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
  APValue Evaluated = E->EvaluateInContext(
      Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
  return Success(Evaluated, E);
}

static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
                               EvalInfo &Info) {
  assert(!E->isValueDependent());
  if (E->getType()->isFixedPointType()) {
    APValue Val;
    if (!FixedPointExprEvaluator(Info, Val).Visit(E))
      return false;
    if (!Val.isFixedPoint())
      return false;

    Result = Val.getFixedPoint();
    return true;
  }
  return false;
}

static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
                                        EvalInfo &Info) {
  assert(!E->isValueDependent());
  if (E->getType()->isIntegerType()) {
    auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
    APSInt Val;
    if (!EvaluateInteger(E, Val, Info))
      return false;
    Result = APFixedPoint(Val, FXSema);
    return true;
  } else if (E->getType()->isFixedPointType()) {
    return EvaluateFixedPoint(E, Result, Info);
  }
  return false;
}

/// Check whether the given declaration can be directly converted to an integral
/// rvalue. If not, no diagnostic is produced; there are other things we can
/// try.
bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
  // Enums are integer constant exprs.
  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
    // Check for signedness/width mismatches between E type and ECD value.
    bool SameSign = (ECD->getInitVal().isSigned()
                     == E->getType()->isSignedIntegerOrEnumerationType());
    bool SameWidth = (ECD->getInitVal().getBitWidth()
                      == Info.Ctx.getIntWidth(E->getType()));
    if (SameSign && SameWidth)
      return Success(ECD->getInitVal(), E);
    else {
      // Get rid of mismatch (otherwise Success assertions will fail)
      // by computing a new value matching the type of E.
      llvm::APSInt Val = ECD->getInitVal();
      if (!SameSign)
        Val.setIsSigned(!ECD->getInitVal().isSigned());
      if (!SameWidth)
        Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
      return Success(Val, E);
    }
  }
  return false;
}

/// Values returned by __builtin_classify_type, chosen to match the values
/// produced by GCC's builtin.
enum class GCCTypeClass {
  None = -1,
  Void = 0,
  Integer = 1,
  // GCC reserves 2 for character types, but instead classifies them as
  // integers.
  Enum = 3,
  Bool = 4,
  Pointer = 5,
  // GCC reserves 6 for references, but appears to never use it (because
  // expressions never have reference type, presumably).
  PointerToDataMember = 7,
  RealFloat = 8,
  Complex = 9,
  // GCC reserves 10 for functions, but does not use it since GCC version 6 due
  // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
  // GCC claims to reserve 11 for pointers to member functions, but *actually*
  // uses 12 for that purpose, same as for a class or struct. Maybe it
  // internally implements a pointer to member as a struct?  Who knows.
  PointerToMemberFunction = 12, // Not a bug, see above.
  ClassOrStruct = 12,
  Union = 13,
  // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
  // decay to pointer. (Prior to version 6 it was only used in C++ mode).
  // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
  // literals.
};

/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
/// as GCC.
static GCCTypeClass
EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
  assert(!T->isDependentType() && "unexpected dependent type");

  QualType CanTy = T.getCanonicalType();
  const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);

  switch (CanTy->getTypeClass()) {
#define TYPE(ID, BASE)
#define DEPENDENT_TYPE(ID, BASE) case Type::ID:
#define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
#include "clang/AST/TypeNodes.inc"
  case Type::Auto:
  case Type::DeducedTemplateSpecialization:
      llvm_unreachable("unexpected non-canonical or dependent type");

  case Type::Builtin:
    switch (BT->getKind()) {
#define BUILTIN_TYPE(ID, SINGLETON_ID)
#define SIGNED_TYPE(ID, SINGLETON_ID) \
    case BuiltinType::ID: return GCCTypeClass::Integer;
#define FLOATING_TYPE(ID, SINGLETON_ID) \
    case BuiltinType::ID: return GCCTypeClass::RealFloat;
#define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
    case BuiltinType::ID: break;
#include "clang/AST/BuiltinTypes.def"
    case BuiltinType::Void:
      return GCCTypeClass::Void;

    case BuiltinType::Bool:
      return GCCTypeClass::Bool;

    case BuiltinType::Char_U:
    case BuiltinType::UChar:
    case BuiltinType::WChar_U:
    case BuiltinType::Char8:
    case BuiltinType::Char16:
    case BuiltinType::Char32:
    case BuiltinType::UShort:
    case BuiltinType::UInt:
    case BuiltinType::ULong:
    case BuiltinType::ULongLong:
    case BuiltinType::UInt128:
      return GCCTypeClass::Integer;

    case BuiltinType::UShortAccum:
    case BuiltinType::UAccum:
    case BuiltinType::ULongAccum:
    case BuiltinType::UShortFract:
    case BuiltinType::UFract:
    case BuiltinType::ULongFract:
    case BuiltinType::SatUShortAccum:
    case BuiltinType::SatUAccum:
    case BuiltinType::SatULongAccum:
    case BuiltinType::SatUShortFract:
    case BuiltinType::SatUFract:
    case BuiltinType::SatULongFract:
      return GCCTypeClass::None;

    case BuiltinType::NullPtr:

    case BuiltinType::ObjCId:
    case BuiltinType::ObjCClass:
    case BuiltinType::ObjCSel:
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
    case BuiltinType::Id:
#include "clang/Basic/OpenCLImageTypes.def"
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
    case BuiltinType::Id:
#include "clang/Basic/OpenCLExtensionTypes.def"
    case BuiltinType::OCLSampler:
    case BuiltinType::OCLEvent:
    case BuiltinType::OCLClkEvent:
    case BuiltinType::OCLQueue:
    case BuiltinType::OCLReserveID:
#define SVE_TYPE(Name, Id, SingletonId) \
    case BuiltinType::Id:
#include "clang/Basic/AArch64SVEACLETypes.def"
#define PPC_VECTOR_TYPE(Name, Id, Size) \
    case BuiltinType::Id:
#include "clang/Basic/PPCTypes.def"
#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
#include "clang/Basic/RISCVVTypes.def"
      return GCCTypeClass::None;

    case BuiltinType::Dependent:
      llvm_unreachable("unexpected dependent type");
    };
    llvm_unreachable("unexpected placeholder type");

  case Type::Enum:
    return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;

  case Type::Pointer:
  case Type::ConstantArray:
  case Type::VariableArray:
  case Type::IncompleteArray:
  case Type::FunctionNoProto:
  case Type::FunctionProto:
    return GCCTypeClass::Pointer;

  case Type::MemberPointer:
    return CanTy->isMemberDataPointerType()
               ? GCCTypeClass::PointerToDataMember
               : GCCTypeClass::PointerToMemberFunction;

  case Type::Complex:
    return GCCTypeClass::Complex;

  case Type::Record:
    return CanTy->isUnionType() ? GCCTypeClass::Union
                                : GCCTypeClass::ClassOrStruct;

  case Type::Atomic:
    // GCC classifies _Atomic T the same as T.
    return EvaluateBuiltinClassifyType(
        CanTy->castAs<AtomicType>()->getValueType(), LangOpts);

  case Type::BlockPointer:
  case Type::Vector:
  case Type::ExtVector:
  case Type::ConstantMatrix:
  case Type::ObjCObject:
  case Type::ObjCInterface:
  case Type::ObjCObjectPointer:
  case Type::Pipe:
  case Type::BitInt:
    // GCC classifies vectors as None. We follow its lead and classify all
    // other types that don't fit into the regular classification the same way.
    return GCCTypeClass::None;

  case Type::LValueReference:
  case Type::RValueReference:
    llvm_unreachable("invalid type for expression");
  }

  llvm_unreachable("unexpected type class");
}

/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
/// as GCC.
static GCCTypeClass
EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
  // If no argument was supplied, default to None. This isn't
  // ideal, however it is what gcc does.
  if (E->getNumArgs() == 0)
    return GCCTypeClass::None;

  // FIXME: Bizarrely, GCC treats a call with more than one argument as not
  // being an ICE, but still folds it to a constant using the type of the first
  // argument.
  return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
}

/// EvaluateBuiltinConstantPForLValue - Determine the result of
/// __builtin_constant_p when applied to the given pointer.
///
/// A pointer is only "constant" if it is null (or a pointer cast to integer)
/// or it points to the first character of a string literal.
static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
  APValue::LValueBase Base = LV.getLValueBase();
  if (Base.isNull()) {
    // A null base is acceptable.
    return true;
  } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
    if (!isa<StringLiteral>(E))
      return false;
    return LV.getLValueOffset().isZero();
  } else if (Base.is<TypeInfoLValue>()) {
    // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
    // evaluate to true.
    return true;
  } else {
    // Any other base is not constant enough for GCC.
    return false;
  }
}

/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
/// GCC as we can manage.
static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
  // This evaluation is not permitted to have side-effects, so evaluate it in
  // a speculative evaluation context.
  SpeculativeEvaluationRAII SpeculativeEval(Info);

  // Constant-folding is always enabled for the operand of __builtin_constant_p
  // (even when the enclosing evaluation context otherwise requires a strict
  // language-specific constant expression).
  FoldConstant Fold(Info, true);

  QualType ArgType = Arg->getType();

  // __builtin_constant_p always has one operand. The rules which gcc follows
  // are not precisely documented, but are as follows:
  //
  //  - If the operand is of integral, floating, complex or enumeration type,
  //    and can be folded to a known value of that type, it returns 1.
  //  - If the operand can be folded to a pointer to the first character
  //    of a string literal (or such a pointer cast to an integral type)
  //    or to a null pointer or an integer cast to a pointer, it returns 1.
  //
  // Otherwise, it returns 0.
  //
  // FIXME: GCC also intends to return 1 for literals of aggregate types, but
  // its support for this did not work prior to GCC 9 and is not yet well
  // understood.
  if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
      ArgType->isAnyComplexType() || ArgType->isPointerType() ||
      ArgType->isNullPtrType()) {
    APValue V;
    if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) {
      Fold.keepDiagnostics();
      return false;
    }

    // For a pointer (possibly cast to integer), there are special rules.
    if (V.getKind() == APValue::LValue)
      return EvaluateBuiltinConstantPForLValue(V);

    // Otherwise, any constant value is good enough.
    return V.hasValue();
  }

  // Anything else isn't considered to be sufficiently constant.
  return false;
}

/// Retrieves the "underlying object type" of the given expression,
/// as used by __builtin_object_size.
static QualType getObjectType(APValue::LValueBase B) {
  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
      return VD->getType();
  } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
    if (isa<CompoundLiteralExpr>(E))
      return E->getType();
  } else if (B.is<TypeInfoLValue>()) {
    return B.getTypeInfoType();
  } else if (B.is<DynamicAllocLValue>()) {
    return B.getDynamicAllocType();
  }

  return QualType();
}

/// A more selective version of E->IgnoreParenCasts for
/// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
/// to change the type of E.
/// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
///
/// Always returns an RValue with a pointer representation.
static const Expr *ignorePointerCastsAndParens(const Expr *E) {
  assert(E->isPRValue() && E->getType()->hasPointerRepresentation());

  auto *NoParens = E->IgnoreParens();
  auto *Cast = dyn_cast<CastExpr>(NoParens);
  if (Cast == nullptr)
    return NoParens;

  // We only conservatively allow a few kinds of casts, because this code is
  // inherently a simple solution that seeks to support the common case.
  auto CastKind = Cast->getCastKind();
  if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
      CastKind != CK_AddressSpaceConversion)
    return NoParens;

  auto *SubExpr = Cast->getSubExpr();
  if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue())
    return NoParens;
  return ignorePointerCastsAndParens(SubExpr);
}

/// Checks to see if the given LValue's Designator is at the end of the LValue's
/// record layout. e.g.
///   struct { struct { int a, b; } fst, snd; } obj;
///   obj.fst   // no
///   obj.snd   // yes
///   obj.fst.a // no
///   obj.fst.b // no
///   obj.snd.a // no
///   obj.snd.b // yes
///
/// Please note: this function is specialized for how __builtin_object_size
/// views "objects".
///
/// If this encounters an invalid RecordDecl or otherwise cannot determine the
/// correct result, it will always return true.
static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
  assert(!LVal.Designator.Invalid);

  auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
    const RecordDecl *Parent = FD->getParent();
    Invalid = Parent->isInvalidDecl();
    if (Invalid || Parent->isUnion())
      return true;
    const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
    return FD->getFieldIndex() + 1 == Layout.getFieldCount();
  };

  auto &Base = LVal.getLValueBase();
  if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
    if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
      bool Invalid;
      if (!IsLastOrInvalidFieldDecl(FD, Invalid))
        return Invalid;
    } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
      for (auto *FD : IFD->chain()) {
        bool Invalid;
        if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
          return Invalid;
      }
    }
  }

  unsigned I = 0;
  QualType BaseType = getType(Base);
  if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
    // If we don't know the array bound, conservatively assume we're looking at
    // the final array element.
    ++I;
    if (BaseType->isIncompleteArrayType())
      BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
    else
      BaseType = BaseType->castAs<PointerType>()->getPointeeType();
  }

  for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
    const auto &Entry = LVal.Designator.Entries[I];
    if (BaseType->isArrayType()) {
      // Because __builtin_object_size treats arrays as objects, we can ignore
      // the index iff this is the last array in the Designator.
      if (I + 1 == E)
        return true;
      const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
      uint64_t Index = Entry.getAsArrayIndex();
      if (Index + 1 != CAT->getSize())
        return false;
      BaseType = CAT->getElementType();
    } else if (BaseType->isAnyComplexType()) {
      const auto *CT = BaseType->castAs<ComplexType>();
      uint64_t Index = Entry.getAsArrayIndex();
      if (Index != 1)
        return false;
      BaseType = CT->getElementType();
    } else if (auto *FD = getAsField(Entry)) {
      bool Invalid;
      if (!IsLastOrInvalidFieldDecl(FD, Invalid))
        return Invalid;
      BaseType = FD->getType();
    } else {
      assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
      return false;
    }
  }
  return true;
}

/// Tests to see if the LValue has a user-specified designator (that isn't
/// necessarily valid). Note that this always returns 'true' if the LValue has
/// an unsized array as its first designator entry, because there's currently no
/// way to tell if the user typed *foo or foo[0].
static bool refersToCompleteObject(const LValue &LVal) {
  if (LVal.Designator.Invalid)
    return false;

  if (!LVal.Designator.Entries.empty())
    return LVal.Designator.isMostDerivedAnUnsizedArray();

  if (!LVal.InvalidBase)
    return true;

  // If `E` is a MemberExpr, then the first part of the designator is hiding in
  // the LValueBase.
  const auto *E = LVal.Base.dyn_cast<const Expr *>();
  return !E || !isa<MemberExpr>(E);
}

/// Attempts to detect a user writing into a piece of memory that's impossible
/// to figure out the size of by just using types.
static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
  const SubobjectDesignator &Designator = LVal.Designator;
  // Notes:
  // - Users can only write off of the end when we have an invalid base. Invalid
  //   bases imply we don't know where the memory came from.
  // - We used to be a bit more aggressive here; we'd only be conservative if
  //   the array at the end was flexible, or if it had 0 or 1 elements. This
  //   broke some common standard library extensions (PR30346), but was
  //   otherwise seemingly fine. It may be useful to reintroduce this behavior
  //   with some sort of list. OTOH, it seems that GCC is always
  //   conservative with the last element in structs (if it's an array), so our
  //   current behavior is more compatible than an explicit list approach would
  //   be.
  return LVal.InvalidBase &&
         Designator.Entries.size() == Designator.MostDerivedPathLength &&
         Designator.MostDerivedIsArrayElement &&
         isDesignatorAtObjectEnd(Ctx, LVal);
}

/// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
/// Fails if the conversion would cause loss of precision.
static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
                                            CharUnits &Result) {
  auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
  if (Int.ugt(CharUnitsMax))
    return false;
  Result = CharUnits::fromQuantity(Int.getZExtValue());
  return true;
}

/// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
/// determine how many bytes exist from the beginning of the object to either
/// the end of the current subobject, or the end of the object itself, depending
/// on what the LValue looks like + the value of Type.
///
/// If this returns false, the value of Result is undefined.
static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
                               unsigned Type, const LValue &LVal,
                               CharUnits &EndOffset) {
  bool DetermineForCompleteObject = refersToCompleteObject(LVal);

  auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
    if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
      return false;
    return HandleSizeof(Info, ExprLoc, Ty, Result);
  };

  // We want to evaluate the size of the entire object. This is a valid fallback
  // for when Type=1 and the designator is invalid, because we're asked for an
  // upper-bound.
  if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
    // Type=3 wants a lower bound, so we can't fall back to this.
    if (Type == 3 && !DetermineForCompleteObject)
      return false;

    llvm::APInt APEndOffset;
    if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
        getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
      return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);

    if (LVal.InvalidBase)
      return false;

    QualType BaseTy = getObjectType(LVal.getLValueBase());
    return CheckedHandleSizeof(BaseTy, EndOffset);
  }

  // We want to evaluate the size of a subobject.
  const SubobjectDesignator &Designator = LVal.Designator;

  // The following is a moderately common idiom in C:
  //
  // struct Foo { int a; char c[1]; };
  // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
  // strcpy(&F->c[0], Bar);
  //
  // In order to not break too much legacy code, we need to support it.
  if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
    // If we can resolve this to an alloc_size call, we can hand that back,
    // because we know for certain how many bytes there are to write to.
    llvm::APInt APEndOffset;
    if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
        getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
      return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);

    // If we cannot determine the size of the initial allocation, then we can't
    // given an accurate upper-bound. However, we are still able to give
    // conservative lower-bounds for Type=3.
    if (Type == 1)
      return false;
  }

  CharUnits BytesPerElem;
  if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
    return false;

  // According to the GCC documentation, we want the size of the subobject
  // denoted by the pointer. But that's not quite right -- what we actually
  // want is the size of the immediately-enclosing array, if there is one.
  int64_t ElemsRemaining;
  if (Designator.MostDerivedIsArrayElement &&
      Designator.Entries.size() == Designator.MostDerivedPathLength) {
    uint64_t ArraySize = Designator.getMostDerivedArraySize();
    uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
    ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
  } else {
    ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
  }

  EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
  return true;
}

/// Tries to evaluate the __builtin_object_size for @p E. If successful,
/// returns true and stores the result in @p Size.
///
/// If @p WasError is non-null, this will report whether the failure to evaluate
/// is to be treated as an Error in IntExprEvaluator.
static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
                                         EvalInfo &Info, uint64_t &Size) {
  // Determine the denoted object.
  LValue LVal;
  {
    // The operand of __builtin_object_size is never evaluated for side-effects.
    // If there are any, but we can determine the pointed-to object anyway, then
    // ignore the side-effects.
    SpeculativeEvaluationRAII SpeculativeEval(Info);
    IgnoreSideEffectsRAII Fold(Info);

    if (E->isGLValue()) {
      // It's possible for us to be given GLValues if we're called via
      // Expr::tryEvaluateObjectSize.
      APValue RVal;
      if (!EvaluateAsRValue(Info, E, RVal))
        return false;
      LVal.setFrom(Info.Ctx, RVal);
    } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
                                /*InvalidBaseOK=*/true))
      return false;
  }

  // If we point to before the start of the object, there are no accessible
  // bytes.
  if (LVal.getLValueOffset().isNegative()) {
    Size = 0;
    return true;
  }

  CharUnits EndOffset;
  if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
    return false;

  // If we've fallen outside of the end offset, just pretend there's nothing to
  // write to/read from.
  if (EndOffset <= LVal.getLValueOffset())
    Size = 0;
  else
    Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
  return true;
}

bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
  if (unsigned BuiltinOp = E->getBuiltinCallee())
    return VisitBuiltinCallExpr(E, BuiltinOp);

  return ExprEvaluatorBaseTy::VisitCallExpr(E);
}

static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
                                     APValue &Val, APSInt &Alignment) {
  QualType SrcTy = E->getArg(0)->getType();
  if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment))
    return false;
  // Even though we are evaluating integer expressions we could get a pointer
  // argument for the __builtin_is_aligned() case.
  if (SrcTy->isPointerType()) {
    LValue Ptr;
    if (!EvaluatePointer(E->getArg(0), Ptr, Info))
      return false;
    Ptr.moveInto(Val);
  } else if (!SrcTy->isIntegralOrEnumerationType()) {
    Info.FFDiag(E->getArg(0));
    return false;
  } else {
    APSInt SrcInt;
    if (!EvaluateInteger(E->getArg(0), SrcInt, Info))
      return false;
    assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
           "Bit widths must be the same");
    Val = APValue(SrcInt);
  }
  assert(Val.hasValue());
  return true;
}

bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
                                            unsigned BuiltinOp) {
  switch (BuiltinOp) {
  default:
    return ExprEvaluatorBaseTy::VisitCallExpr(E);

  case Builtin::BI__builtin_dynamic_object_size:
  case Builtin::BI__builtin_object_size: {
    // The type was checked when we built the expression.
    unsigned Type =
        E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
    assert(Type <= 3 && "unexpected type");

    uint64_t Size;
    if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
      return Success(Size, E);

    if (E->getArg(0)->HasSideEffects(Info.Ctx))
      return Success((Type & 2) ? 0 : -1, E);

    // Expression had no side effects, but we couldn't statically determine the
    // size of the referenced object.
    switch (Info.EvalMode) {
    case EvalInfo::EM_ConstantExpression:
    case EvalInfo::EM_ConstantFold:
    case EvalInfo::EM_IgnoreSideEffects:
      // Leave it to IR generation.
      return Error(E);
    case EvalInfo::EM_ConstantExpressionUnevaluated:
      // Reduce it to a constant now.
      return Success((Type & 2) ? 0 : -1, E);
    }

    llvm_unreachable("unexpected EvalMode");
  }

  case Builtin::BI__builtin_os_log_format_buffer_size: {
    analyze_os_log::OSLogBufferLayout Layout;
    analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
    return Success(Layout.size().getQuantity(), E);
  }

  case Builtin::BI__builtin_is_aligned: {
    APValue Src;
    APSInt Alignment;
    if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
      return false;
    if (Src.isLValue()) {
      // If we evaluated a pointer, check the minimum known alignment.
      LValue Ptr;
      Ptr.setFrom(Info.Ctx, Src);
      CharUnits BaseAlignment = getBaseAlignment(Info, Ptr);
      CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset);
      // We can return true if the known alignment at the computed offset is
      // greater than the requested alignment.
      assert(PtrAlign.isPowerOfTwo());
      assert(Alignment.isPowerOf2());
      if (PtrAlign.getQuantity() >= Alignment)
        return Success(1, E);
      // If the alignment is not known to be sufficient, some cases could still
      // be aligned at run time. However, if the requested alignment is less or
      // equal to the base alignment and the offset is not aligned, we know that
      // the run-time value can never be aligned.
      if (BaseAlignment.getQuantity() >= Alignment &&
          PtrAlign.getQuantity() < Alignment)
        return Success(0, E);
      // Otherwise we can't infer whether the value is sufficiently aligned.
      // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
      //  in cases where we can't fully evaluate the pointer.
      Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
          << Alignment;
      return false;
    }
    assert(Src.isInt());
    return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
  }
  case Builtin::BI__builtin_align_up: {
    APValue Src;
    APSInt Alignment;
    if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
      return false;
    if (!Src.isInt())
      return Error(E);
    APSInt AlignedVal =
        APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
               Src.getInt().isUnsigned());
    assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
    return Success(AlignedVal, E);
  }
  case Builtin::BI__builtin_align_down: {
    APValue Src;
    APSInt Alignment;
    if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
      return false;
    if (!Src.isInt())
      return Error(E);
    APSInt AlignedVal =
        APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
    assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
    return Success(AlignedVal, E);
  }

  case Builtin::BI__builtin_bitreverse8:
  case Builtin::BI__builtin_bitreverse16:
  case Builtin::BI__builtin_bitreverse32:
  case Builtin::BI__builtin_bitreverse64: {
    APSInt Val;
    if (!EvaluateInteger(E->getArg(0), Val, Info))
      return false;

    return Success(Val.reverseBits(), E);
  }

  case Builtin::BI__builtin_bswap16:
  case Builtin::BI__builtin_bswap32:
  case Builtin::BI__builtin_bswap64: {
    APSInt Val;
    if (!EvaluateInteger(E->getArg(0), Val, Info))
      return false;

    return Success(Val.byteSwap(), E);
  }

  case Builtin::BI__builtin_classify_type:
    return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);

  case Builtin::BI__builtin_clrsb:
  case Builtin::BI__builtin_clrsbl:
  case Builtin::BI__builtin_clrsbll: {
    APSInt Val;
    if (!EvaluateInteger(E->getArg(0), Val, Info))
      return false;

    return Success(Val.getBitWidth() - Val.getMinSignedBits(), E);
  }

  case Builtin::BI__builtin_clz:
  case Builtin::BI__builtin_clzl:
  case Builtin::BI__builtin_clzll:
  case Builtin::BI__builtin_clzs: {
    APSInt Val;
    if (!EvaluateInteger(E->getArg(0), Val, Info))
      return false;
    if (!Val)
      return Error(E);

    return Success(Val.countLeadingZeros(), E);
  }

  case Builtin::BI__builtin_constant_p: {
    const Expr *Arg = E->getArg(0);
    if (EvaluateBuiltinConstantP(Info, Arg))
      return Success(true, E);
    if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
      // Outside a constant context, eagerly evaluate to false in the presence
      // of side-effects in order to avoid -Wunsequenced false-positives in
      // a branch on __builtin_constant_p(expr).
      return Success(false, E);
    }
    Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
    return false;
  }

  case Builtin::BI__builtin_is_constant_evaluated: {
    const auto *Callee = Info.CurrentCall->getCallee();
    if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
        (Info.CallStackDepth == 1 ||
         (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
          Callee->getIdentifier() &&
          Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
      // FIXME: Find a better way to avoid duplicated diagnostics.
      if (Info.EvalStatus.Diag)
        Info.report((Info.CallStackDepth == 1) ? E->getExprLoc()
                                               : Info.CurrentCall->CallLoc,
                    diag::warn_is_constant_evaluated_always_true_constexpr)
            << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
                                         : "std::is_constant_evaluated");
    }

    return Success(Info.InConstantContext, E);
  }

  case Builtin::BI__builtin_ctz:
  case Builtin::BI__builtin_ctzl:
  case Builtin::BI__builtin_ctzll:
  case Builtin::BI__builtin_ctzs: {
    APSInt Val;
    if (!EvaluateInteger(E->getArg(0), Val, Info))
      return false;
    if (!Val)
      return Error(E);

    return Success(Val.countTrailingZeros(), E);
  }

  case Builtin::BI__builtin_eh_return_data_regno: {
    int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
    Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
    return Success(Operand, E);
  }

  case Builtin::BI__builtin_expect:
  case Builtin::BI__builtin_expect_with_probability:
    return Visit(E->getArg(0));

  case Builtin::BI__builtin_ffs:
  case Builtin::BI__builtin_ffsl:
  case Builtin::BI__builtin_ffsll: {
    APSInt Val;
    if (!EvaluateInteger(E->getArg(0), Val, Info))
      return false;

    unsigned N = Val.countTrailingZeros();
    return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
  }

  case Builtin::BI__builtin_fpclassify: {
    APFloat Val(0.0);
    if (!EvaluateFloat(E->getArg(5), Val, Info))
      return false;
    unsigned Arg;
    switch (Val.getCategory()) {
    case APFloat::fcNaN: Arg = 0; break;
    case APFloat::fcInfinity: Arg = 1; break;
    case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
    case APFloat::fcZero: Arg = 4; break;
    }
    return Visit(E->getArg(Arg));
  }

  case Builtin::BI__builtin_isinf_sign: {
    APFloat Val(0.0);
    return EvaluateFloat(E->getArg(0), Val, Info) &&
           Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
  }

  case Builtin::BI__builtin_isinf: {
    APFloat Val(0.0);
    return EvaluateFloat(E->getArg(0), Val, Info) &&
           Success(Val.isInfinity() ? 1 : 0, E);
  }

  case Builtin::BI__builtin_isfinite: {
    APFloat Val(0.0);
    return EvaluateFloat(E->getArg(0), Val, Info) &&
           Success(Val.isFinite() ? 1 : 0, E);
  }

  case Builtin::BI__builtin_isnan: {
    APFloat Val(0.0);
    return EvaluateFloat(E->getArg(0), Val, Info) &&
           Success(Val.isNaN() ? 1 : 0, E);
  }

  case Builtin::BI__builtin_isnormal: {
    APFloat Val(0.0);
    return EvaluateFloat(E->getArg(0), Val, Info) &&
           Success(Val.isNormal() ? 1 : 0, E);
  }

  case Builtin::BI__builtin_parity:
  case Builtin::BI__builtin_parityl:
  case Builtin::BI__builtin_parityll: {
    APSInt Val;
    if (!EvaluateInteger(E->getArg(0), Val, Info))
      return false;

    return Success(Val.countPopulation() % 2, E);
  }

  case Builtin::BI__builtin_popcount:
  case Builtin::BI__builtin_popcountl:
  case Builtin::BI__builtin_popcountll: {
    APSInt Val;
    if (!EvaluateInteger(E->getArg(0), Val, Info))
      return false;

    return Success(Val.countPopulation(), E);
  }

  case Builtin::BI__builtin_rotateleft8:
  case Builtin::BI__builtin_rotateleft16:
  case Builtin::BI__builtin_rotateleft32:
  case Builtin::BI__builtin_rotateleft64:
  case Builtin::BI_rotl8: // Microsoft variants of rotate right
  case Builtin::BI_rotl16:
  case Builtin::BI_rotl:
  case Builtin::BI_lrotl:
  case Builtin::BI_rotl64: {
    APSInt Val, Amt;
    if (!EvaluateInteger(E->getArg(0), Val, Info) ||
        !EvaluateInteger(E->getArg(1), Amt, Info))
      return false;

    return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E);
  }

  case Builtin::BI__builtin_rotateright8:
  case Builtin::BI__builtin_rotateright16:
  case Builtin::BI__builtin_rotateright32:
  case Builtin::BI__builtin_rotateright64:
  case Builtin::BI_rotr8: // Microsoft variants of rotate right
  case Builtin::BI_rotr16:
  case Builtin::BI_rotr:
  case Builtin::BI_lrotr:
  case Builtin::BI_rotr64: {
    APSInt Val, Amt;
    if (!EvaluateInteger(E->getArg(0), Val, Info) ||
        !EvaluateInteger(E->getArg(1), Amt, Info))
      return false;

    return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E);
  }

  case Builtin::BIstrlen:
  case Builtin::BIwcslen:
    // A call to strlen is not a constant expression.
    if (Info.getLangOpts().CPlusPlus11)
      Info.CCEDiag(E, diag::note_constexpr_invalid_function)
        << /*isConstexpr*/0 << /*isConstructor*/0
        << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
    else
      Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
    LLVM_FALLTHROUGH;
  case Builtin::BI__builtin_strlen:
  case Builtin::BI__builtin_wcslen: {
    // As an extension, we support __builtin_strlen() as a constant expression,
    // and support folding strlen() to a constant.
    uint64_t StrLen;
    if (EvaluateBuiltinStrLen(E->getArg(0), StrLen, Info))
      return Success(StrLen, E);
    return false;
  }

  case Builtin::BIstrcmp:
  case Builtin::BIwcscmp:
  case Builtin::BIstrncmp:
  case Builtin::BIwcsncmp:
  case Builtin::BImemcmp:
  case Builtin::BIbcmp:
  case Builtin::BIwmemcmp:
    // A call to strlen is not a constant expression.
    if (Info.getLangOpts().CPlusPlus11)
      Info.CCEDiag(E, diag::note_constexpr_invalid_function)
        << /*isConstexpr*/0 << /*isConstructor*/0
        << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
    else
      Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
    LLVM_FALLTHROUGH;
  case Builtin::BI__builtin_strcmp:
  case Builtin::BI__builtin_wcscmp:
  case Builtin::BI__builtin_strncmp:
  case Builtin::BI__builtin_wcsncmp:
  case Builtin::BI__builtin_memcmp:
  case Builtin::BI__builtin_bcmp:
  case Builtin::BI__builtin_wmemcmp: {
    LValue String1, String2;
    if (!EvaluatePointer(E->getArg(0), String1, Info) ||
        !EvaluatePointer(E->getArg(1), String2, Info))
      return false;

    uint64_t MaxLength = uint64_t(-1);
    if (BuiltinOp != Builtin::BIstrcmp &&
        BuiltinOp != Builtin::BIwcscmp &&
        BuiltinOp != Builtin::BI__builtin_strcmp &&
        BuiltinOp != Builtin::BI__builtin_wcscmp) {
      APSInt N;
      if (!EvaluateInteger(E->getArg(2), N, Info))
        return false;
      MaxLength = N.getExtValue();
    }

    // Empty substrings compare equal by definition.
    if (MaxLength == 0u)
      return Success(0, E);

    if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
        !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
        String1.Designator.Invalid || String2.Designator.Invalid)
      return false;

    QualType CharTy1 = String1.Designator.getType(Info.Ctx);
    QualType CharTy2 = String2.Designator.getType(Info.Ctx);

    bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
                     BuiltinOp == Builtin::BIbcmp ||
                     BuiltinOp == Builtin::BI__builtin_memcmp ||
                     BuiltinOp == Builtin::BI__builtin_bcmp;

    assert(IsRawByte ||
           (Info.Ctx.hasSameUnqualifiedType(
                CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
            Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));

    // For memcmp, allow comparing any arrays of '[[un]signed] char' or
    // 'char8_t', but no other types.
    if (IsRawByte &&
        !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) {
      // FIXME: Consider using our bit_cast implementation to support this.
      Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
          << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
          << CharTy1 << CharTy2;
      return false;
    }

    const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
      return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
             handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
             Char1.isInt() && Char2.isInt();
    };
    const auto &AdvanceElems = [&] {
      return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
             HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
    };

    bool StopAtNull =
        (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
         BuiltinOp != Builtin::BIwmemcmp &&
         BuiltinOp != Builtin::BI__builtin_memcmp &&
         BuiltinOp != Builtin::BI__builtin_bcmp &&
         BuiltinOp != Builtin::BI__builtin_wmemcmp);
    bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
                  BuiltinOp == Builtin::BIwcsncmp ||
                  BuiltinOp == Builtin::BIwmemcmp ||
                  BuiltinOp == Builtin::BI__builtin_wcscmp ||
                  BuiltinOp == Builtin::BI__builtin_wcsncmp ||
                  BuiltinOp == Builtin::BI__builtin_wmemcmp;

    for (; MaxLength; --MaxLength) {
      APValue Char1, Char2;
      if (!ReadCurElems(Char1, Char2))
        return false;
      if (Char1.getInt().ne(Char2.getInt())) {
        if (IsWide) // wmemcmp compares with wchar_t signedness.
          return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
        // memcmp always compares unsigned chars.
        return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
      }
      if (StopAtNull && !Char1.getInt())
        return Success(0, E);
      assert(!(StopAtNull && !Char2.getInt()));
      if (!AdvanceElems())
        return false;
    }
    // We hit the strncmp / memcmp limit.
    return Success(0, E);
  }

  case Builtin::BI__atomic_always_lock_free:
  case Builtin::BI__atomic_is_lock_free:
  case Builtin::BI__c11_atomic_is_lock_free: {
    APSInt SizeVal;
    if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
      return false;

    // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
    // of two less than or equal to the maximum inline atomic width, we know it
    // is lock-free.  If the size isn't a power of two, or greater than the
    // maximum alignment where we promote atomics, we know it is not lock-free
    // (at least not in the sense of atomic_is_lock_free).  Otherwise,
    // the answer can only be determined at runtime; for example, 16-byte
    // atomics have lock-free implementations on some, but not all,
    // x86-64 processors.

