1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

.\"
.\" SPDXLicenseIdentifier: BSD2Clause
.\"
.\" Copyright (c) 20182021 Gavin D. Howard and contributors.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions are met:
.\"
.\" * Redistributions of source code must retain the above copyright notice,
.\" this list of conditions and the following disclaimer.
.\"
.\" * Redistributions in binary form must reproduce the above copyright notice,
.\" this list of conditions and the following disclaimer in the documentation
.\" and/or other materials provided with the distribution.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
.\" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
.\" LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
.\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
.\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
.\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
.\" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
.\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
.\" POSSIBILITY OF SUCH DAMAGE.
.\"
.TH "BC" "1" "February 2021" "Gavin D. Howard" "General Commands Manual"
.SH NAME
.PP
bc  arbitraryprecision decimal arithmetic language and calculator
.SH SYNOPSIS
.PP
\f[B]bc\f[R] [\f[B]ghilPqsvVw\f[R]] [\f[B]\[en]globalstacks\f[R]]
[\f[B]\[en]help\f[R]] [\f[B]\[en]interactive\f[R]]
[\f[B]\[en]mathlib\f[R]] [\f[B]\[en]noprompt\f[R]]
[\f[B]\[en]quiet\f[R]] [\f[B]\[en]standard\f[R]] [\f[B]\[en]warn\f[R]]
[\f[B]\[en]version\f[R]] [\f[B]e\f[R] \f[I]expr\f[R]]
[\f[B]\[en]expression\f[R]=\f[I]expr\f[R]\&...] [\f[B]f\f[R]
\f[I]file\f[R]\&...] [\f[B]file\f[R]=\f[I]file\f[R]\&...]
[\f[I]file\f[R]\&...]
.SH DESCRIPTION
.PP
bc(1) is an interactive processor for a language first standardized in
1991 by POSIX.
(The current standard is
here (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html).)
The language provides unlimited precision decimal arithmetic and is
somewhat Clike, but there are differences.
Such differences will be noted in this document.
.PP
After parsing and handling options, this bc(1) reads any files given on
the command line and executes them before reading from \f[B]stdin\f[R].
.PP
This bc(1) is a dropin replacement for \f[I]any\f[R] bc(1), including
(and especially) the GNU bc(1).
It also has many extensions and extra features beyond other
implementations.
.SH OPTIONS
.PP
The following are the options that bc(1) accepts.
.TP
\f[B]g\f[R], \f[B]\[en]globalstacks\f[R]
Turns the globals \f[B]ibase\f[R], \f[B]obase\f[R], \f[B]scale\f[R], and
\f[B]seed\f[R] into stacks.
.RS
.PP
This has the effect that a copy of the current value of all four are
pushed onto a stack for every function call, as well as popped when
every function returns.
This means that functions can assign to any and all of those globals
without worrying that the change will affect other functions.
Thus, a hypothetical function named \f[B]output(x,b)\f[R] that simply
printed \f[B]x\f[R] in base \f[B]b\f[R] could be written like this:
.IP
.nf
\f[C]
define void output(x, b) {
obase=b
x
}
\f[R]
.fi
.PP
instead of like this:
.IP
.nf
\f[C]
define void output(x, b) {
auto c
c=obase
obase=b
x
obase=c
}
\f[R]
.fi
.PP
This makes writing functions much easier.
.PP
(\f[B]Note\f[R]: the function \f[B]output(x,b)\f[R] exists in the
extended math library.
See the \f[B]LIBRARY\f[R] section.)
.PP
However, since using this flag means that functions cannot set
\f[B]ibase\f[R], \f[B]obase\f[R], \f[B]scale\f[R], or \f[B]seed\f[R]
globally, functions that are made to do so cannot work anymore.
There are two possible use cases for that, and each has a solution.
.PP
First, if a function is called on startup to turn bc(1) into a number
converter, it is possible to replace that capability with various shell
aliases.
Examples:
.IP
.nf
\f[C]
alias d2o=\[dq]bc e ibase=A e obase=8\[dq]
alias h2b=\[dq]bc e ibase=G e obase=2\[dq]
\f[R]
.fi
.PP
Second, if the purpose of a function is to set \f[B]ibase\f[R],
\f[B]obase\f[R], \f[B]scale\f[R], or \f[B]seed\f[R] globally for any
other purpose, it could be split into one to four functions (based on
how many globals it sets) and each of those functions could return the
desired value for a global.
.PP
For functions that set \f[B]seed\f[R], the value assigned to
\f[B]seed\f[R] is not propagated to parent functions.
This means that the sequence of pseudorandom numbers that they see will
not be the same sequence of pseudorandom numbers that any parent sees.
This is only the case once \f[B]seed\f[R] has been set.
.PP
If a function desires to not affect the sequence of pseudorandom
numbers of its parents, but wants to use the same \f[B]seed\f[R], it can
use the following line:
.IP
.nf
\f[C]
seed = seed
\f[R]
.fi
.PP
If the behavior of this option is desired for every run of bc(1), then
users could make sure to define \f[B]BC_ENV_ARGS\f[R] and include this
option (see the \f[B]ENVIRONMENT VARIABLES\f[R] section for more
details).
.PP
If \f[B]s\f[R], \f[B]w\f[R], or any equivalents are used, this option
is ignored.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]h\f[R], \f[B]\[en]help\f[R]
Prints a usage message and quits.
.TP
\f[B]i\f[R], \f[B]\[en]interactive\f[R]
Forces interactive mode.
(See the \f[B]INTERACTIVE MODE\f[R] section.)
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]l\f[R], \f[B]\[en]mathlib\f[R]
Sets \f[B]scale\f[R] (see the \f[B]SYNTAX\f[R] section) to \f[B]20\f[R]
and loads the included math library and the extended math library before
running any code, including any expressions or files specified on the
command line.
.RS
.PP
To learn what is in the libraries, see the \f[B]LIBRARY\f[R] section.
.RE
.TP
\f[B]P\f[R], \f[B]\[en]noprompt\f[R]
Disables the prompt in TTY mode.
(The prompt is only enabled in TTY mode.
See the \f[B]TTY MODE\f[R] section) This is mostly for those users that
do not want a prompt or are not used to having them in bc(1).
Most of those users would want to put this option in
\f[B]BC_ENV_ARGS\f[R] (see the \f[B]ENVIRONMENT VARIABLES\f[R] section).
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]q\f[R], \f[B]\[en]quiet\f[R]
This option is for compatibility with the GNU
bc(1) (https://www.gnu.org/software/bc/); it is a noop.
Without this option, GNU bc(1) prints a copyright header.
This bc(1) only prints the copyright header if one or more of the
\f[B]v\f[R], \f[B]V\f[R], or \f[B]\[en]version\f[R] options are given.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]s\f[R], \f[B]\[en]standard\f[R]
Process exactly the language defined by the
standard (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html)
and error if any extensions are used.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]v\f[R], \f[B]V\f[R], \f[B]\[en]version\f[R]
Print the version information (copyright header) and exit.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]w\f[R], \f[B]\[en]warn\f[R]
Like \f[B]s\f[R] and \f[B]\[en]standard\f[R], except that warnings (and
not errors) are printed for nonstandard extensions and execution
continues normally.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]e\f[R] \f[I]expr\f[R], \f[B]\[en]expression\f[R]=\f[I]expr\f[R]
Evaluates \f[I]expr\f[R].
If multiple expressions are given, they are evaluated in order.
If files are given as well (see below), the expressions and files are
evaluated in the order given.
This means that if a file is given before an expression, the file is
read in and evaluated first.
.RS
.PP
If this option is given on the commandline (i.e., not in
\f[B]BC_ENV_ARGS\f[R], see the \f[B]ENVIRONMENT VARIABLES\f[R] section),
then after processing all expressions and files, bc(1) will exit, unless
\f[B]\f[R] (\f[B]stdin\f[R]) was given as an argument at least once to
\f[B]f\f[R] or \f[B]\[en]file\f[R], whether on the commandline or in
\f[B]BC_ENV_ARGS\f[R].
However, if any other \f[B]e\f[R], \f[B]\[en]expression\f[R],
\f[B]f\f[R], or \f[B]\[en]file\f[R] arguments are given after
\f[B]f\f[R] or equivalent is given, bc(1) will give a fatal error and
exit.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]f\f[R] \f[I]file\f[R], \f[B]\[en]file\f[R]=\f[I]file\f[R]
Reads in \f[I]file\f[R] and evaluates it, line by line, as though it
were read through \f[B]stdin\f[R].
If expressions are also given (see above), the expressions are evaluated
in the order given.
.RS
.PP
If this option is given on the commandline (i.e., not in
\f[B]BC_ENV_ARGS\f[R], see the \f[B]ENVIRONMENT VARIABLES\f[R] section),
then after processing all expressions and files, bc(1) will exit, unless
\f[B]\f[R] (\f[B]stdin\f[R]) was given as an argument at least once to
\f[B]f\f[R] or \f[B]\[en]file\f[R].
However, if any other \f[B]e\f[R], \f[B]\[en]expression\f[R],
\f[B]f\f[R], or \f[B]\[en]file\f[R] arguments are given after
\f[B]f\f[R] or equivalent is given, bc(1) will give a fatal error and
exit.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.PP
All long options are \f[B]nonportable extensions\f[R].
.SH STDOUT
.PP
Any nonerror output is written to \f[B]stdout\f[R].
In addition, if history (see the \f[B]HISTORY\f[R] section) and the
prompt (see the \f[B]TTY MODE\f[R] section) are enabled, both are output
to \f[B]stdout\f[R].
