aboutsummaryrefslogtreecommitdiff
path: root/compat/rb.c
blob: 3c0bed5f70d5ce7ef47d22d1dca7efa76227ce23 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
/*	$NetBSD: rb.c,v 1.14 2019/03/08 09:14:54 roy Exp $	*/

/*-
 * Copyright (c) 2001 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Matt Thomas <matt@3am-software.com>.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "common.h"

#if !defined(_KERNEL) && !defined(_STANDALONE)
#include <sys/types.h>
#include <stddef.h>
#include <assert.h>
#include <stdbool.h>
#ifdef RBDEBUG
#define	KASSERT(s)	assert(s)
#define	__rbt_unused
#else
#define KASSERT(s)	do { } while (/*CONSTCOND*/ 0)
#define	__rbt_unused	__unused
#endif
__RCSID("$NetBSD: rb.c,v 1.14 2019/03/08 09:14:54 roy Exp $");
#else
#include <lib/libkern/libkern.h>
__KERNEL_RCSID(0, "$NetBSD: rb.c,v 1.14 2019/03/08 09:14:54 roy Exp $");
#ifndef DIAGNOSTIC
#define	__rbt_unused	__unused
#else
#define	__rbt_unused
#endif
#endif

#ifdef _LIBC
__weak_alias(rb_tree_init, _rb_tree_init)
__weak_alias(rb_tree_find_node, _rb_tree_find_node)
__weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
__weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
__weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
__weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
__weak_alias(rb_tree_iterate, _rb_tree_iterate)
#ifdef RBDEBUG
__weak_alias(rb_tree_check, _rb_tree_check)
__weak_alias(rb_tree_depths, _rb_tree_depths)
#endif

#include "namespace.h"
#endif

#ifdef RBTEST
#include "rbtree.h"
#else
#include <sys/rbtree.h>
#endif

static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
	unsigned int);
#ifdef RBDEBUG
static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
	const struct rb_node *, const unsigned int);
static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
	const struct rb_node *, bool);
#else
#define	rb_tree_check_node(a, b, c, d)	true
#endif

#define	RB_NODETOITEM(rbto, rbn)	\
    ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
#define	RB_ITEMTONODE(rbto, rbn)	\
    ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))

#define	RB_SENTINEL_NODE	NULL

void
rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops)
{

	rbt->rbt_ops = ops;
	rbt->rbt_root = RB_SENTINEL_NODE;
	RB_TAILQ_INIT(&rbt->rbt_nodes);
#ifndef RBSMALL
	rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root;	/* minimum node */
	rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root;	/* maximum node */
#endif
#ifdef RBSTATS
	rbt->rbt_count = 0;
	rbt->rbt_insertions = 0;
	rbt->rbt_removals = 0;
	rbt->rbt_insertion_rebalance_calls = 0;
	rbt->rbt_insertion_rebalance_passes = 0;
	rbt->rbt_removal_rebalance_calls = 0;
	rbt->rbt_removal_rebalance_passes = 0;
#endif
}

void *
rb_tree_find_node(struct rb_tree *rbt, const void *key)
{
	const rb_tree_ops_t *rbto = rbt->rbt_ops;
	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
	struct rb_node *parent = rbt->rbt_root;

	while (!RB_SENTINEL_P(parent)) {
		void *pobj = RB_NODETOITEM(rbto, parent);
		const signed int diff = (*compare_key)(rbto->rbto_context,
		    pobj, key);
		if (diff == 0)
			return pobj;
		parent = parent->rb_nodes[diff < 0];
	}

	return NULL;
}

void *
rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
{
	const rb_tree_ops_t *rbto = rbt->rbt_ops;
	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
	struct rb_node *parent = rbt->rbt_root, *last = NULL;

	while (!RB_SENTINEL_P(parent)) {
		void *pobj = RB_NODETOITEM(rbto, parent);
		const signed int diff = (*compare_key)(rbto->rbto_context,
		    pobj, key);
		if (diff == 0)
			return pobj;
		if (diff > 0)
			last = parent;
		parent = parent->rb_nodes[diff < 0];
	}

	return last == NULL ? NULL : RB_NODETOITEM(rbto, last);
}

void *
rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
{
	const rb_tree_ops_t *rbto = rbt->rbt_ops;
	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
	struct rb_node *parent = rbt->rbt_root, *last = NULL;

	while (!RB_SENTINEL_P(parent)) {
		void *pobj = RB_NODETOITEM(rbto, parent);
		const signed int diff = (*compare_key)(rbto->rbto_context,
		    pobj, key);
		if (diff == 0)
			return pobj;
		if (diff < 0)
			last = parent;
		parent = parent->rb_nodes[diff < 0];
	}

	return last == NULL ? NULL : RB_NODETOITEM(rbto, last);
}

void *
rb_tree_insert_node(struct rb_tree *rbt, void *object)
{
	const rb_tree_ops_t *rbto = rbt->rbt_ops;
	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
	struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object);
	unsigned int position;
	bool rebalance;