    // Check power-of-two.
    CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
    if (Size.isPowerOfTwo()) {
      // Check against inlining width.
      unsigned InlineWidthBits =
          Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
      if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
        if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
            Size == CharUnits::One() ||
            E->getArg(1)->isNullPointerConstant(Info.Ctx,
                                                Expr::NPC_NeverValueDependent))
          // OK, we will inline appropriately-aligned operations of this size,
          // and _Atomic(T) is appropriately-aligned.
          return Success(1, E);

        QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
          castAs<PointerType>()->getPointeeType();
        if (!PointeeType->isIncompleteType() &&
            Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
          // OK, we will inline operations on this object.
          return Success(1, E);
        }
      }
    }

    return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
        Success(0, E) : Error(E);
  }
  case Builtin::BI__builtin_add_overflow:
  case Builtin::BI__builtin_sub_overflow:
  case Builtin::BI__builtin_mul_overflow:
  case Builtin::BI__builtin_sadd_overflow:
  case Builtin::BI__builtin_uadd_overflow:
  case Builtin::BI__builtin_uaddl_overflow:
  case Builtin::BI__builtin_uaddll_overflow:
  case Builtin::BI__builtin_usub_overflow:
  case Builtin::BI__builtin_usubl_overflow:
  case Builtin::BI__builtin_usubll_overflow:
  case Builtin::BI__builtin_umul_overflow:
  case Builtin::BI__builtin_umull_overflow:
  case Builtin::BI__builtin_umulll_overflow:
  case Builtin::BI__builtin_saddl_overflow:
  case Builtin::BI__builtin_saddll_overflow:
  case Builtin::BI__builtin_ssub_overflow:
  case Builtin::BI__builtin_ssubl_overflow:
  case Builtin::BI__builtin_ssubll_overflow:
  case Builtin::BI__builtin_smul_overflow:
  case Builtin::BI__builtin_smull_overflow:
  case Builtin::BI__builtin_smulll_overflow: {
    LValue ResultLValue;
    APSInt LHS, RHS;

    QualType ResultType = E->getArg(2)->getType()->getPointeeType();
    if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
        !EvaluateInteger(E->getArg(1), RHS, Info) ||
        !EvaluatePointer(E->getArg(2), ResultLValue, Info))
      return false;

    APSInt Result;
    bool DidOverflow = false;

    // If the types don't have to match, enlarge all 3 to the largest of them.
    if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
        BuiltinOp == Builtin::BI__builtin_sub_overflow ||
        BuiltinOp == Builtin::BI__builtin_mul_overflow) {
      bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
                      ResultType->isSignedIntegerOrEnumerationType();
      bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
                      ResultType->isSignedIntegerOrEnumerationType();
      uint64_t LHSSize = LHS.getBitWidth();
      uint64_t RHSSize = RHS.getBitWidth();
      uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
      uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);

      // Add an additional bit if the signedness isn't uniformly agreed to. We
      // could do this ONLY if there is a signed and an unsigned that both have
      // MaxBits, but the code to check that is pretty nasty.  The issue will be
      // caught in the shrink-to-result later anyway.
      if (IsSigned && !AllSigned)
        ++MaxBits;

      LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
      RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
      Result = APSInt(MaxBits, !IsSigned);
    }

    // Find largest int.
    switch (BuiltinOp) {
    default:
      llvm_unreachable("Invalid value for BuiltinOp");
    case Builtin::BI__builtin_add_overflow:
    case Builtin::BI__builtin_sadd_overflow:
    case Builtin::BI__builtin_saddl_overflow:
    case Builtin::BI__builtin_saddll_overflow:
    case Builtin::BI__builtin_uadd_overflow:
    case Builtin::BI__builtin_uaddl_overflow:
    case Builtin::BI__builtin_uaddll_overflow:
      Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
                              : LHS.uadd_ov(RHS, DidOverflow);
      break;
    case Builtin::BI__builtin_sub_overflow:
    case Builtin::BI__builtin_ssub_overflow:
    case Builtin::BI__builtin_ssubl_overflow:
    case Builtin::BI__builtin_ssubll_overflow:
    case Builtin::BI__builtin_usub_overflow:
    case Builtin::BI__builtin_usubl_overflow:
    case Builtin::BI__builtin_usubll_overflow:
      Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
                              : LHS.usub_ov(RHS, DidOverflow);
      break;
    case Builtin::BI__builtin_mul_overflow:
    case Builtin::BI__builtin_smul_overflow:
    case Builtin::BI__builtin_smull_overflow:
    case Builtin::BI__builtin_smulll_overflow:
    case Builtin::BI__builtin_umul_overflow:
    case Builtin::BI__builtin_umull_overflow:
    case Builtin::BI__builtin_umulll_overflow:
      Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
                              : LHS.umul_ov(RHS, DidOverflow);
      break;
    }

    // In the case where multiple sizes are allowed, truncate and see if
    // the values are the same.
    if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
        BuiltinOp == Builtin::BI__builtin_sub_overflow ||
        BuiltinOp == Builtin::BI__builtin_mul_overflow) {
      // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
      // since it will give us the behavior of a TruncOrSelf in the case where
      // its parameter <= its size.  We previously set Result to be at least the
      // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
      // will work exactly like TruncOrSelf.
      APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
      Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());

      if (!APSInt::isSameValue(Temp, Result))
        DidOverflow = true;
      Result = Temp;
    }

    APValue APV{Result};
    if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
      return false;
    return Success(DidOverflow, E);
  }
  }
}

/// Determine whether this is a pointer past the end of the complete
/// object referred to by the lvalue.
static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
                                            const LValue &LV) {
  // A null pointer can be viewed as being "past the end" but we don't
  // choose to look at it that way here.
  if (!LV.getLValueBase())
    return false;

  // If the designator is valid and refers to a subobject, we're not pointing
  // past the end.
  if (!LV.getLValueDesignator().Invalid &&
      !LV.getLValueDesignator().isOnePastTheEnd())
    return false;

  // A pointer to an incomplete type might be past-the-end if the type's size is
  // zero.  We cannot tell because the type is incomplete.
  QualType Ty = getType(LV.getLValueBase());
  if (Ty->isIncompleteType())
    return true;

  // We're a past-the-end pointer if we point to the byte after the object,
  // no matter what our type or path is.
  auto Size = Ctx.getTypeSizeInChars(Ty);
  return LV.getLValueOffset() == Size;
}

namespace {

/// Data recursive integer evaluator of certain binary operators.
///
/// We use a data recursive algorithm for binary operators so that we are able
/// to handle extreme cases of chained binary operators without causing stack
/// overflow.
class DataRecursiveIntBinOpEvaluator {
  struct EvalResult {
    APValue Val;
    bool Failed;

    EvalResult() : Failed(false) { }

    void swap(EvalResult &RHS) {
      Val.swap(RHS.Val);
      Failed = RHS.Failed;
      RHS.Failed = false;
    }
  };

  struct Job {
    const Expr *E;
    EvalResult LHSResult; // meaningful only for binary operator expression.
    enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;

    Job() = default;
    Job(Job &&) = default;

    void startSpeculativeEval(EvalInfo &Info) {
      SpecEvalRAII = SpeculativeEvaluationRAII(Info);
    }

  private:
    SpeculativeEvaluationRAII SpecEvalRAII;
  };

  SmallVector<Job, 16> Queue;

  IntExprEvaluator &IntEval;
  EvalInfo &Info;
  APValue &FinalResult;

public:
  DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
    : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }

  /// True if \param E is a binary operator that we are going to handle
  /// data recursively.
  /// We handle binary operators that are comma, logical, or that have operands
  /// with integral or enumeration type.
  static bool shouldEnqueue(const BinaryOperator *E) {
    return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
           (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() &&
            E->getLHS()->getType()->isIntegralOrEnumerationType() &&
            E->getRHS()->getType()->isIntegralOrEnumerationType());
  }

  bool Traverse(const BinaryOperator *E) {
    enqueue(E);
    EvalResult PrevResult;
    while (!Queue.empty())
      process(PrevResult);

    if (PrevResult.Failed) return false;

    FinalResult.swap(PrevResult.Val);
    return true;
  }

private:
  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
    return IntEval.Success(Value, E, Result);
  }
  bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
    return IntEval.Success(Value, E, Result);
  }
  bool Error(const Expr *E) {
    return IntEval.Error(E);
  }
  bool Error(const Expr *E, diag::kind D) {
    return IntEval.Error(E, D);
  }

  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
    return Info.CCEDiag(E, D);
  }

  // Returns true if visiting the RHS is necessary, false otherwise.
  bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
                         bool &SuppressRHSDiags);

  bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
                  const BinaryOperator *E, APValue &Result);

  void EvaluateExpr(const Expr *E, EvalResult &Result) {
    Result.Failed = !Evaluate(Result.Val, Info, E);
    if (Result.Failed)
      Result.Val = APValue();
  }

  void process(EvalResult &Result);

  void enqueue(const Expr *E) {
    E = E->IgnoreParens();
    Queue.resize(Queue.size()+1);
    Queue.back().E = E;
    Queue.back().Kind = Job::AnyExprKind;
  }
};

}

bool DataRecursiveIntBinOpEvaluator::
       VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
                         bool &SuppressRHSDiags) {
  if (E->getOpcode() == BO_Comma) {
    // Ignore LHS but note if we could not evaluate it.
    if (LHSResult.Failed)
      return Info.noteSideEffect();
    return true;
  }

  if (E->isLogicalOp()) {
    bool LHSAsBool;
    if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
      // We were able to evaluate the LHS, see if we can get away with not
      // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
      if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
        Success(LHSAsBool, E, LHSResult.Val);
        return false; // Ignore RHS
      }
    } else {
      LHSResult.Failed = true;

      // Since we weren't able to evaluate the left hand side, it
      // might have had side effects.
      if (!Info.noteSideEffect())
        return false;

      // We can't evaluate the LHS; however, sometimes the result
      // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
      // Don't ignore RHS and suppress diagnostics from this arm.
      SuppressRHSDiags = true;
    }

    return true;
  }

  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
         E->getRHS()->getType()->isIntegralOrEnumerationType());

  if (LHSResult.Failed && !Info.noteFailure())
    return false; // Ignore RHS;

  return true;
}

static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
                                    bool IsSub) {
  // Compute the new offset in the appropriate width, wrapping at 64 bits.
  // FIXME: When compiling for a 32-bit target, we should use 32-bit
  // offsets.
  assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
  CharUnits &Offset = LVal.getLValueOffset();
  uint64_t Offset64 = Offset.getQuantity();
  uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
  Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
                                         : Offset64 + Index64);
}

bool DataRecursiveIntBinOpEvaluator::
       VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
                  const BinaryOperator *E, APValue &Result) {
  if (E->getOpcode() == BO_Comma) {
    if (RHSResult.Failed)
      return false;
    Result = RHSResult.Val;
    return true;
  }

  if (E->isLogicalOp()) {
    bool lhsResult, rhsResult;
    bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
    bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);

    if (LHSIsOK) {
      if (RHSIsOK) {
        if (E->getOpcode() == BO_LOr)
          return Success(lhsResult || rhsResult, E, Result);
        else
          return Success(lhsResult && rhsResult, E, Result);
      }
    } else {
      if (RHSIsOK) {
        // We can't evaluate the LHS; however, sometimes the result
        // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
        if (rhsResult == (E->getOpcode() == BO_LOr))
          return Success(rhsResult, E, Result);
      }
    }

    return false;
  }

  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
         E->getRHS()->getType()->isIntegralOrEnumerationType());

  if (LHSResult.Failed || RHSResult.Failed)
    return false;

  const APValue &LHSVal = LHSResult.Val;
  const APValue &RHSVal = RHSResult.Val;

  // Handle cases like (unsigned long)&a + 4.
  if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
    Result = LHSVal;
    addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
    return true;
  }

  // Handle cases like 4 + (unsigned long)&a
  if (E->getOpcode() == BO_Add &&
      RHSVal.isLValue() && LHSVal.isInt()) {
    Result = RHSVal;
    addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
    return true;
  }

  if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
    // Handle (intptr_t)&&A - (intptr_t)&&B.
    if (!LHSVal.getLValueOffset().isZero() ||
        !RHSVal.getLValueOffset().isZero())
      return false;
    const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
    const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
    if (!LHSExpr || !RHSExpr)
      return false;
    const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
    const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
    if (!LHSAddrExpr || !RHSAddrExpr)
      return false;
    // Make sure both labels come from the same function.
    if (LHSAddrExpr->getLabel()->getDeclContext() !=
        RHSAddrExpr->getLabel()->getDeclContext())
      return false;
    Result = APValue(LHSAddrExpr, RHSAddrExpr);
    return true;
  }

  // All the remaining cases expect both operands to be an integer
  if (!LHSVal.isInt() || !RHSVal.isInt())
    return Error(E);

  // Set up the width and signedness manually, in case it can't be deduced
  // from the operation we're performing.
  // FIXME: Don't do this in the cases where we can deduce it.
  APSInt Value(Info.Ctx.getIntWidth(E->getType()),
               E->getType()->isUnsignedIntegerOrEnumerationType());
  if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
                         RHSVal.getInt(), Value))
    return false;
  return Success(Value, E, Result);
}

void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
  Job &job = Queue.back();

  switch (job.Kind) {
    case Job::AnyExprKind: {
      if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
        if (shouldEnqueue(Bop)) {
          job.Kind = Job::BinOpKind;
          enqueue(Bop->getLHS());
          return;
        }
      }

      EvaluateExpr(job.E, Result);
      Queue.pop_back();
      return;
    }

    case Job::BinOpKind: {
      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
      bool SuppressRHSDiags = false;
      if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
        Queue.pop_back();
        return;
      }
      if (SuppressRHSDiags)
        job.startSpeculativeEval(Info);
      job.LHSResult.swap(Result);
      job.Kind = Job::BinOpVisitedLHSKind;
      enqueue(Bop->getRHS());
      return;
    }

    case Job::BinOpVisitedLHSKind: {
      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
      EvalResult RHS;
      RHS.swap(Result);
      Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
      Queue.pop_back();
      return;
    }
  }

  llvm_unreachable("Invalid Job::Kind!");
}

namespace {
enum class CmpResult {
  Unequal,
  Less,
  Equal,
  Greater,
  Unordered,
};
}

template <class SuccessCB, class AfterCB>
static bool
EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
                                 SuccessCB &&Success, AfterCB &&DoAfter) {
  assert(!E->isValueDependent());
  assert(E->isComparisonOp() && "expected comparison operator");
  assert((E->getOpcode() == BO_Cmp ||
          E->getType()->isIntegralOrEnumerationType()) &&
         "unsupported binary expression evaluation");
  auto Error = [&](const Expr *E) {
    Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
    return false;
  };

  bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
  bool IsEquality = E->isEqualityOp();

  QualType LHSTy = E->getLHS()->getType();
  QualType RHSTy = E->getRHS()->getType();

  if (LHSTy->isIntegralOrEnumerationType() &&
      RHSTy->isIntegralOrEnumerationType()) {
    APSInt LHS, RHS;
    bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
    if (!LHSOK && !Info.noteFailure())
      return false;
    if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
      return false;
    if (LHS < RHS)
      return Success(CmpResult::Less, E);
    if (LHS > RHS)
      return Success(CmpResult::Greater, E);
    return Success(CmpResult::Equal, E);
  }

  if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
    APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
    APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));

    bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
    if (!LHSOK && !Info.noteFailure())
      return false;
    if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
      return false;
    if (LHSFX < RHSFX)
      return Success(CmpResult::Less, E);
    if (LHSFX > RHSFX)
      return Success(CmpResult::Greater, E);
    return Success(CmpResult::Equal, E);
  }

  if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
    ComplexValue LHS, RHS;
    bool LHSOK;
    if (E->isAssignmentOp()) {
      LValue LV;
      EvaluateLValue(E->getLHS(), LV, Info);
      LHSOK = false;
    } else if (LHSTy->isRealFloatingType()) {
      LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
      if (LHSOK) {
        LHS.makeComplexFloat();
        LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
      }
    } else {
      LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
    }
    if (!LHSOK && !Info.noteFailure())
      return false;

    if (E->getRHS()->getType()->isRealFloatingType()) {
      if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
        return false;
      RHS.makeComplexFloat();
      RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
    } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
      return false;

    if (LHS.isComplexFloat()) {
      APFloat::cmpResult CR_r =
        LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
      APFloat::cmpResult CR_i =
        LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
      bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
      return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
    } else {
      assert(IsEquality && "invalid complex comparison");
      bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
                     LHS.getComplexIntImag() == RHS.getComplexIntImag();
      return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
    }
  }

  if (LHSTy->isRealFloatingType() &&
      RHSTy->isRealFloatingType()) {
    APFloat RHS(0.0), LHS(0.0);

    bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
    if (!LHSOK && !Info.noteFailure())
      return false;

    if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
      return false;

    assert(E->isComparisonOp() && "Invalid binary operator!");
    llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS);
    if (!Info.InConstantContext &&
        APFloatCmpResult == APFloat::cmpUnordered &&
        E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) {
      // Note: Compares may raise invalid in some cases involving NaN or sNaN.
      Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
      return false;
    }
    auto GetCmpRes = [&]() {
      switch (APFloatCmpResult) {
      case APFloat::cmpEqual:
        return CmpResult::Equal;
      case APFloat::cmpLessThan:
        return CmpResult::Less;
      case APFloat::cmpGreaterThan:
        return CmpResult::Greater;
      case APFloat::cmpUnordered:
        return CmpResult::Unordered;
      }
      llvm_unreachable("Unrecognised APFloat::cmpResult enum");
    };
    return Success(GetCmpRes(), E);
  }

  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
    LValue LHSValue, RHSValue;

    bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
    if (!LHSOK && !Info.noteFailure())
      return false;

    if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
      return false;

