aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/CodeGen/Targets/X86.cpp
blob: d053f41ab168f5ef1d5f8341d44c22561646abc9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
//===- X86.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "ABIInfoImpl.h"
#include "TargetInfo.h"
#include "clang/Basic/DiagnosticFrontend.h"
#include "llvm/ADT/SmallBitVector.h"

using namespace clang;
using namespace clang::CodeGen;

namespace {

/// IsX86_MMXType - Return true if this is an MMX type.
bool IsX86_MMXType(llvm::Type *IRType) {
  // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
    IRType->getScalarSizeInBits() != 64;
}

static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
                                          StringRef Constraint,
                                          llvm::Type* Ty) {
  bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
                     .Cases("y", "&y", "^Ym", true)
                     .Default(false);
  if (IsMMXCons && Ty->isVectorTy()) {
    if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedValue() !=
        64) {
      // Invalid MMX constraint
      return nullptr;
    }

    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
  }

  // No operation needed
  return Ty;
}

/// Returns true if this type can be passed in SSE registers with the
/// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
    if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
      if (BT->getKind() == BuiltinType::LongDouble) {
        if (&Context.getTargetInfo().getLongDoubleFormat() ==
            &llvm::APFloat::x87DoubleExtended())
          return false;
      }
      return true;
    }
  } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
    // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
    // registers specially.
    unsigned VecSize = Context.getTypeSize(VT);
    if (VecSize == 128 || VecSize == 256 || VecSize == 512)
      return true;
  }
  return false;
}

/// Returns true if this aggregate is small enough to be passed in SSE registers
/// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
  return NumMembers <= 4;
}

/// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
  auto AI = ABIArgInfo::getDirect(T);
  AI.setInReg(true);
  AI.setCanBeFlattened(false);
  return AI;
}

//===----------------------------------------------------------------------===//
// X86-32 ABI Implementation
//===----------------------------------------------------------------------===//

/// Similar to llvm::CCState, but for Clang.
struct CCState {
  CCState(CGFunctionInfo &FI)
      : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()),
	Required(FI.getRequiredArgs()), IsDelegateCall(FI.isDelegateCall()) {}

  llvm::SmallBitVector IsPreassigned;
  unsigned CC = CallingConv::CC_C;
  unsigned FreeRegs = 0;
  unsigned FreeSSERegs = 0;
  RequiredArgs Required;
  bool IsDelegateCall = false;
};

/// X86_32ABIInfo - The X86-32 ABI information.
class X86_32ABIInfo : public ABIInfo {
  enum Class {
    Integer,
    Float
  };

  static const unsigned MinABIStackAlignInBytes = 4;

  bool IsDarwinVectorABI;
  bool IsRetSmallStructInRegABI;
  bool IsWin32StructABI;
  bool IsSoftFloatABI;
  bool IsMCUABI;
  bool IsLinuxABI;
  unsigned DefaultNumRegisterParameters;

  static bool isRegisterSize(unsigned Size) {
    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
  }

  bool isHomogeneousAggregateBaseType(QualType Ty) const override {
    // FIXME: Assumes vectorcall is in use.
    return isX86VectorTypeForVectorCall(getContext(), Ty);
  }

  bool isHomogeneousAggregateSmallEnough(const Type *Ty,
                                         uint64_t NumMembers) const override {
    // FIXME: Assumes vectorcall is in use.
    return isX86VectorCallAggregateSmallEnough(NumMembers);
  }

  bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;

  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
  /// such that the argument will be passed in memory.
  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;

  ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;

  /// Return the alignment to use for the given type on the stack.
  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;

  Class classify(QualType Ty) const;
  ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
  ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State,
                                  unsigned ArgIndex) const;

  /// Updates the number of available free registers, returns
  /// true if any registers were allocated.
  bool updateFreeRegs(QualType Ty, CCState &State) const;

  bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
                                bool &NeedsPadding) const;
  bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;

  bool canExpandIndirectArgument(QualType Ty) const;

  /// Rewrite the function info so that all memory arguments use
  /// inalloca.
  void rewriteWithInAlloca(CGFunctionInfo &FI) const;

  void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
                           CharUnits &StackOffset, ABIArgInfo &Info,
                           QualType Type) const;
  void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;

public:

  void computeInfo(CGFunctionInfo &FI) const override;
  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;

  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
                bool RetSmallStructInRegABI, bool Win32StructABI,
                unsigned NumRegisterParameters, bool SoftFloatABI)
      : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
        IsRetSmallStructInRegABI(RetSmallStructInRegABI),
        IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
        IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
        IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
                   CGT.getTarget().getTriple().isOSCygMing()),
        DefaultNumRegisterParameters(NumRegisterParameters) {}
};

class X86_32SwiftABIInfo : public SwiftABIInfo {
public:
  explicit X86_32SwiftABIInfo(CodeGenTypes &CGT)
      : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {}

  bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys,
                            bool AsReturnValue) const override {
    // LLVM's x86-32 lowering currently only assigns up to three
    // integer registers and three fp registers.  Oddly, it'll use up to
    // four vector registers for vectors, but those can overlap with the
    // scalar registers.
    return occupiesMoreThan(ComponentTys, /*total=*/3);
  }
};

class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
public:
  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
                          bool RetSmallStructInRegABI, bool Win32StructABI,
                          unsigned NumRegisterParameters, bool SoftFloatABI)
      : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
            CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
            NumRegisterParameters, SoftFloatABI)) {
    SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT);
  }

  static bool isStructReturnInRegABI(
      const llvm::Triple &Triple, const CodeGenOptions &Opts);

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &CGM) const override;

  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
    // Darwin uses different dwarf register numbers for EH.
    if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
    return 4;
  }

  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
                               llvm::Value *Address) const override;

  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
                                  StringRef Constraint,
                                  llvm::Type* Ty) const override {
    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
  }

  void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
                                std::string &Constraints,
                                std::vector<llvm::Type *> &ResultRegTypes,
                                std::vector<llvm::Type *> &ResultTruncRegTypes,
                                std::vector<LValue> &ResultRegDests,
                                std::string &AsmString,
                                unsigned NumOutputs) const override;

  StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
    return "movl\t%ebp, %ebp"
           "\t\t// marker for objc_retainAutoreleaseReturnValue";
  }
};

}

/// Rewrite input constraint references after adding some output constraints.
/// In the case where there is one output and one input and we add one output,
/// we need to replace all operand references greater than or equal to 1:
///     mov $0, $1
///     mov eax, $1
/// The result will be:
///     mov $0, $2
///     mov eax, $2
static void rewriteInputConstraintReferences(unsigned FirstIn,
                                             unsigned NumNewOuts,
                                             std::string &AsmString) {
  std::string Buf;
  llvm::raw_string_ostream OS(Buf);
  size_t Pos = 0;
  while (Pos < AsmString.size()) {
    size_t DollarStart = AsmString.find('$', Pos);
    if (DollarStart == std::string::npos)
      DollarStart = AsmString.size();
    size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
    if (DollarEnd == std::string::npos)
      DollarEnd = AsmString.size();
    OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
    Pos = DollarEnd;
    size_t NumDollars = DollarEnd - DollarStart;
    if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
      // We have an operand reference.
      size_t DigitStart = Pos;
      if (AsmString[DigitStart] == '{') {
        OS << '{';
        ++DigitStart;
      }
      size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
      if (DigitEnd == std::string::npos)
        DigitEnd = AsmString.size();
      StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
      unsigned OperandIndex;
      if (!OperandStr.getAsInteger(10, OperandIndex)) {
        if (OperandIndex >= FirstIn)
          OperandIndex += NumNewOuts;
        OS << OperandIndex;
      } else {
        OS << OperandStr;
      }
      Pos = DigitEnd;
    }
  }
  AsmString = std::move(OS.str());
}

/// Add output constraints for EAX:EDX because they are return registers.
void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
    CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
    std::vector<llvm::Type *> &ResultRegTypes,
    std::vector<llvm::Type *> &ResultTruncRegTypes,
    std::vector<LValue> &ResultRegDests, std::string &AsmString,
    unsigned NumOutputs) const {
  uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());

  // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
  // larger.
  if (!Constraints.empty())
    Constraints += ',';
  if (RetWidth <= 32) {
    Constraints += "={eax}";
    ResultRegTypes.push_back(CGF.Int32Ty);
  } else {
    // Use the 'A' constraint for EAX:EDX.
    Constraints += "=A";
    ResultRegTypes.push_back(CGF.Int64Ty);
  }

  // Truncate EAX or EAX:EDX to an integer of the appropriate size.
  llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
  ResultTruncRegTypes.push_back(CoerceTy);

  // Coerce the integer by bitcasting the return slot pointer.
  ReturnSlot.setAddress(ReturnSlot.getAddress(CGF).withElementType(CoerceTy));
  ResultRegDests.push_back(ReturnSlot);

  rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
}

/// shouldReturnTypeInRegister - Determine if the given type should be
/// returned in a register (for the Darwin and MCU ABI).
bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
                                               ASTContext &Context) const {
  uint64_t Size = Context.getTypeSize(Ty);

  // For i386, type must be register sized.
  // For the MCU ABI, it only needs to be <= 8-byte
  if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
   return false;

  if (Ty->isVectorType()) {
    // 64- and 128- bit vectors inside structures are not returned in
    // registers.
    if (Size == 64 || Size == 128)
      return false;

    return true;
  }

  // If this is a builtin, pointer, enum, complex type, member pointer, or
  // member function pointer it is ok.
  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
      Ty->isBlockPointerType() || Ty->isMemberPointerType())
    return true;

  // Arrays are treated like records.
  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
    return shouldReturnTypeInRegister(AT->getElementType(), Context);

  // Otherwise, it must be a record type.
  const RecordType *RT = Ty->getAs<RecordType>();
  if (!RT) return false;

  // FIXME: Traverse bases here too.

  // Structure types are passed in register if all fields would be
  // passed in a register.
  for (const auto *FD : RT->getDecl()->fields()) {
    // Empty fields are ignored.
    if (isEmptyField(Context, FD, true))
      continue;

    // Check fields recursively.
    if (!shouldReturnTypeInRegister(FD->getType(), Context))
      return false;
  }
  return true;
}

static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
  // Treat complex types as the element type.
  if (const ComplexType *CTy = Ty->getAs<ComplexType>())
    Ty = CTy->getElementType();

  // Check for a type which we know has a simple scalar argument-passing
  // convention without any padding.  (We're specifically looking for 32
  // and 64-bit integer and integer-equivalents, float, and double.)
  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
      !Ty->isEnumeralType() && !Ty->isBlockPointerType())
    return false;

  uint64_t Size = Context.getTypeSize(Ty);
  return Size == 32 || Size == 64;
}

static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
                          uint64_t &Size) {
  for (const auto *FD : RD->fields()) {
    // Scalar arguments on the stack get 4 byte alignment on x86. If the
    // argument is smaller than 32-bits, expanding the struct will create
    // alignment padding.
    if (!is32Or64BitBasicType(FD->getType(), Context))
      return false;

    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
    // how to expand them yet, and the predicate for telling if a bitfield still
    // counts as "basic" is more complicated than what we were doing previously.
    if (FD->isBitField())
      return false;

    Size += Context.getTypeSize(FD->getType());
  }
  return true;
}

static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
                                 uint64_t &Size) {
  // Don't do this if there are any non-empty bases.
  for (const CXXBaseSpecifier &Base : RD->bases()) {
    if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
                              Size))
      return false;
  }
  if (!addFieldSizes(Context, RD, Size))
    return false;
  return true;
}

/// Test whether an argument type which is to be passed indirectly (on the
/// stack) would have the equivalent layout if it was expanded into separate
/// arguments. If so, we prefer to do the latter to avoid inhibiting
/// optimizations.
bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
  // We can only expand structure types.
  const RecordType *RT = Ty->getAs<RecordType>();
  if (!RT)
    return false;
  const RecordDecl *RD = RT->getDecl();
  uint64_t Size = 0;
  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
    if (!IsWin32StructABI) {
      // On non-Windows, we have to conservatively match our old bitcode
      // prototypes in order to be ABI-compatible at the bitcode level.
      if (!CXXRD->isCLike())
        return false;
    } else {
      // Don't do this for dynamic classes.
      if (CXXRD->isDynamicClass())
        return false;
    }
    if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
      return false;
  } else {
    if (!addFieldSizes(getContext(), RD, Size))
      return false;
  }