	RBSTAT_INC(rbt->rbt_insertions);

	tmp = rbt->rbt_root;
	/*
	 * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
	 * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
	 * avoid a lot of tests for root and know that even at root,
	 * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
	 * update rbt->rbt_root.
	 */
	parent = (struct rb_node *)(void *)&rbt->rbt_root;
	position = RB_DIR_LEFT;

	/*
	 * Find out where to place this new leaf.
	 */
	while (!RB_SENTINEL_P(tmp)) {
		void *tobj = RB_NODETOITEM(rbto, tmp);
		const signed int diff = (*compare_nodes)(rbto->rbto_context,
		    tobj, object);
		if (__predict_false(diff == 0)) {
			/*
			 * Node already exists; return it.
			 */
			return tobj;
		}
		parent = tmp;
		position = (diff < 0);
		tmp = parent->rb_nodes[position];
	}

#ifdef RBDEBUG
	{
		struct rb_node *prev = NULL, *next = NULL;

		if (position == RB_DIR_RIGHT)
			prev = parent;
		else if (tmp != rbt->rbt_root)
			next = parent;

		/*
		 * Verify our sequential position
		 */
		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
		KASSERT(next == NULL || !RB_SENTINEL_P(next));
		if (prev != NULL && next == NULL)
			next = TAILQ_NEXT(prev, rb_link);
		if (prev == NULL && next != NULL)
			prev = TAILQ_PREV(next, rb_node_qh, rb_link);
		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
		KASSERT(next == NULL || !RB_SENTINEL_P(next));
		KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
		    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
		KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context,
		    RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0);
	}
#endif

	/*
	 * Initialize the node and insert as a leaf into the tree.
	 */
	RB_SET_FATHER(self, parent);
	RB_SET_POSITION(self, position);
	if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
		RB_MARK_BLACK(self);		/* root is always black */
#ifndef RBSMALL
		rbt->rbt_minmax[RB_DIR_LEFT] = self;
		rbt->rbt_minmax[RB_DIR_RIGHT] = self;
#endif
		rebalance = false;
	} else {
		KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
#ifndef RBSMALL
		/*
		 * Keep track of the minimum and maximum nodes.  If our
		 * parent is a minmax node and we on their min/max side,
		 * we must be the new min/max node.
		 */
		if (parent == rbt->rbt_minmax[position])
			rbt->rbt_minmax[position] = self;
#endif /* !RBSMALL */
		/*
		 * All new nodes are colored red.  We only need to rebalance
		 * if our parent is also red.
		 */
		RB_MARK_RED(self);
		rebalance = RB_RED_P(parent);
	}
	KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
	self->rb_left = parent->rb_nodes[position];
	self->rb_right = parent->rb_nodes[position];
	parent->rb_nodes[position] = self;
	KASSERT(RB_CHILDLESS_P(self));

	/*
	 * Insert the new node into a sorted list for easy sequential access
	 */
	RBSTAT_INC(rbt->rbt_count);
#ifdef RBDEBUG
	if (RB_ROOT_P(rbt, self)) {
		RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
	} else if (position == RB_DIR_LEFT) {
		KASSERT((*compare_nodes)(rbto->rbto_context,
		    RB_NODETOITEM(rbto, self),
		    RB_NODETOITEM(rbto, RB_FATHER(self))) < 0);
		RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
	} else {
		KASSERT((*compare_nodes)(rbto->rbto_context,
		    RB_NODETOITEM(rbto, RB_FATHER(self)),
		    RB_NODETOITEM(rbto, self)) < 0);
		RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
		    self, rb_link);
	}
#endif
	KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));

	/*
	 * Rebalance tree after insertion
	 */
	if (rebalance) {
		rb_tree_insert_rebalance(rbt, self);
		KASSERT(rb_tree_check_node(rbt, self, NULL, true));
	}

	/* Succesfully inserted, return our node pointer. */
	return object;
}

/*
 * Swap the location and colors of 'self' and its child @ which.  The child
 * can not be a sentinel node.  This is our rotation function.  However,
 * since it preserves coloring, it great simplifies both insertion and
 * removal since rotation almost always involves the exchanging of colors
 * as a separate step.
 */
static void
rb_tree_reparent_nodes(__rbt_unused struct rb_tree *rbt,
	struct rb_node *old_father, const unsigned int which)
{
	const unsigned int other = which ^ RB_DIR_OTHER;
	struct rb_node * const grandpa = RB_FATHER(old_father);
	struct rb_node * const old_child = old_father->rb_nodes[which];
	struct rb_node * const new_father = old_child;
	struct rb_node * const new_child = old_father;

	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);

	KASSERT(!RB_SENTINEL_P(old_child));
	KASSERT(RB_FATHER(old_child) == old_father);

	KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
	KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
	KASSERT(RB_ROOT_P(rbt, old_father) ||
	    rb_tree_check_node(rbt, grandpa, NULL, false));

	/*
	 * Exchange descendant linkages.
	 */
	grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
	new_child->rb_nodes[which] = old_child->rb_nodes[other];
	new_father->rb_nodes[other] = new_child;