.PP
\f[B]Note\f[R]: Unlike other bc(1) implementations, this bc(1) will
issue a fatal error (see the \f[B]EXIT STATUS\f[R] section) if it cannot
write to \f[B]stdout\f[R], so if \f[B]stdout\f[R] is closed, as in
\f[B]bc >&\f[R], it will quit with an error.
This is done so that bc(1) can report problems when \f[B]stdout\f[R] is
redirected to a file.
.PP
If there are scripts that depend on the behavior of other bc(1)
implementations, it is recommended that those scripts be changed to
redirect \f[B]stdout\f[R] to \f[B]/dev/null\f[R].
.SH STDERR
.PP
Any error output is written to \f[B]stderr\f[R].
.PP
\f[B]Note\f[R]: Unlike other bc(1) implementations, this bc(1) will
issue a fatal error (see the \f[B]EXIT STATUS\f[R] section) if it cannot
write to \f[B]stderr\f[R], so if \f[B]stderr\f[R] is closed, as in
\f[B]bc 2>&\f[R], it will quit with an error.
This is done so that bc(1) can exit with an error code when
\f[B]stderr\f[R] is redirected to a file.
.PP
If there are scripts that depend on the behavior of other bc(1)
implementations, it is recommended that those scripts be changed to
redirect \f[B]stderr\f[R] to \f[B]/dev/null\f[R].
.SH SYNTAX
.PP
The syntax for bc(1) programs is mostly Clike, with some differences.
This bc(1) follows the POSIX
standard (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html),
which is a much more thorough resource for the language this bc(1)
accepts.
This section is meant to be a summary and a listing of all the
extensions to the standard.
.PP
In the sections below, \f[B]E\f[R] means expression, \f[B]S\f[R] means
statement, and \f[B]I\f[R] means identifier.
.PP
Identifiers (\f[B]I\f[R]) start with a lowercase letter and can be
followed by any number (up to \f[B]BC_NAME_MAX1\f[R]) of lowercase
letters (\f[B]az\f[R]), digits (\f[B]09\f[R]), and underscores
(\f[B]_\f[R]).
The regex is \f[B][az][az09_]*\f[R].
Identifiers with more than one character (letter) are a
\f[B]nonportable extension\f[R].
.PP
\f[B]ibase\f[R] is a global variable determining how to interpret
constant numbers.
It is the \[lq]input\[rq] base, or the number base used for interpreting
input numbers.
\f[B]ibase\f[R] is initially \f[B]10\f[R].
If the \f[B]s\f[R] (\f[B]\[en]standard\f[R]) and \f[B]w\f[R]
(\f[B]\[en]warn\f[R]) flags were not given on the command line, the max
allowable value for \f[B]ibase\f[R] is \f[B]36\f[R].
Otherwise, it is \f[B]16\f[R].
The min allowable value for \f[B]ibase\f[R] is \f[B]2\f[R].
The max allowable value for \f[B]ibase\f[R] can be queried in bc(1)
programs with the \f[B]maxibase()\f[R] builtin function.
.PP
\f[B]obase\f[R] is a global variable determining how to output results.
It is the \[lq]output\[rq] base, or the number base used for outputting
numbers.
\f[B]obase\f[R] is initially \f[B]10\f[R].
The max allowable value for \f[B]obase\f[R] is \f[B]BC_BASE_MAX\f[R] and
can be queried in bc(1) programs with the \f[B]maxobase()\f[R] builtin
function.
The min allowable value for \f[B]obase\f[R] is \f[B]0\f[R].
If \f[B]obase\f[R] is \f[B]0\f[R], values are output in scientific
notation, and if \f[B]obase\f[R] is \f[B]1\f[R], values are output in
engineering notation.
Otherwise, values are output in the specified base.
.PP
Outputting in scientific and engineering notations are \f[B]nonportable
extensions\f[R].
.PP
The \f[I]scale\f[R] of an expression is the number of digits in the
result of the expression right of the decimal point, and \f[B]scale\f[R]
is a global variable that sets the precision of any operations, with
exceptions.
\f[B]scale\f[R] is initially \f[B]0\f[R].
\f[B]scale\f[R] cannot be negative.
The max allowable value for \f[B]scale\f[R] is \f[B]BC_SCALE_MAX\f[R]
and can be queried in bc(1) programs with the \f[B]maxscale()\f[R]
builtin function.
.PP
bc(1) has both \f[I]global\f[R] variables and \f[I]local\f[R] variables.
All \f[I]local\f[R] variables are local to the function; they are
parameters or are introduced in the \f[B]auto\f[R] list of a function
(see the \f[B]FUNCTIONS\f[R] section).
If a variable is accessed which is not a parameter or in the
\f[B]auto\f[R] list, it is assumed to be \f[I]global\f[R].
If a parent function has a \f[I]local\f[R] variable version of a
variable that a child function considers \f[I]global\f[R], the value of
that \f[I]global\f[R] variable in the child function is the value of the
variable in the parent function, not the value of the actual
\f[I]global\f[R] variable.
.PP
All of the above applies to arrays as well.
.PP
The value of a statement that is an expression (i.e., any of the named
expressions or operands) is printed unless the lowest precedence
operator is an assignment operator \f[I]and\f[R] the expression is
notsurrounded by parentheses.
.PP
The value that is printed is also assigned to the special variable
\f[B]last\f[R].
A single dot (\f[B].\f[R]) may also be used as a synonym for
\f[B]last\f[R].
These are \f[B]nonportable extensions\f[R].
.PP
Either semicolons or newlines may separate statements.
.SS Comments
.PP
There are two kinds of comments:
.IP "1." 3
Block comments are enclosed in \f[B]/*\f[R] and \f[B]*/\f[R].
.IP "2." 3
Line comments go from \f[B]#\f[R] until, and not including, the next
newline.
This is a \f[B]nonportable extension\f[R].
.SS Named Expressions
.PP
The following are named expressions in bc(1):
.IP "1." 3
Variables: \f[B]I\f[R]
.IP "2." 3
Array Elements: \f[B]I[E]\f[R]
.IP "3." 3
\f[B]ibase\f[R]
.IP "4." 3
\f[B]obase\f[R]
.IP "5." 3
\f[B]scale\f[R]
.IP "6." 3
\f[B]seed\f[R]
.IP "7." 3
\f[B]last\f[R] or a single dot (\f[B].\f[R])
.PP
Numbers 6 and 7 are \f[B]nonportable extensions\f[R].
.PP
The meaning of \f[B]seed\f[R] is dependent on the current pseudorandom
number generator but is guaranteed to not change except for new major
versions.
.PP
The \f[I]scale\f[R] and sign of the value may be significant.
.PP
If a previously used \f[B]seed\f[R] value is assigned to \f[B]seed\f[R]
and used again, the pseudorandom number generator is guaranteed to
produce the same sequence of pseudorandom numbers as it did when the
\f[B]seed\f[R] value was previously used.
.PP
The exact value assigned to \f[B]seed\f[R] is not guaranteed to be
returned if \f[B]seed\f[R] is queried again immediately.
However, if \f[B]seed\f[R] \f[I]does\f[R] return a different value, both
values, when assigned to \f[B]seed\f[R], are guaranteed to produce the
same sequence of pseudorandom numbers.
This means that certain values assigned to \f[B]seed\f[R] will
\f[I]not\f[R] produce unique sequences of pseudorandom numbers.
The value of \f[B]seed\f[R] will change after any use of the
\f[B]rand()\f[R] and \f[B]irand(E)\f[R] operands (see the
\f[I]Operands\f[R] subsection below), except if the parameter passed to
\f[B]irand(E)\f[R] is \f[B]0\f[R], \f[B]1\f[R], or negative.
.PP
There is no limit to the length (number of significant decimal digits)
or \f[I]scale\f[R] of the value that can be assigned to \f[B]seed\f[R].
.PP
Variables and arrays do not interfere; users can have arrays named the
same as variables.
This also applies to functions (see the \f[B]FUNCTIONS\f[R] section), so
a user can have a variable, array, and function that all have the same
name, and they will not shadow each other, whether inside of functions
or not.
.PP
Named expressions are required as the operand of
\f[B]increment\f[R]/\f[B]decrement\f[R] operators and as the left side
of \f[B]assignment\f[R] operators (see the \f[I]Operators\f[R]
subsection).
.SS Operands
.PP
The following are valid operands in bc(1):
.IP " 1." 4
Numbers (see the \f[I]Numbers\f[R] subsection below).
.IP " 2." 4
Array indices (\f[B]I[E]\f[R]).
.IP " 3." 4
\f[B](E)\f[R]: The value of \f[B]E\f[R] (used to change precedence).
.IP " 4." 4
\f[B]sqrt(E)\f[R]: The square root of \f[B]E\f[R].
\f[B]E\f[R] must be nonnegative.
.IP " 5." 4
\f[B]length(E)\f[R]: The number of significant decimal digits in
\f[B]E\f[R].
.IP " 6." 4
\f[B]length(I[])\f[R]: The number of elements in the array \f[B]I\f[R].
This is a \f[B]nonportable extension\f[R].
.IP " 7." 4
\f[B]scale(E)\f[R]: The \f[I]scale\f[R] of \f[B]E\f[R].
.IP " 8." 4
\f[B]abs(E)\f[R]: The absolute value of \f[B]E\f[R].
This is a \f[B]nonportable extension\f[R].
.IP " 9." 4
\f[B]I()\f[R], \f[B]I(E)\f[R], \f[B]I(E, E)\f[R], and so on, where
\f[B]I\f[R] is an identifier for a non\f[B]void\f[R] function (see the
\f[I]Void Functions\f[R] subsection of the \f[B]FUNCTIONS\f[R] section).
