1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

.\"
.\" SPDXLicenseIdentifier: BSD2Clause
.\"
.\" Copyright (c) 20182021 Gavin D. Howard and contributors.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions are met:
.\"
.\" * Redistributions of source code must retain the above copyright notice,
.\" this list of conditions and the following disclaimer.
.\"
.\" * Redistributions in binary form must reproduce the above copyright notice,
.\" this list of conditions and the following disclaimer in the documentation
.\" and/or other materials provided with the distribution.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
.\" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
.\" LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
.\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
.\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
.\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
.\" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
.\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
.\" POSSIBILITY OF SUCH DAMAGE.
.\"
.TH "DC" "1" "January 2021" "Gavin D. Howard" "General Commands Manual"
.SH Name
.PP
dc  arbitraryprecision decimal reversePolish notation calculator
.SH SYNOPSIS
.PP
\f[B]dc\f[R] [\f[B]hiPvVx\f[R]] [\f[B]\[en]version\f[R]]
[\f[B]\[en]help\f[R]] [\f[B]\[en]interactive\f[R]]
[\f[B]\[en]noprompt\f[R]] [\f[B]\[en]extendedregister\f[R]]
[\f[B]e\f[R] \f[I]expr\f[R]]
[\f[B]\[en]expression\f[R]=\f[I]expr\f[R]\&...] [\f[B]f\f[R]
\f[I]file\f[R]\&...] [\f[B]file\f[R]=\f[I]file\f[R]\&...]
[\f[I]file\f[R]\&...]
.SH DESCRIPTION
.PP
dc(1) is an arbitraryprecision calculator.
It uses a stack (reverse Polish notation) to store numbers and results
of computations.
Arithmetic operations pop arguments off of the stack and push the
results.
.PP
If no files are given on the commandline as extra arguments (i.e., not
as \f[B]f\f[R] or \f[B]\[en]file\f[R] arguments), then dc(1) reads from
\f[B]stdin\f[R].
Otherwise, those files are processed, and dc(1) will then exit.
.PP
This is different from the dc(1) on OpenBSD and possibly other dc(1)
implementations, where \f[B]e\f[R] (\f[B]\[en]expression\f[R]) and
\f[B]f\f[R] (\f[B]\[en]file\f[R]) arguments cause dc(1) to execute them
and exit.
The reason for this is that this dc(1) allows users to set arguments in
the environment variable \f[B]DC_ENV_ARGS\f[R] (see the \f[B]ENVIRONMENT
VARIABLES\f[R] section).
Any expressions given on the commandline should be used to set up a
standard environment.
For example, if a user wants the \f[B]scale\f[R] always set to
\f[B]10\f[R], they can set \f[B]DC_ENV_ARGS\f[R] to \f[B]e 10k\f[R],
and this dc(1) will always start with a \f[B]scale\f[R] of \f[B]10\f[R].
.PP
If users want to have dc(1) exit after processing all input from
\f[B]e\f[R] and \f[B]f\f[R] arguments (and their equivalents), then
they can just simply add \f[B]e q\f[R] as the last commandline
argument or define the environment variable \f[B]DC_EXPR_EXIT\f[R].
.SH OPTIONS
.PP
The following are the options that dc(1) accepts.
.TP
\f[B]h\f[R], \f[B]\[en]help\f[R]
Prints a usage message and quits.
.TP
\f[B]v\f[R], \f[B]V\f[R], \f[B]\[en]version\f[R]
Print the version information (copyright header) and exit.
.TP
\f[B]i\f[R], \f[B]\[en]interactive\f[R]
Forces interactive mode.
(See the \f[B]INTERACTIVE MODE\f[R] section.)
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]P\f[R], \f[B]\[en]noprompt\f[R]
Disables the prompt in TTY mode.
(The prompt is only enabled in TTY mode.
See the \f[B]TTY MODE\f[R] section) This is mostly for those users that
do not want a prompt or are not used to having them in dc(1).