    // Reject differing bases from the normal codepath; we special-case
    // comparisons to null.
    if (!HasSameBase(LHSValue, RHSValue)) {
      // Inequalities and subtractions between unrelated pointers have
      // unspecified or undefined behavior.
      if (!IsEquality) {
        Info.FFDiag(E, diag::note_constexpr_pointer_comparison_unspecified);
        return false;
      }
      // A constant address may compare equal to the address of a symbol.
      // The one exception is that address of an object cannot compare equal
      // to a null pointer constant.
      if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
          (!RHSValue.Base && !RHSValue.Offset.isZero()))
        return Error(E);
      // It's implementation-defined whether distinct literals will have
      // distinct addresses. In clang, the result of such a comparison is
      // unspecified, so it is not a constant expression. However, we do know
      // that the address of a literal will be non-null.
      if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
          LHSValue.Base && RHSValue.Base)
        return Error(E);
      // We can't tell whether weak symbols will end up pointing to the same
      // object.
      if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
        return Error(E);
      // We can't compare the address of the start of one object with the
      // past-the-end address of another object, per C++ DR1652.
      if ((LHSValue.Base && LHSValue.Offset.isZero() &&
           isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
          (RHSValue.Base && RHSValue.Offset.isZero() &&
           isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
        return Error(E);
      // We can't tell whether an object is at the same address as another
      // zero sized object.
      if ((RHSValue.Base && isZeroSized(LHSValue)) ||
          (LHSValue.Base && isZeroSized(RHSValue)))
        return Error(E);
      return Success(CmpResult::Unequal, E);
    }

    const CharUnits &LHSOffset = LHSValue.getLValueOffset();
    const CharUnits &RHSOffset = RHSValue.getLValueOffset();

    SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
    SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();

    // C++11 [expr.rel]p3:
    //   Pointers to void (after pointer conversions) can be compared, with a
    //   result defined as follows: If both pointers represent the same
    //   address or are both the null pointer value, the result is true if the
    //   operator is <= or >= and false otherwise; otherwise the result is
    //   unspecified.
    // We interpret this as applying to pointers to *cv* void.
    if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
      Info.CCEDiag(E, diag::note_constexpr_void_comparison);

    // C++11 [expr.rel]p2:
    // - If two pointers point to non-static data members of the same object,
    //   or to subobjects or array elements fo such members, recursively, the
    //   pointer to the later declared member compares greater provided the
    //   two members have the same access control and provided their class is
    //   not a union.
    //   [...]
    // - Otherwise pointer comparisons are unspecified.
    if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
      bool WasArrayIndex;
      unsigned Mismatch = FindDesignatorMismatch(
          getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
      // At the point where the designators diverge, the comparison has a
      // specified value if:
      //  - we are comparing array indices
      //  - we are comparing fields of a union, or fields with the same access
      // Otherwise, the result is unspecified and thus the comparison is not a
      // constant expression.
      if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
          Mismatch < RHSDesignator.Entries.size()) {
        const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
        const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
        if (!LF && !RF)
          Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
        else if (!LF)
          Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
              << getAsBaseClass(LHSDesignator.Entries[Mismatch])
              << RF->getParent() << RF;
        else if (!RF)
          Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
              << getAsBaseClass(RHSDesignator.Entries[Mismatch])
              << LF->getParent() << LF;
        else if (!LF->getParent()->isUnion() &&
                 LF->getAccess() != RF->getAccess())
          Info.CCEDiag(E,
                       diag::note_constexpr_pointer_comparison_differing_access)
              << LF << LF->getAccess() << RF << RF->getAccess()
              << LF->getParent();
      }
    }

    // The comparison here must be unsigned, and performed with the same
    // width as the pointer.
    unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
    uint64_t CompareLHS = LHSOffset.getQuantity();
    uint64_t CompareRHS = RHSOffset.getQuantity();
    assert(PtrSize <= 64 && "Unexpected pointer width");
    uint64_t Mask = ~0ULL >> (64 - PtrSize);
    CompareLHS &= Mask;
    CompareRHS &= Mask;

    // If there is a base and this is a relational operator, we can only
    // compare pointers within the object in question; otherwise, the result
    // depends on where the object is located in memory.
    if (!LHSValue.Base.isNull() && IsRelational) {
      QualType BaseTy = getType(LHSValue.Base);
      if (BaseTy->isIncompleteType())
        return Error(E);
      CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
      uint64_t OffsetLimit = Size.getQuantity();
      if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
        return Error(E);
    }

    if (CompareLHS < CompareRHS)
      return Success(CmpResult::Less, E);
    if (CompareLHS > CompareRHS)
      return Success(CmpResult::Greater, E);
    return Success(CmpResult::Equal, E);
  }

  if (LHSTy->isMemberPointerType()) {
    assert(IsEquality && "unexpected member pointer operation");
    assert(RHSTy->isMemberPointerType() && "invalid comparison");

    MemberPtr LHSValue, RHSValue;

    bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
    if (!LHSOK && !Info.noteFailure())
      return false;

    if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
      return false;

    // C++11 [expr.eq]p2:
    //   If both operands are null, they compare equal. Otherwise if only one is
    //   null, they compare unequal.
    if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
      bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
      return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
    }

    //   Otherwise if either is a pointer to a virtual member function, the
    //   result is unspecified.
    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
      if (MD->isVirtual())
        Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
      if (MD->isVirtual())
        Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;

    //   Otherwise they compare equal if and only if they would refer to the
    //   same member of the same most derived object or the same subobject if
    //   they were dereferenced with a hypothetical object of the associated
    //   class type.
    bool Equal = LHSValue == RHSValue;
    return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
  }

  if (LHSTy->isNullPtrType()) {
    assert(E->isComparisonOp() && "unexpected nullptr operation");
    assert(RHSTy->isNullPtrType() && "missing pointer conversion");
    // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
    // are compared, the result is true of the operator is <=, >= or ==, and
    // false otherwise.
    return Success(CmpResult::Equal, E);
  }

  return DoAfter();
}

bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
  if (!CheckLiteralType(Info, E))
    return false;

  auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
    ComparisonCategoryResult CCR;
    switch (CR) {
    case CmpResult::Unequal:
      llvm_unreachable("should never produce Unequal for three-way comparison");
    case CmpResult::Less:
      CCR = ComparisonCategoryResult::Less;
      break;
    case CmpResult::Equal:
      CCR = ComparisonCategoryResult::Equal;
      break;
    case CmpResult::Greater:
      CCR = ComparisonCategoryResult::Greater;
      break;
    case CmpResult::Unordered:
      CCR = ComparisonCategoryResult::Unordered;
      break;
    }
    // Evaluation succeeded. Lookup the information for the comparison category
    // type and fetch the VarDecl for the result.
    const ComparisonCategoryInfo &CmpInfo =
        Info.Ctx.CompCategories.getInfoForType(E->getType());
    const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD;
    // Check and evaluate the result as a constant expression.
    LValue LV;
    LV.set(VD);
    if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
      return false;
    return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
                                   ConstantExprKind::Normal);
  };
  return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
    return ExprEvaluatorBaseTy::VisitBinCmp(E);
  });
}

bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
  // We don't support assignment in C. C++ assignments don't get here because
  // assignment is an lvalue in C++.
  if (E->isAssignmentOp()) {
    Error(E);
    if (!Info.noteFailure())
      return false;
  }

  if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
    return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);

  assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
          !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
         "DataRecursiveIntBinOpEvaluator should have handled integral types");

  if (E->isComparisonOp()) {
    // Evaluate builtin binary comparisons by evaluating them as three-way
    // comparisons and then translating the result.
    auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
      assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
             "should only produce Unequal for equality comparisons");
      bool IsEqual   = CR == CmpResult::Equal,
           IsLess    = CR == CmpResult::Less,
           IsGreater = CR == CmpResult::Greater;
      auto Op = E->getOpcode();
      switch (Op) {
      default:
        llvm_unreachable("unsupported binary operator");
      case BO_EQ:
      case BO_NE:
        return Success(IsEqual == (Op == BO_EQ), E);
      case BO_LT:
        return Success(IsLess, E);
      case BO_GT:
        return Success(IsGreater, E);
      case BO_LE:
        return Success(IsEqual || IsLess, E);
      case BO_GE:
        return Success(IsEqual || IsGreater, E);
      }
    };
    return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
      return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
    });
  }

  QualType LHSTy = E->getLHS()->getType();
  QualType RHSTy = E->getRHS()->getType();

  if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
      E->getOpcode() == BO_Sub) {
    LValue LHSValue, RHSValue;

    bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
    if (!LHSOK && !Info.noteFailure())
      return false;

    if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
      return false;

    // Reject differing bases from the normal codepath; we special-case
    // comparisons to null.
    if (!HasSameBase(LHSValue, RHSValue)) {
      // Handle &&A - &&B.
      if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
        return Error(E);
      const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
      const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
      if (!LHSExpr || !RHSExpr)
        return Error(E);
      const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
      const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
      if (!LHSAddrExpr || !RHSAddrExpr)
        return Error(E);
      // Make sure both labels come from the same function.
      if (LHSAddrExpr->getLabel()->getDeclContext() !=
          RHSAddrExpr->getLabel()->getDeclContext())
        return Error(E);
      return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
    }
    const CharUnits &LHSOffset = LHSValue.getLValueOffset();
    const CharUnits &RHSOffset = RHSValue.getLValueOffset();

    SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
    SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();

    // C++11 [expr.add]p6:
    //   Unless both pointers point to elements of the same array object, or
    //   one past the last element of the array object, the behavior is
    //   undefined.
    if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
        !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
                                RHSDesignator))
      Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);

    QualType Type = E->getLHS()->getType();
    QualType ElementType = Type->castAs<PointerType>()->getPointeeType();

    CharUnits ElementSize;
    if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
      return false;

    // As an extension, a type may have zero size (empty struct or union in
    // C, array of zero length). Pointer subtraction in such cases has
    // undefined behavior, so is not constant.
    if (ElementSize.isZero()) {
      Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
          << ElementType;
      return false;
    }

    // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
    // and produce incorrect results when it overflows. Such behavior
    // appears to be non-conforming, but is common, so perhaps we should
    // assume the standard intended for such cases to be undefined behavior
    // and check for them.

    // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
    // overflow in the final conversion to ptrdiff_t.
    APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
    APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
    APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
                    false);
    APSInt TrueResult = (LHS - RHS) / ElemSize;
    APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));

    if (Result.extend(65) != TrueResult &&
        !HandleOverflow(Info, E, TrueResult, E->getType()))
      return false;
    return Success(Result, E);
  }

  return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
}

/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
/// a result as the expression's type.
bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
                                    const UnaryExprOrTypeTraitExpr *E) {
  switch(E->getKind()) {
  case UETT_PreferredAlignOf:
  case UETT_AlignOf: {
    if (E->isArgumentType())
      return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
                     E);
    else
      return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
                     E);
  }

  case UETT_VecStep: {
    QualType Ty = E->getTypeOfArgument();

    if (Ty->isVectorType()) {
      unsigned n = Ty->castAs<VectorType>()->getNumElements();

      // The vec_step built-in functions that take a 3-component
      // vector return 4. (OpenCL 1.1 spec 6.11.12)
      if (n == 3)
        n = 4;

      return Success(n, E);
    } else
      return Success(1, E);
  }

  case UETT_SizeOf: {
    QualType SrcTy = E->getTypeOfArgument();
    // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
    //   the result is the size of the referenced type."
    if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
      SrcTy = Ref->getPointeeType();

    CharUnits Sizeof;
    if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
      return false;
    return Success(Sizeof, E);
  }
  case UETT_OpenMPRequiredSimdAlign:
    assert(E->isArgumentType());
    return Success(
        Info.Ctx.toCharUnitsFromBits(
                    Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
            .getQuantity(),
        E);
  }

  llvm_unreachable("unknown expr/type trait");
}

bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
  CharUnits Result;
  unsigned n = OOE->getNumComponents();
  if (n == 0)
    return Error(OOE);
  QualType CurrentType = OOE->getTypeSourceInfo()->getType();
  for (unsigned i = 0; i != n; ++i) {
    OffsetOfNode ON = OOE->getComponent(i);
    switch (ON.getKind()) {
    case OffsetOfNode::Array: {
      const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
      APSInt IdxResult;
      if (!EvaluateInteger(Idx, IdxResult, Info))
        return false;
      const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
      if (!AT)
        return Error(OOE);
      CurrentType = AT->getElementType();
      CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
      Result += IdxResult.getSExtValue() * ElementSize;
      break;
    }

    case OffsetOfNode::Field: {
      FieldDecl *MemberDecl = ON.getField();
      const RecordType *RT = CurrentType->getAs<RecordType>();
      if (!RT)
        return Error(OOE);
      RecordDecl *RD = RT->getDecl();
      if (RD->isInvalidDecl()) return false;
      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
      unsigned i = MemberDecl->getFieldIndex();
      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
      Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
      CurrentType = MemberDecl->getType().getNonReferenceType();
      break;
    }

    case OffsetOfNode::Identifier:
      llvm_unreachable("dependent __builtin_offsetof");

    case OffsetOfNode::Base: {
      CXXBaseSpecifier *BaseSpec = ON.getBase();
      if (BaseSpec->isVirtual())
        return Error(OOE);

      // Find the layout of the class whose base we are looking into.
      const RecordType *RT = CurrentType->getAs<RecordType>();
      if (!RT)
        return Error(OOE);
      RecordDecl *RD = RT->getDecl();
      if (RD->isInvalidDecl()) return false;
      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);

      // Find the base class itself.
      CurrentType = BaseSpec->getType();
      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
      if (!BaseRT)
        return Error(OOE);

      // Add the offset to the base.
      Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
      break;
    }
    }
  }
  return Success(Result, OOE);
}

bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
  switch (E->getOpcode()) {
  default:
    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
    // See C99 6.6p3.
    return Error(E);
  case UO_Extension:
    // FIXME: Should extension allow i-c-e extension expressions in its scope?
    // If so, we could clear the diagnostic ID.
    return Visit(E->getSubExpr());
  case UO_Plus:
    // The result is just the value.
    return Visit(E->getSubExpr());
  case UO_Minus: {
    if (!Visit(E->getSubExpr()))
      return false;
    if (!Result.isInt()) return Error(E);
    const APSInt &Value = Result.getInt();
    if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
        !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
                        E->getType()))
      return false;
    return Success(-Value, E);
  }
  case UO_Not: {
    if (!Visit(E->getSubExpr()))
      return false;
    if (!Result.isInt()) return Error(E);
    return Success(~Result.getInt(), E);
  }
  case UO_LNot: {
    bool bres;
    if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
      return false;
    return Success(!bres, E);
  }
  }
}

/// HandleCast - This is used to evaluate implicit or explicit casts where the
/// result type is integer.
bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
  const Expr *SubExpr = E->getSubExpr();
  QualType DestType = E->getType();
  QualType SrcType = SubExpr->getType();

  switch (E->getCastKind()) {
  case CK_BaseToDerived:
  case CK_DerivedToBase:
  case CK_UncheckedDerivedToBase:
  case CK_Dynamic:
  case CK_ToUnion:
  case CK_ArrayToPointerDecay:
  case CK_FunctionToPointerDecay:
  case CK_NullToPointer:
  case CK_NullToMemberPointer:
  case CK_BaseToDerivedMemberPointer:
  case CK_DerivedToBaseMemberPointer:
  case CK_ReinterpretMemberPointer:
  case CK_ConstructorConversion:
  case CK_IntegralToPointer:
  case CK_ToVoid:
  case CK_VectorSplat:
  case CK_IntegralToFloating:
  case CK_FloatingCast:
  case CK_CPointerToObjCPointerCast:
  case CK_BlockPointerToObjCPointerCast:
  case CK_AnyPointerToBlockPointerCast:
  case CK_ObjCObjectLValueCast:
  case CK_FloatingRealToComplex:
  case CK_FloatingComplexToReal:
  case CK_FloatingComplexCast:
  case CK_FloatingComplexToIntegralComplex:
  case CK_IntegralRealToComplex:
  case CK_IntegralComplexCast:
  case CK_IntegralComplexToFloatingComplex:
  case CK_BuiltinFnToFnPtr:
  case CK_ZeroToOCLOpaqueType:
  case CK_NonAtomicToAtomic:
  case CK_AddressSpaceConversion:
  case CK_IntToOCLSampler:
  case CK_FloatingToFixedPoint:
  case CK_FixedPointToFloating:
  case CK_FixedPointCast:
  case CK_IntegralToFixedPoint:
  case CK_MatrixCast:
    llvm_unreachable("invalid cast kind for integral value");

  case CK_BitCast:
  case CK_Dependent:
  case CK_LValueBitCast:
  case CK_ARCProduceObject:
  case CK_ARCConsumeObject:
  case CK_ARCReclaimReturnedObject:
  case CK_ARCExtendBlockObject:
  case CK_CopyAndAutoreleaseBlockObject:
    return Error(E);

  case CK_UserDefinedConversion:
  case CK_LValueToRValue:
  case CK_AtomicToNonAtomic:
  case CK_NoOp:
  case CK_LValueToRValueBitCast:
    return ExprEvaluatorBaseTy::VisitCastExpr(E);

  case CK_MemberPointerToBoolean:
  case CK_PointerToBoolean:
  case CK_IntegralToBoolean:
  case CK_FloatingToBoolean:
  case CK_BooleanToSignedIntegral:
  case CK_FloatingComplexToBoolean:
  case CK_IntegralComplexToBoolean: {
    bool BoolResult;
    if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
      return false;
    uint64_t IntResult = BoolResult;
    if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
      IntResult = (uint64_t)-1;
    return Success(IntResult, E);
  }

  case CK_FixedPointToIntegral: {
    APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
    if (!EvaluateFixedPoint(SubExpr, Src, Info))
      return false;
    bool Overflowed;
    llvm::APSInt Result = Src.convertToInt(
        Info.Ctx.getIntWidth(DestType),
        DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
    if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
      return false;
    return Success(Result, E);
  }

  case CK_FixedPointToBoolean: {
    // Unsigned padding does not affect this.
    APValue Val;
    if (!Evaluate(Val, Info, SubExpr))
      return false;
    return Success(Val.getFixedPoint().getBoolValue(), E);
  }

  case CK_IntegralCast: {
    if (!Visit(SubExpr))
      return false;

    if (!Result.isInt()) {
      // Allow casts of address-of-label differences if they are no-ops
      // or narrowing.  (The narrowing case isn't actually guaranteed to
      // be constant-evaluatable except in some narrow cases which are hard
      // to detect here.  We let it through on the assumption the user knows
      // what they are doing.)
      if (Result.isAddrLabelDiff())
        return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
      // Only allow casts of lvalues if they are lossless.
      return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
    }

    return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
                                      Result.getInt()), E);
  }

  case CK_PointerToIntegral: {
    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;

