aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp
blob: 7ad3dca831ac447657162616f3781db47405e71e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines ExprEngine's support for C expressions.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/ExprCXX.h"
#include "clang/AST/DeclCXX.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"

using namespace clang;
using namespace ento;
using llvm::APSInt;

/// Optionally conjure and return a symbol for offset when processing
/// an expression \p Expression.
/// If \p Other is a location, conjure a symbol for \p Symbol
/// (offset) if it is unknown so that memory arithmetic always
/// results in an ElementRegion.
/// \p Count The number of times the current basic block was visited.
static SVal conjureOffsetSymbolOnLocation(
    SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder,
    unsigned Count, const LocationContext *LCtx) {
  QualType Ty = Expression->getType();
  if (Other.getAs<Loc>() &&
      Ty->isIntegralOrEnumerationType() &&
      Symbol.isUnknown()) {
    return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count);
  }
  return Symbol;
}

void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
                                     ExplodedNode *Pred,
                                     ExplodedNodeSet &Dst) {

  Expr *LHS = B->getLHS()->IgnoreParens();
  Expr *RHS = B->getRHS()->IgnoreParens();

  // FIXME: Prechecks eventually go in ::Visit().
  ExplodedNodeSet CheckedSet;
  ExplodedNodeSet Tmp2;
  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);

  // With both the LHS and RHS evaluated, process the operation itself.
  for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
         it != ei; ++it) {

    ProgramStateRef state = (*it)->getState();
    const LocationContext *LCtx = (*it)->getLocationContext();
    SVal LeftV = state->getSVal(LHS, LCtx);
    SVal RightV = state->getSVal(RHS, LCtx);

    BinaryOperator::Opcode Op = B->getOpcode();

    if (Op == BO_Assign) {
      // EXPERIMENTAL: "Conjured" symbols.
      // FIXME: Handle structs.
      if (RightV.isUnknown()) {
        unsigned Count = currBldrCtx->blockCount();
        RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
                                              Count);
      }
      // Simulate the effects of a "store":  bind the value of the RHS
      // to the L-Value represented by the LHS.
      SVal ExprVal = B->isGLValue() ? LeftV : RightV;
      evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
                LeftV, RightV);
      continue;
    }

    if (!B->isAssignmentOp()) {
      StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);

      if (B->isAdditiveOp()) {
        // TODO: This can be removed after we enable history tracking with
        // SymSymExpr.
        unsigned Count = currBldrCtx->blockCount();
        RightV = conjureOffsetSymbolOnLocation(
            RightV, LeftV, RHS, svalBuilder, Count, LCtx);
        LeftV = conjureOffsetSymbolOnLocation(
            LeftV, RightV, LHS, svalBuilder, Count, LCtx);
      }

      // Although we don't yet model pointers-to-members, we do need to make
      // sure that the members of temporaries have a valid 'this' pointer for
      // other checks.
      if (B->getOpcode() == BO_PtrMemD)
        state = createTemporaryRegionIfNeeded(state, LCtx, LHS);

      // Process non-assignments except commas or short-circuited
      // logical expressions (LAnd and LOr).
      SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
      if (!Result.isUnknown()) {
        state = state->BindExpr(B, LCtx, Result);
      } else {
        // If we cannot evaluate the operation escape the operands.
        state = escapeValues(state, LeftV, PSK_EscapeOther);
        state = escapeValues(state, RightV, PSK_EscapeOther);
      }

      Bldr.generateNode(B, *it, state);
      continue;
    }

    assert (B->isCompoundAssignmentOp());

    switch (Op) {
      default:
        llvm_unreachable("Invalid opcode for compound assignment.");
      case BO_MulAssign: Op = BO_Mul; break;
      case BO_DivAssign: Op = BO_Div; break;
      case BO_RemAssign: Op = BO_Rem; break;
      case BO_AddAssign: Op = BO_Add; break;
      case BO_SubAssign: Op = BO_Sub; break;
      case BO_ShlAssign: Op = BO_Shl; break;
      case BO_ShrAssign: Op = BO_Shr; break;
      case BO_AndAssign: Op = BO_And; break;
      case BO_XorAssign: Op = BO_Xor; break;
      case BO_OrAssign:  Op = BO_Or;  break;
    }

    // Perform a load (the LHS).  This performs the checks for
    // null dereferences, and so on.
    ExplodedNodeSet Tmp;
    SVal location = LeftV;
    evalLoad(Tmp, B, LHS, *it, state, location);

    for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
         ++I) {

      state = (*I)->getState();
      const LocationContext *LCtx = (*I)->getLocationContext();
      SVal V = state->getSVal(LHS, LCtx);

      // Get the computation type.
      QualType CTy =
        cast<CompoundAssignOperator>(B)->getComputationResultType();
      CTy = getContext().getCanonicalType(CTy);

      QualType CLHSTy =
        cast<CompoundAssignOperator>(B)->getComputationLHSType();
      CLHSTy = getContext().getCanonicalType(CLHSTy);

      QualType LTy = getContext().getCanonicalType(LHS->getType());

      // Promote LHS.
      V = svalBuilder.evalCast(V, CLHSTy, LTy);

      // Compute the result of the operation.
      SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
                                         B->getType(), CTy);

      // EXPERIMENTAL: "Conjured" symbols.
      // FIXME: Handle structs.