	/*
	 * Update ancestor linkages
	 */
	RB_SET_FATHER(new_father, grandpa);
	RB_SET_FATHER(new_child, new_father);

	/*
	 * Exchange properties between new_father and new_child.  The only
	 * change is that new_child's position is now on the other side.
	 */
#if 0
	{
		struct rb_node tmp;
		tmp.rb_info = 0;
		RB_COPY_PROPERTIES(&tmp, old_child);
		RB_COPY_PROPERTIES(new_father, old_father);
		RB_COPY_PROPERTIES(new_child, &tmp);
	}
#else
	RB_SWAP_PROPERTIES(new_father, new_child);
#endif
	RB_SET_POSITION(new_child, other);

	/*
	 * Make sure to reparent the new child to ourself.
	 */
	if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
		RB_SET_FATHER(new_child->rb_nodes[which], new_child);
		RB_SET_POSITION(new_child->rb_nodes[which], which);
	}

	KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
	KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
	KASSERT(RB_ROOT_P(rbt, new_father) ||
	    rb_tree_check_node(rbt, grandpa, NULL, false));
}

static void
rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
{
	struct rb_node * father = RB_FATHER(self);
	struct rb_node * grandpa = RB_FATHER(father);
	struct rb_node * uncle;
	unsigned int which;
	unsigned int other;

	KASSERT(!RB_ROOT_P(rbt, self));
	KASSERT(RB_RED_P(self));
	KASSERT(RB_RED_P(father));
	RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);

	for (;;) {
		KASSERT(!RB_SENTINEL_P(self));

		KASSERT(RB_RED_P(self));
		KASSERT(RB_RED_P(father));
		/*
		 * We are red and our parent is red, therefore we must have a
		 * grandfather and he must be black.
		 */
		grandpa = RB_FATHER(father);
		KASSERT(RB_BLACK_P(grandpa));
		KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
		which = (father == grandpa->rb_right);
		other = which ^ RB_DIR_OTHER;
		uncle = grandpa->rb_nodes[other];

		if (RB_BLACK_P(uncle))
			break;

		RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
		/*
		 * Case 1: our uncle is red
		 *   Simply invert the colors of our parent and
		 *   uncle and make our grandparent red.  And
		 *   then solve the problem up at his level.
		 */
		RB_MARK_BLACK(uncle);
		RB_MARK_BLACK(father);
		if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
			/*
			 * If our grandpa is root, don't bother
			 * setting him to red, just return.
			 */
			KASSERT(RB_BLACK_P(grandpa));
			return;
		}
		RB_MARK_RED(grandpa);
		self = grandpa;
		father = RB_FATHER(self);
		KASSERT(RB_RED_P(self));
		if (RB_BLACK_P(father)) {
			/*
			 * If our greatgrandpa is black, we're done.
			 */
			KASSERT(RB_BLACK_P(rbt->rbt_root));
			return;
		}
	}

	KASSERT(!RB_ROOT_P(rbt, self));
	KASSERT(RB_RED_P(self));
	KASSERT(RB_RED_P(father));
	KASSERT(RB_BLACK_P(uncle));
	KASSERT(RB_BLACK_P(grandpa));
	/*
	 * Case 2&3: our uncle is black.
	 */
	if (self == father->rb_nodes[other]) {
		/*
		 * Case 2: we are on the same side as our uncle
		 *   Swap ourselves with our parent so this case
		 *   becomes case 3.  Basically our parent becomes our
		 *   child.
		 */
		rb_tree_reparent_nodes(rbt, father, other);
		KASSERT(RB_FATHER(father) == self);
		KASSERT(self->rb_nodes[which] == father);
		KASSERT(RB_FATHER(self) == grandpa);
		self = father;
		father = RB_FATHER(self);
	}
	KASSERT(RB_RED_P(self) && RB_RED_P(father));
	KASSERT(grandpa->rb_nodes[which] == father);
	/*
	 * Case 3: we are opposite a child of a black uncle.
	 *   Swap our parent and grandparent.  Since our grandfather
	 *   is black, our father will become black and our new sibling
	 *   (former grandparent) will become red.
	 */
	rb_tree_reparent_nodes(rbt, grandpa, which);
	KASSERT(RB_FATHER(self) == father);
	KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
	KASSERT(RB_RED_P(self));
	KASSERT(RB_BLACK_P(father));
	KASSERT(RB_RED_P(grandpa));

	/*
	 * Final step: Set the root to black.
	 */
	RB_MARK_BLACK(rbt->rbt_root);
}

static void
rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
{
	const unsigned int which = RB_POSITION(self);
	struct rb_node *father = RB_FATHER(self);
#ifndef RBSMALL
	const bool was_root = RB_ROOT_P(rbt, self);
#endif

	KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
	KASSERT(!rebalance || RB_BLACK_P(self));
	KASSERT(RB_CHILDLESS_P(self));
	KASSERT(rb_tree_check_node(rbt, self, NULL, false));