    LValue LV;
    if (!EvaluatePointer(SubExpr, LV, Info))
      return false;

    if (LV.getLValueBase()) {
      // Only allow based lvalue casts if they are lossless.
      // FIXME: Allow a larger integer size than the pointer size, and allow
      // narrowing back down to pointer width in subsequent integral casts.
      // FIXME: Check integer type's active bits, not its type size.
      if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
        return Error(E);

      LV.Designator.setInvalid();
      LV.moveInto(Result);
      return true;
    }

    APSInt AsInt;
    APValue V;
    LV.moveInto(V);
    if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
      llvm_unreachable("Can't cast this!");

    return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
  }

  case CK_IntegralComplexToReal: {
    ComplexValue C;
    if (!EvaluateComplex(SubExpr, C, Info))
      return false;
    return Success(C.getComplexIntReal(), E);
  }

  case CK_FloatingToIntegral: {
    APFloat F(0.0);
    if (!EvaluateFloat(SubExpr, F, Info))
      return false;

    APSInt Value;
    if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
      return false;
    return Success(Value, E);
  }
  }

  llvm_unreachable("unknown cast resulting in integral value");
}

bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
  if (E->getSubExpr()->getType()->isAnyComplexType()) {
    ComplexValue LV;
    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
      return false;
    if (!LV.isComplexInt())
      return Error(E);
    return Success(LV.getComplexIntReal(), E);
  }

  return Visit(E->getSubExpr());
}

bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
  if (E->getSubExpr()->getType()->isComplexIntegerType()) {
    ComplexValue LV;
    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
      return false;
    if (!LV.isComplexInt())
      return Error(E);
    return Success(LV.getComplexIntImag(), E);
  }

  VisitIgnoredValue(E->getSubExpr());
  return Success(0, E);
}

bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
  return Success(E->getPackLength(), E);
}

bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
  return Success(E->getValue(), E);
}

bool IntExprEvaluator::VisitConceptSpecializationExpr(
       const ConceptSpecializationExpr *E) {
  return Success(E->isSatisfied(), E);
}

bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
  return Success(E->isSatisfied(), E);
}

bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
  switch (E->getOpcode()) {
    default:
      // Invalid unary operators
      return Error(E);
    case UO_Plus:
      // The result is just the value.
      return Visit(E->getSubExpr());
    case UO_Minus: {
      if (!Visit(E->getSubExpr())) return false;
      if (!Result.isFixedPoint())
        return Error(E);
      bool Overflowed;
      APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
      if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
        return false;
      return Success(Negated, E);
    }
    case UO_LNot: {
      bool bres;
      if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
        return false;
      return Success(!bres, E);
    }
  }
}

bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
  const Expr *SubExpr = E->getSubExpr();
  QualType DestType = E->getType();
  assert(DestType->isFixedPointType() &&
         "Expected destination type to be a fixed point type");
  auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);

  switch (E->getCastKind()) {
  case CK_FixedPointCast: {
    APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
    if (!EvaluateFixedPoint(SubExpr, Src, Info))
      return false;
    bool Overflowed;
    APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
    if (Overflowed) {
      if (Info.checkingForUndefinedBehavior())
        Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
                                         diag::warn_fixedpoint_constant_overflow)
          << Result.toString() << E->getType();
      if (!HandleOverflow(Info, E, Result, E->getType()))
        return false;
    }
    return Success(Result, E);
  }
  case CK_IntegralToFixedPoint: {
    APSInt Src;
    if (!EvaluateInteger(SubExpr, Src, Info))
      return false;

    bool Overflowed;
    APFixedPoint IntResult = APFixedPoint::getFromIntValue(
        Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);

    if (Overflowed) {
      if (Info.checkingForUndefinedBehavior())
        Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
                                         diag::warn_fixedpoint_constant_overflow)
          << IntResult.toString() << E->getType();
      if (!HandleOverflow(Info, E, IntResult, E->getType()))
        return false;
    }

    return Success(IntResult, E);
  }
  case CK_FloatingToFixedPoint: {
    APFloat Src(0.0);
    if (!EvaluateFloat(SubExpr, Src, Info))
      return false;

    bool Overflowed;
    APFixedPoint Result = APFixedPoint::getFromFloatValue(
        Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);

    if (Overflowed) {
      if (Info.checkingForUndefinedBehavior())
        Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
                                         diag::warn_fixedpoint_constant_overflow)
          << Result.toString() << E->getType();
      if (!HandleOverflow(Info, E, Result, E->getType()))
        return false;
    }

    return Success(Result, E);
  }
  case CK_NoOp:
  case CK_LValueToRValue:
    return ExprEvaluatorBaseTy::VisitCastExpr(E);
  default:
    return Error(E);
  }
}

bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);

  const Expr *LHS = E->getLHS();
  const Expr *RHS = E->getRHS();
  FixedPointSemantics ResultFXSema =
      Info.Ctx.getFixedPointSemantics(E->getType());

  APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
  if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
    return false;
  APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
  if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
    return false;

  bool OpOverflow = false, ConversionOverflow = false;
  APFixedPoint Result(LHSFX.getSemantics());
  switch (E->getOpcode()) {
  case BO_Add: {
    Result = LHSFX.add(RHSFX, &OpOverflow)
                  .convert(ResultFXSema, &ConversionOverflow);
    break;
  }
  case BO_Sub: {
    Result = LHSFX.sub(RHSFX, &OpOverflow)
                  .convert(ResultFXSema, &ConversionOverflow);
    break;
  }
  case BO_Mul: {
    Result = LHSFX.mul(RHSFX, &OpOverflow)
                  .convert(ResultFXSema, &ConversionOverflow);
    break;
  }
  case BO_Div: {
    if (RHSFX.getValue() == 0) {
      Info.FFDiag(E, diag::note_expr_divide_by_zero);
      return false;
    }
    Result = LHSFX.div(RHSFX, &OpOverflow)
                  .convert(ResultFXSema, &ConversionOverflow);
    break;
  }
  case BO_Shl:
  case BO_Shr: {
    FixedPointSemantics LHSSema = LHSFX.getSemantics();
    llvm::APSInt RHSVal = RHSFX.getValue();

    unsigned ShiftBW =
        LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding();
    unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1);
    // Embedded-C 4.1.6.2.2:
    //   The right operand must be nonnegative and less than the total number
    //   of (nonpadding) bits of the fixed-point operand ...
    if (RHSVal.isNegative())
      Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal;
    else if (Amt != RHSVal)
      Info.CCEDiag(E, diag::note_constexpr_large_shift)
          << RHSVal << E->getType() << ShiftBW;

    if (E->getOpcode() == BO_Shl)
      Result = LHSFX.shl(Amt, &OpOverflow);
    else
      Result = LHSFX.shr(Amt, &OpOverflow);
    break;
  }
  default:
    return false;
  }
  if (OpOverflow || ConversionOverflow) {
    if (Info.checkingForUndefinedBehavior())
      Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
                                       diag::warn_fixedpoint_constant_overflow)
        << Result.toString() << E->getType();
    if (!HandleOverflow(Info, E, Result, E->getType()))
      return false;
  }
  return Success(Result, E);
}

//===----------------------------------------------------------------------===//
// Float Evaluation
//===----------------------------------------------------------------------===//

namespace {
class FloatExprEvaluator
  : public ExprEvaluatorBase<FloatExprEvaluator> {
  APFloat &Result;
public:
  FloatExprEvaluator(EvalInfo &info, APFloat &result)
    : ExprEvaluatorBaseTy(info), Result(result) {}

  bool Success(const APValue &V, const Expr *e) {
    Result = V.getFloat();
    return true;
  }

  bool ZeroInitialization(const Expr *E) {
    Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
    return true;
  }

  bool VisitCallExpr(const CallExpr *E);

  bool VisitUnaryOperator(const UnaryOperator *E);
  bool VisitBinaryOperator(const BinaryOperator *E);
  bool VisitFloatingLiteral(const FloatingLiteral *E);
  bool VisitCastExpr(const CastExpr *E);

  bool VisitUnaryReal(const UnaryOperator *E);
  bool VisitUnaryImag(const UnaryOperator *E);

  // FIXME: Missing: array subscript of vector, member of vector
};
} // end anonymous namespace

static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
  assert(!E->isValueDependent());
  assert(E->isPRValue() && E->getType()->isRealFloatingType());
  return FloatExprEvaluator(Info, Result).Visit(E);
}

static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
                                  QualType ResultTy,
                                  const Expr *Arg,
                                  bool SNaN,
                                  llvm::APFloat &Result) {
  const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
  if (!S) return false;

  const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);

  llvm::APInt fill;

  // Treat empty strings as if they were zero.
  if (S->getString().empty())
    fill = llvm::APInt(32, 0);
  else if (S->getString().getAsInteger(0, fill))
    return false;

  if (Context.getTargetInfo().isNan2008()) {
    if (SNaN)
      Result = llvm::APFloat::getSNaN(Sem, false, &fill);
    else
      Result = llvm::APFloat::getQNaN(Sem, false, &fill);
  } else {
    // Prior to IEEE 754-2008, architectures were allowed to choose whether
    // the first bit of their significand was set for qNaN or sNaN. MIPS chose
    // a different encoding to what became a standard in 2008, and for pre-
    // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
    // sNaN. This is now known as "legacy NaN" encoding.
    if (SNaN)
      Result = llvm::APFloat::getQNaN(Sem, false, &fill);
    else
      Result = llvm::APFloat::getSNaN(Sem, false, &fill);
  }

  return true;
}

bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
  switch (E->getBuiltinCallee()) {
  default:
    return ExprEvaluatorBaseTy::VisitCallExpr(E);

  case Builtin::BI__builtin_huge_val:
  case Builtin::BI__builtin_huge_valf:
  case Builtin::BI__builtin_huge_vall:
  case Builtin::BI__builtin_huge_valf128:
  case Builtin::BI__builtin_inf:
  case Builtin::BI__builtin_inff:
  case Builtin::BI__builtin_infl:
  case Builtin::BI__builtin_inff128: {
    const llvm::fltSemantics &Sem =
      Info.Ctx.getFloatTypeSemantics(E->getType());
    Result = llvm::APFloat::getInf(Sem);
    return true;
  }

  case Builtin::BI__builtin_nans:
  case Builtin::BI__builtin_nansf:
  case Builtin::BI__builtin_nansl:
  case Builtin::BI__builtin_nansf128:
    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
                               true, Result))
      return Error(E);
    return true;

  case Builtin::BI__builtin_nan:
  case Builtin::BI__builtin_nanf:
  case Builtin::BI__builtin_nanl:
  case Builtin::BI__builtin_nanf128:
    // If this is __builtin_nan() turn this into a nan, otherwise we
    // can't constant fold it.
    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
                               false, Result))
      return Error(E);
    return true;

  case Builtin::BI__builtin_fabs:
  case Builtin::BI__builtin_fabsf:
  case Builtin::BI__builtin_fabsl:
  case Builtin::BI__builtin_fabsf128:
    // The C standard says "fabs raises no floating-point exceptions,
    // even if x is a signaling NaN. The returned value is independent of
    // the current rounding direction mode."  Therefore constant folding can
    // proceed without regard to the floating point settings.
    // Reference, WG14 N2478 F.10.4.3
    if (!EvaluateFloat(E->getArg(0), Result, Info))
      return false;

    if (Result.isNegative())
      Result.changeSign();
    return true;

  case Builtin::BI__arithmetic_fence:
    return EvaluateFloat(E->getArg(0), Result, Info);

  // FIXME: Builtin::BI__builtin_powi
  // FIXME: Builtin::BI__builtin_powif
  // FIXME: Builtin::BI__builtin_powil

  case Builtin::BI__builtin_copysign:
  case Builtin::BI__builtin_copysignf:
  case Builtin::BI__builtin_copysignl:
  case Builtin::BI__builtin_copysignf128: {
    APFloat RHS(0.);
    if (!EvaluateFloat(E->getArg(0), Result, Info) ||
        !EvaluateFloat(E->getArg(1), RHS, Info))
      return false;
    Result.copySign(RHS);
    return true;
  }
  }
}

bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
  if (E->getSubExpr()->getType()->isAnyComplexType()) {
    ComplexValue CV;
    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
      return false;
    Result = CV.FloatReal;
    return true;
  }

  return Visit(E->getSubExpr());
}

bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
  if (E->getSubExpr()->getType()->isAnyComplexType()) {
    ComplexValue CV;
    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
      return false;
    Result = CV.FloatImag;
    return true;
  }

  VisitIgnoredValue(E->getSubExpr());
  const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
  Result = llvm::APFloat::getZero(Sem);
  return true;
}

bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
  switch (E->getOpcode()) {
  default: return Error(E);
  case UO_Plus:
    return EvaluateFloat(E->getSubExpr(), Result, Info);
  case UO_Minus:
    // In C standard, WG14 N2478 F.3 p4
    // "the unary - raises no floating point exceptions,
    // even if the operand is signalling."
    if (!EvaluateFloat(E->getSubExpr(), Result, Info))
      return false;
    Result.changeSign();
    return true;
  }
}

bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);

  APFloat RHS(0.0);
  bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
  if (!LHSOK && !Info.noteFailure())
    return false;
  return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
         handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
}

bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
  Result = E->getValue();
  return true;
}

bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
  const Expr* SubExpr = E->getSubExpr();

  switch (E->getCastKind()) {
  default:
    return ExprEvaluatorBaseTy::VisitCastExpr(E);

  case CK_IntegralToFloating: {
    APSInt IntResult;
    const FPOptions FPO = E->getFPFeaturesInEffect(
                                  Info.Ctx.getLangOpts());
    return EvaluateInteger(SubExpr, IntResult, Info) &&
           HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(),
                                IntResult, E->getType(), Result);
  }

  case CK_FixedPointToFloating: {
    APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
    if (!EvaluateFixedPoint(SubExpr, FixResult, Info))
      return false;
    Result =
        FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType()));
    return true;
  }

  case CK_FloatingCast: {
    if (!Visit(SubExpr))
      return false;
    return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
                                  Result);
  }

  case CK_FloatingComplexToReal: {
    ComplexValue V;
    if (!EvaluateComplex(SubExpr, V, Info))
      return false;
    Result = V.getComplexFloatReal();
    return true;
  }
  }
}

//===----------------------------------------------------------------------===//
// Complex Evaluation (for float and integer)
//===----------------------------------------------------------------------===//

namespace {
class ComplexExprEvaluator
  : public ExprEvaluatorBase<ComplexExprEvaluator> {
  ComplexValue &Result;

public:
  ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
    : ExprEvaluatorBaseTy(info), Result(Result) {}

  bool Success(const APValue &V, const Expr *e) {
    Result.setFrom(V);
    return true;
  }

  bool ZeroInitialization(const Expr *E);

  //===--------------------------------------------------------------------===//
  //                            Visitor Methods
  //===--------------------------------------------------------------------===//

  bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
  bool VisitCastExpr(const CastExpr *E);
  bool VisitBinaryOperator(const BinaryOperator *E);
  bool VisitUnaryOperator(const UnaryOperator *E);
  bool VisitInitListExpr(const InitListExpr *E);
  bool VisitCallExpr(const CallExpr *E);
};
} // end anonymous namespace

static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
                            EvalInfo &Info) {
  assert(!E->isValueDependent());
  assert(E->isPRValue() && E->getType()->isAnyComplexType());
  return ComplexExprEvaluator(Info, Result).Visit(E);
}

bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
  QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
  if (ElemTy->isRealFloatingType()) {
    Result.makeComplexFloat();
    APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
    Result.FloatReal = Zero;
    Result.FloatImag = Zero;
  } else {
    Result.makeComplexInt();
    APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
    Result.IntReal = Zero;
    Result.IntImag = Zero;
  }
  return true;
}

bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
  const Expr* SubExpr = E->getSubExpr();

  if (SubExpr->getType()->isRealFloatingType()) {
    Result.makeComplexFloat();
    APFloat &Imag = Result.FloatImag;
    if (!EvaluateFloat(SubExpr, Imag, Info))
      return false;

    Result.FloatReal = APFloat(Imag.getSemantics());
    return true;
  } else {
    assert(SubExpr->getType()->isIntegerType() &&
           "Unexpected imaginary literal.");

    Result.makeComplexInt();
    APSInt &Imag = Result.IntImag;
    if (!EvaluateInteger(SubExpr, Imag, Info))
      return false;

    Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
    return true;
  }
}

bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {

  switch (E->getCastKind()) {
  case CK_BitCast:
  case CK_BaseToDerived:
  case CK_DerivedToBase:
  case CK_UncheckedDerivedToBase:
  case CK_Dynamic:
  case CK_ToUnion:
  case CK_ArrayToPointerDecay:
  case CK_FunctionToPointerDecay:
  case CK_NullToPointer:
  case CK_NullToMemberPointer:
  case CK_BaseToDerivedMemberPointer:
  case CK_DerivedToBaseMemberPointer:
  case CK_MemberPointerToBoolean:
  case CK_ReinterpretMemberPointer:
  case CK_ConstructorConversion:
  case CK_IntegralToPointer:
  case CK_PointerToIntegral:
  case CK_PointerToBoolean:
  case CK_ToVoid:
  case CK_VectorSplat:
  case CK_IntegralCast:
  case CK_BooleanToSignedIntegral:
  case CK_IntegralToBoolean:
  case CK_IntegralToFloating:
  case CK_FloatingToIntegral:
  case CK_FloatingToBoolean:
  case CK_FloatingCast:
  case CK_CPointerToObjCPointerCast:
  case CK_BlockPointerToObjCPointerCast:
  case CK_AnyPointerToBlockPointerCast:
  case CK_ObjCObjectLValueCast:
  case CK_FloatingComplexToReal:
  case CK_FloatingComplexToBoolean:
  case CK_IntegralComplexToReal:
  case CK_IntegralComplexToBoolean:
  case CK_ARCProduceObject:
  case CK_ARCConsumeObject:
  case CK_ARCReclaimReturnedObject:
  case CK_ARCExtendBlockObject:
  case CK_CopyAndAutoreleaseBlockObject:
  case CK_BuiltinFnToFnPtr:
  case CK_ZeroToOCLOpaqueType:
  case CK_NonAtomicToAtomic:
  case CK_AddressSpaceConversion:
  case CK_IntToOCLSampler:
  case CK_FloatingToFixedPoint:
  case CK_FixedPointToFloating:
  case CK_FixedPointCast:
  case CK_FixedPointToBoolean:
  case CK_FixedPointToIntegral:
  case CK_IntegralToFixedPoint:
  case CK_MatrixCast:
    llvm_unreachable("invalid cast kind for complex value");

  case CK_LValueToRValue:
  case CK_AtomicToNonAtomic:
  case CK_NoOp:
  case CK_LValueToRValueBitCast:
    return ExprEvaluatorBaseTy::VisitCastExpr(E);

  case CK_Dependent:
  case CK_LValueBitCast:
  case CK_UserDefinedConversion:
    return Error(E);

  case CK_FloatingRealToComplex: {
    APFloat &Real = Result.FloatReal;
    if (!EvaluateFloat(E->getSubExpr(), Real, Info))
      return false;