  // We can do this if there was no alignment padding.
  return Size == getContext().getTypeSize(Ty);
}

ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
  // If the return value is indirect, then the hidden argument is consuming one
  // integer register.
  if (State.FreeRegs) {
    --State.FreeRegs;
    if (!IsMCUABI)
      return getNaturalAlignIndirectInReg(RetTy);
  }
  return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
}

ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
                                             CCState &State) const {
  if (RetTy->isVoidType())
    return ABIArgInfo::getIgnore();

  const Type *Base = nullptr;
  uint64_t NumElts = 0;
  if ((State.CC == llvm::CallingConv::X86_VectorCall ||
       State.CC == llvm::CallingConv::X86_RegCall) &&
      isHomogeneousAggregate(RetTy, Base, NumElts)) {
    // The LLVM struct type for such an aggregate should lower properly.
    return ABIArgInfo::getDirect();
  }

  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
    // On Darwin, some vectors are returned in registers.
    if (IsDarwinVectorABI) {
      uint64_t Size = getContext().getTypeSize(RetTy);

      // 128-bit vectors are a special case; they are returned in
      // registers and we need to make sure to pick a type the LLVM
      // backend will like.
      if (Size == 128)
        return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
            llvm::Type::getInt64Ty(getVMContext()), 2));

      // Always return in register if it fits in a general purpose
      // register, or if it is 64 bits and has a single element.
      if ((Size == 8 || Size == 16 || Size == 32) ||
          (Size == 64 && VT->getNumElements() == 1))
        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
                                                            Size));

      return getIndirectReturnResult(RetTy, State);
    }

    return ABIArgInfo::getDirect();
  }

  if (isAggregateTypeForABI(RetTy)) {
    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
      // Structures with flexible arrays are always indirect.
      if (RT->getDecl()->hasFlexibleArrayMember())
        return getIndirectReturnResult(RetTy, State);
    }

    // If specified, structs and unions are always indirect.
    if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
      return getIndirectReturnResult(RetTy, State);

    // Ignore empty structs/unions.
    if (isEmptyRecord(getContext(), RetTy, true))
      return ABIArgInfo::getIgnore();

    // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
    if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
      QualType ET = getContext().getCanonicalType(CT->getElementType());
      if (ET->isFloat16Type())
        return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
            llvm::Type::getHalfTy(getVMContext()), 2));
    }

    // Small structures which are register sized are generally returned
    // in a register.
    if (shouldReturnTypeInRegister(RetTy, getContext())) {
      uint64_t Size = getContext().getTypeSize(RetTy);

      // As a special-case, if the struct is a "single-element" struct, and
      // the field is of type "float" or "double", return it in a
      // floating-point register. (MSVC does not apply this special case.)
      // We apply a similar transformation for pointer types to improve the
      // quality of the generated IR.
      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
        if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
            || SeltTy->hasPointerRepresentation())
          return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));

      // FIXME: We should be able to narrow this integer in cases with dead
      // padding.
      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
    }

    return getIndirectReturnResult(RetTy, State);
  }

  // Treat an enum type as its underlying type.
  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
    RetTy = EnumTy->getDecl()->getIntegerType();

  if (const auto *EIT = RetTy->getAs<BitIntType>())
    if (EIT->getNumBits() > 64)
      return getIndirectReturnResult(RetTy, State);

  return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
                                               : ABIArgInfo::getDirect());
}

unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
                                                 unsigned Align) const {
  // Otherwise, if the alignment is less than or equal to the minimum ABI
  // alignment, just use the default; the backend will handle this.
  if (Align <= MinABIStackAlignInBytes)
    return 0; // Use default alignment.

  if (IsLinuxABI) {
    // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
    // want to spend any effort dealing with the ramifications of ABI breaks.
    //
    // If the vector type is __m128/__m256/__m512, return the default alignment.
    if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
      return Align;
  }
  // On non-Darwin, the stack type alignment is always 4.
  if (!IsDarwinVectorABI) {
    // Set explicit alignment, since we may need to realign the top.
    return MinABIStackAlignInBytes;
  }

  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
  if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
                      isRecordWithSIMDVectorType(getContext(), Ty)))
    return 16;

  return MinABIStackAlignInBytes;
}

ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
                                            CCState &State) const {
  if (!ByVal) {
    if (State.FreeRegs) {
      --State.FreeRegs; // Non-byval indirects just use one pointer.
      if (!IsMCUABI)
        return getNaturalAlignIndirectInReg(Ty);
    }
    return getNaturalAlignIndirect(Ty, false);
  }

  // Compute the byval alignment.
  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
  if (StackAlign == 0)
    return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);

  // If the stack alignment is less than the type alignment, realign the
  // argument.
  bool Realign = TypeAlign > StackAlign;
  return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
                                 /*ByVal=*/true, Realign);
}

X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
  const Type *T = isSingleElementStruct(Ty, getContext());
  if (!T)
    T = Ty.getTypePtr();

  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
    BuiltinType::Kind K = BT->getKind();
    if (K == BuiltinType::Float || K == BuiltinType::Double)
      return Float;
  }
  return Integer;
}

bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
  if (!IsSoftFloatABI) {
    Class C = classify(Ty);
    if (C == Float)
      return false;
  }

  unsigned Size = getContext().getTypeSize(Ty);
  unsigned SizeInRegs = (Size + 31) / 32;

  if (SizeInRegs == 0)
    return false;

  if (!IsMCUABI) {
    if (SizeInRegs > State.FreeRegs) {
      State.FreeRegs = 0;
      return false;
    }
  } else {
    // The MCU psABI allows passing parameters in-reg even if there are
    // earlier parameters that are passed on the stack. Also,
    // it does not allow passing >8-byte structs in-register,
    // even if there are 3 free registers available.
    if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
      return false;
  }

  State.FreeRegs -= SizeInRegs;
  return true;
}

bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
                                             bool &InReg,
                                             bool &NeedsPadding) const {
  // On Windows, aggregates other than HFAs are never passed in registers, and
  // they do not consume register slots. Homogenous floating-point aggregates
  // (HFAs) have already been dealt with at this point.
  if (IsWin32StructABI && isAggregateTypeForABI(Ty))
    return false;

  NeedsPadding = false;
  InReg = !IsMCUABI;

  if (!updateFreeRegs(Ty, State))
    return false;

  if (IsMCUABI)
    return true;

  if (State.CC == llvm::CallingConv::X86_FastCall ||
      State.CC == llvm::CallingConv::X86_VectorCall ||
      State.CC == llvm::CallingConv::X86_RegCall) {
    if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
      NeedsPadding = true;

    return false;
  }

  return true;
}

bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
  bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) &&
                    (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
                     Ty->isReferenceType());

  if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall ||
                      State.CC == llvm::CallingConv::X86_VectorCall))
    return false;

  if (!updateFreeRegs(Ty, State))
    return false;

  if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall)
    return false;

  // Return true to apply inreg to all legal parameters except for MCU targets.
  return !IsMCUABI;
}

void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
  // Vectorcall x86 works subtly different than in x64, so the format is
  // a bit different than the x64 version.  First, all vector types (not HVAs)
  // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
  // This differs from the x64 implementation, where the first 6 by INDEX get
  // registers.
  // In the second pass over the arguments, HVAs are passed in the remaining
  // vector registers if possible, or indirectly by address. The address will be
  // passed in ECX/EDX if available. Any other arguments are passed according to
  // the usual fastcall rules.
  MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
  for (int I = 0, E = Args.size(); I < E; ++I) {
    const Type *Base = nullptr;
    uint64_t NumElts = 0;
    const QualType &Ty = Args[I].type;
    if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
        isHomogeneousAggregate(Ty, Base, NumElts)) {
      if (State.FreeSSERegs >= NumElts) {
        State.FreeSSERegs -= NumElts;
        Args[I].info = ABIArgInfo::getDirectInReg();
        State.IsPreassigned.set(I);
      }
    }
  }
}

ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State,
                                               unsigned ArgIndex) const {
  // FIXME: Set alignment on indirect arguments.
  bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
  bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
  bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;

  Ty = useFirstFieldIfTransparentUnion(Ty);
  TypeInfo TI = getContext().getTypeInfo(Ty);

  // Check with the C++ ABI first.
  const RecordType *RT = Ty->getAs<RecordType>();
  if (RT) {
    CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
    if (RAA == CGCXXABI::RAA_Indirect) {
      return getIndirectResult(Ty, false, State);
    } else if (State.IsDelegateCall) {
      // Avoid having different alignments on delegate call args by always
      // setting the alignment to 4, which is what we do for inallocas.
      ABIArgInfo Res = getIndirectResult(Ty, false, State);
      Res.setIndirectAlign(CharUnits::fromQuantity(4));
      return Res;
    } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
      // The field index doesn't matter, we'll fix it up later.
      return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
    }
  }

  // Regcall uses the concept of a homogenous vector aggregate, similar
  // to other targets.
  const Type *Base = nullptr;
  uint64_t NumElts = 0;
  if ((IsRegCall || IsVectorCall) &&
      isHomogeneousAggregate(Ty, Base, NumElts)) {
    if (State.FreeSSERegs >= NumElts) {
      State.FreeSSERegs -= NumElts;

      // Vectorcall passes HVAs directly and does not flatten them, but regcall
      // does.
      if (IsVectorCall)
        return getDirectX86Hva();

      if (Ty->isBuiltinType() || Ty->isVectorType())
        return ABIArgInfo::getDirect();
      return ABIArgInfo::getExpand();
    }
    return getIndirectResult(Ty, /*ByVal=*/false, State);
  }

  if (isAggregateTypeForABI(Ty)) {
    // Structures with flexible arrays are always indirect.
    // FIXME: This should not be byval!
    if (RT && RT->getDecl()->hasFlexibleArrayMember())
      return getIndirectResult(Ty, true, State);

    // Ignore empty structs/unions on non-Windows.
    if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
      return ABIArgInfo::getIgnore();

    llvm::LLVMContext &LLVMContext = getVMContext();
    llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
    bool NeedsPadding = false;
    bool InReg;
    if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
      unsigned SizeInRegs = (TI.Width + 31) / 32;
      SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
      llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
      if (InReg)
        return ABIArgInfo::getDirectInReg(Result);
      else
        return ABIArgInfo::getDirect(Result);
    }
    llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;

    // Pass over-aligned aggregates to non-variadic functions on Windows
    // indirectly. This behavior was added in MSVC 2015. Use the required
    // alignment from the record layout, since that may be less than the
    // regular type alignment, and types with required alignment of less than 4
    // bytes are not passed indirectly.
    if (IsWin32StructABI && State.Required.isRequiredArg(ArgIndex)) {
      unsigned AlignInBits = 0;
      if (RT) {
        const ASTRecordLayout &Layout =
          getContext().getASTRecordLayout(RT->getDecl());
        AlignInBits = getContext().toBits(Layout.getRequiredAlignment());
      } else if (TI.isAlignRequired()) {
        AlignInBits = TI.Align;
      }
      if (AlignInBits > 32)
        return getIndirectResult(Ty, /*ByVal=*/false, State);
    }

    // Expand small (<= 128-bit) record types when we know that the stack layout
    // of those arguments will match the struct. This is important because the
    // LLVM backend isn't smart enough to remove byval, which inhibits many
    // optimizations.
    // Don't do this for the MCU if there are still free integer registers
    // (see X86_64 ABI for full explanation).
    if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
        canExpandIndirectArgument(Ty))
      return ABIArgInfo::getExpandWithPadding(
          IsFastCall || IsVectorCall || IsRegCall, PaddingType);

    return getIndirectResult(Ty, true, State);
  }

  if (const VectorType *VT = Ty->getAs<VectorType>()) {
    // On Windows, vectors are passed directly if registers are available, or
    // indirectly if not. This avoids the need to align argument memory. Pass
    // user-defined vector types larger than 512 bits indirectly for simplicity.
    if (IsWin32StructABI) {
      if (TI.Width <= 512 && State.FreeSSERegs > 0) {
        --State.FreeSSERegs;
        return ABIArgInfo::getDirectInReg();
      }
      return getIndirectResult(Ty, /*ByVal=*/false, State);
    }