Most of those users would want to put this option in
\f[B]DC_ENV_ARGS\f[R].
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]x\f[R] \f[B]\[en]extendedregister\f[R]
Enables extended register mode.
See the \f[I]Extended Register Mode\f[R] subsection of the
\f[B]REGISTERS\f[R] section for more information.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]e\f[R] \f[I]expr\f[R], \f[B]\[en]expression\f[R]=\f[I]expr\f[R]
Evaluates \f[I]expr\f[R].
If multiple expressions are given, they are evaluated in order.
If files are given as well (see below), the expressions and files are
evaluated in the order given.
This means that if a file is given before an expression, the file is
read in and evaluated first.
.RS
.PP
After processing all expressions and files, dc(1) will exit, unless
\f[B]\f[R] (\f[B]stdin\f[R]) was given as an argument at least once to
\f[B]f\f[R] or \f[B]\[en]file\f[R].
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]f\f[R] \f[I]file\f[R], \f[B]\[en]file\f[R]=\f[I]file\f[R]
Reads in \f[I]file\f[R] and evaluates it, line by line, as though it
were read through \f[B]stdin\f[R].
If expressions are also given (see above), the expressions are evaluated
in the order given.
.RS
.PP
After processing all expressions and files, dc(1) will exit, unless
\f[B]\f[R] (\f[B]stdin\f[R]) was given as an argument at least once to
\f[B]f\f[R] or \f[B]\[en]file\f[R].
However, if any other \f[B]e\f[R], \f[B]\[en]expression\f[R],
\f[B]f\f[R], or \f[B]\[en]file\f[R] arguments are given after that,
bc(1) will give a fatal error and exit.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.PP
All long options are \f[B]nonportable extensions\f[R].
.SH STDOUT
.PP
Any nonerror output is written to \f[B]stdout\f[R].
.PP
\f[B]Note\f[R]: Unlike other dc(1) implementations, this dc(1) will
issue a fatal error (see the \f[B]EXIT STATUS\f[R] section) if it cannot
write to \f[B]stdout\f[R], so if \f[B]stdout\f[R] is closed, as in
\f[B]dc >&\f[R], it will quit with an error.
This is done so that dc(1) can report problems when \f[B]stdout\f[R] is
redirected to a file.
.PP
If there are scripts that depend on the behavior of other dc(1)
implementations, it is recommended that those scripts be changed to
redirect \f[B]stdout\f[R] to \f[B]/dev/null\f[R].
.SH STDERR
.PP
Any error output is written to \f[B]stderr\f[R].
.PP
\f[B]Note\f[R]: Unlike other dc(1) implementations, this dc(1) will
issue a fatal error (see the \f[B]EXIT STATUS\f[R] section) if it cannot
write to \f[B]stderr\f[R], so if \f[B]stderr\f[R] is closed, as in
\f[B]dc 2>&\f[R], it will quit with an error.
This is done so that dc(1) can exit with an error code when
\f[B]stderr\f[R] is redirected to a file.
.PP
If there are scripts that depend on the behavior of other dc(1)
implementations, it is recommended that those scripts be changed to
redirect \f[B]stderr\f[R] to \f[B]/dev/null\f[R].
.SH SYNTAX
.PP
Each item in the input source code, either a number (see the
\f[B]NUMBERS\f[R] section) or a command (see the \f[B]COMMANDS\f[R]
section), is processed and executed, in order.
Input is processed immediately when entered.
.PP
\f[B]ibase\f[R] is a register (see the \f[B]REGISTERS\f[R] section) that
determines how to interpret constant numbers.
It is the \[lq]input\[rq] base, or the number base used for interpreting
input numbers.
\f[B]ibase\f[R] is initially \f[B]10\f[R].
The max allowable value for \f[B]ibase\f[R] is \f[B]16\f[R].
The min allowable value for \f[B]ibase\f[R] is \f[B]2\f[R].