      SVal LHSVal;

      if (Result.isUnknown()) {
        // The symbolic value is actually for the type of the left-hand side
        // expression, not the computation type, as this is the value the
        // LValue on the LHS will bind to.
        LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
                                              currBldrCtx->blockCount());
        // However, we need to convert the symbol to the computation type.
        Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
      }
      else {
        // The left-hand side may bind to a different value then the
        // computation type.
        LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
      }

      // In C++, assignment and compound assignment operators return an
      // lvalue.
      if (B->isGLValue())
        state = state->BindExpr(B, LCtx, location);
      else
        state = state->BindExpr(B, LCtx, Result);

      evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
    }
  }

  // FIXME: postvisits eventually go in ::Visit()
  getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
}

void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
                                ExplodedNodeSet &Dst) {

  CanQualType T = getContext().getCanonicalType(BE->getType());

  const BlockDecl *BD = BE->getBlockDecl();
  // Get the value of the block itself.
  SVal V = svalBuilder.getBlockPointer(BD, T,
                                       Pred->getLocationContext(),
                                       currBldrCtx->blockCount());

  ProgramStateRef State = Pred->getState();

  // If we created a new MemRegion for the block, we should explicitly bind
  // the captured variables.
  if (const BlockDataRegion *BDR =
      dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {

    BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
                                              E = BDR->referenced_vars_end();

    auto CI = BD->capture_begin();
    auto CE = BD->capture_end();
    for (; I != E; ++I) {
      const VarRegion *capturedR = I.getCapturedRegion();
      const TypedValueRegion *originalR = I.getOriginalRegion();

      // If the capture had a copy expression, use the result of evaluating
      // that expression, otherwise use the original value.
      // We rely on the invariant that the block declaration's capture variables
      // are a prefix of the BlockDataRegion's referenced vars (which may include
      // referenced globals, etc.) to enable fast lookup of the capture for a
      // given referenced var.
      const Expr *copyExpr = nullptr;
      if (CI != CE) {
        assert(CI->getVariable() == capturedR->getDecl());
        copyExpr = CI->getCopyExpr();
        CI++;
      }

      if (capturedR != originalR) {
        SVal originalV;
        const LocationContext *LCtx = Pred->getLocationContext();
        if (copyExpr) {
          originalV = State->getSVal(copyExpr, LCtx);
        } else {
          originalV = State->getSVal(loc::MemRegionVal(originalR));
        }
        State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx);
      }
    }
  }

  ExplodedNodeSet Tmp;
  StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
  Bldr.generateNode(BE, Pred,
                    State->BindExpr(BE, Pred->getLocationContext(), V),
                    nullptr, ProgramPoint::PostLValueKind);

  // FIXME: Move all post/pre visits to ::Visit().
  getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
}

ProgramStateRef ExprEngine::handleLValueBitCast(
    ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx,
    QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr,
    ExplodedNode* Pred) {
  if (T->isLValueReferenceType()) {
    assert(!CastE->getType()->isLValueReferenceType());
    ExTy = getContext().getLValueReferenceType(ExTy);
  } else if (T->isRValueReferenceType()) {
    assert(!CastE->getType()->isRValueReferenceType());
    ExTy = getContext().getRValueReferenceType(ExTy);
  }
  // Delegate to SValBuilder to process.
  SVal OrigV = state->getSVal(Ex, LCtx);
  SVal V = svalBuilder.evalCast(OrigV, T, ExTy);
  // Negate the result if we're treating the boolean as a signed i1
  if (CastE->getCastKind() == CK_BooleanToSignedIntegral)
    V = evalMinus(V);
  state = state->BindExpr(CastE, LCtx, V);
  if (V.isUnknown() && !OrigV.isUnknown()) {
    state = escapeValues(state, OrigV, PSK_EscapeOther);
  }
  Bldr.generateNode(CastE, Pred, state);

  return state;
}

void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
                           ExplodedNode *Pred, ExplodedNodeSet &Dst) {

  ExplodedNodeSet dstPreStmt;
  getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);

  if (CastE->getCastKind() == CK_LValueToRValue ||
      CastE->getCastKind() == CK_LValueToRValueBitCast) {
    for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
         I!=E; ++I) {
      ExplodedNode *subExprNode = *I;
      ProgramStateRef state = subExprNode->getState();
      const LocationContext *LCtx = subExprNode->getLocationContext();
      evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
    }
    return;
  }