The \f[B]E\f[R] argument(s) may also be arrays of the form
\f[B]I[]\f[R], which will automatically be turned into array references
(see the \f[I]Array References\f[R] subsection of the
\f[B]FUNCTIONS\f[R] section) if the corresponding parameter in the
function definition is an array reference.
.IP "10." 4
\f[B]read()\f[R]: Reads a line from \f[B]stdin\f[R] and uses that as an
expression.
The result of that expression is the result of the \f[B]read()\f[R]
operand.
This is a \f[B]nonportable extension\f[R].
.IP "11." 4
\f[B]maxibase()\f[R]: The max allowable \f[B]ibase\f[R].
This is a \f[B]nonportable extension\f[R].
.IP "12." 4
\f[B]maxobase()\f[R]: The max allowable \f[B]obase\f[R].
This is a \f[B]nonportable extension\f[R].
.IP "13." 4
\f[B]maxscale()\f[R]: The max allowable \f[B]scale\f[R].
This is a \f[B]nonportable extension\f[R].
.IP "14." 4
\f[B]rand()\f[R]: A pseudorandom integer between \f[B]0\f[R]
(inclusive) and \f[B]BC_RAND_MAX\f[R] (inclusive).
Using this operand will change the value of \f[B]seed\f[R].
This is a \f[B]nonportable extension\f[R].
.IP "15." 4
\f[B]irand(E)\f[R]: A pseudorandom integer between \f[B]0\f[R]
(inclusive) and the value of \f[B]E\f[R] (exclusive).
If \f[B]E\f[R] is negative or is a noninteger (\f[B]E\f[R]\[cq]s
\f[I]scale\f[R] is not \f[B]0\f[R]), an error is raised, and bc(1)
resets (see the \f[B]RESET\f[R] section) while \f[B]seed\f[R] remains
unchanged.
If \f[B]E\f[R] is larger than \f[B]BC_RAND_MAX\f[R], the higher bound is
honored by generating several pseudorandom integers, multiplying them
by appropriate powers of \f[B]BC_RAND_MAX+1\f[R], and adding them
together.
Thus, the size of integer that can be generated with this operand is
unbounded.
Using this operand will change the value of \f[B]seed\f[R], unless the
value of \f[B]E\f[R] is \f[B]0\f[R] or \f[B]1\f[R].
In that case, \f[B]0\f[R] is returned, and \f[B]seed\f[R] is
\f[I]not\f[R] changed.
This is a \f[B]nonportable extension\f[R].
.IP "16." 4
\f[B]maxrand()\f[R]: The max integer returned by \f[B]rand()\f[R].
This is a \f[B]nonportable extension\f[R].
.PP
The integers generated by \f[B]rand()\f[R] and \f[B]irand(E)\f[R] are
guaranteed to be as unbiased as possible, subject to the limitations of
the pseudorandom number generator.
.PP
\f[B]Note\f[R]: The values returned by the pseudorandom number
generator with \f[B]rand()\f[R] and \f[B]irand(E)\f[R] are guaranteed to
\f[I]NOT\f[R] be cryptographically secure.
This is a consequence of using a seeded pseudorandom number generator.
However, they \f[I]are\f[R] guaranteed to be reproducible with identical
\f[B]seed\f[R] values.
This means that the pseudorandom values from bc(1) should only be used
where a reproducible stream of pseudorandom numbers is
\f[I]ESSENTIAL\f[R].
In any other case, use a nonseeded pseudorandom number generator.
.SS Numbers
.PP
Numbers are strings made up of digits, uppercase letters, and at most
\f[B]1\f[R] period for a radix.
Numbers can have up to \f[B]BC_NUM_MAX\f[R] digits.
Uppercase letters are equal to \f[B]9\f[R] + their position in the
alphabet (i.e., \f[B]A\f[R] equals \f[B]10\f[R], or \f[B]9+1\f[R]).
If a digit or letter makes no sense with the current value of
\f[B]ibase\f[R], they are set to the value of the highest valid digit in
\f[B]ibase\f[R].
.PP
Singlecharacter numbers (i.e., \f[B]A\f[R] alone) take the value that
they would have if they were valid digits, regardless of the value of
\f[B]ibase\f[R].
This means that \f[B]A\f[R] alone always equals decimal \f[B]10\f[R] and
\f[B]Z\f[R] alone always equals decimal \f[B]35\f[R].
.PP
In addition, bc(1) accepts numbers in scientific notation.
These have the form \f[B]<number>e<integer>\f[R].
The exponent (the portion after the \f[B]e\f[R]) must be an integer.
An example is \f[B]1.89237e9\f[R], which is equal to
\f[B]1892370000\f[R].
Negative exponents are also allowed, so \f[B]4.2890e3\f[R] is equal to
\f[B]0.0042890\f[R].
.PP
Using scientific notation is an error or warning if the \f[B]s\f[R] or
\f[B]w\f[R], respectively, commandline options (or equivalents) are
given.
.PP
\f[B]WARNING\f[R]: Both the number and the exponent in scientific
notation are interpreted according to the current \f[B]ibase\f[R], but
the number is still multiplied by \f[B]10\[ha]exponent\f[R] regardless
of the current \f[B]ibase\f[R].
For example, if \f[B]ibase\f[R] is \f[B]16\f[R] and bc(1) is given the
number string \f[B]FFeA\f[R], the resulting decimal number will be
\f[B]2550000000000\f[R], and if bc(1) is given the number string
\f[B]10e4\f[R], the resulting decimal number will be \f[B]0.0016\f[R].
.PP
Accepting input as scientific notation is a \f[B]nonportable
extension\f[R].
.SS Operators
.PP
The following arithmetic and logical operators can be used.
They are listed in order of decreasing precedence.
Operators in the same group have the same precedence.
.TP
\f[B]++\f[R] \f[B]\[en]\f[R]
Type: Prefix and Postfix
.RS
.PP
Associativity: None
.PP
Description: \f[B]increment\f[R], \f[B]decrement\f[R]
.RE
.TP
\f[B]\f[R] \f[B]!\f[R]
Type: Prefix
.RS
.PP
Associativity: None
.PP
Description: \f[B]negation\f[R], \f[B]boolean not\f[R]
.RE
.TP
\f[B]$\f[R]
Type: Postfix
.RS
.PP
Associativity: None
.PP
Description: \f[B]truncation\f[R]
.RE
.TP
\f[B]\[at]\f[R]
Type: Binary
.RS
.PP
Associativity: Right
.PP
Description: \f[B]set precision\f[R]
.RE
.TP
\f[B]\[ha]\f[R]
Type: Binary
.RS
.PP
Associativity: Right
.PP
Description: \f[B]power\f[R]
.RE
.TP
\f[B]*\f[R] \f[B]/\f[R] \f[B]%\f[R]
Type: Binary
.RS
.PP
Associativity: Left
.PP
Description: \f[B]multiply\f[R], \f[B]divide\f[R], \f[B]modulus\f[R]
.RE
.TP
\f[B]+\f[R] \f[B]\f[R]
Type: Binary
.RS
.PP
Associativity: Left
.PP
Description: \f[B]add\f[R], \f[B]subtract\f[R]
.RE
.TP
\f[B]<<\f[R] \f[B]>>\f[R]
Type: Binary
.RS
.PP
Associativity: Left
.PP
Description: \f[B]shift left\f[R], \f[B]shift right\f[R]
.RE
.TP
\f[B]=\f[R] \f[B]<<=\f[R] \f[B]>>=\f[R] \f[B]+=\f[R] \f[B]=\f[R] \f[B]*=\f[R] \f[B]/=\f[R] \f[B]%=\f[R] \f[B]\[ha]=\f[R] \f[B]\[at]=\f[R]
Type: Binary
.RS
.PP
Associativity: Right
.PP
Description: \f[B]assignment\f[R]
.RE
.TP
\f[B]==\f[R] \f[B]<=\f[R] \f[B]>=\f[R] \f[B]!=\f[R] \f[B]<\f[R] \f[B]>\f[R]
Type: Binary
.RS
.PP
Associativity: Left
.PP
Description: \f[B]relational\f[R]
.RE
.TP
\f[B]&&\f[R]
Type: Binary
.RS
.PP
Associativity: Left
.PP
Description: \f[B]boolean and\f[R]
.RE
.TP
\f[B]\f[R]
Type: Binary
.RS
.PP
Associativity: Left
.PP
Description: \f[B]boolean or\f[R]
.RE
.PP
The operators will be described in more detail below.
.TP
\f[B]++\f[R] \f[B]\[en]\f[R]
The prefix and postfix \f[B]increment\f[R] and \f[B]decrement\f[R]
operators behave exactly like they would in C.
They require a named expression (see the \f[I]Named Expressions\f[R]
subsection) as an operand.
.RS
.PP
The prefix versions of these operators are more efficient; use them
where possible.
.RE
.TP
\f[B]\f[R]
The \f[B]negation\f[R] operator returns \f[B]0\f[R] if a user attempts
to negate any expression with the value \f[B]0\f[R].
Otherwise, a copy of the expression with its sign flipped is returned.
.TP
\f[B]!\f[R]
The \f[B]boolean not\f[R] operator returns \f[B]1\f[R] if the expression
is \f[B]0\f[R], or \f[B]0\f[R] otherwise.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]$\f[R]
The \f[B]truncation\f[R] operator returns a copy of the given expression
with all of its \f[I]scale\f[R] removed.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]\[at]\f[R]
The \f[B]set precision\f[R] operator takes two expressions and returns a
copy of the first with its \f[I]scale\f[R] equal to the value of the
second expression.