    // On Darwin, some vectors are passed in memory, we handle this by passing
    // it as an i8/i16/i32/i64.
    if (IsDarwinVectorABI) {
      if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
          (TI.Width == 64 && VT->getNumElements() == 1))
        return ABIArgInfo::getDirect(
            llvm::IntegerType::get(getVMContext(), TI.Width));
    }

    if (IsX86_MMXType(CGT.ConvertType(Ty)))
      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));

    return ABIArgInfo::getDirect();
  }


  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
    Ty = EnumTy->getDecl()->getIntegerType();

  bool InReg = shouldPrimitiveUseInReg(Ty, State);

  if (isPromotableIntegerTypeForABI(Ty)) {
    if (InReg)
      return ABIArgInfo::getExtendInReg(Ty);
    return ABIArgInfo::getExtend(Ty);
  }

  if (const auto *EIT = Ty->getAs<BitIntType>()) {
    if (EIT->getNumBits() <= 64) {
      if (InReg)
        return ABIArgInfo::getDirectInReg();
      return ABIArgInfo::getDirect();
    }
    return getIndirectResult(Ty, /*ByVal=*/false, State);
  }

  if (InReg)
    return ABIArgInfo::getDirectInReg();
  return ABIArgInfo::getDirect();
}

void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
  CCState State(FI);
  if (IsMCUABI)
    State.FreeRegs = 3;
  else if (State.CC == llvm::CallingConv::X86_FastCall) {
    State.FreeRegs = 2;
    State.FreeSSERegs = 3;
  } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
    State.FreeRegs = 2;
    State.FreeSSERegs = 6;
  } else if (FI.getHasRegParm())
    State.FreeRegs = FI.getRegParm();
  else if (State.CC == llvm::CallingConv::X86_RegCall) {
    State.FreeRegs = 5;
    State.FreeSSERegs = 8;
  } else if (IsWin32StructABI) {
    // Since MSVC 2015, the first three SSE vectors have been passed in
    // registers. The rest are passed indirectly.
    State.FreeRegs = DefaultNumRegisterParameters;
    State.FreeSSERegs = 3;
  } else
    State.FreeRegs = DefaultNumRegisterParameters;

  if (!::classifyReturnType(getCXXABI(), FI, *this)) {
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
  } else if (FI.getReturnInfo().isIndirect()) {
    // The C++ ABI is not aware of register usage, so we have to check if the
    // return value was sret and put it in a register ourselves if appropriate.
    if (State.FreeRegs) {
      --State.FreeRegs;  // The sret parameter consumes a register.
      if (!IsMCUABI)
        FI.getReturnInfo().setInReg(true);
    }
  }

  // The chain argument effectively gives us another free register.
  if (FI.isChainCall())
    ++State.FreeRegs;

  // For vectorcall, do a first pass over the arguments, assigning FP and vector
  // arguments to XMM registers as available.
  if (State.CC == llvm::CallingConv::X86_VectorCall)
    runVectorCallFirstPass(FI, State);

  bool UsedInAlloca = false;
  MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
  for (unsigned I = 0, E = Args.size(); I < E; ++I) {
    // Skip arguments that have already been assigned.
    if (State.IsPreassigned.test(I))
      continue;

    Args[I].info =
        classifyArgumentType(Args[I].type, State, I);
    UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
  }

  // If we needed to use inalloca for any argument, do a second pass and rewrite
  // all the memory arguments to use inalloca.
  if (UsedInAlloca)
    rewriteWithInAlloca(FI);
}

void
X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
                                   CharUnits &StackOffset, ABIArgInfo &Info,
                                   QualType Type) const {
  // Arguments are always 4-byte-aligned.
  CharUnits WordSize = CharUnits::fromQuantity(4);
  assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");

  // sret pointers and indirect things will require an extra pointer
  // indirection, unless they are byval. Most things are byval, and will not
  // require this indirection.
  bool IsIndirect = false;
  if (Info.isIndirect() && !Info.getIndirectByVal())
    IsIndirect = true;
  Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
  llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
  if (IsIndirect)
    LLTy = llvm::PointerType::getUnqual(getVMContext());
  FrameFields.push_back(LLTy);
  StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);

  // Insert padding bytes to respect alignment.
  CharUnits FieldEnd = StackOffset;
  StackOffset = FieldEnd.alignTo(WordSize);
  if (StackOffset != FieldEnd) {
    CharUnits NumBytes = StackOffset - FieldEnd;
    llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
    Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
    FrameFields.push_back(Ty);
  }
}

static bool isArgInAlloca(const ABIArgInfo &Info) {
  // Leave ignored and inreg arguments alone.
  switch (Info.getKind()) {
  case ABIArgInfo::InAlloca:
    return true;
  case ABIArgInfo::Ignore:
  case ABIArgInfo::IndirectAliased:
    return false;
  case ABIArgInfo::Indirect:
  case ABIArgInfo::Direct:
  case ABIArgInfo::Extend:
    return !Info.getInReg();
  case ABIArgInfo::Expand:
  case ABIArgInfo::CoerceAndExpand:
    // These are aggregate types which are never passed in registers when
    // inalloca is involved.
    return true;
  }
  llvm_unreachable("invalid enum");
}

void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
  assert(IsWin32StructABI && "inalloca only supported on win32");

  // Build a packed struct type for all of the arguments in memory.
  SmallVector<llvm::Type *, 6> FrameFields;

  // The stack alignment is always 4.
  CharUnits StackAlign = CharUnits::fromQuantity(4);

  CharUnits StackOffset;
  CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();

  // Put 'this' into the struct before 'sret', if necessary.
  bool IsThisCall =
      FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
  ABIArgInfo &Ret = FI.getReturnInfo();
  if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
      isArgInAlloca(I->info)) {
    addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
    ++I;
  }

  // Put the sret parameter into the inalloca struct if it's in memory.
  if (Ret.isIndirect() && !Ret.getInReg()) {
    addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
    // On Windows, the hidden sret parameter is always returned in eax.
    Ret.setInAllocaSRet(IsWin32StructABI);
  }

  // Skip the 'this' parameter in ecx.
  if (IsThisCall)
    ++I;

  // Put arguments passed in memory into the struct.
  for (; I != E; ++I) {
    if (isArgInAlloca(I->info))
      addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
  }

  FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
                                        /*isPacked=*/true),
                  StackAlign);
}

Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
                                 Address VAListAddr, QualType Ty) const {

  auto TypeInfo = getContext().getTypeInfoInChars(Ty);

  // x86-32 changes the alignment of certain arguments on the stack.
  //
  // Just messing with TypeInfo like this works because we never pass
  // anything indirectly.
  TypeInfo.Align = CharUnits::fromQuantity(
                getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));

  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
                          TypeInfo, CharUnits::fromQuantity(4),
                          /*AllowHigherAlign*/ true);
}

bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
    const llvm::Triple &Triple, const CodeGenOptions &Opts) {
  assert(Triple.getArch() == llvm::Triple::x86);

  switch (Opts.getStructReturnConvention()) {
  case CodeGenOptions::SRCK_Default:
    break;
  case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
    return false;
  case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
    return true;
  }

  if (Triple.isOSDarwin() || Triple.isOSIAMCU())
    return true;

  switch (Triple.getOS()) {
  case llvm::Triple::DragonFly:
  case llvm::Triple::FreeBSD:
  case llvm::Triple::OpenBSD:
  case llvm::Triple::Win32:
    return true;
  default:
    return false;
  }
}

static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
                                 CodeGen::CodeGenModule &CGM) {
  if (!FD->hasAttr<AnyX86InterruptAttr>())
    return;

  llvm::Function *Fn = cast<llvm::Function>(GV);
  Fn->setCallingConv(llvm::CallingConv::X86_INTR);
  if (FD->getNumParams() == 0)
    return;

  auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
  llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
  llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
    Fn->getContext(), ByValTy);
  Fn->addParamAttr(0, NewAttr);
}

void X86_32TargetCodeGenInfo::setTargetAttributes(
    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
  if (GV->isDeclaration())
    return;
  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
      llvm::Function *Fn = cast<llvm::Function>(GV);
      Fn->addFnAttr("stackrealign");
    }

    addX86InterruptAttrs(FD, GV, CGM);
  }
}

bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
                                               CodeGen::CodeGenFunction &CGF,
                                               llvm::Value *Address) const {
  CodeGen::CGBuilderTy &Builder = CGF.Builder;

  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);

  // 0-7 are the eight integer registers;  the order is different
  //   on Darwin (for EH), but the range is the same.
  // 8 is %eip.
  AssignToArrayRange(Builder, Address, Four8, 0, 8);

  if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
    // 12-16 are st(0..4).  Not sure why we stop at 4.
    // These have size 16, which is sizeof(long double) on
    // platforms with 8-byte alignment for that type.
    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);

  } else {
    // 9 is %eflags, which doesn't get a size on Darwin for some
    // reason.
    Builder.CreateAlignedStore(
        Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
                               CharUnits::One());

    // 11-16 are st(0..5).  Not sure why we stop at 5.
    // These have size 12, which is sizeof(long double) on
    // platforms with 4-byte alignment for that type.
    llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
  }

  return false;
}

//===----------------------------------------------------------------------===//
// X86-64 ABI Implementation
//===----------------------------------------------------------------------===//


namespace {

/// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
  switch (AVXLevel) {
  case X86AVXABILevel::AVX512:
    return 512;
  case X86AVXABILevel::AVX:
    return 256;
  case X86AVXABILevel::None:
    return 128;
  }
  llvm_unreachable("Unknown AVXLevel");
}

/// X86_64ABIInfo - The X86_64 ABI information.
class X86_64ABIInfo : public ABIInfo {
  enum Class {
    Integer = 0,
    SSE,
    SSEUp,
    X87,
    X87Up,
    ComplexX87,
    NoClass,
    Memory
  };

  /// merge - Implement the X86_64 ABI merging algorithm.
  ///
  /// Merge an accumulating classification \arg Accum with a field
  /// classification \arg Field.
  ///
  /// \param Accum - The accumulating classification. This should
  /// always be either NoClass or the result of a previous merge
  /// call. In addition, this should never be Memory (the caller
  /// should just return Memory for the aggregate).
  static Class merge(Class Accum, Class Field);

  /// postMerge - Implement the X86_64 ABI post merging algorithm.
  ///
  /// Post merger cleanup, reduces a malformed Hi and Lo pair to
  /// final MEMORY or SSE classes when necessary.
  ///
  /// \param AggregateSize - The size of the current aggregate in
  /// the classification process.
  ///
  /// \param Lo - The classification for the parts of the type
  /// residing in the low word of the containing object.
  ///
  /// \param Hi - The classification for the parts of the type
  /// residing in the higher words of the containing object.
  ///
  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;

  /// classify - Determine the x86_64 register classes in which the
  /// given type T should be passed.
  ///
  /// \param Lo - The classification for the parts of the type
  /// residing in the low word of the containing object.
  ///
  /// \param Hi - The classification for the parts of the type
  /// residing in the high word of the containing object.
  ///
  /// \param OffsetBase - The bit offset of this type in the
  /// containing object.  Some parameters are classified different
  /// depending on whether they straddle an eightbyte boundary.
  ///
  /// \param isNamedArg - Whether the argument in question is a "named"
  /// argument, as used in AMD64-ABI 3.5.7.
  ///
  /// \param IsRegCall - Whether the calling conversion is regcall.
  ///
  /// If a word is unused its result will be NoClass; if a type should
  /// be passed in Memory then at least the classification of \arg Lo
  /// will be Memory.
  ///
  /// The \arg Lo class will be NoClass iff the argument is ignored.
  ///
  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
  /// also be ComplexX87.
  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
                bool isNamedArg, bool IsRegCall = false) const;

  llvm::Type *GetByteVectorType(QualType Ty) const;
  llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
                                 unsigned IROffset, QualType SourceTy,
                                 unsigned SourceOffset) const;
  llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
                                     unsigned IROffset, QualType SourceTy,
                                     unsigned SourceOffset) const;