  // All other casts.
  QualType T = CastE->getType();
  QualType ExTy = Ex->getType();

  if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
    T = ExCast->getTypeAsWritten();

  StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
  for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
       I != E; ++I) {

    Pred = *I;
    ProgramStateRef state = Pred->getState();
    const LocationContext *LCtx = Pred->getLocationContext();

    switch (CastE->getCastKind()) {
      case CK_LValueToRValue:
      case CK_LValueToRValueBitCast:
        llvm_unreachable("LValueToRValue casts handled earlier.");
      case CK_ToVoid:
        continue;
        // The analyzer doesn't do anything special with these casts,
        // since it understands retain/release semantics already.
      case CK_ARCProduceObject:
      case CK_ARCConsumeObject:
      case CK_ARCReclaimReturnedObject:
      case CK_ARCExtendBlockObject: // Fall-through.
      case CK_CopyAndAutoreleaseBlockObject:
        // The analyser can ignore atomic casts for now, although some future
        // checkers may want to make certain that you're not modifying the same
        // value through atomic and nonatomic pointers.
      case CK_AtomicToNonAtomic:
      case CK_NonAtomicToAtomic:
        // True no-ops.
      case CK_NoOp:
      case CK_ConstructorConversion:
      case CK_UserDefinedConversion:
      case CK_FunctionToPointerDecay:
      case CK_BuiltinFnToFnPtr: {
        // Copy the SVal of Ex to CastE.
        ProgramStateRef state = Pred->getState();
        const LocationContext *LCtx = Pred->getLocationContext();
        SVal V = state->getSVal(Ex, LCtx);
        state = state->BindExpr(CastE, LCtx, V);
        Bldr.generateNode(CastE, Pred, state);
        continue;
      }
      case CK_MemberPointerToBoolean:
      case CK_PointerToBoolean: {
        SVal V = state->getSVal(Ex, LCtx);
        auto PTMSV = V.getAs<nonloc::PointerToMember>();
        if (PTMSV)
          V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy);
        if (V.isUndef() || PTMSV) {
          state = state->BindExpr(CastE, LCtx, V);
          Bldr.generateNode(CastE, Pred, state);
          continue;
        }
        // Explicitly proceed with default handler for this case cascade.
        state =
            handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
        continue;
      }
      case CK_Dependent:
      case CK_ArrayToPointerDecay:
      case CK_BitCast:
      case CK_AddressSpaceConversion:
      case CK_BooleanToSignedIntegral:
      case CK_IntegralToPointer:
      case CK_PointerToIntegral: {
        SVal V = state->getSVal(Ex, LCtx);
        if (V.getAs<nonloc::PointerToMember>()) {
          state = state->BindExpr(CastE, LCtx, UnknownVal());
          Bldr.generateNode(CastE, Pred, state);
          continue;
        }
        // Explicitly proceed with default handler for this case cascade.
        state =
            handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
        continue;
      }
      case CK_IntegralToBoolean:
      case CK_IntegralToFloating:
      case CK_FloatingToIntegral:
      case CK_FloatingToBoolean:
      case CK_FloatingCast:
      case CK_FloatingRealToComplex:
      case CK_FloatingComplexToReal:
      case CK_FloatingComplexToBoolean:
      case CK_FloatingComplexCast:
      case CK_FloatingComplexToIntegralComplex:
      case CK_IntegralRealToComplex:
      case CK_IntegralComplexToReal:
      case CK_IntegralComplexToBoolean:
      case CK_IntegralComplexCast:
      case CK_IntegralComplexToFloatingComplex:
      case CK_CPointerToObjCPointerCast:
      case CK_BlockPointerToObjCPointerCast:
      case CK_AnyPointerToBlockPointerCast:
      case CK_ObjCObjectLValueCast:
      case CK_ZeroToOCLOpaqueType:
      case CK_IntToOCLSampler:
      case CK_LValueBitCast:
      case CK_FloatingToFixedPoint:
      case CK_FixedPointToFloating:
      case CK_FixedPointCast:
      case CK_FixedPointToBoolean:
      case CK_FixedPointToIntegral:
      case CK_IntegralToFixedPoint: {
        state =
            handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
        continue;
      }
      case CK_IntegralCast: {
        // Delegate to SValBuilder to process.
        SVal V = state->getSVal(Ex, LCtx);
        V = svalBuilder.evalIntegralCast(state, V, T, ExTy);
        state = state->BindExpr(CastE, LCtx, V);
        Bldr.generateNode(CastE, Pred, state);
        continue;
      }
      case CK_DerivedToBase:
      case CK_UncheckedDerivedToBase: {
        // For DerivedToBase cast, delegate to the store manager.
        SVal val = state->getSVal(Ex, LCtx);
        val = getStoreManager().evalDerivedToBase(val, CastE);
        state = state->BindExpr(CastE, LCtx, val);
        Bldr.generateNode(CastE, Pred, state);
        continue;
      }
      // Handle C++ dyn_cast.
      case CK_Dynamic: {
        SVal val = state->getSVal(Ex, LCtx);