That could either mean that the number is returned without change (if
the \f[I]scale\f[R] of the first expression matches the value of the
second expression), extended (if it is less), or truncated (if it is
more).
.RS
.PP
The second expression must be an integer (no \f[I]scale\f[R]) and
nonnegative.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]\[ha]\f[R]
The \f[B]power\f[R] operator (not the \f[B]exclusive or\f[R] operator,
as it would be in C) takes two expressions and raises the first to the
power of the value of the second.
The \f[I]scale\f[R] of the result is equal to \f[B]scale\f[R].
.RS
.PP
The second expression must be an integer (no \f[I]scale\f[R]), and if it
is negative, the first value must be nonzero.
.RE
.TP
\f[B]*\f[R]
The \f[B]multiply\f[R] operator takes two expressions, multiplies them,
and returns the product.
If \f[B]a\f[R] is the \f[I]scale\f[R] of the first expression and
\f[B]b\f[R] is the \f[I]scale\f[R] of the second expression, the
\f[I]scale\f[R] of the result is equal to
\f[B]min(a+b,max(scale,a,b))\f[R] where \f[B]min()\f[R] and
\f[B]max()\f[R] return the obvious values.
.TP
\f[B]/\f[R]
The \f[B]divide\f[R] operator takes two expressions, divides them, and
returns the quotient.
The \f[I]scale\f[R] of the result shall be the value of \f[B]scale\f[R].
.RS
.PP
The second expression must be nonzero.
.RE
.TP
\f[B]%\f[R]
The \f[B]modulus\f[R] operator takes two expressions, \f[B]a\f[R] and
\f[B]b\f[R], and evaluates them by 1) Computing \f[B]a/b\f[R] to current
\f[B]scale\f[R] and 2) Using the result of step 1 to calculate
\f[B]a(a/b)*b\f[R] to \f[I]scale\f[R]
\f[B]max(scale+scale(b),scale(a))\f[R].
.RS
.PP
The second expression must be nonzero.
.RE
.TP
\f[B]+\f[R]
The \f[B]add\f[R] operator takes two expressions, \f[B]a\f[R] and
\f[B]b\f[R], and returns the sum, with a \f[I]scale\f[R] equal to the
max of the \f[I]scale\f[R]s of \f[B]a\f[R] and \f[B]b\f[R].
.TP
\f[B]\f[R]
The \f[B]subtract\f[R] operator takes two expressions, \f[B]a\f[R] and
\f[B]b\f[R], and returns the difference, with a \f[I]scale\f[R] equal to
the max of the \f[I]scale\f[R]s of \f[B]a\f[R] and \f[B]b\f[R].
.TP
\f[B]<<\f[R]
The \f[B]left shift\f[R] operator takes two expressions, \f[B]a\f[R] and
\f[B]b\f[R], and returns a copy of the value of \f[B]a\f[R] with its
decimal point moved \f[B]b\f[R] places to the right.
.RS
.PP
The second expression must be an integer (no \f[I]scale\f[R]) and
nonnegative.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]>>\f[R]
The \f[B]right shift\f[R] operator takes two expressions, \f[B]a\f[R]
and \f[B]b\f[R], and returns a copy of the value of \f[B]a\f[R] with its
decimal point moved \f[B]b\f[R] places to the left.
.RS
.PP
The second expression must be an integer (no \f[I]scale\f[R]) and
nonnegative.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]=\f[R] \f[B]<<=\f[R] \f[B]>>=\f[R] \f[B]+=\f[R] \f[B]=\f[R] \f[B]*=\f[R] \f[B]/=\f[R] \f[B]%=\f[R] \f[B]\[ha]=\f[R] \f[B]\[at]=\f[R]
The \f[B]assignment\f[R] operators take two expressions, \f[B]a\f[R] and
\f[B]b\f[R] where \f[B]a\f[R] is a named expression (see the \f[I]Named
Expressions\f[R] subsection).
.RS
.PP
For \f[B]=\f[R], \f[B]b\f[R] is copied and the result is assigned to
\f[B]a\f[R].
For all others, \f[B]a\f[R] and \f[B]b\f[R] are applied as operands to
the corresponding arithmetic operator and the result is assigned to
\f[B]a\f[R].
.PP
The \f[B]assignment\f[R] operators that correspond to operators that are
extensions are themselves \f[B]nonportable extensions\f[R].
.RE
.TP
\f[B]==\f[R] \f[B]<=\f[R] \f[B]>=\f[R] \f[B]!=\f[R] \f[B]<\f[R] \f[B]>\f[R]
The \f[B]relational\f[R] operators compare two expressions, \f[B]a\f[R]
and \f[B]b\f[R], and if the relation holds, according to C language
semantics, the result is \f[B]1\f[R].
Otherwise, it is \f[B]0\f[R].
.RS
.PP
Note that unlike in C, these operators have a lower precedence than the
\f[B]assignment\f[R] operators, which means that \f[B]a=b>c\f[R] is
interpreted as \f[B](a=b)>c\f[R].
.PP
Also, unlike the
standard (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html)
requires, these operators can appear anywhere any other expressions can
be used.
This allowance is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]&&\f[R]
The \f[B]boolean and\f[R] operator takes two expressions and returns
\f[B]1\f[R] if both expressions are nonzero, \f[B]0\f[R] otherwise.
.RS
.PP
This is \f[I]not\f[R] a shortcircuit operator.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]\f[R]
The \f[B]boolean or\f[R] operator takes two expressions and returns
\f[B]1\f[R] if one of the expressions is nonzero, \f[B]0\f[R]
otherwise.
.RS
.PP
This is \f[I]not\f[R] a shortcircuit operator.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.SS Statements
.PP
The following items are statements:
.IP " 1." 4
\f[B]E\f[R]
.IP " 2." 4
\f[B]{\f[R] \f[B]S\f[R] \f[B];\f[R] \&... \f[B];\f[R] \f[B]S\f[R]
\f[B]}\f[R]
.IP " 3." 4
\f[B]if\f[R] \f[B](\f[R] \f[B]E\f[R] \f[B])\f[R] \f[B]S\f[R]
.IP " 4." 4
\f[B]if\f[R] \f[B](\f[R] \f[B]E\f[R] \f[B])\f[R] \f[B]S\f[R]
\f[B]else\f[R] \f[B]S\f[R]
.IP " 5." 4
\f[B]while\f[R] \f[B](\f[R] \f[B]E\f[R] \f[B])\f[R] \f[B]S\f[R]
.IP " 6." 4
\f[B]for\f[R] \f[B](\f[R] \f[B]E\f[R] \f[B];\f[R] \f[B]E\f[R]
\f[B];\f[R] \f[B]E\f[R] \f[B])\f[R] \f[B]S\f[R]
.IP " 7." 4
An empty statement
.IP " 8." 4
\f[B]break\f[R]
.IP " 9." 4
\f[B]continue\f[R]
.IP "10." 4
\f[B]quit\f[R]
.IP "11." 4
\f[B]halt\f[R]
.IP "12." 4
\f[B]limits\f[R]
.IP "13." 4
A string of characters, enclosed in double quotes
.IP "14." 4
\f[B]print\f[R] \f[B]E\f[R] \f[B],\f[R] \&... \f[B],\f[R] \f[B]E\f[R]
.IP "15." 4
\f[B]I()\f[R], \f[B]I(E)\f[R], \f[B]I(E, E)\f[R], and so on, where
\f[B]I\f[R] is an identifier for a \f[B]void\f[R] function (see the
\f[I]Void Functions\f[R] subsection of the \f[B]FUNCTIONS\f[R] section).
The \f[B]E\f[R] argument(s) may also be arrays of the form
\f[B]I[]\f[R], which will automatically be turned into array references
(see the \f[I]Array References\f[R] subsection of the
\f[B]FUNCTIONS\f[R] section) if the corresponding parameter in the
function definition is an array reference.
.PP
Numbers 4, 9, 11, 12, 14, and 15 are \f[B]nonportable extensions\f[R].
.PP
Also, as a \f[B]nonportable extension\f[R], any or all of the
expressions in the header of a for loop may be omitted.
If the condition (second expression) is omitted, it is assumed to be a
constant \f[B]1\f[R].
.PP
The \f[B]break\f[R] statement causes a loop to stop iterating and resume
execution immediately following a loop.
This is only allowed in loops.
.PP
The \f[B]continue\f[R] statement causes a loop iteration to stop early
and returns to the start of the loop, including testing the loop
condition.
This is only allowed in loops.
.PP
The \f[B]if\f[R] \f[B]else\f[R] statement does the same thing as in C.
.PP
The \f[B]quit\f[R] statement causes bc(1) to quit, even if it is on a
branch that will not be executed (it is a compiletime command).
.PP
The \f[B]halt\f[R] statement causes bc(1) to quit, if it is executed.
(Unlike \f[B]quit\f[R] if it is on a branch of an \f[B]if\f[R] statement
that is not executed, bc(1) does not quit.)
.PP
The \f[B]limits\f[R] statement prints the limits that this bc(1) is
subject to.
This is like the \f[B]quit\f[R] statement in that it is a compiletime
command.
.PP
An expression by itself is evaluated and printed, followed by a newline.
.PP
Both scientific notation and engineering notation are available for
printing the results of expressions.
Scientific notation is activated by assigning \f[B]0\f[R] to
\f[B]obase\f[R], and engineering notation is activated by assigning
\f[B]1\f[R] to \f[B]obase\f[R].