  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
  /// such that the argument will be returned in memory.
  ABIArgInfo getIndirectReturnResult(QualType Ty) const;

  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
  /// such that the argument will be passed in memory.
  ///
  /// \param freeIntRegs - The number of free integer registers remaining
  /// available.
  ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;

  ABIArgInfo classifyReturnType(QualType RetTy) const;

  ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
                                  unsigned &neededInt, unsigned &neededSSE,
                                  bool isNamedArg,
                                  bool IsRegCall = false) const;

  ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
                                       unsigned &NeededSSE,
                                       unsigned &MaxVectorWidth) const;

  ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
                                           unsigned &NeededSSE,
                                           unsigned &MaxVectorWidth) const;

  bool IsIllegalVectorType(QualType Ty) const;

  /// The 0.98 ABI revision clarified a lot of ambiguities,
  /// unfortunately in ways that were not always consistent with
  /// certain previous compilers.  In particular, platforms which
  /// required strict binary compatibility with older versions of GCC
  /// may need to exempt themselves.
  bool honorsRevision0_98() const {
    return !getTarget().getTriple().isOSDarwin();
  }

  /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
  /// classify it as INTEGER (for compatibility with older clang compilers).
  bool classifyIntegerMMXAsSSE() const {
    // Clang <= 3.8 did not do this.
    if (getContext().getLangOpts().getClangABICompat() <=
        LangOptions::ClangABI::Ver3_8)
      return false;

    const llvm::Triple &Triple = getTarget().getTriple();
    if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD())
      return false;
    return true;
  }

  // GCC classifies vectors of __int128 as memory.
  bool passInt128VectorsInMem() const {
    // Clang <= 9.0 did not do this.
    if (getContext().getLangOpts().getClangABICompat() <=
        LangOptions::ClangABI::Ver9)
      return false;

    const llvm::Triple &T = getTarget().getTriple();
    return T.isOSLinux() || T.isOSNetBSD();
  }

  X86AVXABILevel AVXLevel;
  // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
  // 64-bit hardware.
  bool Has64BitPointers;

public:
  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
      : ABIInfo(CGT), AVXLevel(AVXLevel),
        Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {}

  bool isPassedUsingAVXType(QualType type) const {
    unsigned neededInt, neededSSE;
    // The freeIntRegs argument doesn't matter here.
    ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
                                           /*isNamedArg*/true);
    if (info.isDirect()) {
      llvm::Type *ty = info.getCoerceToType();
      if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
        return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128;
    }
    return false;
  }

  void computeInfo(CGFunctionInfo &FI) const override;

  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;
  Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
                      QualType Ty) const override;

  bool has64BitPointers() const {
    return Has64BitPointers;
  }
};

/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
class WinX86_64ABIInfo : public ABIInfo {
public:
  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
      : ABIInfo(CGT), AVXLevel(AVXLevel),
        IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}

  void computeInfo(CGFunctionInfo &FI) const override;

  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;

  bool isHomogeneousAggregateBaseType(QualType Ty) const override {
    // FIXME: Assumes vectorcall is in use.
    return isX86VectorTypeForVectorCall(getContext(), Ty);
  }

  bool isHomogeneousAggregateSmallEnough(const Type *Ty,
                                         uint64_t NumMembers) const override {
    // FIXME: Assumes vectorcall is in use.
    return isX86VectorCallAggregateSmallEnough(NumMembers);
  }

private:
  ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
                      bool IsVectorCall, bool IsRegCall) const;
  ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
                                           const ABIArgInfo &current) const;

  X86AVXABILevel AVXLevel;

  bool IsMingw64;
};

class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
public:
  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
      : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {
    SwiftInfo =
        std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
  }

  /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
  /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
  bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }

  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
    return 7;
  }

  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
                               llvm::Value *Address) const override {
    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);

    // 0-15 are the 16 integer registers.
    // 16 is %rip.
    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
    return false;
  }

  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
                                  StringRef Constraint,
                                  llvm::Type* Ty) const override {
    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
  }

  bool isNoProtoCallVariadic(const CallArgList &args,
                             const FunctionNoProtoType *fnType) const override {
    // The default CC on x86-64 sets %al to the number of SSA
    // registers used, and GCC sets this when calling an unprototyped
    // function, so we override the default behavior.  However, don't do
    // that when AVX types are involved: the ABI explicitly states it is
    // undefined, and it doesn't work in practice because of how the ABI
    // defines varargs anyway.
    if (fnType->getCallConv() == CC_C) {
      bool HasAVXType = false;
      for (CallArgList::const_iterator
             it = args.begin(), ie = args.end(); it != ie; ++it) {
        if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(it->Ty)) {
          HasAVXType = true;
          break;
        }
      }

      if (!HasAVXType)
        return true;
    }

    return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
  }

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &CGM) const override {
    if (GV->isDeclaration())
      return;
    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
      if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
        llvm::Function *Fn = cast<llvm::Function>(GV);
        Fn->addFnAttr("stackrealign");
      }

      addX86InterruptAttrs(FD, GV, CGM);
    }
  }

  void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
                            const FunctionDecl *Caller,
                            const FunctionDecl *Callee,
                            const CallArgList &Args) const override;
};
} // namespace

static void initFeatureMaps(const ASTContext &Ctx,
                            llvm::StringMap<bool> &CallerMap,
                            const FunctionDecl *Caller,
                            llvm::StringMap<bool> &CalleeMap,
                            const FunctionDecl *Callee) {
  if (CalleeMap.empty() && CallerMap.empty()) {
    // The caller is potentially nullptr in the case where the call isn't in a
    // function.  In this case, the getFunctionFeatureMap ensures we just get
    // the TU level setting (since it cannot be modified by 'target'..
    Ctx.getFunctionFeatureMap(CallerMap, Caller);
    Ctx.getFunctionFeatureMap(CalleeMap, Callee);
  }
}

static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
                                 SourceLocation CallLoc,
                                 const llvm::StringMap<bool> &CallerMap,
                                 const llvm::StringMap<bool> &CalleeMap,
                                 QualType Ty, StringRef Feature,
                                 bool IsArgument) {
  bool CallerHasFeat = CallerMap.lookup(Feature);
  bool CalleeHasFeat = CalleeMap.lookup(Feature);
  if (!CallerHasFeat && !CalleeHasFeat)
    return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
           << IsArgument << Ty << Feature;

  // Mixing calling conventions here is very clearly an error.
  if (!CallerHasFeat || !CalleeHasFeat)
    return Diag.Report(CallLoc, diag::err_avx_calling_convention)
           << IsArgument << Ty << Feature;

  // Else, both caller and callee have the required feature, so there is no need
  // to diagnose.
  return false;
}

static bool checkAVX512ParamFeature(DiagnosticsEngine &Diag,
                                    SourceLocation CallLoc,
                                    const llvm::StringMap<bool> &CallerMap,
                                    const llvm::StringMap<bool> &CalleeMap,
                                    QualType Ty, bool IsArgument) {
  bool Caller256 = CallerMap.lookup("avx512f") && !CallerMap.lookup("evex512");
  bool Callee256 = CalleeMap.lookup("avx512f") && !CalleeMap.lookup("evex512");

  // Forbid 512-bit or larger vector pass or return when we disabled ZMM
  // instructions.
  if (Caller256 || Callee256)
    return Diag.Report(CallLoc, diag::err_avx_calling_convention)
           << IsArgument << Ty << "evex512";

  return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
                              "avx512f", IsArgument);
}

static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
                          SourceLocation CallLoc,
                          const llvm::StringMap<bool> &CallerMap,
                          const llvm::StringMap<bool> &CalleeMap, QualType Ty,
                          bool IsArgument) {
  uint64_t Size = Ctx.getTypeSize(Ty);
  if (Size > 256)
    return checkAVX512ParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
                                   IsArgument);

  if (Size > 128)
    return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
                                IsArgument);

  return false;
}

void X86_64TargetCodeGenInfo::checkFunctionCallABI(
    CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
    const FunctionDecl *Callee, const CallArgList &Args) const {
  llvm::StringMap<bool> CallerMap;
  llvm::StringMap<bool> CalleeMap;
  unsigned ArgIndex = 0;

  // We need to loop through the actual call arguments rather than the
  // function's parameters, in case this variadic.
  for (const CallArg &Arg : Args) {
    // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
    // additionally changes how vectors >256 in size are passed. Like GCC, we
    // warn when a function is called with an argument where this will change.
    // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
    // the caller and callee features are mismatched.
    // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
    // change its ABI with attribute-target after this call.
    if (Arg.getType()->isVectorType() &&
        CGM.getContext().getTypeSize(Arg.getType()) > 128) {
      initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
      QualType Ty = Arg.getType();
      // The CallArg seems to have desugared the type already, so for clearer
      // diagnostics, replace it with the type in the FunctionDecl if possible.
      if (ArgIndex < Callee->getNumParams())
        Ty = Callee->getParamDecl(ArgIndex)->getType();

      if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
                        CalleeMap, Ty, /*IsArgument*/ true))
        return;
    }
    ++ArgIndex;
  }

  // Check return always, as we don't have a good way of knowing in codegen
  // whether this value is used, tail-called, etc.
  if (Callee->getReturnType()->isVectorType() &&
      CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
    initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
    checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
                  CalleeMap, Callee->getReturnType(),
                  /*IsArgument*/ false);
  }
}

std::string TargetCodeGenInfo::qualifyWindowsLibrary(StringRef Lib) {
  // If the argument does not end in .lib, automatically add the suffix.
  // If the argument contains a space, enclose it in quotes.
  // This matches the behavior of MSVC.
  bool Quote = Lib.contains(' ');
  std::string ArgStr = Quote ? "\"" : "";
  ArgStr += Lib;
  if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a"))
    ArgStr += ".lib";
  ArgStr += Quote ? "\"" : "";
  return ArgStr;
}

namespace {
class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
public:
  WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
        bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
        unsigned NumRegisterParameters)
    : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
        Win32StructABI, NumRegisterParameters, false) {}

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &CGM) const override;

  void getDependentLibraryOption(llvm::StringRef Lib,
                                 llvm::SmallString<24> &Opt) const override {
    Opt = "/DEFAULTLIB:";
    Opt += qualifyWindowsLibrary(Lib);
  }

  void getDetectMismatchOption(llvm::StringRef Name,
                               llvm::StringRef Value,
                               llvm::SmallString<32> &Opt) const override {
    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
  }
};
} // namespace

void WinX86_32TargetCodeGenInfo::setTargetAttributes(
    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
  X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
  if (GV->isDeclaration())
    return;
  addStackProbeTargetAttributes(D, GV, CGM);
}

namespace {
class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
public:
  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
                             X86AVXABILevel AVXLevel)
      : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {
    SwiftInfo =
        std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
  }

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &CGM) const override;

  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
    return 7;
  }

  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
                               llvm::Value *Address) const override {
    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);

    // 0-15 are the 16 integer registers.
    // 16 is %rip.
    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
    return false;
  }

  void getDependentLibraryOption(llvm::StringRef Lib,
                                 llvm::SmallString<24> &Opt) const override {
    Opt = "/DEFAULTLIB:";
    Opt += qualifyWindowsLibrary(Lib);
  }

  void getDetectMismatchOption(llvm::StringRef Name,
                               llvm::StringRef Value,
                               llvm::SmallString<32> &Opt) const override {
    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
  }
};
} // namespace

void WinX86_64TargetCodeGenInfo::setTargetAttributes(
    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
  TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
  if (GV->isDeclaration())
    return;
  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
      llvm::Function *Fn = cast<llvm::Function>(GV);
      Fn->addFnAttr("stackrealign");
    }

    addX86InterruptAttrs(FD, GV, CGM);
  }

  addStackProbeTargetAttributes(D, GV, CGM);
}

void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
                              Class &Hi) const {
  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
  //
  // (a) If one of the classes is Memory, the whole argument is passed in
  //     memory.
  //
  // (b) If X87UP is not preceded by X87, the whole argument is passed in
  //     memory.
  //
  // (c) If the size of the aggregate exceeds two eightbytes and the first
  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
  //     argument is passed in memory. NOTE: This is necessary to keep the
  //     ABI working for processors that don't support the __m256 type.
  //
  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
  //
  // Some of these are enforced by the merging logic.  Others can arise
  // only with unions; for example:
  //   union { _Complex double; unsigned; }
  //
  // Note that clauses (b) and (c) were added in 0.98.
  //
  if (Hi == Memory)
    Lo = Memory;
  if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
    Lo = Memory;
  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
    Lo = Memory;
  if (Hi == SSEUp && Lo != SSE)
    Hi = SSE;
}

X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
  // classified recursively so that always two fields are
  // considered. The resulting class is calculated according to
  // the classes of the fields in the eightbyte:
  //
  // (a) If both classes are equal, this is the resulting class.
  //
  // (b) If one of the classes is NO_CLASS, the resulting class is
  // the other class.
  //
  // (c) If one of the classes is MEMORY, the result is the MEMORY
  // class.
  //
  // (d) If one of the classes is INTEGER, the result is the
  // INTEGER.
  //
  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
  // MEMORY is used as class.
  //
  // (f) Otherwise class SSE is used.