        // Compute the type of the result.
        QualType resultType = CastE->getType();
        if (CastE->isGLValue())
          resultType = getContext().getPointerType(resultType);

        bool Failed = false;

        // Check if the value being cast evaluates to 0.
        if (val.isZeroConstant())
          Failed = true;
        // Else, evaluate the cast.
        else
          val = getStoreManager().attemptDownCast(val, T, Failed);

        if (Failed) {
          if (T->isReferenceType()) {
            // A bad_cast exception is thrown if input value is a reference.
            // Currently, we model this, by generating a sink.
            Bldr.generateSink(CastE, Pred, state);
            continue;
          } else {
            // If the cast fails on a pointer, bind to 0.
            state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
          }
        } else {
          // If we don't know if the cast succeeded, conjure a new symbol.
          if (val.isUnknown()) {
            DefinedOrUnknownSVal NewSym =
              svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
                                           currBldrCtx->blockCount());
            state = state->BindExpr(CastE, LCtx, NewSym);
          } else
            // Else, bind to the derived region value.
            state = state->BindExpr(CastE, LCtx, val);
        }
        Bldr.generateNode(CastE, Pred, state);
        continue;
      }
      case CK_BaseToDerived: {
        SVal val = state->getSVal(Ex, LCtx);
        QualType resultType = CastE->getType();
        if (CastE->isGLValue())
          resultType = getContext().getPointerType(resultType);

        bool Failed = false;

        if (!val.isConstant()) {
          val = getStoreManager().attemptDownCast(val, T, Failed);
        }

        // Failed to cast or the result is unknown, fall back to conservative.
        if (Failed || val.isUnknown()) {
          val =
            svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
                                         currBldrCtx->blockCount());
        }
        state = state->BindExpr(CastE, LCtx, val);
        Bldr.generateNode(CastE, Pred, state);
        continue;
      }
      case CK_NullToPointer: {
        SVal V = svalBuilder.makeNull();
        state = state->BindExpr(CastE, LCtx, V);
        Bldr.generateNode(CastE, Pred, state);
        continue;
      }
      case CK_NullToMemberPointer: {
        SVal V = svalBuilder.getMemberPointer(nullptr);
        state = state->BindExpr(CastE, LCtx, V);
        Bldr.generateNode(CastE, Pred, state);
        continue;
      }
      case CK_DerivedToBaseMemberPointer:
      case CK_BaseToDerivedMemberPointer:
      case CK_ReinterpretMemberPointer: {
        SVal V = state->getSVal(Ex, LCtx);
        if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) {
          SVal CastedPTMSV =
              svalBuilder.makePointerToMember(getBasicVals().accumCXXBase(
                  CastE->path(), *PTMSV, CastE->getCastKind()));
          state = state->BindExpr(CastE, LCtx, CastedPTMSV);
          Bldr.generateNode(CastE, Pred, state);
          continue;
        }
        // Explicitly proceed with default handler for this case cascade.
      }
        LLVM_FALLTHROUGH;
      // Various C++ casts that are not handled yet.
      case CK_ToUnion:
      case CK_MatrixCast:
      case CK_VectorSplat: {
        QualType resultType = CastE->getType();
        if (CastE->isGLValue())
          resultType = getContext().getPointerType(resultType);
        SVal result = svalBuilder.conjureSymbolVal(
            /*symbolTag=*/nullptr, CastE, LCtx, resultType,
            currBldrCtx->blockCount());
        state = state->BindExpr(CastE, LCtx, result);
        Bldr.generateNode(CastE, Pred, state);
        continue;
      }
    }
  }
}

void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
                                          ExplodedNode *Pred,
                                          ExplodedNodeSet &Dst) {
  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);

  ProgramStateRef State = Pred->getState();
  const LocationContext *LCtx = Pred->getLocationContext();

  const Expr *Init = CL->getInitializer();
  SVal V = State->getSVal(CL->getInitializer(), LCtx);

  if (isa<CXXConstructExpr>(Init) || isa<CXXStdInitializerListExpr>(Init)) {
    // No work needed. Just pass the value up to this expression.
  } else {
    assert(isa<InitListExpr>(Init));
    Loc CLLoc = State->getLValue(CL, LCtx);
    State = State->bindLoc(CLLoc, V, LCtx);

    if (CL->isGLValue())
      V = CLLoc;
  }

  B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
}

void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
                               ExplodedNodeSet &Dst) {
  if (isa<TypedefNameDecl>(*DS->decl_begin())) {
    // C99 6.7.7 "Any array size expressions associated with variable length
    // array declarators are evaluated each time the declaration of the typedef
    // name is reached in the order of execution."
    // The checkers should know about typedef to be able to handle VLA size
    // expressions.
    ExplodedNodeSet DstPre;
    getCheckerManager().runCheckersForPreStmt(DstPre, Pred, DS, *this);
    getCheckerManager().runCheckersForPostStmt(Dst, DstPre, DS, *this);
    return;
  }