To deactivate them, just assign a different value to \f[B]obase\f[R].
.PP
Scientific notation and engineering notation are disabled if bc(1) is
run with either the \f[B]s\f[R] or \f[B]w\f[R] commandline options
(or equivalents).
.PP
Printing numbers in scientific notation and/or engineering notation is a
\f[B]nonportable extension\f[R].
.SS Print Statement
.PP
The \[lq]expressions\[rq] in a \f[B]print\f[R] statement may also be
strings.
If they are, there are backslash escape sequences that are interpreted
specially.
What those sequences are, and what they cause to be printed, are shown
below:
.PP
.TS
tab(@);
l l.
T{
\f[B]\[rs]a\f[R]
T}@T{
\f[B]\[rs]a\f[R]
T}
T{
\f[B]\[rs]b\f[R]
T}@T{
\f[B]\[rs]b\f[R]
T}
T{
\f[B]\[rs]\[rs]\f[R]
T}@T{
\f[B]\[rs]\f[R]
T}
T{
\f[B]\[rs]e\f[R]
T}@T{
\f[B]\[rs]\f[R]
T}
T{
\f[B]\[rs]f\f[R]
T}@T{
\f[B]\[rs]f\f[R]
T}
T{
\f[B]\[rs]n\f[R]
T}@T{
\f[B]\[rs]n\f[R]
T}
T{
\f[B]\[rs]q\f[R]
T}@T{
\f[B]\[dq]\f[R]
T}
T{
\f[B]\[rs]r\f[R]
T}@T{
\f[B]\[rs]r\f[R]
T}
T{
\f[B]\[rs]t\f[R]
T}@T{
\f[B]\[rs]t\f[R]
T}
.TE
.PP
Any other character following a backslash causes the backslash and
character to be printed asis.
.PP
Any nonstring expression in a print statement shall be assigned to
\f[B]last\f[R], like any other expression that is printed.
.SS Order of Evaluation
.PP
All expressions in a statment are evaluated left to right, except as
necessary to maintain order of operations.
This means, for example, assuming that \f[B]i\f[R] is equal to
\f[B]0\f[R], in the expression
.IP
.nf
\f[C]
a[i++] = i++
\f[R]
.fi
.PP
the first (or 0th) element of \f[B]a\f[R] is set to \f[B]1\f[R], and
\f[B]i\f[R] is equal to \f[B]2\f[R] at the end of the expression.
.PP
This includes function arguments.
Thus, assuming \f[B]i\f[R] is equal to \f[B]0\f[R], this means that in
the expression
.IP
.nf
\f[C]
x(i++, i++)
\f[R]
.fi
.PP
the first argument passed to \f[B]x()\f[R] is \f[B]0\f[R], and the
second argument is \f[B]1\f[R], while \f[B]i\f[R] is equal to
\f[B]2\f[R] before the function starts executing.
.SH FUNCTIONS
.PP
Function definitions are as follows:
.IP
.nf
\f[C]
define I(I,...,I){
auto I,...,I
S;...;S
return(E)
}
\f[R]
.fi
.PP
Any \f[B]I\f[R] in the parameter list or \f[B]auto\f[R] list may be
replaced with \f[B]I[]\f[R] to make a parameter or \f[B]auto\f[R] var an
array, and any \f[B]I\f[R] in the parameter list may be replaced with
\f[B]*I[]\f[R] to make a parameter an array reference.
Callers of functions that take array references should not put an
asterisk in the call; they must be called with just \f[B]I[]\f[R] like
normal array parameters and will be automatically converted into
references.
.PP
As a \f[B]nonportable extension\f[R], the opening brace of a
\f[B]define\f[R] statement may appear on the next line.
.PP
As a \f[B]nonportable extension\f[R], the return statement may also be
in one of the following forms:
.IP "1." 3
\f[B]return\f[R]
.IP "2." 3
\f[B]return\f[R] \f[B](\f[R] \f[B])\f[R]
.IP "3." 3
\f[B]return\f[R] \f[B]E\f[R]
.PP
The first two, or not specifying a \f[B]return\f[R] statement, is
equivalent to \f[B]return (0)\f[R], unless the function is a
\f[B]void\f[R] function (see the \f[I]Void Functions\f[R] subsection
below).
.SS Void Functions
.PP
Functions can also be \f[B]void\f[R] functions, defined as follows:
.IP
.nf
\f[C]
define void I(I,...,I){
auto I,...,I
S;...;S
return
}
\f[R]
.fi
.PP
They can only be used as standalone expressions, where such an
expression would be printed alone, except in a print statement.
.PP
Void functions can only use the first two \f[B]return\f[R] statements
listed above.
They can also omit the return statement entirely.
.PP
The word \[lq]void\[rq] is not treated as a keyword; it is still
possible to have variables, arrays, and functions named \f[B]void\f[R].
The word \[lq]void\[rq] is only treated specially right after the
\f[B]define\f[R] keyword.
.PP
This is a \f[B]nonportable extension\f[R].
.SS Array References
.PP
For any array in the parameter list, if the array is declared in the
form
.IP
.nf
\f[C]
*I[]
\f[R]
.fi
.PP
it is a \f[B]reference\f[R].
Any changes to the array in the function are reflected, when the
function returns, to the array that was passed in.
.PP
Other than this, all function arguments are passed by value.
.PP
This is a \f[B]nonportable extension\f[R].
.SH LIBRARY
.PP
All of the functions below, including the functions in the extended math
library (see the \f[I]Extended Library\f[R] subsection below), are
available when the \f[B]l\f[R] or \f[B]\[en]mathlib\f[R] commandline
flags are given, except that the extended math library is not available
when the \f[B]s\f[R] option, the \f[B]w\f[R] option, or equivalents
are given.
.SS Standard Library
.PP
The
standard (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html)
defines the following functions for the math library:
.TP
\f[B]s(x)\f[R]
Returns the sine of \f[B]x\f[R], which is assumed to be in radians.
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]c(x)\f[R]
Returns the cosine of \f[B]x\f[R], which is assumed to be in radians.
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]a(x)\f[R]
Returns the arctangent of \f[B]x\f[R], in radians.
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]l(x)\f[R]
Returns the natural logarithm of \f[B]x\f[R].
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]e(x)\f[R]
Returns the mathematical constant \f[B]e\f[R] raised to the power of
\f[B]x\f[R].
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]j(x, n)\f[R]
Returns the bessel integer order \f[B]n\f[R] (truncated) of \f[B]x\f[R].
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.SS Extended Library
.PP
The extended library is \f[I]not\f[R] loaded when the
\f[B]s\f[R]/\f[B]\[en]standard\f[R] or \f[B]w\f[R]/\f[B]\[en]warn\f[R]
options are given since they are not part of the library defined by the
standard (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html).
.PP
The extended library is a \f[B]nonportable extension\f[R].
.TP
\f[B]p(x, y)\f[R]
Calculates \f[B]x\f[R] to the power of \f[B]y\f[R], even if \f[B]y\f[R]
is not an integer, and returns the result to the current
\f[B]scale\f[R].
.RS
.PP
It is an error if \f[B]y\f[R] is negative and \f[B]x\f[R] is
\f[B]0\f[R].
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]r(x, p)\f[R]
Returns \f[B]x\f[R] rounded to \f[B]p\f[R] decimal places according to
the rounding mode round half away from
\f[B]0\f[R] (https://en.wikipedia.org/wiki/Rounding#Round_half_away_from_zero).
.TP
\f[B]ceil(x, p)\f[R]
Returns \f[B]x\f[R] rounded to \f[B]p\f[R] decimal places according to
the rounding mode round away from
\f[B]0\f[R] (https://en.wikipedia.org/wiki/Rounding#Rounding_away_from_zero).
.TP
\f[B]f(x)\f[R]
Returns the factorial of the truncated absolute value of \f[B]x\f[R].
.TP
\f[B]perm(n, k)\f[R]
Returns the permutation of the truncated absolute value of \f[B]n\f[R]
of the truncated absolute value of \f[B]k\f[R], if \f[B]k <= n\f[R].
If not, it returns \f[B]0\f[R].
.TP
\f[B]comb(n, k)\f[R]
Returns the combination of the truncated absolute value of \f[B]n\f[R]
of the truncated absolute value of \f[B]k\f[R], if \f[B]k <= n\f[R].
If not, it returns \f[B]0\f[R].
.TP
\f[B]l2(x)\f[R]
Returns the logarithm base \f[B]2\f[R] of \f[B]x\f[R].
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]l10(x)\f[R]
Returns the logarithm base \f[B]10\f[R] of \f[B]x\f[R].
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]log(x, b)\f[R]
Returns the logarithm base \f[B]b\f[R] of \f[B]x\f[R].
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]cbrt(x)\f[R]
Returns the cube root of \f[B]x\f[R].
.TP
\f[B]root(x, n)\f[R]
Calculates the truncated value of \f[B]n\f[R], \f[B]r\f[R], and returns
the \f[B]r\f[R]th root of \f[B]x\f[R] to the current \f[B]scale\f[R].
.RS
.PP
If \f[B]r\f[R] is \f[B]0\f[R] or negative, this raises an error and
causes bc(1) to reset (see the \f[B]RESET\f[R] section).
It also raises an error and causes bc(1) to reset if \f[B]r\f[R] is even
and \f[B]x\f[R] is negative.
.RE
.TP
\f[B]pi(p)\f[R]
Returns \f[B]pi\f[R] to \f[B]p\f[R] decimal places.
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]t(x)\f[R]
Returns the tangent of \f[B]x\f[R], which is assumed to be in radians.