	/*
	 * Since we are childless, we know that self->rb_left is pointing
	 * to the sentinel node.
	 */
	father->rb_nodes[which] = self->rb_left;

	/*
	 * Remove ourselves from the node list, decrement the count,
	 * and update min/max.
	 */
	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
	RBSTAT_DEC(rbt->rbt_count);
#ifndef RBSMALL
	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
		rbt->rbt_minmax[RB_POSITION(self)] = father;
		/*
		 * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
		 * updated automatically, but we also need to update 
		 * rbt->rbt_minmax[RB_DIR_RIGHT];
		 */
		if (__predict_false(was_root)) {
			rbt->rbt_minmax[RB_DIR_RIGHT] = father;
		}
	}
	RB_SET_FATHER(self, NULL);
#endif

	/*
	 * Rebalance if requested.
	 */
	if (rebalance)
		rb_tree_removal_rebalance(rbt, father, which);
	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
}

/*
 * When deleting an interior node
 */
static void
rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
	struct rb_node *standin)
{
	const unsigned int standin_which = RB_POSITION(standin);
	unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
	struct rb_node *standin_son;
	struct rb_node *standin_father = RB_FATHER(standin);
	bool rebalance = RB_BLACK_P(standin);

	if (standin_father == self) {
		/*
		 * As a child of self, any childen would be opposite of
		 * our parent.
		 */
		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
		standin_son = standin->rb_nodes[standin_which];
	} else {
		/*
		 * Since we aren't a child of self, any childen would be
		 * on the same side as our parent.
		 */
		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
		standin_son = standin->rb_nodes[standin_other];
	}

	/*
	 * the node we are removing must have two children.
	 */
	KASSERT(RB_TWOCHILDREN_P(self));
	/*
	 * If standin has a child, it must be red.
	 */
	KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));

	/*
	 * Verify things are sane.
	 */
	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));

	if (__predict_false(RB_RED_P(standin_son))) {
		/*
		 * We know we have a red child so if we flip it to black
		 * we don't have to rebalance.
		 */
		KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
		RB_MARK_BLACK(standin_son);
		rebalance = false;

		if (standin_father == self) {
			KASSERT(RB_POSITION(standin_son) == standin_which);
		} else {
			KASSERT(RB_POSITION(standin_son) == standin_other);
			/*
			 * Change the son's parentage to point to his grandpa.
			 */
			RB_SET_FATHER(standin_son, standin_father);
			RB_SET_POSITION(standin_son, standin_which);
		}
	}

	if (standin_father == self) {
		/*
		 * If we are about to delete the standin's father, then when
		 * we call rebalance, we need to use ourselves as our father.
		 * Otherwise remember our original father.  Also, sincef we are
		 * our standin's father we only need to reparent the standin's
		 * brother.
		 *
		 * |    R      -->     S    |
		 * |  Q   S    -->   Q   T  |
		 * |        t  -->          |
		 */
		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
		KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
		KASSERT(self->rb_nodes[standin_which] == standin);
		/*
		 * Have our son/standin adopt his brother as his new son.
		 */
		standin_father = standin;
	} else {
		/*
		 * |    R          -->    S       .  |
		 * |   / \  |   T  -->   / \  |  /   |
		 * |  ..... | S    -->  ..... | T    |
		 *
		 * Sever standin's connection to his father.
		 */
		standin_father->rb_nodes[standin_which] = standin_son;
		/*
		 * Adopt the far son.
		 */
		standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
		RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
		KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
		/*
		 * Use standin_other because we need to preserve standin_which
		 * for the removal_rebalance.
		 */
		standin_other = standin_which;
	}

	/*
	 * Move the only remaining son to our standin.  If our standin is our
	 * son, this will be the only son needed to be moved.
	 */
	KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
	standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
	RB_SET_FATHER(standin->rb_nodes[standin_other], standin);

	/*
	 * Now copy the result of self to standin and then replace
	 * self with standin in the tree.
	 */
	RB_COPY_PROPERTIES(standin, self);
	RB_SET_FATHER(standin, RB_FATHER(self));
	RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;

	/*
	 * Remove ourselves from the node list, decrement the count,
	 * and update min/max.
	 */
	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
	RBSTAT_DEC(rbt->rbt_count);
#ifndef RBSMALL
	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
		rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
	RB_SET_FATHER(self, NULL);
#endif

	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
	KASSERT(RB_FATHER_SENTINEL_P(standin)
		|| rb_tree_check_node(rbt, standin_father, NULL, false));
	KASSERT(RB_LEFT_SENTINEL_P(standin)
		|| rb_tree_check_node(rbt, standin->rb_left, NULL, false));
	KASSERT(RB_RIGHT_SENTINEL_P(standin)
		|| rb_tree_check_node(rbt, standin->rb_right, NULL, false));

	if (!rebalance)
		return;

	rb_tree_removal_rebalance(rbt, standin_father, standin_which);
	KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
}