The max allowable value for \f[B]ibase\f[R] can be queried in dc(1)
programs with the \f[B]T\f[R] command.
.PP
\f[B]obase\f[R] is a register (see the \f[B]REGISTERS\f[R] section) that
determines how to output results.
It is the \[lq]output\[rq] base, or the number base used for outputting
numbers.
\f[B]obase\f[R] is initially \f[B]10\f[R].
The max allowable value for \f[B]obase\f[R] is \f[B]DC_BASE_MAX\f[R] and
can be queried with the \f[B]U\f[R] command.
The min allowable value for \f[B]obase\f[R] is \f[B]0\f[R].
If \f[B]obase\f[R] is \f[B]0\f[R], values are output in scientific
notation, and if \f[B]obase\f[R] is \f[B]1\f[R], values are output in
engineering notation.
Otherwise, values are output in the specified base.
.PP
Outputting in scientific and engineering notations are \f[B]nonportable
extensions\f[R].
.PP
The \f[I]scale\f[R] of an expression is the number of digits in the
result of the expression right of the decimal point, and \f[B]scale\f[R]
is a register (see the \f[B]REGISTERS\f[R] section) that sets the
precision of any operations (with exceptions).
\f[B]scale\f[R] is initially \f[B]0\f[R].
\f[B]scale\f[R] cannot be negative.
The max allowable value for \f[B]scale\f[R] can be queried in dc(1)
programs with the \f[B]V\f[R] command.
.PP
\f[B]seed\f[R] is a register containing the current seed for the
pseudorandom number generator.
If the current value of \f[B]seed\f[R] is queried and stored, then if it
is assigned to \f[B]seed\f[R] later, the pseudorandom number generator
is guaranteed to produce the same sequence of pseudorandom numbers that
were generated after the value of \f[B]seed\f[R] was first queried.
.PP
Multiple values assigned to \f[B]seed\f[R] can produce the same sequence
of pseudorandom numbers.
Likewise, when a value is assigned to \f[B]seed\f[R], it is not
guaranteed that querying \f[B]seed\f[R] immediately after will return
the same value.
In addition, the value of \f[B]seed\f[R] will change after any call to
the \f[B]\[cq]\f[R] command or the \f[B]\[dq]\f[R] command that does not
get receive a value of \f[B]0\f[R] or \f[B]1\f[R].
The maximum integer returned by the \f[B]\[cq]\f[R] command can be
queried with the \f[B]W\f[R] command.
.PP
\f[B]Note\f[R]: The values returned by the pseudorandom number
generator with the \f[B]\[cq]\f[R] and \f[B]\[dq]\f[R] commands are
guaranteed to \f[B]NOT\f[R] be cryptographically secure.
This is a consequence of using a seeded pseudorandom number generator.
However, they \f[I]are\f[R] guaranteed to be reproducible with identical
\f[B]seed\f[R] values.
This means that the pseudorandom values from bc(1) should only be used
where a reproducible stream of pseudorandom numbers is
\f[I]ESSENTIAL\f[R].
In any other case, use a nonseeded pseudorandom number generator.
.PP
The pseudorandom number generator, \f[B]seed\f[R], and all associated
operations are \f[B]nonportable extensions\f[R].
.SS Comments
.PP
Comments go from \f[B]#\f[R] until, and not including, the next newline.
This is a \f[B]nonportable extension\f[R].
.SH NUMBERS
.PP
Numbers are strings made up of digits, uppercase letters up to
\f[B]F\f[R], and at most \f[B]1\f[R] period for a radix.
Numbers can have up to \f[B]DC_NUM_MAX\f[R] digits.
Uppercase letters are equal to \f[B]9\f[R] + their position in the
alphabet (i.e., \f[B]A\f[R] equals \f[B]10\f[R], or \f[B]9+1\f[R]).
If a digit or letter makes no sense with the current value of
\f[B]ibase\f[R], they are set to the value of the highest valid digit in
\f[B]ibase\f[R].