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]a2(y, x)\f[R]
Returns the arctangent of \f[B]y/x\f[R], in radians.
If both \f[B]y\f[R] and \f[B]x\f[R] are equal to \f[B]0\f[R], it raises
an error and causes bc(1) to reset (see the \f[B]RESET\f[R] section).
Otherwise, if \f[B]x\f[R] is greater than \f[B]0\f[R], it returns
\f[B]a(y/x)\f[R].
If \f[B]x\f[R] is less than \f[B]0\f[R], and \f[B]y\f[R] is greater than
or equal to \f[B]0\f[R], it returns \f[B]a(y/x)+pi\f[R].
If \f[B]x\f[R] is less than \f[B]0\f[R], and \f[B]y\f[R] is less than
\f[B]0\f[R], it returns \f[B]a(y/x)pi\f[R].
If \f[B]x\f[R] is equal to \f[B]0\f[R], and \f[B]y\f[R] is greater than
\f[B]0\f[R], it returns \f[B]pi/2\f[R].
If \f[B]x\f[R] is equal to \f[B]0\f[R], and \f[B]y\f[R] is less than
\f[B]0\f[R], it returns \f[B]pi/2\f[R].
.RS
.PP
This function is the same as the \f[B]atan2()\f[R] function in many
programming languages.
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]sin(x)\f[R]
Returns the sine of \f[B]x\f[R], which is assumed to be in radians.
.RS
.PP
This is an alias of \f[B]s(x)\f[R].
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]cos(x)\f[R]
Returns the cosine of \f[B]x\f[R], which is assumed to be in radians.
.RS
.PP
This is an alias of \f[B]c(x)\f[R].
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]tan(x)\f[R]
Returns the tangent of \f[B]x\f[R], which is assumed to be in radians.
.RS
.PP
If \f[B]x\f[R] is equal to \f[B]1\f[R] or \f[B]1\f[R], this raises an
error and causes bc(1) to reset (see the \f[B]RESET\f[R] section).
.PP
This is an alias of \f[B]t(x)\f[R].
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]atan(x)\f[R]
Returns the arctangent of \f[B]x\f[R], in radians.
.RS
.PP
This is an alias of \f[B]a(x)\f[R].
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]atan2(y, x)\f[R]
Returns the arctangent of \f[B]y/x\f[R], in radians.
If both \f[B]y\f[R] and \f[B]x\f[R] are equal to \f[B]0\f[R], it raises
an error and causes bc(1) to reset (see the \f[B]RESET\f[R] section).
Otherwise, if \f[B]x\f[R] is greater than \f[B]0\f[R], it returns
\f[B]a(y/x)\f[R].
If \f[B]x\f[R] is less than \f[B]0\f[R], and \f[B]y\f[R] is greater than
or equal to \f[B]0\f[R], it returns \f[B]a(y/x)+pi\f[R].
If \f[B]x\f[R] is less than \f[B]0\f[R], and \f[B]y\f[R] is less than
\f[B]0\f[R], it returns \f[B]a(y/x)pi\f[R].
If \f[B]x\f[R] is equal to \f[B]0\f[R], and \f[B]y\f[R] is greater than
\f[B]0\f[R], it returns \f[B]pi/2\f[R].
If \f[B]x\f[R] is equal to \f[B]0\f[R], and \f[B]y\f[R] is less than
\f[B]0\f[R], it returns \f[B]pi/2\f[R].
.RS
.PP
This function is the same as the \f[B]atan2()\f[R] function in many
programming languages.
.PP
This is an alias of \f[B]a2(y, x)\f[R].
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]r2d(x)\f[R]
Converts \f[B]x\f[R] from radians to degrees and returns the result.
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]d2r(x)\f[R]
Converts \f[B]x\f[R] from degrees to radians and returns the result.
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[R] subsection below).
.RE
.TP
\f[B]frand(p)\f[R]
Generates a pseudorandom number between \f[B]0\f[R] (inclusive) and
\f[B]1\f[R] (exclusive) with the number of decimal digits after the
decimal point equal to the truncated absolute value of \f[B]p\f[R].
If \f[B]p\f[R] is not \f[B]0\f[R], then calling this function will
change the value of \f[B]seed\f[R].
If \f[B]p\f[R] is \f[B]0\f[R], then \f[B]0\f[R] is returned, and
\f[B]seed\f[R] is \f[I]not\f[R] changed.
.TP
\f[B]ifrand(i, p)\f[R]
Generates a pseudorandom number that is between \f[B]0\f[R] (inclusive)
and the truncated absolute value of \f[B]i\f[R] (exclusive) with the
number of decimal digits after the decimal point equal to the truncated
absolute value of \f[B]p\f[R].
If the absolute value of \f[B]i\f[R] is greater than or equal to
\f[B]2\f[R], and \f[B]p\f[R] is not \f[B]0\f[R], then calling this
function will change the value of \f[B]seed\f[R]; otherwise, \f[B]0\f[R]
is returned and \f[B]seed\f[R] is not changed.
.TP
\f[B]srand(x)\f[R]
Returns \f[B]x\f[R] with its sign flipped with probability
\f[B]0.5\f[R].
In other words, it randomizes the sign of \f[B]x\f[R].
.TP
\f[B]brand()\f[R]
Returns a random boolean value (either \f[B]0\f[R] or \f[B]1\f[R]).
.TP
\f[B]ubytes(x)\f[R]
Returns the numbers of unsigned integer bytes required to hold the
truncated absolute value of \f[B]x\f[R].
.TP
\f[B]sbytes(x)\f[R]
Returns the numbers of signed, two\[cq]scomplement integer bytes
required to hold the truncated value of \f[B]x\f[R].
.TP
\f[B]hex(x)\f[R]
Outputs the hexadecimal (base \f[B]16\f[R]) representation of
\f[B]x\f[R].
.RS
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.TP
\f[B]binary(x)\f[R]
Outputs the binary (base \f[B]2\f[R]) representation of \f[B]x\f[R].
.RS
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.TP
\f[B]output(x, b)\f[R]
Outputs the base \f[B]b\f[R] representation of \f[B]x\f[R].
.RS
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.TP
\f[B]uint(x)\f[R]
Outputs the representation, in binary and hexadecimal, of \f[B]x\f[R] as
an unsigned integer in as few power of two bytes as possible.
Both outputs are split into bytes separated by spaces.
.RS
.PP
If \f[B]x\f[R] is not an integer or is negative, an error message is
printed instead, but bc(1) is not reset (see the \f[B]RESET\f[R]
section).
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.TP
\f[B]int(x)\f[R]
Outputs the representation, in binary and hexadecimal, of \f[B]x\f[R] as
a signed, two\[cq]scomplement integer in as few power of two bytes as
possible.
Both outputs are split into bytes separated by spaces.
.RS
.PP
If \f[B]x\f[R] is not an integer, an error message is printed instead,
but bc(1) is not reset (see the \f[B]RESET\f[R] section).
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.TP
\f[B]uintn(x, n)\f[R]
Outputs the representation, in binary and hexadecimal, of \f[B]x\f[R] as
an unsigned integer in \f[B]n\f[R] bytes.
Both outputs are split into bytes separated by spaces.
.RS
.PP
If \f[B]x\f[R] is not an integer, is negative, or cannot fit into
\f[B]n\f[R] bytes, an error message is printed instead, but bc(1) is not
reset (see the \f[B]RESET\f[R] section).
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.TP
\f[B]intn(x, n)\f[R]
Outputs the representation, in binary and hexadecimal, of \f[B]x\f[R] as
a signed, two\[cq]scomplement integer in \f[B]n\f[R] bytes.
Both outputs are split into bytes separated by spaces.
.RS
.PP
If \f[B]x\f[R] is not an integer or cannot fit into \f[B]n\f[R] bytes,
an error message is printed instead, but bc(1) is not reset (see the
\f[B]RESET\f[R] section).
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.TP
\f[B]uint8(x)\f[R]
Outputs the representation, in binary and hexadecimal, of \f[B]x\f[R] as
an unsigned integer in \f[B]1\f[R] byte.
Both outputs are split into bytes separated by spaces.
.RS
.PP
If \f[B]x\f[R] is not an integer, is negative, or cannot fit into
\f[B]1\f[R] byte, an error message is printed instead, but bc(1) is not
reset (see the \f[B]RESET\f[R] section).
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.TP
\f[B]int8(x)\f[R]
Outputs the representation, in binary and hexadecimal, of \f[B]x\f[R] as
a signed, two\[cq]scomplement integer in \f[B]1\f[R] byte.
Both outputs are split into bytes separated by spaces.
.RS
.PP
If \f[B]x\f[R] is not an integer or cannot fit into \f[B]1\f[R] byte, an
error message is printed instead, but bc(1) is not reset (see the
\f[B]RESET\f[R] section).
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.TP
\f[B]uint16(x)\f[R]
Outputs the representation, in binary and hexadecimal, of \f[B]x\f[R] as
an unsigned integer in \f[B]2\f[R] bytes.
Both outputs are split into bytes separated by spaces.
.RS
.PP
If \f[B]x\f[R] is not an integer, is negative, or cannot fit into
\f[B]2\f[R] bytes, an error message is printed instead, but bc(1) is not
reset (see the \f[B]RESET\f[R] section).
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.TP
\f[B]int16(x)\f[R]
Outputs the representation, in binary and hexadecimal, of \f[B]x\f[R] as
a signed, two\[cq]scomplement integer in \f[B]2\f[R] bytes.
Both outputs are split into bytes separated by spaces.