  // Accum should never be memory (we should have returned) or
  // ComplexX87 (because this cannot be passed in a structure).
  assert((Accum != Memory && Accum != ComplexX87) &&
         "Invalid accumulated classification during merge.");
  if (Accum == Field || Field == NoClass)
    return Accum;
  if (Field == Memory)
    return Memory;
  if (Accum == NoClass)
    return Field;
  if (Accum == Integer || Field == Integer)
    return Integer;
  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
      Accum == X87 || Accum == X87Up)
    return Memory;
  return SSE;
}

void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo,
                             Class &Hi, bool isNamedArg, bool IsRegCall) const {
  // FIXME: This code can be simplified by introducing a simple value class for
  // Class pairs with appropriate constructor methods for the various
  // situations.

  // FIXME: Some of the split computations are wrong; unaligned vectors
  // shouldn't be passed in registers for example, so there is no chance they
  // can straddle an eightbyte. Verify & simplify.

  Lo = Hi = NoClass;

  Class &Current = OffsetBase < 64 ? Lo : Hi;
  Current = Memory;

  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
    BuiltinType::Kind k = BT->getKind();

    if (k == BuiltinType::Void) {
      Current = NoClass;
    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
      Lo = Integer;
      Hi = Integer;
    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
      Current = Integer;
    } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
               k == BuiltinType::Float16 || k == BuiltinType::BFloat16) {
      Current = SSE;
    } else if (k == BuiltinType::Float128) {
      Lo = SSE;
      Hi = SSEUp;
    } else if (k == BuiltinType::LongDouble) {
      const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
      if (LDF == &llvm::APFloat::IEEEquad()) {
        Lo = SSE;
        Hi = SSEUp;
      } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
        Lo = X87;
        Hi = X87Up;
      } else if (LDF == &llvm::APFloat::IEEEdouble()) {
        Current = SSE;
      } else
        llvm_unreachable("unexpected long double representation!");
    }
    // FIXME: _Decimal32 and _Decimal64 are SSE.
    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
    return;
  }

  if (const EnumType *ET = Ty->getAs<EnumType>()) {
    // Classify the underlying integer type.
    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
    return;
  }

  if (Ty->hasPointerRepresentation()) {
    Current = Integer;
    return;
  }

  if (Ty->isMemberPointerType()) {
    if (Ty->isMemberFunctionPointerType()) {
      if (Has64BitPointers) {
        // If Has64BitPointers, this is an {i64, i64}, so classify both
        // Lo and Hi now.
        Lo = Hi = Integer;
      } else {
        // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
        // straddles an eightbyte boundary, Hi should be classified as well.
        uint64_t EB_FuncPtr = (OffsetBase) / 64;
        uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
        if (EB_FuncPtr != EB_ThisAdj) {
          Lo = Hi = Integer;
        } else {
          Current = Integer;
        }
      }
    } else {
      Current = Integer;
    }
    return;
  }

  if (const VectorType *VT = Ty->getAs<VectorType>()) {
    uint64_t Size = getContext().getTypeSize(VT);
    if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
      // gcc passes the following as integer:
      // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
      // 2 bytes - <2 x char>, <1 x short>
      // 1 byte  - <1 x char>
      Current = Integer;

      // If this type crosses an eightbyte boundary, it should be
      // split.
      uint64_t EB_Lo = (OffsetBase) / 64;
      uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
      if (EB_Lo != EB_Hi)
        Hi = Lo;
    } else if (Size == 64) {
      QualType ElementType = VT->getElementType();

      // gcc passes <1 x double> in memory. :(
      if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
        return;

      // gcc passes <1 x long long> as SSE but clang used to unconditionally
      // pass them as integer.  For platforms where clang is the de facto
      // platform compiler, we must continue to use integer.
      if (!classifyIntegerMMXAsSSE() &&
          (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
           ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
           ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
           ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
        Current = Integer;
      else
        Current = SSE;

      // If this type crosses an eightbyte boundary, it should be
      // split.
      if (OffsetBase && OffsetBase != 64)
        Hi = Lo;
    } else if (Size == 128 ||
               (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
      QualType ElementType = VT->getElementType();

      // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
      if (passInt128VectorsInMem() && Size != 128 &&
          (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
           ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
        return;

      // Arguments of 256-bits are split into four eightbyte chunks. The
      // least significant one belongs to class SSE and all the others to class
      // SSEUP. The original Lo and Hi design considers that types can't be
      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
      // This design isn't correct for 256-bits, but since there're no cases
      // where the upper parts would need to be inspected, avoid adding
      // complexity and just consider Hi to match the 64-256 part.
      //
      // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
      // registers if they are "named", i.e. not part of the "..." of a
      // variadic function.
      //
      // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
      // split into eight eightbyte chunks, one SSE and seven SSEUP.
      Lo = SSE;
      Hi = SSEUp;
    }
    return;
  }

  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
    QualType ET = getContext().getCanonicalType(CT->getElementType());

    uint64_t Size = getContext().getTypeSize(Ty);
    if (ET->isIntegralOrEnumerationType()) {
      if (Size <= 64)
        Current = Integer;
      else if (Size <= 128)
        Lo = Hi = Integer;
    } else if (ET->isFloat16Type() || ET == getContext().FloatTy ||
               ET->isBFloat16Type()) {
      Current = SSE;
    } else if (ET == getContext().DoubleTy) {
      Lo = Hi = SSE;
    } else if (ET == getContext().LongDoubleTy) {
      const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
      if (LDF == &llvm::APFloat::IEEEquad())
        Current = Memory;
      else if (LDF == &llvm::APFloat::x87DoubleExtended())
        Current = ComplexX87;
      else if (LDF == &llvm::APFloat::IEEEdouble())
        Lo = Hi = SSE;
      else
        llvm_unreachable("unexpected long double representation!");
    }

    // If this complex type crosses an eightbyte boundary then it
    // should be split.
    uint64_t EB_Real = (OffsetBase) / 64;
    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
    if (Hi == NoClass && EB_Real != EB_Imag)
      Hi = Lo;

    return;
  }

  if (const auto *EITy = Ty->getAs<BitIntType>()) {
    if (EITy->getNumBits() <= 64)
      Current = Integer;
    else if (EITy->getNumBits() <= 128)
      Lo = Hi = Integer;
    // Larger values need to get passed in memory.
    return;
  }

  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
    // Arrays are treated like structures.

    uint64_t Size = getContext().getTypeSize(Ty);

    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
    // than eight eightbytes, ..., it has class MEMORY.
    // regcall ABI doesn't have limitation to an object. The only limitation
    // is the free registers, which will be checked in computeInfo.
    if (!IsRegCall && Size > 512)
      return;

    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
    // fields, it has class MEMORY.
    //
    // Only need to check alignment of array base.
    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
      return;

    // Otherwise implement simplified merge. We could be smarter about
    // this, but it isn't worth it and would be harder to verify.
    Current = NoClass;
    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
    uint64_t ArraySize = AT->getSize().getZExtValue();

    // The only case a 256-bit wide vector could be used is when the array
    // contains a single 256-bit element. Since Lo and Hi logic isn't extended
    // to work for sizes wider than 128, early check and fallback to memory.
    //
    if (Size > 128 &&
        (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
      return;

    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
      Class FieldLo, FieldHi;
      classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
      Lo = merge(Lo, FieldLo);
      Hi = merge(Hi, FieldHi);
      if (Lo == Memory || Hi == Memory)
        break;
    }

    postMerge(Size, Lo, Hi);
    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
    return;
  }

  if (const RecordType *RT = Ty->getAs<RecordType>()) {
    uint64_t Size = getContext().getTypeSize(Ty);

    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
    // than eight eightbytes, ..., it has class MEMORY.
    if (Size > 512)
      return;

    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
    // copy constructor or a non-trivial destructor, it is passed by invisible
    // reference.
    if (getRecordArgABI(RT, getCXXABI()))
      return;

    const RecordDecl *RD = RT->getDecl();

    // Assume variable sized types are passed in memory.
    if (RD->hasFlexibleArrayMember())
      return;

    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);

    // Reset Lo class, this will be recomputed.
    Current = NoClass;

    // If this is a C++ record, classify the bases first.
    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
      for (const auto &I : CXXRD->bases()) {
        assert(!I.isVirtual() && !I.getType()->isDependentType() &&
               "Unexpected base class!");
        const auto *Base =
            cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());

        // Classify this field.
        //
        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
        // single eightbyte, each is classified separately. Each eightbyte gets
        // initialized to class NO_CLASS.
        Class FieldLo, FieldHi;
        uint64_t Offset =
          OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
        classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
        Lo = merge(Lo, FieldLo);
        Hi = merge(Hi, FieldHi);
        if (Lo == Memory || Hi == Memory) {
          postMerge(Size, Lo, Hi);
          return;
        }
      }
    }

    // Classify the fields one at a time, merging the results.
    unsigned idx = 0;
    bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
                                LangOptions::ClangABI::Ver11 ||
                            getContext().getTargetInfo().getTriple().isPS();
    bool IsUnion = RT->isUnionType() && !UseClang11Compat;

    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
           i != e; ++i, ++idx) {
      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
      bool BitField = i->isBitField();

      // Ignore padding bit-fields.
      if (BitField && i->isUnnamedBitfield())
        continue;

      // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
      // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
      //
      // The only case a 256-bit or a 512-bit wide vector could be used is when
      // the struct contains a single 256-bit or 512-bit element. Early check
      // and fallback to memory.
      //
      // FIXME: Extended the Lo and Hi logic properly to work for size wider
      // than 128.
      if (Size > 128 &&
          ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
           Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
        Lo = Memory;
        postMerge(Size, Lo, Hi);
        return;
      }
      // Note, skip this test for bit-fields, see below.
      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
        Lo = Memory;
        postMerge(Size, Lo, Hi);
        return;
      }

      // Classify this field.
      //
      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
      // exceeds a single eightbyte, each is classified
      // separately. Each eightbyte gets initialized to class
      // NO_CLASS.
      Class FieldLo, FieldHi;