.PP
Singlecharacter numbers (i.e., \f[B]A\f[R] alone) take the value that
they would have if they were valid digits, regardless of the value of
\f[B]ibase\f[R].
This means that \f[B]A\f[R] alone always equals decimal \f[B]10\f[R] and
\f[B]F\f[R] alone always equals decimal \f[B]15\f[R].
.PP
In addition, dc(1) accepts numbers in scientific notation.
These have the form \f[B]<number>e<integer>\f[R].
The exponent (the portion after the \f[B]e\f[R]) must be an integer.
An example is \f[B]1.89237e9\f[R], which is equal to
\f[B]1892370000\f[R].
Negative exponents are also allowed, so \f[B]4.2890e_3\f[R] is equal to
\f[B]0.0042890\f[R].
.PP
\f[B]WARNING\f[R]: Both the number and the exponent in scientific
notation are interpreted according to the current \f[B]ibase\f[R], but
the number is still multiplied by \f[B]10\[ha]exponent\f[R] regardless
of the current \f[B]ibase\f[R].
For example, if \f[B]ibase\f[R] is \f[B]16\f[R] and dc(1) is given the
number string \f[B]FFeA\f[R], the resulting decimal number will be
\f[B]2550000000000\f[R], and if dc(1) is given the number string
\f[B]10e_4\f[R], the resulting decimal number will be \f[B]0.0016\f[R].
.PP
Accepting input as scientific notation is a \f[B]nonportable
extension\f[R].
.SH COMMANDS
.PP
The valid commands are listed below.
.SS Printing
.PP
These commands are used for printing.
.PP
Note that both scientific notation and engineering notation are
available for printing numbers.
Scientific notation is activated by assigning \f[B]0\f[R] to
\f[B]obase\f[R] using \f[B]0o\f[R], and engineering notation is
activated by assigning \f[B]1\f[R] to \f[B]obase\f[R] using
\f[B]1o\f[R].
To deactivate them, just assign a different value to \f[B]obase\f[R].
.PP
Printing numbers in scientific notation and/or engineering notation is a
\f[B]nonportable extension\f[R].
.TP
\f[B]p\f[R]
Prints the value on top of the stack, whether number or string, and
prints a newline after.
.RS
.PP
This does not alter the stack.
.RE
.TP
\f[B]n\f[R]
Prints the value on top of the stack, whether number or string, and pops
it off of the stack.
.TP
\f[B]P\f[R]
Pops a value off the stack.
.RS
.PP
If the value is a number, it is truncated and the absolute value of the
result is printed as though \f[B]obase\f[R] is \f[B]UCHAR_MAX+1\f[R] and
each digit is interpreted as an ASCII character, making it a byte
stream.
.PP
If the value is a string, it is printed without a trailing newline.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]f\f[R]
Prints the entire contents of the stack, in order from newest to oldest,
without altering anything.
.RS
.PP
Users should use this command when they get lost.
.RE
.SS Arithmetic
.PP
These are the commands used for arithmetic.
.TP
\f[B]+\f[R]
The top two values are popped off the stack, added, and the result is
pushed onto the stack.
The \f[I]scale\f[R] of the result is equal to the max \f[I]scale\f[R] of
both operands.
.TP
\f[B]\f[R]
The top two values are popped off the stack, subtracted, and the result
is pushed onto the stack.
The \f[I]scale\f[R] of the result is equal to the max \f[I]scale\f[R] of
both operands.
.TP
\f[B]*\f[R]
The top two values are popped off the stack, multiplied, and the result
is pushed onto the stack.
If \f[B]a\f[R] is the \f[I]scale\f[R] of the first expression and
\f[B]b\f[R] is the \f[I]scale\f[R] of the second expression, the
\f[I]scale\f[R] of the result is equal to
\f[B]min(a+b,max(scale,a,b))\f[R] where \f[B]min()\f[R] and
\f[B]max()\f[R] return the obvious values.