.RS
.PP
If \f[B]x\f[R] is not an integer or cannot fit into \f[B]2\f[R] bytes,
an error message is printed instead, but bc(1) is not reset (see the
\f[B]RESET\f[R] section).
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.TP
\f[B]uint32(x)\f[R]
Outputs the representation, in binary and hexadecimal, of \f[B]x\f[R] as
an unsigned integer in \f[B]4\f[R] bytes.
Both outputs are split into bytes separated by spaces.
.RS
.PP
If \f[B]x\f[R] is not an integer, is negative, or cannot fit into
\f[B]4\f[R] bytes, an error message is printed instead, but bc(1) is not
reset (see the \f[B]RESET\f[R] section).
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.TP
\f[B]int32(x)\f[R]
Outputs the representation, in binary and hexadecimal, of \f[B]x\f[R] as
a signed, two\[cq]scomplement integer in \f[B]4\f[R] bytes.
Both outputs are split into bytes separated by spaces.
.RS
.PP
If \f[B]x\f[R] is not an integer or cannot fit into \f[B]4\f[R] bytes,
an error message is printed instead, but bc(1) is not reset (see the
\f[B]RESET\f[R] section).
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.TP
\f[B]uint64(x)\f[R]
Outputs the representation, in binary and hexadecimal, of \f[B]x\f[R] as
an unsigned integer in \f[B]8\f[R] bytes.
Both outputs are split into bytes separated by spaces.
.RS
.PP
If \f[B]x\f[R] is not an integer, is negative, or cannot fit into
\f[B]8\f[R] bytes, an error message is printed instead, but bc(1) is not
reset (see the \f[B]RESET\f[R] section).
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.TP
\f[B]int64(x)\f[R]
Outputs the representation, in binary and hexadecimal, of \f[B]x\f[R] as
a signed, two\[cq]scomplement integer in \f[B]8\f[R] bytes.
Both outputs are split into bytes separated by spaces.
.RS
.PP
If \f[B]x\f[R] is not an integer or cannot fit into \f[B]8\f[R] bytes,
an error message is printed instead, but bc(1) is not reset (see the
\f[B]RESET\f[R] section).
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.TP
\f[B]hex_uint(x, n)\f[R]
Outputs the representation of the truncated absolute value of
\f[B]x\f[R] as an unsigned integer in hexadecimal using \f[B]n\f[R]
bytes.
Not all of the value will be output if \f[B]n\f[R] is too small.
.RS
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.TP
\f[B]binary_uint(x, n)\f[R]
Outputs the representation of the truncated absolute value of
\f[B]x\f[R] as an unsigned integer in binary using \f[B]n\f[R] bytes.
Not all of the value will be output if \f[B]n\f[R] is too small.
.RS
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.TP
\f[B]output_uint(x, n)\f[R]
Outputs the representation of the truncated absolute value of
\f[B]x\f[R] as an unsigned integer in the current \f[B]obase\f[R] (see
the \f[B]SYNTAX\f[R] section) using \f[B]n\f[R] bytes.
Not all of the value will be output if \f[B]n\f[R] is too small.
.RS
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.TP
\f[B]output_byte(x, i)\f[R]
Outputs byte \f[B]i\f[R] of the truncated absolute value of \f[B]x\f[R],
where \f[B]0\f[R] is the least significant byte and \f[B]number_of_bytes
 1\f[R] is the most significant byte.
.RS
.PP
This is a \f[B]void\f[R] function (see the \f[I]Void Functions\f[R]
subsection of the \f[B]FUNCTIONS\f[R] section).
.RE
.SS Transcendental Functions
.PP
All transcendental functions can return slightly inaccurate results (up
to 1 ULP (https://en.wikipedia.org/wiki/Unit_in_the_last_place)).
This is unavoidable, and this
article (https://people.eecs.berkeley.edu/~wkahan/LOG10HAF.TXT) explains
why it is impossible and unnecessary to calculate exact results for the
transcendental functions.
.PP
Because of the possible inaccuracy, I recommend that users call those
functions with the precision (\f[B]scale\f[R]) set to at least 1 higher
than is necessary.
If exact results are \f[I]absolutely\f[R] required, users can double the
precision (\f[B]scale\f[R]) and then truncate.
.PP
The transcendental functions in the standard math library are:
.IP \[bu] 2
\f[B]s(x)\f[R]
.IP \[bu] 2
\f[B]c(x)\f[R]
.IP \[bu] 2
\f[B]a(x)\f[R]
.IP \[bu] 2
\f[B]l(x)\f[R]
.IP \[bu] 2
\f[B]e(x)\f[R]
.IP \[bu] 2
\f[B]j(x, n)\f[R]
.PP
The transcendental functions in the extended math library are:
.IP \[bu] 2
\f[B]l2(x)\f[R]
.IP \[bu] 2
\f[B]l10(x)\f[R]
.IP \[bu] 2
\f[B]log(x, b)\f[R]
.IP \[bu] 2
\f[B]pi(p)\f[R]
.IP \[bu] 2
\f[B]t(x)\f[R]
.IP \[bu] 2
\f[B]a2(y, x)\f[R]
.IP \[bu] 2
\f[B]sin(x)\f[R]
.IP \[bu] 2
\f[B]cos(x)\f[R]
.IP \[bu] 2
\f[B]tan(x)\f[R]
.IP \[bu] 2
\f[B]atan(x)\f[R]
.IP \[bu] 2
\f[B]atan2(y, x)\f[R]
.IP \[bu] 2
\f[B]r2d(x)\f[R]
.IP \[bu] 2
\f[B]d2r(x)\f[R]
.SH RESET
.PP
When bc(1) encounters an error or a signal that it has a nondefault
handler for, it resets.
This means that several things happen.
.PP
First, any functions that are executing are stopped and popped off the
stack.
The behavior is not unlike that of exceptions in programming languages.
Then the execution point is set so that any code waiting to execute
(after all functions returned) is skipped.
.PP
Thus, when bc(1) resets, it skips any remaining code waiting to be
executed.
Then, if it is interactive mode, and the error was not a fatal error
(see the \f[B]EXIT STATUS\f[R] section), it asks for more input;
otherwise, it exits with the appropriate return code.
.PP
Note that this reset behavior is different from the GNU bc(1), which
attempts to start executing the statement right after the one that
caused an error.
.SH PERFORMANCE
.PP
Most bc(1) implementations use \f[B]char\f[R] types to calculate the
value of \f[B]1\f[R] decimal digit at a time, but that can be slow.
This bc(1) does something different.
.PP
It uses large integers to calculate more than \f[B]1\f[R] decimal digit
at a time.
If built in a environment where \f[B]BC_LONG_BIT\f[R] (see the
\f[B]LIMITS\f[R] section) is \f[B]64\f[R], then each integer has
\f[B]9\f[R] decimal digits.
If built in an environment where \f[B]BC_LONG_BIT\f[R] is \f[B]32\f[R]
then each integer has \f[B]4\f[R] decimal digits.
This value (the number of decimal digits per large integer) is called
\f[B]BC_BASE_DIGS\f[R].
.PP
The actual values of \f[B]BC_LONG_BIT\f[R] and \f[B]BC_BASE_DIGS\f[R]
can be queried with the \f[B]limits\f[R] statement.
.PP
In addition, this bc(1) uses an even larger integer for overflow
checking.
This integer type depends on the value of \f[B]BC_LONG_BIT\f[R], but is
always at least twice as large as the integer type used to store digits.
.SH LIMITS
.PP
The following are the limits on bc(1):
.TP
\f[B]BC_LONG_BIT\f[R]
The number of bits in the \f[B]long\f[R] type in the environment where
bc(1) was built.
This determines how many decimal digits can be stored in a single large
integer (see the \f[B]PERFORMANCE\f[R] section).
.TP
\f[B]BC_BASE_DIGS\f[R]
The number of decimal digits per large integer (see the
\f[B]PERFORMANCE\f[R] section).
Depends on \f[B]BC_LONG_BIT\f[R].
.TP
\f[B]BC_BASE_POW\f[R]
The max decimal number that each large integer can store (see
\f[B]BC_BASE_DIGS\f[R]) plus \f[B]1\f[R].
Depends on \f[B]BC_BASE_DIGS\f[R].
.TP
\f[B]BC_OVERFLOW_MAX\f[R]
The max number that the overflow type (see the \f[B]PERFORMANCE\f[R]
section) can hold.
Depends on \f[B]BC_LONG_BIT\f[R].
.TP
\f[B]BC_BASE_MAX\f[R]
The maximum output base.
Set at \f[B]BC_BASE_POW\f[R].
.TP
\f[B]BC_DIM_MAX\f[R]
The maximum size of arrays.
Set at \f[B]SIZE_MAX1\f[R].
.TP
\f[B]BC_SCALE_MAX\f[R]
The maximum \f[B]scale\f[R].
Set at \f[B]BC_OVERFLOW_MAX1\f[R].
.TP
\f[B]BC_STRING_MAX\f[R]
The maximum length of strings.
Set at \f[B]BC_OVERFLOW_MAX1\f[R].
.TP
\f[B]BC_NAME_MAX\f[R]
The maximum length of identifiers.
Set at \f[B]BC_OVERFLOW_MAX1\f[R].
.TP
\f[B]BC_NUM_MAX\f[R]
The maximum length of a number (in decimal digits), which includes
digits after the decimal point.
Set at \f[B]BC_OVERFLOW_MAX1\f[R].
.TP
\f[B]BC_RAND_MAX\f[R]
The maximum integer (inclusive) returned by the \f[B]rand()\f[R]
operand.
Set at \f[B]2\[ha]BC_LONG_BIT1\f[R].