      // Bit-fields require special handling, they do not force the
      // structure to be passed in memory even if unaligned, and
      // therefore they can straddle an eightbyte.
      if (BitField) {
        assert(!i->isUnnamedBitfield());
        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
        uint64_t Size = i->getBitWidthValue(getContext());

        uint64_t EB_Lo = Offset / 64;
        uint64_t EB_Hi = (Offset + Size - 1) / 64;

        if (EB_Lo) {
          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
          FieldLo = NoClass;
          FieldHi = Integer;
        } else {
          FieldLo = Integer;
          FieldHi = EB_Hi ? Integer : NoClass;
        }
      } else
        classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
      Lo = merge(Lo, FieldLo);
      Hi = merge(Hi, FieldHi);
      if (Lo == Memory || Hi == Memory)
        break;
    }

    postMerge(Size, Lo, Hi);
  }
}

ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
  // If this is a scalar LLVM value then assume LLVM will pass it in the right
  // place naturally.
  if (!isAggregateTypeForABI(Ty)) {
    // Treat an enum type as its underlying type.
    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
      Ty = EnumTy->getDecl()->getIntegerType();

    if (Ty->isBitIntType())
      return getNaturalAlignIndirect(Ty);

    return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
                                              : ABIArgInfo::getDirect());
  }

  return getNaturalAlignIndirect(Ty);
}

bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
  if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
    uint64_t Size = getContext().getTypeSize(VecTy);
    unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
    if (Size <= 64 || Size > LargestVector)
      return true;
    QualType EltTy = VecTy->getElementType();
    if (passInt128VectorsInMem() &&
        (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
         EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
      return true;
  }

  return false;
}

ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
                                            unsigned freeIntRegs) const {
  // If this is a scalar LLVM value then assume LLVM will pass it in the right
  // place naturally.
  //
  // This assumption is optimistic, as there could be free registers available
  // when we need to pass this argument in memory, and LLVM could try to pass
  // the argument in the free register. This does not seem to happen currently,
  // but this code would be much safer if we could mark the argument with
  // 'onstack'. See PR12193.
  if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
      !Ty->isBitIntType()) {
    // Treat an enum type as its underlying type.
    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
      Ty = EnumTy->getDecl()->getIntegerType();

    return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
                                              : ABIArgInfo::getDirect());
  }

  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);

  // Compute the byval alignment. We specify the alignment of the byval in all
  // cases so that the mid-level optimizer knows the alignment of the byval.
  unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);

  // Attempt to avoid passing indirect results using byval when possible. This
  // is important for good codegen.
  //
  // We do this by coercing the value into a scalar type which the backend can
  // handle naturally (i.e., without using byval).
  //
  // For simplicity, we currently only do this when we have exhausted all of the
  // free integer registers. Doing this when there are free integer registers
  // would require more care, as we would have to ensure that the coerced value
  // did not claim the unused register. That would require either reording the
  // arguments to the function (so that any subsequent inreg values came first),
  // or only doing this optimization when there were no following arguments that
  // might be inreg.
  //
  // We currently expect it to be rare (particularly in well written code) for
  // arguments to be passed on the stack when there are still free integer
  // registers available (this would typically imply large structs being passed
  // by value), so this seems like a fair tradeoff for now.
  //
  // We can revisit this if the backend grows support for 'onstack' parameter
  // attributes. See PR12193.
  if (freeIntRegs == 0) {
    uint64_t Size = getContext().getTypeSize(Ty);

    // If this type fits in an eightbyte, coerce it into the matching integral
    // type, which will end up on the stack (with alignment 8).
    if (Align == 8 && Size <= 64)
      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
                                                          Size));
  }

  return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
}

/// The ABI specifies that a value should be passed in a full vector XMM/YMM
/// register. Pick an LLVM IR type that will be passed as a vector register.
llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
  // Wrapper structs/arrays that only contain vectors are passed just like
  // vectors; strip them off if present.
  if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
    Ty = QualType(InnerTy, 0);

  llvm::Type *IRType = CGT.ConvertType(Ty);
  if (isa<llvm::VectorType>(IRType)) {
    // Don't pass vXi128 vectors in their native type, the backend can't
    // legalize them.
    if (passInt128VectorsInMem() &&
        cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
      // Use a vXi64 vector.
      uint64_t Size = getContext().getTypeSize(Ty);
      return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
                                        Size / 64);
    }

    return IRType;
  }

  if (IRType->getTypeID() == llvm::Type::FP128TyID)
    return IRType;

  // We couldn't find the preferred IR vector type for 'Ty'.
  uint64_t Size = getContext().getTypeSize(Ty);
  assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");


  // Return a LLVM IR vector type based on the size of 'Ty'.
  return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
                                    Size / 64);
}

/// BitsContainNoUserData - Return true if the specified [start,end) bit range
/// is known to either be off the end of the specified type or being in
/// alignment padding.  The user type specified is known to be at most 128 bits
/// in size, and have passed through X86_64ABIInfo::classify with a successful
/// classification that put one of the two halves in the INTEGER class.
///
/// It is conservatively correct to return false.
static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
                                  unsigned EndBit, ASTContext &Context) {
  // If the bytes being queried are off the end of the type, there is no user
  // data hiding here.  This handles analysis of builtins, vectors and other
  // types that don't contain interesting padding.
  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
  if (TySize <= StartBit)
    return true;

  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();

    // Check each element to see if the element overlaps with the queried range.
    for (unsigned i = 0; i != NumElts; ++i) {
      // If the element is after the span we care about, then we're done..
      unsigned EltOffset = i*EltSize;
      if (EltOffset >= EndBit) break;

      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
                                 EndBit-EltOffset, Context))
        return false;
    }
    // If it overlaps no elements, then it is safe to process as padding.
    return true;
  }

  if (const RecordType *RT = Ty->getAs<RecordType>()) {
    const RecordDecl *RD = RT->getDecl();
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

    // If this is a C++ record, check the bases first.
    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
      for (const auto &I : CXXRD->bases()) {
        assert(!I.isVirtual() && !I.getType()->isDependentType() &&
               "Unexpected base class!");
        const auto *Base =
            cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());

        // If the base is after the span we care about, ignore it.
        unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
        if (BaseOffset >= EndBit) continue;

        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
        if (!BitsContainNoUserData(I.getType(), BaseStart,
                                   EndBit-BaseOffset, Context))
          return false;
      }
    }

    // Verify that no field has data that overlaps the region of interest.  Yes
    // this could be sped up a lot by being smarter about queried fields,
    // however we're only looking at structs up to 16 bytes, so we don't care
    // much.
    unsigned idx = 0;
    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
         i != e; ++i, ++idx) {
      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);

      // If we found a field after the region we care about, then we're done.
      if (FieldOffset >= EndBit) break;

      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
                                 Context))
        return false;
    }

    // If nothing in this record overlapped the area of interest, then we're
    // clean.
    return true;
  }

  return false;
}

/// getFPTypeAtOffset - Return a floating point type at the specified offset.
static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
                                     const llvm::DataLayout &TD) {
  if (IROffset == 0 && IRType->isFloatingPointTy())
    return IRType;

  // If this is a struct, recurse into the field at the specified offset.
  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
    if (!STy->getNumContainedTypes())
      return nullptr;

    const llvm::StructLayout *SL = TD.getStructLayout(STy);
    unsigned Elt = SL->getElementContainingOffset(IROffset);
    IROffset -= SL->getElementOffset(Elt);
    return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD);
  }

  // If this is an array, recurse into the field at the specified offset.
  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
    llvm::Type *EltTy = ATy->getElementType();
    unsigned EltSize = TD.getTypeAllocSize(EltTy);
    IROffset -= IROffset / EltSize * EltSize;
    return getFPTypeAtOffset(EltTy, IROffset, TD);
  }

  return nullptr;
}

/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
/// low 8 bytes of an XMM register, corresponding to the SSE class.
llvm::Type *X86_64ABIInfo::
GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
                   QualType SourceTy, unsigned SourceOffset) const {
  const llvm::DataLayout &TD = getDataLayout();
  unsigned SourceSize =
      (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset;
  llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
  if (!T0 || T0->isDoubleTy())
    return llvm::Type::getDoubleTy(getVMContext());

  // Get the adjacent FP type.
  llvm::Type *T1 = nullptr;
  unsigned T0Size = TD.getTypeAllocSize(T0);
  if (SourceSize > T0Size)
      T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD);
  if (T1 == nullptr) {
    // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due
    // to its alignment.
    if (T0->is16bitFPTy() && SourceSize > 4)
      T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
    // If we can't get a second FP type, return a simple half or float.
    // avx512fp16-abi.c:pr51813_2 shows it works to return float for
    // {float, i8} too.
    if (T1 == nullptr)
      return T0;
  }

  if (T0->isFloatTy() && T1->isFloatTy())
    return llvm::FixedVectorType::get(T0, 2);

  if (T0->is16bitFPTy() && T1->is16bitFPTy()) {
    llvm::Type *T2 = nullptr;
    if (SourceSize > 4)
      T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
    if (T2 == nullptr)
      return llvm::FixedVectorType::get(T0, 2);
    return llvm::FixedVectorType::get(T0, 4);
  }

  if (T0->is16bitFPTy() || T1->is16bitFPTy())
    return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);

  return llvm::Type::getDoubleTy(getVMContext());
}


/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
/// an 8-byte GPR.  This means that we either have a scalar or we are talking
/// about the high or low part of an up-to-16-byte struct.  This routine picks
/// the best LLVM IR type to represent this, which may be i64 or may be anything
/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
/// etc).
///
/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
/// the 8-byte value references.  PrefType may be null.
///
/// SourceTy is the source-level type for the entire argument.  SourceOffset is
/// an offset into this that we're processing (which is always either 0 or 8).
///
llvm::Type *X86_64ABIInfo::
GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
                       QualType SourceTy, unsigned SourceOffset) const {
  // If we're dealing with an un-offset LLVM IR type, then it means that we're
  // returning an 8-byte unit starting with it.  See if we can safely use it.
  if (IROffset == 0) {
    // Pointers and int64's always fill the 8-byte unit.
    if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
        IRType->isIntegerTy(64))
      return IRType;

    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
    // goodness in the source type is just tail padding.  This is allowed to
    // kick in for struct {double,int} on the int, but not on
    // struct{double,int,int} because we wouldn't return the second int.  We
    // have to do this analysis on the source type because we can't depend on
    // unions being lowered a specific way etc.
    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
        IRType->isIntegerTy(32) ||
        (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
      unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
          cast<llvm::IntegerType>(IRType)->getBitWidth();

      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
                                SourceOffset*8+64, getContext()))
        return IRType;
    }
  }

  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
    // If this is a struct, recurse into the field at the specified offset.
    const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
    if (IROffset < SL->getSizeInBytes()) {
      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
      IROffset -= SL->getElementOffset(FieldIdx);

      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
                                    SourceTy, SourceOffset);
    }
  }

  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
    llvm::Type *EltTy = ATy->getElementType();
    unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
    unsigned EltOffset = IROffset/EltSize*EltSize;
    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
                                  SourceOffset);
  }

  // Okay, we don't have any better idea of what to pass, so we pass this in an
  // integer register that isn't too big to fit the rest of the struct.
  unsigned TySizeInBytes =
    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();

  assert(TySizeInBytes != SourceOffset && "Empty field?");

  // It is always safe to classify this as an integer type up to i64 that
  // isn't larger than the structure.
  return llvm::IntegerType::get(getVMContext(),
                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
}


/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
/// be used as elements of a two register pair to pass or return, return a
/// first class aggregate to represent them.  For example, if the low part of
/// a by-value argument should be passed as i32* and the high part as float,
/// return {i32*, float}.
static llvm::Type *
GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
                           const llvm::DataLayout &TD) {
  // In order to correctly satisfy the ABI, we need to the high part to start
  // at offset 8.  If the high and low parts we inferred are both 4-byte types
  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
  // the second element at offset 8.  Check for this:
  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
  llvm::Align HiAlign = TD.getABITypeAlign(Hi);
  unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");

  // To handle this, we have to increase the size of the low part so that the
  // second element will start at an 8 byte offset.  We can't increase the size
  // of the second element because it might make us access off the end of the
  // struct.
  if (HiStart != 8) {
    // There are usually two sorts of types the ABI generation code can produce
    // for the low part of a pair that aren't 8 bytes in size: half, float or
    // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
    // NaCl).
    // Promote these to a larger type.
    if (Lo->isHalfTy() || Lo->isFloatTy())
      Lo = llvm::Type::getDoubleTy(Lo->getContext());
    else {
      assert((Lo->isIntegerTy() || Lo->isPointerTy())
             && "Invalid/unknown lo type");
      Lo = llvm::Type::getInt64Ty(Lo->getContext());
    }
  }

  llvm::StructType *Result = llvm::StructType::get(Lo, Hi);