  // Assumption: The CFG has one DeclStmt per Decl.
  const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());

  if (!VD) {
    //TODO:AZ: remove explicit insertion after refactoring is done.
    Dst.insert(Pred);
    return;
  }

  // FIXME: all pre/post visits should eventually be handled by ::Visit().
  ExplodedNodeSet dstPreVisit;
  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);

  ExplodedNodeSet dstEvaluated;
  StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
       I!=E; ++I) {
    ExplodedNode *N = *I;
    ProgramStateRef state = N->getState();
    const LocationContext *LC = N->getLocationContext();

    // Decls without InitExpr are not initialized explicitly.
    if (const Expr *InitEx = VD->getInit()) {

      // Note in the state that the initialization has occurred.
      ExplodedNode *UpdatedN = N;
      SVal InitVal = state->getSVal(InitEx, LC);

      assert(DS->isSingleDecl());
      if (getObjectUnderConstruction(state, DS, LC)) {
        state = finishObjectConstruction(state, DS, LC);
        // We constructed the object directly in the variable.
        // No need to bind anything.
        B.generateNode(DS, UpdatedN, state);
      } else {
        // Recover some path-sensitivity if a scalar value evaluated to
        // UnknownVal.
        if (InitVal.isUnknown()) {
          QualType Ty = InitEx->getType();
          if (InitEx->isGLValue()) {
            Ty = getContext().getPointerType(Ty);
          }

          InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
                                                 currBldrCtx->blockCount());
        }


        B.takeNodes(UpdatedN);
        ExplodedNodeSet Dst2;
        evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
        B.addNodes(Dst2);
      }
    }
    else {
      B.generateNode(DS, N, state);
    }
  }

  getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
}

void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
                                  ExplodedNodeSet &Dst) {
  // This method acts upon CFG elements for logical operators && and ||
  // and attaches the value (true or false) to them as expressions.
  // It doesn't produce any state splits.
  // If we made it that far, we're past the point when we modeled the short
  // circuit. It means that we should have precise knowledge about whether
  // we've short-circuited. If we did, we already know the value we need to
  // bind. If we didn't, the value of the RHS (casted to the boolean type)
  // is the answer.
  // Currently this method tries to figure out whether we've short-circuited
  // by looking at the ExplodedGraph. This method is imperfect because there
  // could inevitably have been merges that would have resulted in multiple
  // potential path traversal histories. We bail out when we fail.
  // Due to this ambiguity, a more reliable solution would have been to
  // track the short circuit operation history path-sensitively until
  // we evaluate the respective logical operator.
  assert(B->getOpcode() == BO_LAnd ||
         B->getOpcode() == BO_LOr);

  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
  ProgramStateRef state = Pred->getState();

  if (B->getType()->isVectorType()) {
    // FIXME: We do not model vector arithmetic yet. When adding support for
    // that, note that the CFG-based reasoning below does not apply, because
    // logical operators on vectors are not short-circuit. Currently they are
    // modeled as short-circuit in Clang CFG but this is incorrect.
    // Do not set the value for the expression. It'd be UnknownVal by default.
    Bldr.generateNode(B, Pred, state);
    return;
  }

  ExplodedNode *N = Pred;
  while (!N->getLocation().getAs<BlockEntrance>()) {
    ProgramPoint P = N->getLocation();
    assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
    (void) P;
    if (N->pred_size() != 1) {
      // We failed to track back where we came from.
      Bldr.generateNode(B, Pred, state);
      return;
    }
    N = *N->pred_begin();
  }

  if (N->pred_size() != 1) {
    // We failed to track back where we came from.
    Bldr.generateNode(B, Pred, state);
    return;
  }

  N = *N->pred_begin();
  BlockEdge BE = N->getLocation().castAs<BlockEdge>();
  SVal X;