.TP
\f[B]/\f[R]
The top two values are popped off the stack, divided, and the result is
pushed onto the stack.
The \f[I]scale\f[R] of the result is equal to \f[B]scale\f[R].
.RS
.PP
The first value popped off of the stack must be nonzero.
.RE
.TP
\f[B]%\f[R]
The top two values are popped off the stack, remaindered, and the result
is pushed onto the stack.
.RS
.PP
Remaindering is equivalent to 1) Computing \f[B]a/b\f[R] to current
\f[B]scale\f[R], and 2) Using the result of step 1 to calculate
\f[B]a(a/b)*b\f[R] to \f[I]scale\f[R]
\f[B]max(scale+scale(b),scale(a))\f[R].
.PP
The first value popped off of the stack must be nonzero.
.RE
.TP
\f[B]\[ti]\f[R]
The top two values are popped off the stack, divided and remaindered,
and the results (divided first, remainder second) are pushed onto the
stack.
This is equivalent to \f[B]x y / x y %\f[R] except that \f[B]x\f[R] and
\f[B]y\f[R] are only evaluated once.
.RS
.PP
The first value popped off of the stack must be nonzero.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]\[ha]\f[R]
The top two values are popped off the stack, the second is raised to the
power of the first, and the result is pushed onto the stack.
The \f[I]scale\f[R] of the result is equal to \f[B]scale\f[R].
.RS
.PP
The first value popped off of the stack must be an integer, and if that
value is negative, the second value popped off of the stack must be
nonzero.
.RE
.TP
\f[B]v\f[R]
The top value is popped off the stack, its square root is computed, and
the result is pushed onto the stack.
The \f[I]scale\f[R] of the result is equal to \f[B]scale\f[R].
.RS
.PP
The value popped off of the stack must be nonnegative.
.RE
.TP
\f[B]_\f[R]
If this command \f[I]immediately\f[R] precedes a number (i.e., no spaces
or other commands), then that number is input as a negative number.
.RS
.PP
Otherwise, the top value on the stack is popped and copied, and the copy
is negated and pushed onto the stack.
This behavior without a number is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]b\f[R]
The top value is popped off the stack, and if it is zero, it is pushed
back onto the stack.
Otherwise, its absolute value is pushed onto the stack.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]\f[R]
The top three values are popped off the stack, a modular exponentiation
is computed, and the result is pushed onto the stack.
.RS
.PP
The first value popped is used as the reduction modulus and must be an
integer and nonzero.
The second value popped is used as the exponent and must be an integer
and nonnegative.
The third value popped is the base and must be an integer.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]$\f[R]
The top value is popped off the stack and copied, and the copy is
truncated and pushed onto the stack.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]\[at]\f[R]
The top two values are popped off the stack, and the precision of the
second is set to the value of the first, whether by truncation or
extension.
.RS
.PP
The first value popped off of the stack must be an integer and
nonnegative.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]H\f[R]
The top two values are popped off the stack, and the second is shifted
left (radix shifted right) to the value of the first.
.RS
.PP
The first value popped off of the stack must be an integer and
nonnegative.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]h\f[R]
The top two values are popped off the stack, and the second is shifted
right (radix shifted left) to the value of the first.
.RS
.PP
The first value popped off of the stack must be an integer and
nonnegative.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]G\f[R]
The top two values are popped off of the stack, they are compared, and a
\f[B]1\f[R] is pushed if they are equal, or \f[B]0\f[R] otherwise.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]N\f[R]
The top value is popped off of the stack, and if it a \f[B]0\f[R], a
\f[B]1\f[R] is pushed; otherwise, a \f[B]0\f[R] is pushed.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B](\f[R]
The top two values are popped off of the stack, they are compared, and a
\f[B]1\f[R] is pushed if the first is less than the second, or
\f[B]0\f[R] otherwise.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]{\f[R]
The top two values are popped off of the stack, they are compared, and a
\f[B]1\f[R] is pushed if the first is less than or equal to the second,
or \f[B]0\f[R] otherwise.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B])\f[R]
The top two values are popped off of the stack, they are compared, and a
\f[B]1\f[R] is pushed if the first is greater than the second, or
\f[B]0\f[R] otherwise.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]}\f[R]
The top two values are popped off of the stack, they are compared, and a
\f[B]1\f[R] is pushed if the first is greater than or equal to the
second, or \f[B]0\f[R] otherwise.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]M\f[R]
The top two values are popped off of the stack.