/*
 * We could do this by doing
 *	rb_tree_node_swap(rbt, self, which);
 *	rb_tree_prune_node(rbt, self, false);
 *
 * But it's more efficient to just evalate and recolor the child.
 */
static void
rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
	unsigned int which)
{
	struct rb_node *father = RB_FATHER(self);
	struct rb_node *son = self->rb_nodes[which];
#ifndef RBSMALL
	const bool was_root = RB_ROOT_P(rbt, self);
#endif

	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
	KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
	KASSERT(!RB_TWOCHILDREN_P(son));
	KASSERT(RB_CHILDLESS_P(son));
	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
	KASSERT(rb_tree_check_node(rbt, son, NULL, false));

	/*
	 * Remove ourselves from the tree and give our former child our
	 * properties (position, color, root).
	 */
	RB_COPY_PROPERTIES(son, self);
	father->rb_nodes[RB_POSITION(son)] = son;
	RB_SET_FATHER(son, father);

	/*
	 * Remove ourselves from the node list, decrement the count,
	 * and update minmax.
	 */
	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
	RBSTAT_DEC(rbt->rbt_count);
#ifndef RBSMALL
	if (__predict_false(was_root)) {
		KASSERT(rbt->rbt_minmax[which] == son);
		rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
	} else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
		rbt->rbt_minmax[RB_POSITION(self)] = son;
	}
	RB_SET_FATHER(self, NULL);
#endif

	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
	KASSERT(rb_tree_check_node(rbt, son, NULL, true));
}

void
rb_tree_remove_node(struct rb_tree *rbt, void *object)
{
	const rb_tree_ops_t *rbto = rbt->rbt_ops;
	struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object);
	unsigned int which;

	KASSERT(!RB_SENTINEL_P(self));
	RBSTAT_INC(rbt->rbt_removals);

	/*
	 * In the following diagrams, we (the node to be removed) are S.  Red
	 * nodes are lowercase.  T could be either red or black.
	 *
	 * Remember the major axiom of the red-black tree: the number of
	 * black nodes from the root to each leaf is constant across all
	 * leaves, only the number of red nodes varies.
	 *
	 * Thus removing a red leaf doesn't require any other changes to a
	 * red-black tree.  So if we must remove a node, attempt to rearrange
	 * the tree so we can remove a red node.
	 *
	 * The simpliest case is a childless red node or a childless root node:
	 *
	 * |    T  -->    T  |    or    |  R  -->  *  |
	 * |  s    -->  *    |
	 */
	if (RB_CHILDLESS_P(self)) {
		const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
		rb_tree_prune_node(rbt, self, rebalance);
		return;
	}
	KASSERT(!RB_CHILDLESS_P(self));
	if (!RB_TWOCHILDREN_P(self)) {
		/*
		 * The next simpliest case is the node we are deleting is
		 * black and has one red child.
		 *
		 * |      T  -->      T  -->      T  |
		 * |    S    -->  R      -->  R      |
		 * |  r      -->    s    -->    *    |
		 */
		which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
		KASSERT(RB_BLACK_P(self));
		KASSERT(RB_RED_P(self->rb_nodes[which]));
		KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
		rb_tree_prune_blackred_branch(rbt, self, which);
		return;
	}
	KASSERT(RB_TWOCHILDREN_P(self));

	/*
	 * We invert these because we prefer to remove from the inside of
	 * the tree.
	 */
	which = RB_POSITION(self) ^ RB_DIR_OTHER;

	/*
	 * Let's find the node closes to us opposite of our parent
	 * Now swap it with ourself, "prune" it, and rebalance, if needed.
	 */
	standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which));
	rb_tree_swap_prune_and_rebalance(rbt, self, standin);
}

static void
rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
	unsigned int which)
{
	KASSERT(!RB_SENTINEL_P(parent));
	KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
	RBSTAT_INC(rbt->rbt_removal_rebalance_calls);

	while (RB_BLACK_P(parent->rb_nodes[which])) {
		unsigned int other = which ^ RB_DIR_OTHER;
		struct rb_node *brother = parent->rb_nodes[other];

		RBSTAT_INC(rbt->rbt_removal_rebalance_passes);