    Result.makeComplexFloat();
    Result.FloatImag = APFloat(Real.getSemantics());
    return true;
  }

  case CK_FloatingComplexCast: {
    if (!Visit(E->getSubExpr()))
      return false;

    QualType To = E->getType()->castAs<ComplexType>()->getElementType();
    QualType From
      = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();

    return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
           HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
  }

  case CK_FloatingComplexToIntegralComplex: {
    if (!Visit(E->getSubExpr()))
      return false;

    QualType To = E->getType()->castAs<ComplexType>()->getElementType();
    QualType From
      = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
    Result.makeComplexInt();
    return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
                                To, Result.IntReal) &&
           HandleFloatToIntCast(Info, E, From, Result.FloatImag,
                                To, Result.IntImag);
  }

  case CK_IntegralRealToComplex: {
    APSInt &Real = Result.IntReal;
    if (!EvaluateInteger(E->getSubExpr(), Real, Info))
      return false;

    Result.makeComplexInt();
    Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
    return true;
  }

  case CK_IntegralComplexCast: {
    if (!Visit(E->getSubExpr()))
      return false;

    QualType To = E->getType()->castAs<ComplexType>()->getElementType();
    QualType From
      = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();

    Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
    Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
    return true;
  }

  case CK_IntegralComplexToFloatingComplex: {
    if (!Visit(E->getSubExpr()))
      return false;

    const FPOptions FPO = E->getFPFeaturesInEffect(
                                  Info.Ctx.getLangOpts());
    QualType To = E->getType()->castAs<ComplexType>()->getElementType();
    QualType From
      = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
    Result.makeComplexFloat();
    return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal,
                                To, Result.FloatReal) &&
           HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag,
                                To, Result.FloatImag);
  }
  }

  llvm_unreachable("unknown cast resulting in complex value");
}

bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);

  // Track whether the LHS or RHS is real at the type system level. When this is
  // the case we can simplify our evaluation strategy.
  bool LHSReal = false, RHSReal = false;

  bool LHSOK;
  if (E->getLHS()->getType()->isRealFloatingType()) {
    LHSReal = true;
    APFloat &Real = Result.FloatReal;
    LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
    if (LHSOK) {
      Result.makeComplexFloat();
      Result.FloatImag = APFloat(Real.getSemantics());
    }
  } else {
    LHSOK = Visit(E->getLHS());
  }
  if (!LHSOK && !Info.noteFailure())
    return false;

  ComplexValue RHS;
  if (E->getRHS()->getType()->isRealFloatingType()) {
    RHSReal = true;
    APFloat &Real = RHS.FloatReal;
    if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
      return false;
    RHS.makeComplexFloat();
    RHS.FloatImag = APFloat(Real.getSemantics());
  } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
    return false;

  assert(!(LHSReal && RHSReal) &&
         "Cannot have both operands of a complex operation be real.");
  switch (E->getOpcode()) {
  default: return Error(E);
  case BO_Add:
    if (Result.isComplexFloat()) {
      Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
                                       APFloat::rmNearestTiesToEven);
      if (LHSReal)
        Result.getComplexFloatImag() = RHS.getComplexFloatImag();
      else if (!RHSReal)
        Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
                                         APFloat::rmNearestTiesToEven);
    } else {
      Result.getComplexIntReal() += RHS.getComplexIntReal();
      Result.getComplexIntImag() += RHS.getComplexIntImag();
    }
    break;
  case BO_Sub:
    if (Result.isComplexFloat()) {
      Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
                                            APFloat::rmNearestTiesToEven);
      if (LHSReal) {
        Result.getComplexFloatImag() = RHS.getComplexFloatImag();
        Result.getComplexFloatImag().changeSign();
      } else if (!RHSReal) {
        Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
                                              APFloat::rmNearestTiesToEven);
      }
    } else {
      Result.getComplexIntReal() -= RHS.getComplexIntReal();
      Result.getComplexIntImag() -= RHS.getComplexIntImag();
    }
    break;
  case BO_Mul:
    if (Result.isComplexFloat()) {
      // This is an implementation of complex multiplication according to the
      // constraints laid out in C11 Annex G. The implementation uses the
      // following naming scheme:
      //   (a + ib) * (c + id)
      ComplexValue LHS = Result;
      APFloat &A = LHS.getComplexFloatReal();
      APFloat &B = LHS.getComplexFloatImag();
      APFloat &C = RHS.getComplexFloatReal();
      APFloat &D = RHS.getComplexFloatImag();
      APFloat &ResR = Result.getComplexFloatReal();
      APFloat &ResI = Result.getComplexFloatImag();
      if (LHSReal) {
        assert(!RHSReal && "Cannot have two real operands for a complex op!");
        ResR = A * C;
        ResI = A * D;
      } else if (RHSReal) {
        ResR = C * A;
        ResI = C * B;
      } else {
        // In the fully general case, we need to handle NaNs and infinities
        // robustly.
        APFloat AC = A * C;
        APFloat BD = B * D;
        APFloat AD = A * D;
        APFloat BC = B * C;
        ResR = AC - BD;
        ResI = AD + BC;
        if (ResR.isNaN() && ResI.isNaN()) {
          bool Recalc = false;
          if (A.isInfinity() || B.isInfinity()) {
            A = APFloat::copySign(
                APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
            B = APFloat::copySign(
                APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
            if (C.isNaN())
              C = APFloat::copySign(APFloat(C.getSemantics()), C);
            if (D.isNaN())
              D = APFloat::copySign(APFloat(D.getSemantics()), D);
            Recalc = true;
          }
          if (C.isInfinity() || D.isInfinity()) {
            C = APFloat::copySign(
                APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
            D = APFloat::copySign(
                APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
            if (A.isNaN())
              A = APFloat::copySign(APFloat(A.getSemantics()), A);
            if (B.isNaN())
              B = APFloat::copySign(APFloat(B.getSemantics()), B);
            Recalc = true;
          }
          if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
                          AD.isInfinity() || BC.isInfinity())) {
            if (A.isNaN())
              A = APFloat::copySign(APFloat(A.getSemantics()), A);
            if (B.isNaN())
              B = APFloat::copySign(APFloat(B.getSemantics()), B);
            if (C.isNaN())
              C = APFloat::copySign(APFloat(C.getSemantics()), C);
            if (D.isNaN())
              D = APFloat::copySign(APFloat(D.getSemantics()), D);
            Recalc = true;
          }
          if (Recalc) {
            ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
            ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
          }
        }
      }
    } else {
      ComplexValue LHS = Result;
      Result.getComplexIntReal() =
        (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
         LHS.getComplexIntImag() * RHS.getComplexIntImag());
      Result.getComplexIntImag() =
        (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
         LHS.getComplexIntImag() * RHS.getComplexIntReal());
    }
    break;
  case BO_Div:
    if (Result.isComplexFloat()) {
      // This is an implementation of complex division according to the
      // constraints laid out in C11 Annex G. The implementation uses the
      // following naming scheme:
      //   (a + ib) / (c + id)
      ComplexValue LHS = Result;
      APFloat &A = LHS.getComplexFloatReal();
      APFloat &B = LHS.getComplexFloatImag();
      APFloat &C = RHS.getComplexFloatReal();
      APFloat &D = RHS.getComplexFloatImag();
      APFloat &ResR = Result.getComplexFloatReal();
      APFloat &ResI = Result.getComplexFloatImag();
      if (RHSReal) {
        ResR = A / C;
        ResI = B / C;
      } else {
        if (LHSReal) {
          // No real optimizations we can do here, stub out with zero.
          B = APFloat::getZero(A.getSemantics());
        }
        int DenomLogB = 0;
        APFloat MaxCD = maxnum(abs(C), abs(D));
        if (MaxCD.isFinite()) {
          DenomLogB = ilogb(MaxCD);
          C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
          D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
        }
        APFloat Denom = C * C + D * D;
        ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
                      APFloat::rmNearestTiesToEven);
        ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
                      APFloat::rmNearestTiesToEven);
        if (ResR.isNaN() && ResI.isNaN()) {
          if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
            ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
            ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
          } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
                     D.isFinite()) {
            A = APFloat::copySign(
                APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
            B = APFloat::copySign(
                APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
            ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
            ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
          } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
            C = APFloat::copySign(
                APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
            D = APFloat::copySign(
                APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
            ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
            ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
          }
        }
      }
    } else {
      if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
        return Error(E, diag::note_expr_divide_by_zero);

      ComplexValue LHS = Result;
      APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
        RHS.getComplexIntImag() * RHS.getComplexIntImag();
      Result.getComplexIntReal() =
        (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
         LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
      Result.getComplexIntImag() =
        (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
         LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
    }
    break;
  }

  return true;
}

bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
  // Get the operand value into 'Result'.
  if (!Visit(E->getSubExpr()))
    return false;

  switch (E->getOpcode()) {
  default:
    return Error(E);
  case UO_Extension:
    return true;
  case UO_Plus:
    // The result is always just the subexpr.
    return true;
  case UO_Minus:
    if (Result.isComplexFloat()) {
      Result.getComplexFloatReal().changeSign();
      Result.getComplexFloatImag().changeSign();
    }
    else {
      Result.getComplexIntReal() = -Result.getComplexIntReal();
      Result.getComplexIntImag() = -Result.getComplexIntImag();
    }
    return true;
  case UO_Not:
    if (Result.isComplexFloat())
      Result.getComplexFloatImag().changeSign();
    else
      Result.getComplexIntImag() = -Result.getComplexIntImag();
    return true;
  }
}

bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
  if (E->getNumInits() == 2) {
    if (E->getType()->isComplexType()) {
      Result.makeComplexFloat();
      if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
        return false;
      if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
        return false;
    } else {
      Result.makeComplexInt();
      if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
        return false;
      if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
        return false;
    }
    return true;
  }
  return ExprEvaluatorBaseTy::VisitInitListExpr(E);
}

bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) {
  switch (E->getBuiltinCallee()) {
  case Builtin::BI__builtin_complex:
    Result.makeComplexFloat();
    if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info))
      return false;
    if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info))
      return false;
    return true;

  default:
    break;
  }

  return ExprEvaluatorBaseTy::VisitCallExpr(E);
}

//===----------------------------------------------------------------------===//
// Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
// implicit conversion.
//===----------------------------------------------------------------------===//

namespace {
class AtomicExprEvaluator :
    public ExprEvaluatorBase<AtomicExprEvaluator> {
  const LValue *This;
  APValue &Result;
public:
  AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
      : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}

  bool Success(const APValue &V, const Expr *E) {
    Result = V;
    return true;
  }

  bool ZeroInitialization(const Expr *E) {
    ImplicitValueInitExpr VIE(
        E->getType()->castAs<AtomicType>()->getValueType());
    // For atomic-qualified class (and array) types in C++, initialize the
    // _Atomic-wrapped subobject directly, in-place.
    return This ? EvaluateInPlace(Result, Info, *This, &VIE)
                : Evaluate(Result, Info, &VIE);
  }

  bool VisitCastExpr(const CastExpr *E) {
    switch (E->getCastKind()) {
    default:
      return ExprEvaluatorBaseTy::VisitCastExpr(E);
    case CK_NonAtomicToAtomic:
      return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
                  : Evaluate(Result, Info, E->getSubExpr());
    }
  }
};
} // end anonymous namespace

static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
                           EvalInfo &Info) {
  assert(!E->isValueDependent());
  assert(E->isPRValue() && E->getType()->isAtomicType());
  return AtomicExprEvaluator(Info, This, Result).Visit(E);
}

//===----------------------------------------------------------------------===//
// Void expression evaluation, primarily for a cast to void on the LHS of a
// comma operator
//===----------------------------------------------------------------------===//

namespace {
class VoidExprEvaluator
  : public ExprEvaluatorBase<VoidExprEvaluator> {
public:
  VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}

  bool Success(const APValue &V, const Expr *e) { return true; }

  bool ZeroInitialization(const Expr *E) { return true; }

  bool VisitCastExpr(const CastExpr *E) {
    switch (E->getCastKind()) {
    default:
      return ExprEvaluatorBaseTy::VisitCastExpr(E);
    case CK_ToVoid:
      VisitIgnoredValue(E->getSubExpr());
      return true;
    }
  }

  bool VisitCallExpr(const CallExpr *E) {
    switch (E->getBuiltinCallee()) {
    case Builtin::BI__assume:
    case Builtin::BI__builtin_assume:
      // The argument is not evaluated!
      return true;

    case Builtin::BI__builtin_operator_delete:
      return HandleOperatorDeleteCall(Info, E);

    default:
      break;
    }

    return ExprEvaluatorBaseTy::VisitCallExpr(E);
  }

  bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
};
} // end anonymous namespace

bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
  // We cannot speculatively evaluate a delete expression.
  if (Info.SpeculativeEvaluationDepth)
    return false;

  FunctionDecl *OperatorDelete = E->getOperatorDelete();
  if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
    Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
        << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
    return false;
  }

  const Expr *Arg = E->getArgument();

  LValue Pointer;
  if (!EvaluatePointer(Arg, Pointer, Info))
    return false;
  if (Pointer.Designator.Invalid)
    return false;

  // Deleting a null pointer has no effect.
  if (Pointer.isNullPointer()) {
    // This is the only case where we need to produce an extension warning:
    // the only other way we can succeed is if we find a dynamic allocation,
    // and we will have warned when we allocated it in that case.
    if (!Info.getLangOpts().CPlusPlus20)
      Info.CCEDiag(E, diag::note_constexpr_new);
    return true;
  }

  Optional<DynAlloc *> Alloc = CheckDeleteKind(
      Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
  if (!Alloc)
    return false;
  QualType AllocType = Pointer.Base.getDynamicAllocType();

  // For the non-array case, the designator must be empty if the static type
  // does not have a virtual destructor.
  if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
      !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
    Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
        << Arg->getType()->getPointeeType() << AllocType;
    return false;
  }

  // For a class type with a virtual destructor, the selected operator delete
  // is the one looked up when building the destructor.
  if (!E->isArrayForm() && !E->isGlobalDelete()) {
    const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
    if (VirtualDelete &&
        !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
      Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
          << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
      return false;
    }
  }

  if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
                         (*Alloc)->Value, AllocType))
    return false;

  if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
    // The element was already erased. This means the destructor call also
    // deleted the object.
    // FIXME: This probably results in undefined behavior before we get this
    // far, and should be diagnosed elsewhere first.
    Info.FFDiag(E, diag::note_constexpr_double_delete);
    return false;
  }

  return true;
}

static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
  assert(!E->isValueDependent());
  assert(E->isPRValue() && E->getType()->isVoidType());
  return VoidExprEvaluator(Info).Visit(E);
}

//===----------------------------------------------------------------------===//
// Top level Expr::EvaluateAsRValue method.
//===----------------------------------------------------------------------===//

static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
  assert(!E->isValueDependent());
  // In C, function designators are not lvalues, but we evaluate them as if they
  // are.
  QualType T = E->getType();
  if (E->isGLValue() || T->isFunctionType()) {
    LValue LV;
    if (!EvaluateLValue(E, LV, Info))
      return false;
    LV.moveInto(Result);
  } else if (T->isVectorType()) {
    if (!EvaluateVector(E, Result, Info))
      return false;
  } else if (T->isIntegralOrEnumerationType()) {
    if (!IntExprEvaluator(Info, Result).Visit(E))
      return false;
  } else if (T->hasPointerRepresentation()) {
    LValue LV;
    if (!EvaluatePointer(E, LV, Info))
      return false;
    LV.moveInto(Result);
  } else if (T->isRealFloatingType()) {
    llvm::APFloat F(0.0);
    if (!EvaluateFloat(E, F, Info))
      return false;
    Result = APValue(F);
  } else if (T->isAnyComplexType()) {
    ComplexValue C;
    if (!EvaluateComplex(E, C, Info))
      return false;
    C.moveInto(Result);
  } else if (T->isFixedPointType()) {
    if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
  } else if (T->isMemberPointerType()) {
    MemberPtr P;
    if (!EvaluateMemberPointer(E, P, Info))
      return false;
    P.moveInto(Result);
    return true;
  } else if (T->isArrayType()) {
    LValue LV;
    APValue &Value =
        Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
    if (!EvaluateArray(E, LV, Value, Info))
      return false;
    Result = Value;
  } else if (T->isRecordType()) {
    LValue LV;
    APValue &Value =
        Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
    if (!EvaluateRecord(E, LV, Value, Info))
      return false;
    Result = Value;
  } else if (T->isVoidType()) {
    if (!Info.getLangOpts().CPlusPlus11)
      Info.CCEDiag(E, diag::note_constexpr_nonliteral)
        << E->getType();
    if (!EvaluateVoid(E, Info))
      return false;
  } else if (T->isAtomicType()) {
    QualType Unqual = T.getAtomicUnqualifiedType();
    if (Unqual->isArrayType() || Unqual->isRecordType()) {
      LValue LV;
      APValue &Value = Info.CurrentCall->createTemporary(
          E, Unqual, ScopeKind::FullExpression, LV);
      if (!EvaluateAtomic(E, &LV, Value, Info))
        return false;
    } else {
      if (!EvaluateAtomic(E, nullptr, Result, Info))
        return false;
    }
  } else if (Info.getLangOpts().CPlusPlus11) {
    Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
    return false;
  } else {
    Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
    return false;
  }

  return true;
}

/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
/// cases, the in-place evaluation is essential, since later initializers for
/// an object can indirectly refer to subobjects which were initialized earlier.
static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
                            const Expr *E, bool AllowNonLiteralTypes) {
  assert(!E->isValueDependent());

  if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
    return false;

  if (E->isPRValue()) {
    // Evaluate arrays and record types in-place, so that later initializers can
    // refer to earlier-initialized members of the object.
    QualType T = E->getType();
    if (T->isArrayType())
      return EvaluateArray(E, This, Result, Info);
    else if (T->isRecordType())
      return EvaluateRecord(E, This, Result, Info);
    else if (T->isAtomicType()) {
      QualType Unqual = T.getAtomicUnqualifiedType();
      if (Unqual->isArrayType() || Unqual->isRecordType())
        return EvaluateAtomic(E, &This, Result, Info);
    }
  }