  // Determine the value of the expression by introspecting how we
  // got this location in the CFG.  This requires looking at the previous
  // block we were in and what kind of control-flow transfer was involved.
  const CFGBlock *SrcBlock = BE.getSrc();
  // The only terminator (if there is one) that makes sense is a logical op.
  CFGTerminator T = SrcBlock->getTerminator();
  if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
    (void) Term;
    assert(Term->isLogicalOp());
    assert(SrcBlock->succ_size() == 2);
    // Did we take the true or false branch?
    unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
    X = svalBuilder.makeIntVal(constant, B->getType());
  }
  else {
    // If there is no terminator, by construction the last statement
    // in SrcBlock is the value of the enclosing expression.
    // However, we still need to constrain that value to be 0 or 1.
    assert(!SrcBlock->empty());
    CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
    const Expr *RHS = cast<Expr>(Elem.getStmt());
    SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());

    if (RHSVal.isUndef()) {
      X = RHSVal;
    } else {
      // We evaluate "RHSVal != 0" expression which result in 0 if the value is
      // known to be false, 1 if the value is known to be true and a new symbol
      // when the assumption is unknown.
      nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType()));
      X = evalBinOp(N->getState(), BO_NE,
                    svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()),
                    Zero, B->getType());
    }
  }
  Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
}

void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
                                   ExplodedNode *Pred,
                                   ExplodedNodeSet &Dst) {
  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);

  ProgramStateRef state = Pred->getState();
  const LocationContext *LCtx = Pred->getLocationContext();
  QualType T = getContext().getCanonicalType(IE->getType());
  unsigned NumInitElements = IE->getNumInits();

  if (!IE->isGLValue() && !IE->isTransparent() &&
      (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
       T->isAnyComplexType())) {
    llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();

    // Handle base case where the initializer has no elements.
    // e.g: static int* myArray[] = {};
    if (NumInitElements == 0) {
      SVal V = svalBuilder.makeCompoundVal(T, vals);
      B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
      return;
    }

    for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
         ei = IE->rend(); it != ei; ++it) {
      SVal V = state->getSVal(cast<Expr>(*it), LCtx);
      vals = getBasicVals().prependSVal(V, vals);
    }

    B.generateNode(IE, Pred,
                   state->BindExpr(IE, LCtx,
                                   svalBuilder.makeCompoundVal(T, vals)));
    return;
  }

  // Handle scalars: int{5} and int{} and GLvalues.
  // Note, if the InitListExpr is a GLvalue, it means that there is an address
  // representing it, so it must have a single init element.
  assert(NumInitElements <= 1);

  SVal V;
  if (NumInitElements == 0)
    V = getSValBuilder().makeZeroVal(T);
  else
    V = state->getSVal(IE->getInit(0), LCtx);

  B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
}

void ExprEngine::VisitGuardedExpr(const Expr *Ex,
                                  const Expr *L,
                                  const Expr *R,
                                  ExplodedNode *Pred,
                                  ExplodedNodeSet &Dst) {
  assert(L && R);

  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
  ProgramStateRef state = Pred->getState();
  const LocationContext *LCtx = Pred->getLocationContext();
  const CFGBlock *SrcBlock = nullptr;

  // Find the predecessor block.
  ProgramStateRef SrcState = state;
  for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
    ProgramPoint PP = N->getLocation();
    if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
      // If the state N has multiple predecessors P, it means that successors
      // of P are all equivalent.
      // In turn, that means that all nodes at P are equivalent in terms
      // of observable behavior at N, and we can follow any of them.
      // FIXME: a more robust solution which does not walk up the tree.
      continue;
    }
    SrcBlock = PP.castAs<BlockEdge>().getSrc();
    SrcState = N->getState();
    break;
  }

  assert(SrcBlock && "missing function entry");

  // Find the last expression in the predecessor block.  That is the
  // expression that is used for the value of the ternary expression.
  bool hasValue = false;
  SVal V;

  for (CFGElement CE : llvm::reverse(*SrcBlock)) {
    if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
      const Expr *ValEx = cast<Expr>(CS->getStmt());
      ValEx = ValEx->IgnoreParens();

      // For GNU extension '?:' operator, the left hand side will be an
      // OpaqueValueExpr, so get the underlying expression.
      if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
        L = OpaqueEx->getSourceExpr();

      // If the last expression in the predecessor block matches true or false
      // subexpression, get its the value.
      if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
        hasValue = true;
        V = SrcState->getSVal(ValEx, LCtx);
      }
      break;
    }
  }

  if (!hasValue)
    V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
                                     currBldrCtx->blockCount());

  // Generate a new node with the binding from the appropriate path.
  B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
}

void ExprEngine::
VisitOffsetOfExpr(const OffsetOfExpr *OOE,
                  ExplodedNode *Pred, ExplodedNodeSet &Dst) {
  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
  Expr::EvalResult Result;
  if (OOE->EvaluateAsInt(Result, getContext())) {
    APSInt IV = Result.Val.getInt();
    assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
    assert(OOE->getType()->castAs<BuiltinType>()->isInteger());
    assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
    SVal X = svalBuilder.makeIntVal(IV);
    B.generateNode(OOE, Pred,
                   Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
                                              X));
  }
  // FIXME: Handle the case where __builtin_offsetof is not a constant.
}


void ExprEngine::
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
                              ExplodedNode *Pred,
                              ExplodedNodeSet &Dst) {
  // FIXME: Prechecks eventually go in ::Visit().
  ExplodedNodeSet CheckedSet;
  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);