  // Verify that the second element is at an 8-byte offset.
  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
         "Invalid x86-64 argument pair!");
  return Result;
}

ABIArgInfo X86_64ABIInfo::
classifyReturnType(QualType RetTy) const {
  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
  // classification algorithm.
  X86_64ABIInfo::Class Lo, Hi;
  classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);

  // Check some invariants.
  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");

  llvm::Type *ResType = nullptr;
  switch (Lo) {
  case NoClass:
    if (Hi == NoClass)
      return ABIArgInfo::getIgnore();
    // If the low part is just padding, it takes no register, leave ResType
    // null.
    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
           "Unknown missing lo part");
    break;

  case SSEUp:
  case X87Up:
    llvm_unreachable("Invalid classification for lo word.");

    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
    // hidden argument.
  case Memory:
    return getIndirectReturnResult(RetTy);

    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
    // available register of the sequence %rax, %rdx is used.
  case Integer:
    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);

    // If we have a sign or zero extended integer, make sure to return Extend
    // so that the parameter gets the right LLVM IR attributes.
    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
      // Treat an enum type as its underlying type.
      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
        RetTy = EnumTy->getDecl()->getIntegerType();

      if (RetTy->isIntegralOrEnumerationType() &&
          isPromotableIntegerTypeForABI(RetTy))
        return ABIArgInfo::getExtend(RetTy);
    }
    break;

    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
    // available SSE register of the sequence %xmm0, %xmm1 is used.
  case SSE:
    ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
    break;

    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
    // returned on the X87 stack in %st0 as 80-bit x87 number.
  case X87:
    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
    break;

    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
    // part of the value is returned in %st0 and the imaginary part in
    // %st1.
  case ComplexX87:
    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
    ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
                                    llvm::Type::getX86_FP80Ty(getVMContext()));
    break;
  }

  llvm::Type *HighPart = nullptr;
  switch (Hi) {
    // Memory was handled previously and X87 should
    // never occur as a hi class.
  case Memory:
  case X87:
    llvm_unreachable("Invalid classification for hi word.");

  case ComplexX87: // Previously handled.
  case NoClass:
    break;

  case Integer:
    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
      return ABIArgInfo::getDirect(HighPart, 8);
    break;
  case SSE:
    HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
      return ABIArgInfo::getDirect(HighPart, 8);
    break;

    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
    // is passed in the next available eightbyte chunk if the last used
    // vector register.
    //
    // SSEUP should always be preceded by SSE, just widen.
  case SSEUp:
    assert(Lo == SSE && "Unexpected SSEUp classification.");
    ResType = GetByteVectorType(RetTy);
    break;

    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
    // returned together with the previous X87 value in %st0.
  case X87Up:
    // If X87Up is preceded by X87, we don't need to do
    // anything. However, in some cases with unions it may not be
    // preceded by X87. In such situations we follow gcc and pass the
    // extra bits in an SSE reg.
    if (Lo != X87) {
      HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
        return ABIArgInfo::getDirect(HighPart, 8);
    }
    break;
  }

  // If a high part was specified, merge it together with the low part.  It is
  // known to pass in the high eightbyte of the result.  We do this by forming a
  // first class struct aggregate with the high and low part: {low, high}
  if (HighPart)
    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());

  return ABIArgInfo::getDirect(ResType);
}

ABIArgInfo
X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs,
                                    unsigned &neededInt, unsigned &neededSSE,
                                    bool isNamedArg, bool IsRegCall) const {
  Ty = useFirstFieldIfTransparentUnion(Ty);

  X86_64ABIInfo::Class Lo, Hi;
  classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall);

  // Check some invariants.
  // FIXME: Enforce these by construction.
  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");

  neededInt = 0;
  neededSSE = 0;
  llvm::Type *ResType = nullptr;
  switch (Lo) {
  case NoClass:
    if (Hi == NoClass)
      return ABIArgInfo::getIgnore();
    // If the low part is just padding, it takes no register, leave ResType
    // null.
    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
           "Unknown missing lo part");
    break;

    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
    // on the stack.
  case Memory:

    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
    // COMPLEX_X87, it is passed in memory.
  case X87:
  case ComplexX87:
    if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
      ++neededInt;
    return getIndirectResult(Ty, freeIntRegs);

  case SSEUp:
  case X87Up:
    llvm_unreachable("Invalid classification for lo word.");

    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
    // and %r9 is used.
  case Integer:
    ++neededInt;

    // Pick an 8-byte type based on the preferred type.
    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);

    // If we have a sign or zero extended integer, make sure to return Extend
    // so that the parameter gets the right LLVM IR attributes.
    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
      // Treat an enum type as its underlying type.
      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
        Ty = EnumTy->getDecl()->getIntegerType();

      if (Ty->isIntegralOrEnumerationType() &&
          isPromotableIntegerTypeForABI(Ty))
        return ABIArgInfo::getExtend(Ty);
    }

    break;

    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
    // available SSE register is used, the registers are taken in the
    // order from %xmm0 to %xmm7.
  case SSE: {
    llvm::Type *IRType = CGT.ConvertType(Ty);
    ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
    ++neededSSE;
    break;
  }
  }

  llvm::Type *HighPart = nullptr;
  switch (Hi) {
    // Memory was handled previously, ComplexX87 and X87 should
    // never occur as hi classes, and X87Up must be preceded by X87,
    // which is passed in memory.
  case Memory:
  case X87:
  case ComplexX87:
    llvm_unreachable("Invalid classification for hi word.");

  case NoClass: break;

  case Integer:
    ++neededInt;
    // Pick an 8-byte type based on the preferred type.
    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);

    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
      return ABIArgInfo::getDirect(HighPart, 8);
    break;

    // X87Up generally doesn't occur here (long double is passed in
    // memory), except in situations involving unions.
  case X87Up:
  case SSE:
    HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);

    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
      return ABIArgInfo::getDirect(HighPart, 8);

    ++neededSSE;
    break;

    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
    // eightbyte is passed in the upper half of the last used SSE
    // register.  This only happens when 128-bit vectors are passed.
  case SSEUp:
    assert(Lo == SSE && "Unexpected SSEUp classification");
    ResType = GetByteVectorType(Ty);
    break;
  }

  // If a high part was specified, merge it together with the low part.  It is
  // known to pass in the high eightbyte of the result.  We do this by forming a
  // first class struct aggregate with the high and low part: {low, high}
  if (HighPart)
    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());

  return ABIArgInfo::getDirect(ResType);
}

ABIArgInfo
X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
                                             unsigned &NeededSSE,
                                             unsigned &MaxVectorWidth) const {
  auto RT = Ty->getAs<RecordType>();
  assert(RT && "classifyRegCallStructType only valid with struct types");

  if (RT->getDecl()->hasFlexibleArrayMember())
    return getIndirectReturnResult(Ty);

  // Sum up bases
  if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
    if (CXXRD->isDynamicClass()) {
      NeededInt = NeededSSE = 0;
      return getIndirectReturnResult(Ty);
    }

    for (const auto &I : CXXRD->bases())
      if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE,
                                        MaxVectorWidth)
              .isIndirect()) {
        NeededInt = NeededSSE = 0;
        return getIndirectReturnResult(Ty);
      }
  }

  // Sum up members
  for (const auto *FD : RT->getDecl()->fields()) {
    QualType MTy = FD->getType();
    if (MTy->isRecordType() && !MTy->isUnionType()) {
      if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE,
                                        MaxVectorWidth)
              .isIndirect()) {
        NeededInt = NeededSSE = 0;
        return getIndirectReturnResult(Ty);
      }
    } else {
      unsigned LocalNeededInt, LocalNeededSSE;
      if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE,
                               true, true)
              .isIndirect()) {
        NeededInt = NeededSSE = 0;
        return getIndirectReturnResult(Ty);
      }
      if (const auto *AT = getContext().getAsConstantArrayType(MTy))
        MTy = AT->getElementType();
      if (const auto *VT = MTy->getAs<VectorType>())
        if (getContext().getTypeSize(VT) > MaxVectorWidth)
          MaxVectorWidth = getContext().getTypeSize(VT);
      NeededInt += LocalNeededInt;
      NeededSSE += LocalNeededSSE;
    }
  }

  return ABIArgInfo::getDirect();
}

ABIArgInfo
X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
                                         unsigned &NeededSSE,
                                         unsigned &MaxVectorWidth) const {

  NeededInt = 0;
  NeededSSE = 0;
  MaxVectorWidth = 0;

  return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE,
                                       MaxVectorWidth);
}

void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {

  const unsigned CallingConv = FI.getCallingConvention();
  // It is possible to force Win64 calling convention on any x86_64 target by
  // using __attribute__((ms_abi)). In such case to correctly emit Win64
  // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
  if (CallingConv == llvm::CallingConv::Win64) {
    WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
    Win64ABIInfo.computeInfo(FI);
    return;
  }

  bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;

  // Keep track of the number of assigned registers.
  unsigned FreeIntRegs = IsRegCall ? 11 : 6;
  unsigned FreeSSERegs = IsRegCall ? 16 : 8;
  unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0;

  if (!::classifyReturnType(getCXXABI(), FI, *this)) {
    if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
        !FI.getReturnType()->getTypePtr()->isUnionType()) {
      FI.getReturnInfo() = classifyRegCallStructType(
          FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth);
      if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
        FreeIntRegs -= NeededInt;
        FreeSSERegs -= NeededSSE;
      } else {
        FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
      }
    } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
               getContext().getCanonicalType(FI.getReturnType()
                                                 ->getAs<ComplexType>()
                                                 ->getElementType()) ==
                   getContext().LongDoubleTy)
      // Complex Long Double Type is passed in Memory when Regcall
      // calling convention is used.
      FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
    else
      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
  }

  // If the return value is indirect, then the hidden argument is consuming one
  // integer register.
  if (FI.getReturnInfo().isIndirect())
    --FreeIntRegs;
  else if (NeededSSE && MaxVectorWidth > 0)
    FI.setMaxVectorWidth(MaxVectorWidth);

  // The chain argument effectively gives us another free register.
  if (FI.isChainCall())
    ++FreeIntRegs;

  unsigned NumRequiredArgs = FI.getNumRequiredArgs();
  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
  // get assigned (in left-to-right order) for passing as follows...
  unsigned ArgNo = 0;
  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
       it != ie; ++it, ++ArgNo) {
    bool IsNamedArg = ArgNo < NumRequiredArgs;

    if (IsRegCall && it->type->isStructureOrClassType())
      it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE,
                                           MaxVectorWidth);
    else
      it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
                                      NeededSSE, IsNamedArg);

    // AMD64-ABI 3.2.3p3: If there are no registers available for any
    // eightbyte of an argument, the whole argument is passed on the
    // stack. If registers have already been assigned for some
    // eightbytes of such an argument, the assignments get reverted.
    if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
      FreeIntRegs -= NeededInt;
      FreeSSERegs -= NeededSSE;
      if (MaxVectorWidth > FI.getMaxVectorWidth())
        FI.setMaxVectorWidth(MaxVectorWidth);
    } else {
      it->info = getIndirectResult(it->type, FreeIntRegs);
    }
  }
}

static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
                                         Address VAListAddr, QualType Ty) {
  Address overflow_arg_area_p =
      CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
  llvm::Value *overflow_arg_area =
    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");

  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
  // byte boundary if alignment needed by type exceeds 8 byte boundary.
  // It isn't stated explicitly in the standard, but in practice we use
  // alignment greater than 16 where necessary.
  CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
  if (Align > CharUnits::fromQuantity(8)) {
    overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
                                                      Align);
  }

  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
  llvm::Value *Res = overflow_arg_area;

  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
  // l->overflow_arg_area + sizeof(type).
  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
  // an 8 byte boundary.