		KASSERT(!RB_SENTINEL_P(brother));
		/*
		 * For cases 1, 2a, and 2b, our brother's children must
		 * be black and our father must be black
		 */
		if (RB_BLACK_P(parent)
		    && RB_BLACK_P(brother->rb_left)
		    && RB_BLACK_P(brother->rb_right)) {
			if (RB_RED_P(brother)) {
				/*
				 * Case 1: Our brother is red, swap its
				 * position (and colors) with our parent. 
				 * This should now be case 2b (unless C or E
				 * has a red child which is case 3; thus no
				 * explicit branch to case 2b).
				 *
				 *    B         ->        D
				 *  A     d     ->    b     E
				 *      C   E   ->  A   C
				 */
				KASSERT(RB_BLACK_P(parent));
				rb_tree_reparent_nodes(rbt, parent, other);
				brother = parent->rb_nodes[other];
				KASSERT(!RB_SENTINEL_P(brother));
				KASSERT(RB_RED_P(parent));
				KASSERT(RB_BLACK_P(brother));
				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
			} else {
				/*
				 * Both our parent and brother are black.
				 * Change our brother to red, advance up rank
				 * and go through the loop again.
				 *
				 *    B         ->   *B
				 * *A     D     ->  A     d
				 *      C   E   ->      C   E
				 */
				RB_MARK_RED(brother);
				KASSERT(RB_BLACK_P(brother->rb_left));
				KASSERT(RB_BLACK_P(brother->rb_right));
				if (RB_ROOT_P(rbt, parent))
					return;	/* root == parent == black */
				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
				which = RB_POSITION(parent);
				parent = RB_FATHER(parent);
				continue;
			}
		}
		/*
		 * Avoid an else here so that case 2a above can hit either
		 * case 2b, 3, or 4.
		 */
		if (RB_RED_P(parent)
		    && RB_BLACK_P(brother)
		    && RB_BLACK_P(brother->rb_left)
		    && RB_BLACK_P(brother->rb_right)) {
			KASSERT(RB_RED_P(parent));
			KASSERT(RB_BLACK_P(brother));
			KASSERT(RB_BLACK_P(brother->rb_left));
			KASSERT(RB_BLACK_P(brother->rb_right));
			/*
			 * We are black, our father is red, our brother and
			 * both nephews are black.  Simply invert/exchange the
			 * colors of our father and brother (to black and red
			 * respectively).
			 *
			 *	|    f        -->    F        |
			 *	|  *     B    -->  *     b    |
			 *	|      N   N  -->      N   N  |
			 */
			RB_MARK_BLACK(parent);
			RB_MARK_RED(brother);
			KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
			break;		/* We're done! */
		} else {
			/*
			 * Our brother must be black and have at least one
			 * red child (it may have two).
			 */
			KASSERT(RB_BLACK_P(brother));
			KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
				RB_RED_P(brother->rb_nodes[other]));
			if (RB_BLACK_P(brother->rb_nodes[other])) {
				/*
				 * Case 3: our brother is black, our near
				 * nephew is red, and our far nephew is black.
				 * Swap our brother with our near nephew.  
				 * This result in a tree that matches case 4.
				 * (Our father could be red or black).
				 *
				 *	|    F      -->    F      |
				 *	|  x     B  -->  x   B    |
				 *	|      n    -->        n  |
				 */
				KASSERT(RB_RED_P(brother->rb_nodes[which]));
				rb_tree_reparent_nodes(rbt, brother, which);
				KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
				brother = parent->rb_nodes[other];
				KASSERT(RB_RED_P(brother->rb_nodes[other]));
			}
			/*
			 * Case 4: our brother is black and our far nephew
			 * is red.  Swap our father and brother locations and
			 * change our far nephew to black.  (these can be
			 * done in either order so we change the color first).
			 * The result is a valid red-black tree and is a
			 * terminal case.  (again we don't care about the
			 * father's color)
			 *
			 * If the father is red, we will get a red-black-black
			 * tree:
			 *	|  f      ->  f      -->    b    |
			 *	|    B    ->    B    -->  F   N  |
			 *	|      n  ->      N  -->         |
			 *
			 * If the father is black, we will get an all black
			 * tree:
			 *	|  F      ->  F      -->    B    |
			 *	|    B    ->    B    -->  F   N  |
			 *	|      n  ->      N  -->         |
			 *
			 * If we had two red nephews, then after the swap,
			 * our former father would have a red grandson. 
			 */
			KASSERT(RB_BLACK_P(brother));
			KASSERT(RB_RED_P(brother->rb_nodes[other]));
			RB_MARK_BLACK(brother->rb_nodes[other]);
			rb_tree_reparent_nodes(rbt, parent, other);
			break;		/* We're done! */
		}
	}
	KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
}

void *
rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction)
{
	const rb_tree_ops_t *rbto = rbt->rbt_ops;
	const unsigned int other = direction ^ RB_DIR_OTHER;
	struct rb_node *self;

	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);

	if (object == NULL) {
#ifndef RBSMALL
		if (RB_SENTINEL_P(rbt->rbt_root))
			return NULL;
		return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]);
#else
		self = rbt->rbt_root;
		if (RB_SENTINEL_P(self))
			return NULL;
		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
			self = self->rb_nodes[direction];
		return RB_NODETOITEM(rbto, self);
#endif /* !RBSMALL */
	}
	self = RB_ITEMTONODE(rbto, object);
	KASSERT(!RB_SENTINEL_P(self));
	/*
	 * We can't go any further in this direction.  We proceed up in the
	 * opposite direction until our parent is in direction we want to go.
	 */
	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
		while (!RB_ROOT_P(rbt, self)) {
			if (other == RB_POSITION(self))
				return RB_NODETOITEM(rbto, RB_FATHER(self));
			self = RB_FATHER(self);
		}
		return NULL;
	}

