aboutsummaryrefslogtreecommitdiff
path: root/compiler-rt/lib/scudo/standalone/release.h
blob: 4b5c56ce7c1952e6ca35e323e5dad32b5dfb810b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
//===-- release.h -----------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef SCUDO_RELEASE_H_
#define SCUDO_RELEASE_H_

#include "common.h"
#include "list.h"

namespace scudo {

class ReleaseRecorder {
public:
  ReleaseRecorder(uptr BaseAddress, MapPlatformData *Data = nullptr)
      : BaseAddress(BaseAddress), Data(Data) {}

  uptr getReleasedRangesCount() const { return ReleasedRangesCount; }

  uptr getReleasedBytes() const { return ReleasedBytes; }

  // Releases [From, To) range of pages back to OS.
  void releasePageRangeToOS(uptr From, uptr To) {
    const uptr Size = To - From;
    releasePagesToOS(BaseAddress, From, Size, Data);
    ReleasedRangesCount++;
    ReleasedBytes += Size;
  }

private:
  uptr ReleasedRangesCount = 0;
  uptr ReleasedBytes = 0;
  uptr BaseAddress = 0;
  MapPlatformData *Data = nullptr;
};

// A packed array of Counters. Each counter occupies 2^N bits, enough to store
// counter's MaxValue. Ctor will try to allocate the required Buffer via map()
// and the caller is expected to check whether the initialization was successful
// by checking isAllocated() result. For the performance sake, none of the
// accessors check the validity of the arguments, It is assumed that Index is
// always in [0, N) range and the value is not incremented past MaxValue.
class PackedCounterArray {
public:
  PackedCounterArray(uptr NumCounters, uptr MaxValue) : N(NumCounters) {
    CHECK_GT(NumCounters, 0);
    CHECK_GT(MaxValue, 0);
    constexpr uptr MaxCounterBits = sizeof(*Buffer) * 8UL;
    // Rounding counter storage size up to the power of two allows for using
    // bit shifts calculating particular counter's Index and offset.
    const uptr CounterSizeBits =
        roundUpToPowerOfTwo(getMostSignificantSetBitIndex(MaxValue) + 1);
    CHECK_LE(CounterSizeBits, MaxCounterBits);
    CounterSizeBitsLog = getLog2(CounterSizeBits);
    CounterMask = ~(static_cast<uptr>(0)) >> (MaxCounterBits - CounterSizeBits);

    const uptr PackingRatio = MaxCounterBits >> CounterSizeBitsLog;
    CHECK_GT(PackingRatio, 0);
    PackingRatioLog = getLog2(PackingRatio);
    BitOffsetMask = PackingRatio - 1;

    BufferSize = (roundUpTo(N, static_cast<uptr>(1U) << PackingRatioLog) >>
                  PackingRatioLog) *
                 sizeof(*Buffer);
    Buffer = reinterpret_cast<uptr *>(
        map(nullptr, BufferSize, "scudo:counters", MAP_ALLOWNOMEM));
  }
  ~PackedCounterArray() {
    if (isAllocated())
      unmap(reinterpret_cast<void *>(Buffer), BufferSize);
  }

  bool isAllocated() const { return !!Buffer; }

  uptr getCount() const { return N; }

  uptr get(uptr I) const {
    DCHECK_LT(I, N);
    const uptr Index = I >> PackingRatioLog;
    const uptr BitOffset = (I & BitOffsetMask) << CounterSizeBitsLog;
    return (Buffer[Index] >> BitOffset) & CounterMask;
  }

  void inc(uptr I) const {
    DCHECK_LT(get(I), CounterMask);
    const uptr Index = I >> PackingRatioLog;
    const uptr BitOffset = (I & BitOffsetMask) << CounterSizeBitsLog;
    DCHECK_LT(BitOffset, SCUDO_WORDSIZE);
    Buffer[Index] += static_cast<uptr>(1U) << BitOffset;
  }

  void incRange(uptr From, uptr To) const {
    DCHECK_LE(From, To);
    for (uptr I = From; I <= To; I++)
      inc(I);
  }

  uptr getBufferSize() const { return BufferSize; }

private:
  const uptr N;
  uptr CounterSizeBitsLog;
  uptr CounterMask;
  uptr PackingRatioLog;
  uptr BitOffsetMask;

  uptr BufferSize;
  uptr *Buffer;
};

template <class ReleaseRecorderT> class FreePagesRangeTracker {
public:
  explicit FreePagesRangeTracker(ReleaseRecorderT *Recorder)
      : Recorder(Recorder), PageSizeLog(getLog2(getPageSizeCached())) {}

  void processNextPage(bool Freed) {
    if (Freed) {
      if (!InRange) {
        CurrentRangeStatePage = CurrentPage;
        InRange = true;
      }
    } else {
      closeOpenedRange();
    }
    CurrentPage++;
  }

  void finish() { closeOpenedRange(); }

private:
  void closeOpenedRange() {
    if (InRange) {
      Recorder->releasePageRangeToOS((CurrentRangeStatePage << PageSizeLog),
                                     (CurrentPage << PageSizeLog));
      InRange = false;
    }
  }