If they are both nonzero, a \f[B]1\f[R] is pushed onto the stack.
If either of them is zero, or both of them are, then a \f[B]0\f[R] is
pushed onto the stack.
.RS
.PP
This is like the \f[B]&&\f[R] operator in bc(1), and it is \f[I]not\f[R]
a shortcircuit operator.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]m\f[R]
The top two values are popped off of the stack.
If at least one of them is nonzero, a \f[B]1\f[R] is pushed onto the
stack.
If both of them are zero, then a \f[B]0\f[R] is pushed onto the stack.
.RS
.PP
This is like the \f[B]\f[R] operator in bc(1), and it is \f[I]not\f[R]
a shortcircuit operator.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.SS PseudoRandom Number Generator
.PP
dc(1) has a builtin pseudorandom number generator.
These commands query the pseudorandom number generator.
(See Parameters for more information about the \f[B]seed\f[R] value that
controls the pseudorandom number generator.)
.PP
The pseudorandom number generator is guaranteed to \f[B]NOT\f[R] be
cryptographically secure.
.TP
\f[B]\[cq]\f[R]
Generates an integer between 0 and \f[B]DC_RAND_MAX\f[R], inclusive (see
the \f[B]LIMITS\f[R] section).
.RS
.PP
The generated integer is made as unbiased as possible, subject to the
limitations of the pseudorandom number generator.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]\[dq]\f[R]
Pops a value off of the stack, which is used as an \f[B]exclusive\f[R]
upper bound on the integer that will be generated.
If the bound is negative or is a noninteger, an error is raised, and
dc(1) resets (see the \f[B]RESET\f[R] section) while \f[B]seed\f[R]
remains unchanged.
If the bound is larger than \f[B]DC_RAND_MAX\f[R], the higher bound is
honored by generating several pseudorandom integers, multiplying them
by appropriate powers of \f[B]DC_RAND_MAX+1\f[R], and adding them
together.
Thus, the size of integer that can be generated with this command is
unbounded.
Using this command will change the value of \f[B]seed\f[R], unless the
operand is \f[B]0\f[R] or \f[B]1\f[R].
In that case, \f[B]0\f[R] is pushed onto the stack, and \f[B]seed\f[R]
is \f[I]not\f[R] changed.
.RS
.PP
The generated integer is made as unbiased as possible, subject to the
limitations of the pseudorandom number generator.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.SS Stack Control
.PP
These commands control the stack.
.TP
\f[B]c\f[R]
Removes all items from (\[lq]clears\[rq]) the stack.
.TP
\f[B]d\f[R]
Copies the item on top of the stack (\[lq]duplicates\[rq]) and pushes
the copy onto the stack.
.TP
\f[B]r\f[R]
Swaps (\[lq]reverses\[rq]) the two top items on the stack.
.TP
\f[B]R\f[R]
Pops (\[lq]removes\[rq]) the top value from the stack.
.SS Register Control
.PP
These commands control registers (see the \f[B]REGISTERS\f[R] section).
.TP
\f[B]s\f[R]\f[I]r\f[R]
Pops the value off the top of the stack and stores it into register
\f[I]r\f[R].
.TP
\f[B]l\f[R]\f[I]r\f[R]
Copies the value in register \f[I]r\f[R] and pushes it onto the stack.
This does not alter the contents of \f[I]r\f[R].