	/*
	 * Advance down one in current direction and go down as far as possible
	 * in the opposite direction.
	 */
	self = self->rb_nodes[direction];
	KASSERT(!RB_SENTINEL_P(self));
	while (!RB_SENTINEL_P(self->rb_nodes[other]))
		self = self->rb_nodes[other];
	return RB_NODETOITEM(rbto, self);
}

#ifdef RBDEBUG
static const struct rb_node *
rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
	const unsigned int direction)
{
	const unsigned int other = direction ^ RB_DIR_OTHER;
	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);

	if (self == NULL) {
#ifndef RBSMALL
		if (RB_SENTINEL_P(rbt->rbt_root))
			return NULL;
		return rbt->rbt_minmax[direction];
#else
		self = rbt->rbt_root;
		if (RB_SENTINEL_P(self))
			return NULL;
		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
			self = self->rb_nodes[direction];
		return self;
#endif /* !RBSMALL */
	}
	KASSERT(!RB_SENTINEL_P(self));
	/*
	 * We can't go any further in this direction.  We proceed up in the
	 * opposite direction until our parent is in direction we want to go.
	 */
	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
		while (!RB_ROOT_P(rbt, self)) {
			if (other == RB_POSITION(self))
				return RB_FATHER(self);
			self = RB_FATHER(self);
		}
		return NULL;
	}

	/*
	 * Advance down one in current direction and go down as far as possible
	 * in the opposite direction.
	 */
	self = self->rb_nodes[direction];
	KASSERT(!RB_SENTINEL_P(self));
	while (!RB_SENTINEL_P(self->rb_nodes[other]))
		self = self->rb_nodes[other];
	return self;
}

static unsigned int
rb_tree_count_black(const struct rb_node *self)
{
	unsigned int left, right;

	if (RB_SENTINEL_P(self))
		return 0;

	left = rb_tree_count_black(self->rb_left);
	right = rb_tree_count_black(self->rb_right);

	KASSERT(left == right);

	return left + RB_BLACK_P(self);
}

static bool
rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
	const struct rb_node *prev, bool red_check)
{
	const rb_tree_ops_t *rbto = rbt->rbt_ops;
	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;

	KASSERT(!RB_SENTINEL_P(self));
	KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
	    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);

	/*
	 * Verify our relationship to our parent.
	 */
	if (RB_ROOT_P(rbt, self)) {
		KASSERT(self == rbt->rbt_root);
		KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
		KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
		KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
	} else {
		int diff = (*compare_nodes)(rbto->rbto_context,
		    RB_NODETOITEM(rbto, self),
		    RB_NODETOITEM(rbto, RB_FATHER(self)));

		KASSERT(self != rbt->rbt_root);
		KASSERT(!RB_FATHER_SENTINEL_P(self));
		if (RB_POSITION(self) == RB_DIR_LEFT) {
			KASSERT(diff < 0);
			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
		} else {
			KASSERT(diff > 0);
			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
		}
	}

	/*
	 * Verify our position in the linked list against the tree itself.
	 */
	{
		const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
		const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
		KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
		KASSERT(next0 == TAILQ_NEXT(self, rb_link));
#ifndef RBSMALL
		KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
		KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
#endif
	}

	/*
	 * The root must be black.
	 * There can never be two adjacent red nodes. 
	 */
	if (red_check) {
		KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
		(void) rb_tree_count_black(self);
		if (RB_RED_P(self)) {
			const struct rb_node *brother;
			KASSERT(!RB_ROOT_P(rbt, self));
			brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
			KASSERT(RB_BLACK_P(RB_FATHER(self)));
			/* 
			 * I'm red and have no children, then I must either
			 * have no brother or my brother also be red and
			 * also have no children.  (black count == 0)
			 */
			KASSERT(!RB_CHILDLESS_P(self)
				|| RB_SENTINEL_P(brother)
				|| RB_RED_P(brother)
				|| RB_CHILDLESS_P(brother));
			/*
			 * If I'm not childless, I must have two children
			 * and they must be both be black.
			 */
			KASSERT(RB_CHILDLESS_P(self)
				|| (RB_TWOCHILDREN_P(self)
				    && RB_BLACK_P(self->rb_left)
				    && RB_BLACK_P(self->rb_right)));
			/*
			 * If I'm not childless, thus I have black children,
			 * then my brother must either be black or have two
			 * black children.
			 */
			KASSERT(RB_CHILDLESS_P(self)
				|| RB_BLACK_P(brother)
				|| (RB_TWOCHILDREN_P(brother)
				    && RB_BLACK_P(brother->rb_left)
				    && RB_BLACK_P(brother->rb_right)));
		} else {
			/*
			 * If I'm black and have one child, that child must
			 * be red and childless.
			 */
			KASSERT(RB_CHILDLESS_P(self)
				|| RB_TWOCHILDREN_P(self)
				|| (!RB_LEFT_SENTINEL_P(self)
				    && RB_RIGHT_SENTINEL_P(self)
				    && RB_RED_P(self->rb_left)
				    && RB_CHILDLESS_P(self->rb_left))
				|| (!RB_RIGHT_SENTINEL_P(self)
				    && RB_LEFT_SENTINEL_P(self)
				    && RB_RED_P(self->rb_right)
				    && RB_CHILDLESS_P(self->rb_right)));