  ReleaseRecorderT *const Recorder;
  const uptr PageSizeLog;
  bool InRange = false;
  uptr CurrentPage = 0;
  uptr CurrentRangeStatePage = 0;
};

template <class TransferBatchT, class ReleaseRecorderT>
NOINLINE void
releaseFreeMemoryToOS(const IntrusiveList<TransferBatchT> &FreeList, uptr Base,
                      uptr AllocatedPagesCount, uptr BlockSize,
                      ReleaseRecorderT *Recorder) {
  const uptr PageSize = getPageSizeCached();

  // Figure out the number of chunks per page and whether we can take a fast
  // path (the number of chunks per page is the same for all pages).
  uptr FullPagesBlockCountMax;
  bool SameBlockCountPerPage;
  if (BlockSize <= PageSize) {
    if (PageSize % BlockSize == 0) {
      // Same number of chunks per page, no cross overs.
      FullPagesBlockCountMax = PageSize / BlockSize;
      SameBlockCountPerPage = true;
    } else if (BlockSize % (PageSize % BlockSize) == 0) {
      // Some chunks are crossing page boundaries, which means that the page
      // contains one or two partial chunks, but all pages contain the same
      // number of chunks.
      FullPagesBlockCountMax = PageSize / BlockSize + 1;
      SameBlockCountPerPage = true;
    } else {
      // Some chunks are crossing page boundaries, which means that the page
      // contains one or two partial chunks.
      FullPagesBlockCountMax = PageSize / BlockSize + 2;
      SameBlockCountPerPage = false;
    }
  } else {
    if (BlockSize % PageSize == 0) {
      // One chunk covers multiple pages, no cross overs.
      FullPagesBlockCountMax = 1;
      SameBlockCountPerPage = true;
    } else {
      // One chunk covers multiple pages, Some chunks are crossing page
      // boundaries. Some pages contain one chunk, some contain two.
      FullPagesBlockCountMax = 2;
      SameBlockCountPerPage = false;
    }
  }

  PackedCounterArray Counters(AllocatedPagesCount, FullPagesBlockCountMax);
  if (!Counters.isAllocated())
    return;

  const uptr PageSizeLog = getLog2(PageSize);
  const uptr End = Base + AllocatedPagesCount * PageSize;

  // Iterate over free chunks and count how many free chunks affect each
  // allocated page.
  if (BlockSize <= PageSize && PageSize % BlockSize == 0) {
    // Each chunk affects one page only.
    for (const auto &It : FreeList) {
      for (u32 I = 0; I < It.getCount(); I++) {
        const uptr P = reinterpret_cast<uptr>(It.get(I));
        if (P >= Base && P < End)
          Counters.inc((P - Base) >> PageSizeLog);
      }
    }
  } else {
    // In all other cases chunks might affect more than one page.
    for (const auto &It : FreeList) {
      for (u32 I = 0; I < It.getCount(); I++) {
        const uptr P = reinterpret_cast<uptr>(It.get(I));
        if (P >= Base && P < End)
          Counters.incRange((P - Base) >> PageSizeLog,
                            (P - Base + BlockSize - 1) >> PageSizeLog);
      }
    }
  }

  // Iterate over pages detecting ranges of pages with chunk Counters equal
  // to the expected number of chunks for the particular page.
  FreePagesRangeTracker<ReleaseRecorderT> RangeTracker(Recorder);
  if (SameBlockCountPerPage) {
    // Fast path, every page has the same number of chunks affecting it.
    for (uptr I = 0; I < Counters.getCount(); I++)
      RangeTracker.processNextPage(Counters.get(I) == FullPagesBlockCountMax);
  } else {
    // Slow path, go through the pages keeping count how many chunks affect
    // each page.
    const uptr Pn = BlockSize < PageSize ? PageSize / BlockSize : 1;
    const uptr Pnc = Pn * BlockSize;
    // The idea is to increment the current page pointer by the first chunk
    // size, middle portion size (the portion of the page covered by chunks
    // except the first and the last one) and then the last chunk size, adding
    // up the number of chunks on the current page and checking on every step
    // whether the page boundary was crossed.
    uptr PrevPageBoundary = 0;
    uptr CurrentBoundary = 0;
    for (uptr I = 0; I < Counters.getCount(); I++) {
      const uptr PageBoundary = PrevPageBoundary + PageSize;
      uptr BlocksPerPage = Pn;
      if (CurrentBoundary < PageBoundary) {
        if (CurrentBoundary > PrevPageBoundary)
          BlocksPerPage++;
        CurrentBoundary += Pnc;
        if (CurrentBoundary < PageBoundary) {
          BlocksPerPage++;
          CurrentBoundary += BlockSize;
        }
      }
      PrevPageBoundary = PageBoundary;

      RangeTracker.processNextPage(Counters.get(I) == BlocksPerPage);
    }
  }
  RangeTracker.finish();
}

} // namespace scudo

#endif // SCUDO_RELEASE_H_