  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
  llvm::Value *Offset =
      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
  overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
                                            Offset, "overflow_arg_area.next");
  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);

  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
  return Address(Res, LTy, Align);
}

Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                 QualType Ty) const {
  // Assume that va_list type is correct; should be pointer to LLVM type:
  // struct {
  //   i32 gp_offset;
  //   i32 fp_offset;
  //   i8* overflow_arg_area;
  //   i8* reg_save_area;
  // };
  unsigned neededInt, neededSSE;

  Ty = getContext().getCanonicalType(Ty);
  ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
                                       /*isNamedArg*/false);

  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
  // in the registers. If not go to step 7.
  if (!neededInt && !neededSSE)
    return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);

  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
  // general purpose registers needed to pass type and num_fp to hold
  // the number of floating point registers needed.

  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
  // l->fp_offset > 304 - num_fp * 16 go to step 7.
  //
  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
  // register save space).

  llvm::Value *InRegs = nullptr;
  Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
  llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
  if (neededInt) {
    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
  }

  if (neededSSE) {
    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
    llvm::Value *FitsInFP =
      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
  }

  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);

  // Emit code to load the value if it was passed in registers.

  CGF.EmitBlock(InRegBlock);

  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
  // an offset of l->gp_offset and/or l->fp_offset. This may require
  // copying to a temporary location in case the parameter is passed
  // in different register classes or requires an alignment greater
  // than 8 for general purpose registers and 16 for XMM registers.
  //
  // FIXME: This really results in shameful code when we end up needing to
  // collect arguments from different places; often what should result in a
  // simple assembling of a structure from scattered addresses has many more
  // loads than necessary. Can we clean this up?
  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
  llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
      CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");

  Address RegAddr = Address::invalid();
  if (neededInt && neededSSE) {
    // FIXME: Cleanup.
    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
    llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
    Address Tmp = CGF.CreateMemTemp(Ty);
    Tmp = Tmp.withElementType(ST);
    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
    llvm::Type *TyLo = ST->getElementType(0);
    llvm::Type *TyHi = ST->getElementType(1);
    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
           "Unexpected ABI info for mixed regs");
    llvm::Value *GPAddr =
        CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
    llvm::Value *FPAddr =
        CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
    llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
    llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;

    // Copy the first element.
    // FIXME: Our choice of alignment here and below is probably pessimistic.
    llvm::Value *V = CGF.Builder.CreateAlignedLoad(
        TyLo, RegLoAddr,
        CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo)));
    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));

    // Copy the second element.
    V = CGF.Builder.CreateAlignedLoad(
        TyHi, RegHiAddr,
        CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi)));
    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));

    RegAddr = Tmp.withElementType(LTy);
  } else if (neededInt) {
    RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset),
                      LTy, CharUnits::fromQuantity(8));

    // Copy to a temporary if necessary to ensure the appropriate alignment.
    auto TInfo = getContext().getTypeInfoInChars(Ty);
    uint64_t TySize = TInfo.Width.getQuantity();
    CharUnits TyAlign = TInfo.Align;

    // Copy into a temporary if the type is more aligned than the
    // register save area.
    if (TyAlign.getQuantity() > 8) {
      Address Tmp = CGF.CreateMemTemp(Ty);
      CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
      RegAddr = Tmp;
    }

  } else if (neededSSE == 1) {
    RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset),
                      LTy, CharUnits::fromQuantity(16));
  } else {
    assert(neededSSE == 2 && "Invalid number of needed registers!");
    // SSE registers are spaced 16 bytes apart in the register save
    // area, we need to collect the two eightbytes together.
    // The ABI isn't explicit about this, but it seems reasonable
    // to assume that the slots are 16-byte aligned, since the stack is
    // naturally 16-byte aligned and the prologue is expected to store
    // all the SSE registers to the RSA.
    Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
                                                      fp_offset),
                                CGF.Int8Ty, CharUnits::fromQuantity(16));
    Address RegAddrHi =
      CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
                                             CharUnits::fromQuantity(16));
    llvm::Type *ST = AI.canHaveCoerceToType()
                         ? AI.getCoerceToType()
                         : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
    llvm::Value *V;
    Address Tmp = CGF.CreateMemTemp(Ty);
    Tmp = Tmp.withElementType(ST);
    V = CGF.Builder.CreateLoad(
        RegAddrLo.withElementType(ST->getStructElementType(0)));
    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
    V = CGF.Builder.CreateLoad(
        RegAddrHi.withElementType(ST->getStructElementType(1)));
    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));

    RegAddr = Tmp.withElementType(LTy);
  }

  // AMD64-ABI 3.5.7p5: Step 5. Set:
  // l->gp_offset = l->gp_offset + num_gp * 8
  // l->fp_offset = l->fp_offset + num_fp * 16.
  if (neededInt) {
    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
                            gp_offset_p);
  }
  if (neededSSE) {
    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
                            fp_offset_p);
  }
  CGF.EmitBranch(ContBlock);

  // Emit code to load the value if it was passed in memory.

  CGF.EmitBlock(InMemBlock);
  Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);

  // Return the appropriate result.

  CGF.EmitBlock(ContBlock);
  Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
                                 "vaarg.addr");
  return ResAddr;
}

Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                   QualType Ty) const {
  // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
  // not 1, 2, 4, or 8 bytes, must be passed by reference."
  uint64_t Width = getContext().getTypeSize(Ty);
  bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);

  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
                          CGF.getContext().getTypeInfoInChars(Ty),
                          CharUnits::fromQuantity(8),
                          /*allowHigherAlign*/ false);
}

ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
    QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
  const Type *Base = nullptr;
  uint64_t NumElts = 0;

  if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
      isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
    FreeSSERegs -= NumElts;
    return getDirectX86Hva();
  }
  return current;
}

ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
                                      bool IsReturnType, bool IsVectorCall,
                                      bool IsRegCall) const {

  if (Ty->isVoidType())
    return ABIArgInfo::getIgnore();

  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
    Ty = EnumTy->getDecl()->getIntegerType();

  TypeInfo Info = getContext().getTypeInfo(Ty);
  uint64_t Width = Info.Width;
  CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);

  const RecordType *RT = Ty->getAs<RecordType>();
  if (RT) {
    if (!IsReturnType) {
      if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
        return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
    }

    if (RT->getDecl()->hasFlexibleArrayMember())
      return getNaturalAlignIndirect(Ty, /*ByVal=*/false);

  }

  const Type *Base = nullptr;
  uint64_t NumElts = 0;
  // vectorcall adds the concept of a homogenous vector aggregate, similar to
  // other targets.
  if ((IsVectorCall || IsRegCall) &&
      isHomogeneousAggregate(Ty, Base, NumElts)) {
    if (IsRegCall) {
      if (FreeSSERegs >= NumElts) {
        FreeSSERegs -= NumElts;
        if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
          return ABIArgInfo::getDirect();
        return ABIArgInfo::getExpand();
      }
      return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
    } else if (IsVectorCall) {
      if (FreeSSERegs >= NumElts &&
          (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
        FreeSSERegs -= NumElts;
        return ABIArgInfo::getDirect();
      } else if (IsReturnType) {
        return ABIArgInfo::getExpand();
      } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
        // HVAs are delayed and reclassified in the 2nd step.
        return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
      }
    }
  }

  if (Ty->isMemberPointerType()) {
    // If the member pointer is represented by an LLVM int or ptr, pass it
    // directly.
    llvm::Type *LLTy = CGT.ConvertType(Ty);
    if (LLTy->isPointerTy() || LLTy->isIntegerTy())
      return ABIArgInfo::getDirect();
  }

  if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
    // not 1, 2, 4, or 8 bytes, must be passed by reference."
    if (Width > 64 || !llvm::isPowerOf2_64(Width))
      return getNaturalAlignIndirect(Ty, /*ByVal=*/false);

    // Otherwise, coerce it to a small integer.
    return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
  }

  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
    switch (BT->getKind()) {
    case BuiltinType::Bool:
      // Bool type is always extended to the ABI, other builtin types are not
      // extended.
      return ABIArgInfo::getExtend(Ty);

    case BuiltinType::LongDouble:
      // Mingw64 GCC uses the old 80 bit extended precision floating point
      // unit. It passes them indirectly through memory.
      if (IsMingw64) {
        const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
        if (LDF == &llvm::APFloat::x87DoubleExtended())
          return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
      }
      break;

    case BuiltinType::Int128:
    case BuiltinType::UInt128:
      // If it's a parameter type, the normal ABI rule is that arguments larger
      // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
      // even though it isn't particularly efficient.
      if (!IsReturnType)
        return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);

      // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
      // Clang matches them for compatibility.
      return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
          llvm::Type::getInt64Ty(getVMContext()), 2));

    default:
      break;
    }
  }

  if (Ty->isBitIntType()) {
    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
    // not 1, 2, 4, or 8 bytes, must be passed by reference."
    // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4,
    // or 8 bytes anyway as long is it fits in them, so we don't have to check
    // the power of 2.
    if (Width <= 64)
      return ABIArgInfo::getDirect();
    return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
  }

  return ABIArgInfo::getDirect();
}

void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
  const unsigned CC = FI.getCallingConvention();
  bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
  bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;

  // If __attribute__((sysv_abi)) is in use, use the SysV argument
  // classification rules.
  if (CC == llvm::CallingConv::X86_64_SysV) {
    X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
    SysVABIInfo.computeInfo(FI);
    return;
  }

  unsigned FreeSSERegs = 0;
  if (IsVectorCall) {
    // We can use up to 4 SSE return registers with vectorcall.
    FreeSSERegs = 4;
  } else if (IsRegCall) {
    // RegCall gives us 16 SSE registers.
    FreeSSERegs = 16;
  }

  if (!getCXXABI().classifyReturnType(FI))
    FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
                                  IsVectorCall, IsRegCall);

  if (IsVectorCall) {
    // We can use up to 6 SSE register parameters with vectorcall.
    FreeSSERegs = 6;
  } else if (IsRegCall) {
    // RegCall gives us 16 SSE registers, we can reuse the return registers.
    FreeSSERegs = 16;
  }

  unsigned ArgNum = 0;
  unsigned ZeroSSERegs = 0;
  for (auto &I : FI.arguments()) {
    // Vectorcall in x64 only permits the first 6 arguments to be passed as
    // XMM/YMM registers. After the sixth argument, pretend no vector
    // registers are left.
    unsigned *MaybeFreeSSERegs =
        (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
    I.info =
        classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
    ++ArgNum;
  }

  if (IsVectorCall) {
    // For vectorcall, assign aggregate HVAs to any free vector registers in a
    // second pass.
    for (auto &I : FI.arguments())
      I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
  }
}

Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                    QualType Ty) const {
  // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
  // not 1, 2, 4, or 8 bytes, must be passed by reference."
  uint64_t Width = getContext().getTypeSize(Ty);
  bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);

  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
                          CGF.getContext().getTypeInfoInChars(Ty),
                          CharUnits::fromQuantity(8),
                          /*allowHigherAlign*/ false);
}

std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo(
    CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
    unsigned NumRegisterParameters, bool SoftFloatABI) {
  bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
      CGM.getTriple(), CGM.getCodeGenOpts());
  return std::make_unique<X86_32TargetCodeGenInfo>(
      CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
      NumRegisterParameters, SoftFloatABI);
}

std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo(
    CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
    unsigned NumRegisterParameters) {
  bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
      CGM.getTriple(), CGM.getCodeGenOpts());
  return std::make_unique<WinX86_32TargetCodeGenInfo>(
      CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
      NumRegisterParameters);
}

std::unique_ptr<TargetCodeGenInfo>
CodeGen::createX86_64TargetCodeGenInfo(CodeGenModule &CGM,
                                       X86AVXABILevel AVXLevel) {
  return std::make_unique<X86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
}

std::unique_ptr<TargetCodeGenInfo>
CodeGen::createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM,
                                          X86AVXABILevel AVXLevel) {
  return std::make_unique<WinX86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
}