  ExplodedNodeSet EvalSet;
  StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);

  QualType T = Ex->getTypeOfArgument();

  for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
       I != E; ++I) {
    if (Ex->getKind() == UETT_SizeOf) {
      if (!T->isIncompleteType() && !T->isConstantSizeType()) {
        assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");

        // FIXME: Add support for VLA type arguments and VLA expressions.
        // When that happens, we should probably refactor VLASizeChecker's code.
        continue;
      } else if (T->getAs<ObjCObjectType>()) {
        // Some code tries to take the sizeof an ObjCObjectType, relying that
        // the compiler has laid out its representation.  Just report Unknown
        // for these.
        continue;
      }
    }

    APSInt Value = Ex->EvaluateKnownConstInt(getContext());
    CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());

    ProgramStateRef state = (*I)->getState();
    state = state->BindExpr(Ex, (*I)->getLocationContext(),
                            svalBuilder.makeIntVal(amt.getQuantity(),
                                                   Ex->getType()));
    Bldr.generateNode(Ex, *I, state);
  }

  getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
}

void ExprEngine::handleUOExtension(ExplodedNodeSet::iterator I,
                                   const UnaryOperator *U,
                                   StmtNodeBuilder &Bldr) {
  // FIXME: We can probably just have some magic in Environment::getSVal()
  // that propagates values, instead of creating a new node here.
  //
  // Unary "+" is a no-op, similar to a parentheses.  We still have places
  // where it may be a block-level expression, so we need to
  // generate an extra node that just propagates the value of the
  // subexpression.
  const Expr *Ex = U->getSubExpr()->IgnoreParens();
  ProgramStateRef state = (*I)->getState();
  const LocationContext *LCtx = (*I)->getLocationContext();
  Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
                                           state->getSVal(Ex, LCtx)));
}

void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred,
                                    ExplodedNodeSet &Dst) {
  // FIXME: Prechecks eventually go in ::Visit().
  ExplodedNodeSet CheckedSet;
  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);

  ExplodedNodeSet EvalSet;
  StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);

  for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
       I != E; ++I) {
    switch (U->getOpcode()) {
    default: {
      Bldr.takeNodes(*I);
      ExplodedNodeSet Tmp;
      VisitIncrementDecrementOperator(U, *I, Tmp);
      Bldr.addNodes(Tmp);
      break;
    }
    case UO_Real: {
      const Expr *Ex = U->getSubExpr()->IgnoreParens();

      // FIXME: We don't have complex SValues yet.
      if (Ex->getType()->isAnyComplexType()) {
        // Just report "Unknown."
        break;
      }

      // For all other types, UO_Real is an identity operation.
      assert (U->getType() == Ex->getType());
      ProgramStateRef state = (*I)->getState();
      const LocationContext *LCtx = (*I)->getLocationContext();
      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
                                               state->getSVal(Ex, LCtx)));
      break;
    }

    case UO_Imag: {
      const Expr *Ex = U->getSubExpr()->IgnoreParens();
      // FIXME: We don't have complex SValues yet.
      if (Ex->getType()->isAnyComplexType()) {
        // Just report "Unknown."
        break;
      }
      // For all other types, UO_Imag returns 0.
      ProgramStateRef state = (*I)->getState();
      const LocationContext *LCtx = (*I)->getLocationContext();
      SVal X = svalBuilder.makeZeroVal(Ex->getType());
      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
      break;
    }

    case UO_AddrOf: {
      // Process pointer-to-member address operation.
      const Expr *Ex = U->getSubExpr()->IgnoreParens();
      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) {
        const ValueDecl *VD = DRE->getDecl();

        if (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
            isa<IndirectFieldDecl>(VD)) {
          ProgramStateRef State = (*I)->getState();
          const LocationContext *LCtx = (*I)->getLocationContext();
          SVal SV = svalBuilder.getMemberPointer(cast<NamedDecl>(VD));
          Bldr.generateNode(U, *I, State->BindExpr(U, LCtx, SV));
          break;
        }
      }
      // Explicitly proceed with default handler for this case cascade.
      handleUOExtension(I, U, Bldr);
      break;
    }
    case UO_Plus:
      assert(!U->isGLValue());
      LLVM_FALLTHROUGH;
    case UO_Deref:
    case UO_Extension: {
      handleUOExtension(I, U, Bldr);
      break;
    }

    case UO_LNot:
    case UO_Minus:
    case UO_Not: {
      assert (!U->isGLValue());
      const Expr *Ex = U->getSubExpr()->IgnoreParens();
      ProgramStateRef state = (*I)->getState();
      const LocationContext *LCtx = (*I)->getLocationContext();