			/*
			 * If I'm a childless black node and my parent is
			 * black, my 2nd closet relative away from my parent
			 * is either red or has a red parent or red children.
			 */
			if (!RB_ROOT_P(rbt, self)
			    && RB_CHILDLESS_P(self)
			    && RB_BLACK_P(RB_FATHER(self))) {
				const unsigned int which = RB_POSITION(self);
				const unsigned int other = which ^ RB_DIR_OTHER;
				const struct rb_node *relative0, *relative;

				relative0 = rb_tree_iterate_const(rbt,
				    self, other);
				KASSERT(relative0 != NULL);
				relative = rb_tree_iterate_const(rbt,
				    relative0, other);
				KASSERT(relative != NULL);
				KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
#if 0
				KASSERT(RB_RED_P(relative)
					|| RB_RED_P(relative->rb_left)
					|| RB_RED_P(relative->rb_right)
					|| RB_RED_P(RB_FATHER(relative)));
#endif
			}
		}
		/*
		 * A grandparent's children must be real nodes and not
		 * sentinels.  First check out grandparent.
		 */
		KASSERT(RB_ROOT_P(rbt, self)
			|| RB_ROOT_P(rbt, RB_FATHER(self))
			|| RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
		/*
		 * If we are have grandchildren on our left, then
		 * we must have a child on our right.
		 */
		KASSERT(RB_LEFT_SENTINEL_P(self)
			|| RB_CHILDLESS_P(self->rb_left)
			|| !RB_RIGHT_SENTINEL_P(self));
		/*
		 * If we are have grandchildren on our right, then
		 * we must have a child on our left.
		 */
		KASSERT(RB_RIGHT_SENTINEL_P(self)
			|| RB_CHILDLESS_P(self->rb_right)
			|| !RB_LEFT_SENTINEL_P(self));

		/*
		 * If we have a child on the left and it doesn't have two
		 * children make sure we don't have great-great-grandchildren on
		 * the right.
		 */
		KASSERT(RB_TWOCHILDREN_P(self->rb_left)
			|| RB_CHILDLESS_P(self->rb_right)
			|| RB_CHILDLESS_P(self->rb_right->rb_left)
			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
			|| RB_CHILDLESS_P(self->rb_right->rb_right)
			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));

		/*
		 * If we have a child on the right and it doesn't have two
		 * children make sure we don't have great-great-grandchildren on
		 * the left.
		 */
		KASSERT(RB_TWOCHILDREN_P(self->rb_right)
			|| RB_CHILDLESS_P(self->rb_left)
			|| RB_CHILDLESS_P(self->rb_left->rb_left)
			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
			|| RB_CHILDLESS_P(self->rb_left->rb_right)
			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));

		/*
		 * If we are fully interior node, then our predecessors and
		 * successors must have no children in our direction.
		 */
		if (RB_TWOCHILDREN_P(self)) {
			const struct rb_node *prev0;
			const struct rb_node *next0;

			prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
			KASSERT(prev0 != NULL);
			KASSERT(RB_RIGHT_SENTINEL_P(prev0));

			next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
			KASSERT(next0 != NULL);
			KASSERT(RB_LEFT_SENTINEL_P(next0));
		}
	}

	return true;
}

void
rb_tree_check(const struct rb_tree *rbt, bool red_check)
{
	const struct rb_node *self;
	const struct rb_node *prev;
#ifdef RBSTATS
	unsigned int count = 0;
#endif

	KASSERT(rbt->rbt_root != NULL);
	KASSERT(RB_LEFT_P(rbt->rbt_root));

#if defined(RBSTATS) && !defined(RBSMALL)
	KASSERT(rbt->rbt_count > 1
	    || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
#endif

	prev = NULL;
	TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
		rb_tree_check_node(rbt, self, prev, false);
#ifdef RBSTATS
		count++;
#endif
	}
#ifdef RBSTATS
	KASSERT(rbt->rbt_count == count);
#endif
	if (red_check) {
		KASSERT(RB_BLACK_P(rbt->rbt_root));
		KASSERT(RB_SENTINEL_P(rbt->rbt_root)
			|| rb_tree_count_black(rbt->rbt_root));

		/*
		 * The root must be black.
		 * There can never be two adjacent red nodes. 
		 */
		TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
			rb_tree_check_node(rbt, self, NULL, true);
		}
	}
}
#endif /* RBDEBUG */

#ifdef RBSTATS
static void
rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
	size_t *depths, size_t depth)
{
	if (RB_SENTINEL_P(self))
		return;

	if (RB_TWOCHILDREN_P(self)) {
		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
		return;
	}
	depths[depth]++;
	if (!RB_LEFT_SENTINEL_P(self)) {
		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
	}
	if (!RB_RIGHT_SENTINEL_P(self)) {
		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
	}
}

void
rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
{
	rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
}
#endif /* RBSTATS */