.TP
Exponent
The maximum allowable exponent (positive or negative).
Set at \f[B]BC_OVERFLOW_MAX\f[R].
.TP
Number of vars
The maximum number of vars/arrays.
Set at \f[B]SIZE_MAX1\f[R].
.PP
The actual values can be queried with the \f[B]limits\f[R] statement.
.PP
These limits are meant to be effectively nonexistent; the limits are so
large (at least on 64bit machines) that there should not be any point
at which they become a problem.
In fact, memory should be exhausted before these limits should be hit.
.SH ENVIRONMENT VARIABLES
.PP
bc(1) recognizes the following environment variables:
.TP
\f[B]POSIXLY_CORRECT\f[R]
If this variable exists (no matter the contents), bc(1) behaves as if
the \f[B]s\f[R] option was given.
.TP
\f[B]BC_ENV_ARGS\f[R]
This is another way to give commandline arguments to bc(1).
They should be in the same format as all other commandline arguments.
These are always processed first, so any files given in
\f[B]BC_ENV_ARGS\f[R] will be processed before arguments and files given
on the commandline.
This gives the user the ability to set up \[lq]standard\[rq] options and
files to be used at every invocation.
The most useful thing for such files to contain would be useful
functions that the user might want every time bc(1) runs.
.RS
.PP
The code that parses \f[B]BC_ENV_ARGS\f[R] will correctly handle quoted
arguments, but it does not understand escape sequences.
For example, the string \f[B]\[lq]/home/gavin/some bc file.bc\[rq]\f[R]
will be correctly parsed, but the string \f[B]\[lq]/home/gavin/some
\[dq]bc\[dq] file.bc\[rq]\f[R] will include the backslashes.
.PP
The quote parsing will handle either kind of quotes, \f[B]\[cq]\f[R] or
\f[B]\[lq]\f[R]. Thus, if you have a file with any number of single
quotes in the name, you can use double quotes as the outside quotes, as
in \f[B]\[rq]some `bc' file.bc\[dq]\f[R], and vice versa if you have a
file with double quotes.
However, handling a file with both kinds of quotes in
\f[B]BC_ENV_ARGS\f[R] is not supported due to the complexity of the
parsing, though such files are still supported on the commandline where
the parsing is done by the shell.
.RE
.TP
\f[B]BC_LINE_LENGTH\f[R]
If this environment variable exists and contains an integer that is
greater than \f[B]1\f[R] and is less than \f[B]UINT16_MAX\f[R]
(\f[B]2\[ha]161\f[R]), bc(1) will output lines to that length,
including the backslash (\f[B]\[rs]\f[R]).
The default line length is \f[B]70\f[R].
.SH EXIT STATUS
.PP
bc(1) returns the following exit statuses:
.TP
\f[B]0\f[R]
No error.
.TP
\f[B]1\f[R]
A math error occurred.
This follows standard practice of using \f[B]1\f[R] for expected errors,
since math errors will happen in the process of normal execution.
.RS
.PP
Math errors include divide by \f[B]0\f[R], taking the square root of a
negative number, using a negative number as a bound for the
pseudorandom number generator, attempting to convert a negative number
to a hardware integer, overflow when converting a number to a hardware
integer, and attempting to use a noninteger where an integer is
required.
.PP
Converting to a hardware integer happens for the second operand of the
power (\f[B]\[ha]\f[R]), places (\f[B]\[at]\f[R]), left shift
(\f[B]<<\f[R]), and right shift (\f[B]>>\f[R]) operators and their
corresponding assignment operators.
.RE
.TP
\f[B]2\f[R]
A parse error occurred.
.RS
.PP
Parse errors include unexpected \f[B]EOF\f[R], using an invalid
character, failing to find the end of a string or comment, using a token
where it is invalid, giving an invalid expression, giving an invalid
print statement, giving an invalid function definition, attempting to
assign to an expression that is not a named expression (see the
\f[I]Named Expressions\f[R] subsection of the \f[B]SYNTAX\f[R] section),
giving an invalid \f[B]auto\f[R] list, having a duplicate
\f[B]auto\f[R]/function parameter, failing to find the end of a code
block, attempting to return a value from a \f[B]void\f[R] function,
attempting to use a variable as a reference, and using any extensions
when the option \f[B]s\f[R] or any equivalents were given.
.RE
.TP
\f[B]3\f[R]
A runtime error occurred.
.RS
.PP
Runtime errors include assigning an invalid number to \f[B]ibase\f[R],
\f[B]obase\f[R], or \f[B]scale\f[R]; give a bad expression to a
\f[B]read()\f[R] call, calling \f[B]read()\f[R] inside of a
\f[B]read()\f[R] call, type errors, passing the wrong number of
arguments to functions, attempting to call an undefined function, and
attempting to use a \f[B]void\f[R] function call as a value in an
expression.
.RE
.TP
\f[B]4\f[R]
A fatal error occurred.
.RS
.PP
Fatal errors include memory allocation errors, I/O errors, failing to
open files, attempting to use files that do not have only ASCII
characters (bc(1) only accepts ASCII characters), attempting to open a
directory as a file, and giving invalid commandline options.
.RE
.PP
The exit status \f[B]4\f[R] is special; when a fatal error occurs, bc(1)
always exits and returns \f[B]4\f[R], no matter what mode bc(1) is in.
.PP
The other statuses will only be returned when bc(1) is not in
interactive mode (see the \f[B]INTERACTIVE MODE\f[R] section), since
bc(1) resets its state (see the \f[B]RESET\f[R] section) and accepts
more input when one of those errors occurs in interactive mode.
This is also the case when interactive mode is forced by the
\f[B]i\f[R] flag or \f[B]\[en]interactive\f[R] option.
.PP
These exit statuses allow bc(1) to be used in shell scripting with error
checking, and its normal behavior can be forced by using the
\f[B]i\f[R] flag or \f[B]\[en]interactive\f[R] option.
.SH INTERACTIVE MODE
.PP
Per the
standard (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html),
bc(1) has an interactive mode and a noninteractive mode.
Interactive mode is turned on automatically when both \f[B]stdin\f[R]
and \f[B]stdout\f[R] are hooked to a terminal, but the \f[B]i\f[R] flag
and \f[B]\[en]interactive\f[R] option can turn it on in other cases.
.PP
In interactive mode, bc(1) attempts to recover from errors (see the
\f[B]RESET\f[R] section), and in normal execution, flushes
\f[B]stdout\f[R] as soon as execution is done for the current input.
.SH TTY MODE
.PP
If \f[B]stdin\f[R], \f[B]stdout\f[R], and \f[B]stderr\f[R] are all
connected to a TTY, bc(1) turns on \[lq]TTY mode.\[rq]
.PP
TTY mode is required for history to be enabled (see the \f[B]COMMAND
LINE HISTORY\f[R] section).
It is also required to enable special handling for \f[B]SIGINT\f[R]
signals.
.PP
The prompt is enabled in TTY mode.
.PP
TTY mode is different from interactive mode because interactive mode is
required in the bc(1)
specification (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html),
and interactive mode requires only \f[B]stdin\f[R] and \f[B]stdout\f[R]
to be connected to a terminal.
.SH SIGNAL HANDLING
.PP
Sending a \f[B]SIGINT\f[R] will cause bc(1) to stop execution of the
current input.
If bc(1) is in TTY mode (see the \f[B]TTY MODE\f[R] section), it will
reset (see the \f[B]RESET\f[R] section).
Otherwise, it will clean up and exit.
.PP
Note that \[lq]current input\[rq] can mean one of two things.
If bc(1) is processing input from \f[B]stdin\f[R] in TTY mode, it will
ask for more input.
If bc(1) is processing input from a file in TTY mode, it will stop
processing the file and start processing the next file, if one exists,
or ask for input from \f[B]stdin\f[R] if no other file exists.
.PP
This means that if a \f[B]SIGINT\f[R] is sent to bc(1) as it is
executing a file, it can seem as though bc(1) did not respond to the
signal since it will immediately start executing the next file.
This is by design; most files that users execute when interacting with
bc(1) have function definitions, which are quick to parse.
If a file takes a long time to execute, there may be a bug in that file.
The rest of the files could still be executed without problem, allowing
the user to continue.
.PP
\f[B]SIGTERM\f[R] and \f[B]SIGQUIT\f[R] cause bc(1) to clean up and
exit, and it uses the default handler for all other signals.
The one exception is \f[B]SIGHUP\f[R]; in that case, when bc(1) is in
TTY mode, a \f[B]SIGHUP\f[R] will cause bc(1) to clean up and exit.
.SH COMMAND LINE HISTORY
.PP
bc(1) supports interactive commandline editing.
If bc(1) is in TTY mode (see the \f[B]TTY MODE\f[R] section), history is
enabled.
Previous lines can be recalled and edited with the arrow keys.
.PP
\f[B]Note\f[R]: tabs are converted to 8 spaces.
.SH SEE ALSO
.PP
dc(1)
.SH STANDARDS
.PP
bc(1) is compliant with the IEEE Std 1003.12017
(\[lq]POSIX.12017\[rq]) (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html)
specification.
The flags \f[B]efghiqsvVw\f[R], all long options, and the extensions
noted above are extensions to that specification.
.PP
Note that the specification explicitly says that bc(1) only accepts
numbers that use a period (\f[B].\f[R]) as a radix point, regardless of
the value of \f[B]LC_NUMERIC\f[R].
.SH BUGS
.PP
None are known.
Report bugs at https://git.yzena.com/gavin/bc.
.SH AUTHORS
.PP
Gavin D.
Howard <gavin@yzena.com> and contributors.