  // For any other type, in-place evaluation is unimportant.
  return Evaluate(Result, Info, E);
}

/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
/// lvalue-to-rvalue cast if it is an lvalue.
static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
  assert(!E->isValueDependent());
  if (Info.EnableNewConstInterp) {
    if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result))
      return false;
  } else {
    if (E->getType().isNull())
      return false;

    if (!CheckLiteralType(Info, E))
      return false;

    if (!::Evaluate(Result, Info, E))
      return false;

    if (E->isGLValue()) {
      LValue LV;
      LV.setFrom(Info.Ctx, Result);
      if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
        return false;
    }
  }

  // Check this core constant expression is a constant expression.
  return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
                                 ConstantExprKind::Normal) &&
         CheckMemoryLeaks(Info);
}

static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
                                 const ASTContext &Ctx, bool &IsConst) {
  // Fast-path evaluations of integer literals, since we sometimes see files
  // containing vast quantities of these.
  if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
    Result.Val = APValue(APSInt(L->getValue(),
                                L->getType()->isUnsignedIntegerType()));
    IsConst = true;
    return true;
  }

  // This case should be rare, but we need to check it before we check on
  // the type below.
  if (Exp->getType().isNull()) {
    IsConst = false;
    return true;
  }

  // FIXME: Evaluating values of large array and record types can cause
  // performance problems. Only do so in C++11 for now.
  if (Exp->isPRValue() &&
      (Exp->getType()->isArrayType() || Exp->getType()->isRecordType()) &&
      !Ctx.getLangOpts().CPlusPlus11) {
    IsConst = false;
    return true;
  }
  return false;
}

static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
                                      Expr::SideEffectsKind SEK) {
  return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
         (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
}

static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
                             const ASTContext &Ctx, EvalInfo &Info) {
  assert(!E->isValueDependent());
  bool IsConst;
  if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
    return IsConst;

  return EvaluateAsRValue(Info, E, Result.Val);
}

static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
                          const ASTContext &Ctx,
                          Expr::SideEffectsKind AllowSideEffects,
                          EvalInfo &Info) {
  assert(!E->isValueDependent());
  if (!E->getType()->isIntegralOrEnumerationType())
    return false;

  if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
      !ExprResult.Val.isInt() ||
      hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
    return false;

  return true;
}

static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
                                 const ASTContext &Ctx,
                                 Expr::SideEffectsKind AllowSideEffects,
                                 EvalInfo &Info) {
  assert(!E->isValueDependent());
  if (!E->getType()->isFixedPointType())
    return false;

  if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
    return false;

  if (!ExprResult.Val.isFixedPoint() ||
      hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
    return false;

  return true;
}

/// EvaluateAsRValue - Return true if this is a constant which we can fold using
/// any crazy technique (that has nothing to do with language standards) that
/// we want to.  If this function returns true, it returns the folded constant
/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
/// will be applied to the result.
bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
                            bool InConstantContext) const {
  assert(!isValueDependent() &&
         "Expression evaluator can't be called on a dependent expression.");
  EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
  Info.InConstantContext = InConstantContext;
  return ::EvaluateAsRValue(this, Result, Ctx, Info);
}

bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
                                      bool InConstantContext) const {
  assert(!isValueDependent() &&
         "Expression evaluator can't be called on a dependent expression.");
  EvalResult Scratch;
  return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
         HandleConversionToBool(Scratch.Val, Result);
}

bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
                         SideEffectsKind AllowSideEffects,
                         bool InConstantContext) const {
  assert(!isValueDependent() &&
         "Expression evaluator can't be called on a dependent expression.");
  EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
  Info.InConstantContext = InConstantContext;
  return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
}

bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
                                SideEffectsKind AllowSideEffects,
                                bool InConstantContext) const {
  assert(!isValueDependent() &&
         "Expression evaluator can't be called on a dependent expression.");
  EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
  Info.InConstantContext = InConstantContext;
  return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
}

bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
                           SideEffectsKind AllowSideEffects,
                           bool InConstantContext) const {
  assert(!isValueDependent() &&
         "Expression evaluator can't be called on a dependent expression.");

  if (!getType()->isRealFloatingType())
    return false;

  EvalResult ExprResult;
  if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
      !ExprResult.Val.isFloat() ||
      hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
    return false;

  Result = ExprResult.Val.getFloat();
  return true;
}

bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
                            bool InConstantContext) const {
  assert(!isValueDependent() &&
         "Expression evaluator can't be called on a dependent expression.");

  EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
  Info.InConstantContext = InConstantContext;
  LValue LV;
  CheckedTemporaries CheckedTemps;
  if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
      Result.HasSideEffects ||
      !CheckLValueConstantExpression(Info, getExprLoc(),
                                     Ctx.getLValueReferenceType(getType()), LV,
                                     ConstantExprKind::Normal, CheckedTemps))
    return false;

  LV.moveInto(Result.Val);
  return true;
}

static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base,
                                APValue DestroyedValue, QualType Type,
                                SourceLocation Loc, Expr::EvalStatus &EStatus,
                                bool IsConstantDestruction) {
  EvalInfo Info(Ctx, EStatus,
                IsConstantDestruction ? EvalInfo::EM_ConstantExpression
                                      : EvalInfo::EM_ConstantFold);
  Info.setEvaluatingDecl(Base, DestroyedValue,
                         EvalInfo::EvaluatingDeclKind::Dtor);
  Info.InConstantContext = IsConstantDestruction;

  LValue LVal;
  LVal.set(Base);

  if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) ||
      EStatus.HasSideEffects)
    return false;

  if (!Info.discardCleanups())
    llvm_unreachable("Unhandled cleanup; missing full expression marker?");

  return true;
}

bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx,
                                  ConstantExprKind Kind) const {
  assert(!isValueDependent() &&
         "Expression evaluator can't be called on a dependent expression.");

  EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
  EvalInfo Info(Ctx, Result, EM);
  Info.InConstantContext = true;

  // The type of the object we're initializing is 'const T' for a class NTTP.
  QualType T = getType();
  if (Kind == ConstantExprKind::ClassTemplateArgument)
    T.addConst();

  // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
  // represent the result of the evaluation. CheckConstantExpression ensures
  // this doesn't escape.
  MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true);
  APValue::LValueBase Base(&BaseMTE);

  Info.setEvaluatingDecl(Base, Result.Val);
  LValue LVal;
  LVal.set(Base);

  if (!::EvaluateInPlace(Result.Val, Info, LVal, this) || Result.HasSideEffects)
    return false;

  if (!Info.discardCleanups())
    llvm_unreachable("Unhandled cleanup; missing full expression marker?");

  if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
                               Result.Val, Kind))
    return false;
  if (!CheckMemoryLeaks(Info))
    return false;

  // If this is a class template argument, it's required to have constant
  // destruction too.
  if (Kind == ConstantExprKind::ClassTemplateArgument &&
      (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result,
                            true) ||
       Result.HasSideEffects)) {
    // FIXME: Prefix a note to indicate that the problem is lack of constant
    // destruction.
    return false;
  }

  return true;
}

bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
                                 const VarDecl *VD,
                                 SmallVectorImpl<PartialDiagnosticAt> &Notes,
                                 bool IsConstantInitialization) const {
  assert(!isValueDependent() &&
         "Expression evaluator can't be called on a dependent expression.");

  // FIXME: Evaluating initializers for large array and record types can cause
  // performance problems. Only do so in C++11 for now.
  if (isPRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
      !Ctx.getLangOpts().CPlusPlus11)
    return false;

  Expr::EvalStatus EStatus;
  EStatus.Diag = &Notes;

  EvalInfo Info(Ctx, EStatus,
                (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11)
                    ? EvalInfo::EM_ConstantExpression
                    : EvalInfo::EM_ConstantFold);
  Info.setEvaluatingDecl(VD, Value);
  Info.InConstantContext = IsConstantInitialization;

  SourceLocation DeclLoc = VD->getLocation();
  QualType DeclTy = VD->getType();

  if (Info.EnableNewConstInterp) {
    auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
    if (!InterpCtx.evaluateAsInitializer(Info, VD, Value))
      return false;
  } else {
    LValue LVal;
    LVal.set(VD);

    if (!EvaluateInPlace(Value, Info, LVal, this,
                         /*AllowNonLiteralTypes=*/true) ||
        EStatus.HasSideEffects)
      return false;

    // At this point, any lifetime-extended temporaries are completely
    // initialized.
    Info.performLifetimeExtension();

    if (!Info.discardCleanups())
      llvm_unreachable("Unhandled cleanup; missing full expression marker?");
  }
  return CheckConstantExpression(Info, DeclLoc, DeclTy, Value,
                                 ConstantExprKind::Normal) &&
         CheckMemoryLeaks(Info);
}

bool VarDecl::evaluateDestruction(
    SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
  Expr::EvalStatus EStatus;
  EStatus.Diag = &Notes;

  // Only treat the destruction as constant destruction if we formally have
  // constant initialization (or are usable in a constant expression).
  bool IsConstantDestruction = hasConstantInitialization();

  // Make a copy of the value for the destructor to mutate, if we know it.
  // Otherwise, treat the value as default-initialized; if the destructor works
  // anyway, then the destruction is constant (and must be essentially empty).
  APValue DestroyedValue;
  if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
    DestroyedValue = *getEvaluatedValue();
  else if (!getDefaultInitValue(getType(), DestroyedValue))
    return false;

  if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue),
                           getType(), getLocation(), EStatus,
                           IsConstantDestruction) ||
      EStatus.HasSideEffects)
    return false;

  ensureEvaluatedStmt()->HasConstantDestruction = true;
  return true;
}

/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
/// constant folded, but discard the result.
bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
  assert(!isValueDependent() &&
         "Expression evaluator can't be called on a dependent expression.");

  EvalResult Result;
  return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
         !hasUnacceptableSideEffect(Result, SEK);
}

APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
                    SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
  assert(!isValueDependent() &&
         "Expression evaluator can't be called on a dependent expression.");

  EvalResult EVResult;
  EVResult.Diag = Diag;
  EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
  Info.InConstantContext = true;

  bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
  (void)Result;
  assert(Result && "Could not evaluate expression");
  assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");

  return EVResult.Val.getInt();
}

APSInt Expr::EvaluateKnownConstIntCheckOverflow(
    const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
  assert(!isValueDependent() &&
         "Expression evaluator can't be called on a dependent expression.");

  EvalResult EVResult;
  EVResult.Diag = Diag;
  EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
  Info.InConstantContext = true;
  Info.CheckingForUndefinedBehavior = true;

  bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
  (void)Result;
  assert(Result && "Could not evaluate expression");
  assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");

  return EVResult.Val.getInt();
}

void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
  assert(!isValueDependent() &&
         "Expression evaluator can't be called on a dependent expression.");

  bool IsConst;
  EvalResult EVResult;
  if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
    EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
    Info.CheckingForUndefinedBehavior = true;
    (void)::EvaluateAsRValue(Info, this, EVResult.Val);
  }
}

bool Expr::EvalResult::isGlobalLValue() const {
  assert(Val.isLValue());
  return IsGlobalLValue(Val.getLValueBase());
}

/// isIntegerConstantExpr - this recursive routine will test if an expression is
/// an integer constant expression.

/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
/// comma, etc

// CheckICE - This function does the fundamental ICE checking: the returned
// ICEDiag contains an ICEKind indicating whether the expression is an ICE,
// and a (possibly null) SourceLocation indicating the location of the problem.
//
// Note that to reduce code duplication, this helper does no evaluation
// itself; the caller checks whether the expression is evaluatable, and
// in the rare cases where CheckICE actually cares about the evaluated
// value, it calls into Evaluate.

namespace {

enum ICEKind {
  /// This expression is an ICE.
  IK_ICE,
  /// This expression is not an ICE, but if it isn't evaluated, it's
  /// a legal subexpression for an ICE. This return value is used to handle
  /// the comma operator in C99 mode, and non-constant subexpressions.
  IK_ICEIfUnevaluated,
  /// This expression is not an ICE, and is not a legal subexpression for one.
  IK_NotICE
};

struct ICEDiag {
  ICEKind Kind;
  SourceLocation Loc;

  ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
};

}

static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }

static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }

static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
  Expr::EvalResult EVResult;
  Expr::EvalStatus Status;
  EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);

  Info.InConstantContext = true;
  if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
      !EVResult.Val.isInt())
    return ICEDiag(IK_NotICE, E->getBeginLoc());

  return NoDiag();
}

static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
  if (!E->getType()->isIntegralOrEnumerationType())
    return ICEDiag(IK_NotICE, E->getBeginLoc());

  switch (E->getStmtClass()) {
#define ABSTRACT_STMT(Node)
#define STMT(Node, Base) case Expr::Node##Class:
#define EXPR(Node, Base)
#include "clang/AST/StmtNodes.inc"
  case Expr::PredefinedExprClass:
  case Expr::FloatingLiteralClass:
  case Expr::ImaginaryLiteralClass:
  case Expr::StringLiteralClass:
  case Expr::ArraySubscriptExprClass:
  case Expr::MatrixSubscriptExprClass:
  case Expr::OMPArraySectionExprClass:
  case Expr::OMPArrayShapingExprClass:
  case Expr::OMPIteratorExprClass:
  case Expr::MemberExprClass:
  case Expr::CompoundAssignOperatorClass:
  case Expr::CompoundLiteralExprClass:
  case Expr::ExtVectorElementExprClass:
  case Expr::DesignatedInitExprClass:
  case Expr::ArrayInitLoopExprClass:
  case Expr::ArrayInitIndexExprClass:
  case Expr::NoInitExprClass:
  case Expr::DesignatedInitUpdateExprClass:
  case Expr::ImplicitValueInitExprClass:
  case Expr::ParenListExprClass:
  case Expr::VAArgExprClass:
  case Expr::AddrLabelExprClass:
  case Expr::StmtExprClass:
  case Expr::CXXMemberCallExprClass:
  case Expr::CUDAKernelCallExprClass:
  case Expr::CXXAddrspaceCastExprClass:
  case Expr::CXXDynamicCastExprClass:
  case Expr::CXXTypeidExprClass:
  case Expr::CXXUuidofExprClass:
  case Expr::MSPropertyRefExprClass:
  case Expr::MSPropertySubscriptExprClass:
  case Expr::CXXNullPtrLiteralExprClass:
  case Expr::UserDefinedLiteralClass:
  case Expr::CXXThisExprClass:
  case Expr::CXXThrowExprClass:
  case Expr::CXXNewExprClass:
  case Expr::CXXDeleteExprClass:
  case Expr::CXXPseudoDestructorExprClass:
  case Expr::UnresolvedLookupExprClass:
  case Expr::TypoExprClass:
  case Expr::RecoveryExprClass:
  case Expr::DependentScopeDeclRefExprClass:
  case Expr::CXXConstructExprClass:
  case Expr::CXXInheritedCtorInitExprClass:
  case Expr::CXXStdInitializerListExprClass:
  case Expr::CXXBindTemporaryExprClass:
  case Expr::ExprWithCleanupsClass:
  case Expr::CXXTemporaryObjectExprClass:
  case Expr::CXXUnresolvedConstructExprClass:
  case Expr::CXXDependentScopeMemberExprClass:
  case Expr::UnresolvedMemberExprClass:
  case Expr::ObjCStringLiteralClass:
  case Expr::ObjCBoxedExprClass:
  case Expr::ObjCArrayLiteralClass:
  case Expr::ObjCDictionaryLiteralClass:
  case Expr::ObjCEncodeExprClass:
  case Expr::ObjCMessageExprClass:
  case Expr::ObjCSelectorExprClass:
  case Expr::ObjCProtocolExprClass:
  case Expr::ObjCIvarRefExprClass:
  case Expr::ObjCPropertyRefExprClass:
  case Expr::ObjCSubscriptRefExprClass:
  case Expr::ObjCIsaExprClass:
  case Expr::ObjCAvailabilityCheckExprClass:
  case Expr::ShuffleVectorExprClass:
  case Expr::ConvertVectorExprClass:
  case Expr::BlockExprClass:
  case Expr::NoStmtClass:
  case Expr::OpaqueValueExprClass:
  case Expr::PackExpansionExprClass:
  case Expr::SubstNonTypeTemplateParmPackExprClass:
  case Expr::FunctionParmPackExprClass:
  case Expr::AsTypeExprClass:
  case Expr::ObjCIndirectCopyRestoreExprClass:
  case Expr::MaterializeTemporaryExprClass:
  case Expr::PseudoObjectExprClass:
  case Expr::AtomicExprClass:
  case Expr::LambdaExprClass:
  case Expr::CXXFoldExprClass:
  case Expr::CoawaitExprClass:
  case Expr::DependentCoawaitExprClass:
  case Expr::CoyieldExprClass:
  case Expr::SYCLUniqueStableNameExprClass:
    return ICEDiag(IK_NotICE, E->getBeginLoc());

  case Expr::InitListExprClass: {
    // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
    // form "T x = { a };" is equivalent to "T x = a;".
    // Unless we're initializing a reference, T is a scalar as it is known to be
    // of integral or enumeration type.
    if (E->isPRValue())
      if (cast<InitListExpr>(E)->getNumInits() == 1)
        return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
    return ICEDiag(IK_NotICE, E->getBeginLoc());
  }

  case Expr::SizeOfPackExprClass:
  case Expr::GNUNullExprClass:
  case Expr::SourceLocExprClass:
    return NoDiag();

  case Expr::SubstNonTypeTemplateParmExprClass:
    return
      CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);

  case Expr::ConstantExprClass:
    return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);

  case Expr::ParenExprClass:
    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
  case Expr::GenericSelectionExprClass:
    return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
  case Expr::IntegerLiteralClass:
  case Expr::FixedPointLiteralClass:
  case Expr::CharacterLiteralClass:
  case Expr::ObjCBoolLiteralExprClass:
  case Expr::CXXBoolLiteralExprClass:
  case Expr::CXXScalarValueInitExprClass:
  case Expr::TypeTraitExprClass:
  case Expr::ConceptSpecializationExprClass:
  case Expr::RequiresExprClass:
  case Expr::ArrayTypeTraitExprClass:
  case Expr::ExpressionTraitExprClass:
  case Expr::CXXNoexceptExprClass:
    return NoDiag();
  case Expr::CallExprClass:
  case Expr::CXXOperatorCallExprClass: {
    // C99 6.6/3 allows function calls within unevaluated subexpressions of
    // constant expressions, but they can never be ICEs because an ICE cannot
    // contain an operand of (pointer to) function type.
    const CallExpr *CE = cast<CallExpr>(E);
    if (CE->getBuiltinCallee())
      return CheckEvalInICE(E, Ctx);
    return ICEDiag(IK_NotICE, E->getBeginLoc());
  }
  case Expr::CXXRewrittenBinaryOperatorClass:
    return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
                    Ctx);
  case Expr::DeclRefExprClass: {
    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
    if (isa<EnumConstantDecl>(D))
      return NoDiag();

    // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
    // integer variables in constant expressions:
    //
    // C++ 7.1.5.1p2
    //   A variable of non-volatile const-qualified integral or enumeration
    //   type initialized by an ICE can be used in ICEs.
    //
    // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
    // that mode, use of reference variables should not be allowed.
    const VarDecl *VD = dyn_cast<VarDecl>(D);
    if (VD && VD->isUsableInConstantExpressions(Ctx) &&
        !VD->getType()->isReferenceType())
      return NoDiag();

    return ICEDiag(IK_NotICE, E->getBeginLoc());
  }
  case Expr::UnaryOperatorClass: {
    const UnaryOperator *Exp = cast<UnaryOperator>(E);
    switch (Exp->getOpcode()) {
    case UO_PostInc:
    case UO_PostDec:
    case UO_PreInc:
    case UO_PreDec:
    case UO_AddrOf:
    case UO_Deref:
    case UO_Coawait:
      // C99 6.6/3 allows increment and decrement within unevaluated
      // subexpressions of constant expressions, but they can never be ICEs
      // because an ICE cannot contain an lvalue operand.
      return ICEDiag(IK_NotICE, E->getBeginLoc());
    case UO_Extension:
    case UO_LNot:
    case UO_Plus:
    case UO_Minus:
    case UO_Not:
    case UO_Real:
    case UO_Imag:
      return CheckICE(Exp->getSubExpr(), Ctx);
    }
    llvm_unreachable("invalid unary operator class");
  }
  case Expr::OffsetOfExprClass: {
    // Note that per C99, offsetof must be an ICE. And AFAIK, using
    // EvaluateAsRValue matches the proposed gcc behavior for cases like
    // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
    // compliance: we should warn earlier for offsetof expressions with
    // array subscripts that aren't ICEs, and if the array subscripts
    // are ICEs, the value of the offsetof must be an integer constant.
    return CheckEvalInICE(E, Ctx);
  }
  case Expr::UnaryExprOrTypeTraitExprClass: {
    const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
    if ((Exp->getKind() ==  UETT_SizeOf) &&
        Exp->getTypeOfArgument()->isVariableArrayType())
      return ICEDiag(IK_NotICE, E->getBeginLoc());
    return NoDiag();
  }
  case Expr::BinaryOperatorClass: {
    const BinaryOperator *Exp = cast<BinaryOperator>(E);
    switch (Exp->getOpcode()) {
    case BO_PtrMemD:
    case BO_PtrMemI:
    case BO_Assign:
    case BO_MulAssign:
    case BO_DivAssign:
    case BO_RemAssign:
    case BO_AddAssign:
    case BO_SubAssign:
    case BO_ShlAssign:
    case BO_ShrAssign:
    case BO_AndAssign:
    case BO_XorAssign:
    case BO_OrAssign:
      // C99 6.6/3 allows assignments within unevaluated subexpressions of
      // constant expressions, but they can never be ICEs because an ICE cannot
      // contain an lvalue operand.
      return ICEDiag(IK_NotICE, E->getBeginLoc());

    case BO_Mul:
    case BO_Div:
    case BO_Rem:
    case BO_Add:
    case BO_Sub:
    case BO_Shl:
    case BO_Shr:
    case BO_LT:
    case BO_GT:
    case BO_LE:
    case BO_GE:
    case BO_EQ:
    case BO_NE:
    case BO_And:
    case BO_Xor:
    case BO_Or:
    case BO_Comma:
    case BO_Cmp: {
      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
      if (Exp->getOpcode() == BO_Div ||
          Exp->getOpcode() == BO_Rem) {
        // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
        // we don't evaluate one.
        if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
          llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
          if (REval == 0)
            return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
          if (REval.isSigned() && REval.isAllOnes()) {
            llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
            if (LEval.isMinSignedValue())
              return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
          }
        }
      }
      if (Exp->getOpcode() == BO_Comma) {
        if (Ctx.getLangOpts().C99) {
          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
          // if it isn't evaluated.
          if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
            return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
        } else {
          // In both C89 and C++, commas in ICEs are illegal.
          return ICEDiag(IK_NotICE, E->getBeginLoc());
        }
      }
      return Worst(LHSResult, RHSResult);
    }
    case BO_LAnd:
    case BO_LOr: {
      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
      if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
        // Rare case where the RHS has a comma "side-effect"; we need
        // to actually check the condition to see whether the side
        // with the comma is evaluated.
        if ((Exp->getOpcode() == BO_LAnd) !=
            (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
          return RHSResult;
        return NoDiag();
      }

      return Worst(LHSResult, RHSResult);
    }
    }
    llvm_unreachable("invalid binary operator kind");
  }
  case Expr::ImplicitCastExprClass:
  case Expr::CStyleCastExprClass:
  case Expr::CXXFunctionalCastExprClass:
  case Expr::CXXStaticCastExprClass:
  case Expr::CXXReinterpretCastExprClass:
  case Expr::CXXConstCastExprClass:
  case Expr::ObjCBridgedCastExprClass: {
    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
    if (isa<ExplicitCastExpr>(E)) {
      if (const FloatingLiteral *FL
            = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
        unsigned DestWidth = Ctx.getIntWidth(E->getType());
        bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
        APSInt IgnoredVal(DestWidth, !DestSigned);
        bool Ignored;
        // If the value does not fit in the destination type, the behavior is
        // undefined, so we are not required to treat it as a constant
        // expression.
        if (FL->getValue().convertToInteger(IgnoredVal,
                                            llvm::APFloat::rmTowardZero,
                                            &Ignored) & APFloat::opInvalidOp)
          return ICEDiag(IK_NotICE, E->getBeginLoc());
        return NoDiag();
      }
    }
    switch (cast<CastExpr>(E)->getCastKind()) {
    case CK_LValueToRValue:
    case CK_AtomicToNonAtomic:
    case CK_NonAtomicToAtomic:
    case CK_NoOp:
    case CK_IntegralToBoolean:
    case CK_IntegralCast:
      return CheckICE(SubExpr, Ctx);
    default:
      return ICEDiag(IK_NotICE, E->getBeginLoc());
    }
  }
  case Expr::BinaryConditionalOperatorClass: {
    const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
    ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
    if (CommonResult.Kind == IK_NotICE) return CommonResult;
    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
    if (FalseResult.Kind == IK_NotICE) return FalseResult;
    if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
    if (FalseResult.Kind == IK_ICEIfUnevaluated &&
        Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
    return FalseResult;
  }
  case Expr::ConditionalOperatorClass: {
    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
    // If the condition (ignoring parens) is a __builtin_constant_p call,
    // then only the true side is actually considered in an integer constant
    // expression, and it is fully evaluated.  This is an important GNU
    // extension.  See GCC PR38377 for discussion.
    if (const CallExpr *CallCE
        = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
      if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
        return CheckEvalInICE(E, Ctx);
    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
    if (CondResult.Kind == IK_NotICE)
      return CondResult;

    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);

    if (TrueResult.Kind == IK_NotICE)
      return TrueResult;
    if (FalseResult.Kind == IK_NotICE)
      return FalseResult;
    if (CondResult.Kind == IK_ICEIfUnevaluated)
      return CondResult;
    if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
      return NoDiag();
    // Rare case where the diagnostics depend on which side is evaluated
    // Note that if we get here, CondResult is 0, and at least one of
    // TrueResult and FalseResult is non-zero.
    if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
      return FalseResult;
    return TrueResult;
  }
  case Expr::CXXDefaultArgExprClass:
    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
  case Expr::CXXDefaultInitExprClass:
    return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
  case Expr::ChooseExprClass: {
    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
  }
  case Expr::BuiltinBitCastExprClass: {
    if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
      return ICEDiag(IK_NotICE, E->getBeginLoc());
    return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
  }
  }

  llvm_unreachable("Invalid StmtClass!");
}

/// Evaluate an expression as a C++11 integral constant expression.
static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
                                                    const Expr *E,
                                                    llvm::APSInt *Value,
                                                    SourceLocation *Loc) {
  if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
    if (Loc) *Loc = E->getExprLoc();
    return false;
  }

  APValue Result;
  if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
    return false;

  if (!Result.isInt()) {
    if (Loc) *Loc = E->getExprLoc();
    return false;
  }

  if (Value) *Value = Result.getInt();
  return true;
}

bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
                                 SourceLocation *Loc) const {
  assert(!isValueDependent() &&
         "Expression evaluator can't be called on a dependent expression.");

  if (Ctx.getLangOpts().CPlusPlus11)
    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);

  ICEDiag D = CheckICE(this, Ctx);
  if (D.Kind != IK_ICE) {
    if (Loc) *Loc = D.Loc;
    return false;
  }
  return true;
}

Optional<llvm::APSInt> Expr::getIntegerConstantExpr(const ASTContext &Ctx,
                                                    SourceLocation *Loc,
                                                    bool isEvaluated) const {
  if (isValueDependent()) {
    // Expression evaluator can't succeed on a dependent expression.
    return None;
  }

  APSInt Value;

  if (Ctx.getLangOpts().CPlusPlus11) {
    if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc))
      return Value;
    return None;
  }

  if (!isIntegerConstantExpr(Ctx, Loc))
    return None;

  // The only possible side-effects here are due to UB discovered in the
  // evaluation (for instance, INT_MAX + 1). In such a case, we are still
  // required to treat the expression as an ICE, so we produce the folded
  // value.
  EvalResult ExprResult;
  Expr::EvalStatus Status;
  EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
  Info.InConstantContext = true;

  if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
    llvm_unreachable("ICE cannot be evaluated!");

  return ExprResult.Val.getInt();
}

bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
  assert(!isValueDependent() &&
         "Expression evaluator can't be called on a dependent expression.");

  return CheckICE(this, Ctx).Kind == IK_ICE;
}

bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
                               SourceLocation *Loc) const {
  assert(!isValueDependent() &&
         "Expression evaluator can't be called on a dependent expression.");

  // We support this checking in C++98 mode in order to diagnose compatibility
  // issues.
  assert(Ctx.getLangOpts().CPlusPlus);

  // Build evaluation settings.
  Expr::EvalStatus Status;
  SmallVector<PartialDiagnosticAt, 8> Diags;
  Status.Diag = &Diags;
  EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);

  APValue Scratch;
  bool IsConstExpr =
      ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
      // FIXME: We don't produce a diagnostic for this, but the callers that
      // call us on arbitrary full-expressions should generally not care.
      Info.discardCleanups() && !Status.HasSideEffects;

  if (!Diags.empty()) {
    IsConstExpr = false;
    if (Loc) *Loc = Diags[0].first;
  } else if (!IsConstExpr) {
    // FIXME: This shouldn't happen.
    if (Loc) *Loc = getExprLoc();
  }

  return IsConstExpr;
}

bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
                                    const FunctionDecl *Callee,
                                    ArrayRef<const Expr*> Args,
                                    const Expr *This) const {
  assert(!isValueDependent() &&
         "Expression evaluator can't be called on a dependent expression.");

  Expr::EvalStatus Status;
  EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
  Info.InConstantContext = true;

  LValue ThisVal;
  const LValue *ThisPtr = nullptr;
  if (This) {
#ifndef NDEBUG
    auto *MD = dyn_cast<CXXMethodDecl>(Callee);
    assert(MD && "Don't provide `this` for non-methods.");
    assert(!MD->isStatic() && "Don't provide `this` for static methods.");
#endif
    if (!This->isValueDependent() &&
        EvaluateObjectArgument(Info, This, ThisVal) &&
        !Info.EvalStatus.HasSideEffects)
      ThisPtr = &ThisVal;

    // Ignore any side-effects from a failed evaluation. This is safe because
    // they can't interfere with any other argument evaluation.
    Info.EvalStatus.HasSideEffects = false;
  }

  CallRef Call = Info.CurrentCall->createCall(Callee);
  for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
       I != E; ++I) {
    unsigned Idx = I - Args.begin();
    if (Idx >= Callee->getNumParams())
      break;
    const ParmVarDecl *PVD = Callee->getParamDecl(Idx);
    if ((*I)->isValueDependent() ||
        !EvaluateCallArg(PVD, *I, Call, Info) ||
        Info.EvalStatus.HasSideEffects) {
      // If evaluation fails, throw away the argument entirely.
      if (APValue *Slot = Info.getParamSlot(Call, PVD))
        *Slot = APValue();
    }

    // Ignore any side-effects from a failed evaluation. This is safe because
    // they can't interfere with any other argument evaluation.
    Info.EvalStatus.HasSideEffects = false;
  }

  // Parameter cleanups happen in the caller and are not part of this
  // evaluation.
  Info.discardCleanups();
  Info.EvalStatus.HasSideEffects = false;

  // Build fake call to Callee.
  CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, Call);
  // FIXME: Missing ExprWithCleanups in enable_if conditions?
  FullExpressionRAII Scope(Info);
  return Evaluate(Value, Info, this) && Scope.destroy() &&
         !Info.EvalStatus.HasSideEffects;
}

bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
                                   SmallVectorImpl<
                                     PartialDiagnosticAt> &Diags) {
  // FIXME: It would be useful to check constexpr function templates, but at the
  // moment the constant expression evaluator cannot cope with the non-rigorous
  // ASTs which we build for dependent expressions.
  if (FD->isDependentContext())
    return true;

  Expr::EvalStatus Status;
  Status.Diag = &Diags;

  EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
  Info.InConstantContext = true;
  Info.CheckingPotentialConstantExpression = true;

  // The constexpr VM attempts to compile all methods to bytecode here.
  if (Info.EnableNewConstInterp) {
    Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD);
    return Diags.empty();
  }

  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
  const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;

  // Fabricate an arbitrary expression on the stack and pretend that it
  // is a temporary being used as the 'this' pointer.
  LValue This;
  ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
  This.set({&VIE, Info.CurrentCall->Index});

  ArrayRef<const Expr*> Args;

  APValue Scratch;
  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
    // Evaluate the call as a constant initializer, to allow the construction
    // of objects of non-literal types.
    Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
    HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
  } else {
    SourceLocation Loc = FD->getLocation();
    HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
                       Args, CallRef(), FD->getBody(), Info, Scratch, nullptr);
  }

  return Diags.empty();
}

bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
                                              const FunctionDecl *FD,
                                              SmallVectorImpl<
                                                PartialDiagnosticAt> &Diags) {
  assert(!E->isValueDependent() &&
         "Expression evaluator can't be called on a dependent expression.");

  Expr::EvalStatus Status;
  Status.Diag = &Diags;

  EvalInfo Info(FD->getASTContext(), Status,
                EvalInfo::EM_ConstantExpressionUnevaluated);
  Info.InConstantContext = true;
  Info.CheckingPotentialConstantExpression = true;

  // Fabricate a call stack frame to give the arguments a plausible cover story.
  CallStackFrame Frame(Info, SourceLocation(), FD, /*This*/ nullptr, CallRef());

  APValue ResultScratch;
  Evaluate(ResultScratch, Info, E);
  return Diags.empty();
}

bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
                                 unsigned Type) const {
  if (!getType()->isPointerType())
    return false;

  Expr::EvalStatus Status;
  EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
  return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
}

static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
                                  EvalInfo &Info) {
  if (!E->getType()->hasPointerRepresentation() || !E->isPRValue())
    return false;

  LValue String;

  if (!EvaluatePointer(E, String, Info))
    return false;

  QualType CharTy = E->getType()->getPointeeType();

  // Fast path: if it's a string literal, search the string value.
  if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
          String.getLValueBase().dyn_cast<const Expr *>())) {
    StringRef Str = S->getBytes();
    int64_t Off = String.Offset.getQuantity();
    if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
        S->getCharByteWidth() == 1 &&
        // FIXME: Add fast-path for wchar_t too.
        Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
      Str = Str.substr(Off);

      StringRef::size_type Pos = Str.find(0);
      if (Pos != StringRef::npos)
        Str = Str.substr(0, Pos);

      Result = Str.size();
      return true;
    }

    // Fall through to slow path.
  }

  // Slow path: scan the bytes of the string looking for the terminating 0.
  for (uint64_t Strlen = 0; /**/; ++Strlen) {
    APValue Char;
    if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
        !Char.isInt())
      return false;
    if (!Char.getInt()) {
      Result = Strlen;
      return true;
    }
    if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
      return false;
  }
}

bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const {
  Expr::EvalStatus Status;
  EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
  return EvaluateBuiltinStrLen(this, Result, Info);
}