      // Get the value of the subexpression.
      SVal V = state->getSVal(Ex, LCtx);

      if (V.isUnknownOrUndef()) {
        Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
        break;
      }

      switch (U->getOpcode()) {
        default:
          llvm_unreachable("Invalid Opcode.");
        case UO_Not:
          // FIXME: Do we need to handle promotions?
          state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
          break;
        case UO_Minus:
          // FIXME: Do we need to handle promotions?
          state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
          break;
        case UO_LNot:
          // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
          //
          //  Note: technically we do "E == 0", but this is the same in the
          //    transfer functions as "0 == E".
          SVal Result;
          if (Optional<Loc> LV = V.getAs<Loc>()) {
            Loc X = svalBuilder.makeNullWithType(Ex->getType());
            Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
          } else if (Ex->getType()->isFloatingType()) {
            // FIXME: handle floating point types.
            Result = UnknownVal();
          } else {
            nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
            Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
                               U->getType());
          }

          state = state->BindExpr(U, LCtx, Result);
          break;
      }
      Bldr.generateNode(U, *I, state);
      break;
    }
    }
  }

  getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
}

void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
                                                 ExplodedNode *Pred,
                                                 ExplodedNodeSet &Dst) {
  // Handle ++ and -- (both pre- and post-increment).
  assert (U->isIncrementDecrementOp());
  const Expr *Ex = U->getSubExpr()->IgnoreParens();

  const LocationContext *LCtx = Pred->getLocationContext();
  ProgramStateRef state = Pred->getState();
  SVal loc = state->getSVal(Ex, LCtx);

  // Perform a load.
  ExplodedNodeSet Tmp;
  evalLoad(Tmp, U, Ex, Pred, state, loc);

  ExplodedNodeSet Dst2;
  StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
  for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {

    state = (*I)->getState();
    assert(LCtx == (*I)->getLocationContext());
    SVal V2_untested = state->getSVal(Ex, LCtx);

    // Propagate unknown and undefined values.
    if (V2_untested.isUnknownOrUndef()) {
      state = state->BindExpr(U, LCtx, V2_untested);

      // Perform the store, so that the uninitialized value detection happens.
      Bldr.takeNodes(*I);
      ExplodedNodeSet Dst3;
      evalStore(Dst3, U, Ex, *I, state, loc, V2_untested);
      Bldr.addNodes(Dst3);

      continue;
    }
    DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();

    // Handle all other values.
    BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;

    // If the UnaryOperator has non-location type, use its type to create the
    // constant value. If the UnaryOperator has location type, create the
    // constant with int type and pointer width.
    SVal RHS;
    SVal Result;

    if (U->getType()->isAnyPointerType())
      RHS = svalBuilder.makeArrayIndex(1);
    else if (U->getType()->isIntegralOrEnumerationType())
      RHS = svalBuilder.makeIntVal(1, U->getType());
    else
      RHS = UnknownVal();

    // The use of an operand of type bool with the ++ operators is deprecated
    // but valid until C++17. And if the operand of the ++ operator is of type
    // bool, it is set to true until C++17. Note that for '_Bool', it is also
    // set to true when it encounters ++ operator.
    if (U->getType()->isBooleanType() && U->isIncrementOp())
      Result = svalBuilder.makeTruthVal(true, U->getType());
    else
      Result = evalBinOp(state, Op, V2, RHS, U->getType());

    // Conjure a new symbol if necessary to recover precision.
    if (Result.isUnknown()){
      DefinedOrUnknownSVal SymVal =
        svalBuilder.conjureSymbolVal(nullptr, U, LCtx,
                                     currBldrCtx->blockCount());
      Result = SymVal;

      // If the value is a location, ++/-- should always preserve
      // non-nullness.  Check if the original value was non-null, and if so
      // propagate that constraint.
      if (Loc::isLocType(U->getType())) {
        DefinedOrUnknownSVal Constraint =
        svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));

        if (!state->assume(Constraint, true)) {
          // It isn't feasible for the original value to be null.
          // Propagate this constraint.
          Constraint = svalBuilder.evalEQ(state, SymVal,
                                       svalBuilder.makeZeroVal(U->getType()));

          state = state->assume(Constraint, false);
          assert(state);
        }
      }
    }

    // Since the lvalue-to-rvalue conversion is explicit in the AST,
    // we bind an l-value if the operator is prefix and an lvalue (in C++).
    if (U->isGLValue())
      state = state->BindExpr(U, LCtx, loc);
    else
      state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);

    // Perform the store.
    Bldr.takeNodes(*I);
    ExplodedNodeSet Dst3;
    evalStore(Dst3, U, Ex, *I, state, loc, Result);
    Bldr.addNodes(Dst3);
  }
  Dst.insert(Dst2);
}