.TP
\f[B]S\f[R]\f[I]r\f[R]
Pops the value off the top of the (main) stack and pushes it onto the
stack of register \f[I]r\f[R].
The previous value of the register becomes inaccessible.
.TP
\f[B]L\f[R]\f[I]r\f[R]
Pops the value off the top of the stack for register \f[I]r\f[R] and
push it onto the main stack.
The previous value in the stack for register \f[I]r\f[R], if any, is now
accessible via the \f[B]l\f[R]\f[I]r\f[R] command.
.SS Parameters
.PP
These commands control the values of \f[B]ibase\f[R], \f[B]obase\f[R],
\f[B]scale\f[R], and \f[B]seed\f[R].
Also see the \f[B]SYNTAX\f[R] section.
.TP
\f[B]i\f[R]
Pops the value off of the top of the stack and uses it to set
\f[B]ibase\f[R], which must be between \f[B]2\f[R] and \f[B]16\f[R],
inclusive.
.RS
.PP
If the value on top of the stack has any \f[I]scale\f[R], the
\f[I]scale\f[R] is ignored.
.RE
.TP
\f[B]o\f[R]
Pops the value off of the top of the stack and uses it to set
\f[B]obase\f[R], which must be between \f[B]0\f[R] and
\f[B]DC_BASE_MAX\f[R], inclusive (see the \f[B]LIMITS\f[R] section and
the \f[B]NUMBERS\f[R] section).
.RS
.PP
If the value on top of the stack has any \f[I]scale\f[R], the
\f[I]scale\f[R] is ignored.
.RE
.TP
\f[B]k\f[R]
Pops the value off of the top of the stack and uses it to set
\f[B]scale\f[R], which must be nonnegative.
.RS
.PP
If the value on top of the stack has any \f[I]scale\f[R], the
\f[I]scale\f[R] is ignored.
.RE
.TP
\f[B]j\f[R]
Pops the value off of the top of the stack and uses it to set
\f[B]seed\f[R].
The meaning of \f[B]seed\f[R] is dependent on the current pseudorandom
number generator but is guaranteed to not change except for new major
versions.
.RS
.PP
The \f[I]scale\f[R] and sign of the value may be significant.
.PP
If a previously used \f[B]seed\f[R] value is used again, the
pseudorandom number generator is guaranteed to produce the same
sequence of pseudorandom numbers as it did when the \f[B]seed\f[R]
value was previously used.
.PP
The exact value assigned to \f[B]seed\f[R] is not guaranteed to be
returned if the \f[B]J\f[R] command is used.
However, if \f[B]seed\f[R] \f[I]does\f[R] return a different value, both
values, when assigned to \f[B]seed\f[R], are guaranteed to produce the
same sequence of pseudorandom numbers.
This means that certain values assigned to \f[B]seed\f[R] will not
produce unique sequences of pseudorandom numbers.
.PP
There is no limit to the length (number of significant decimal digits)
or \f[I]scale\f[R] of the value that can be assigned to \f[B]seed\f[R].
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]I\f[R]
Pushes the current value of \f[B]ibase\f[R] onto the main stack.
.TP
\f[B]O\f[R]
Pushes the current value of \f[B]obase\f[R] onto the main stack.
.TP
\f[B]K\f[R]
Pushes the current value of \f[B]scale\f[R] onto the main stack.
.TP
\f[B]J\f[R]
Pushes the current value of \f[B]seed\f[R] onto the main stack.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]T\f[R]
Pushes the maximum allowable value of \f[B]ibase\f[R] onto the main
stack.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]U\f[R]
Pushes the maximum allowable value of \f[B]obase\f[R] onto the main
stack.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]V\f[R]
Pushes the maximum allowable value of \f[B]scale\f[R] onto the main
stack.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]W\f[R]
Pushes the maximum (inclusive) integer that can be generated with the
\f[B]\[cq]\f[R] pseudorandom number generator command.
.RS
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.SS Strings
.PP
The following commands control strings.
.PP
dc(1) can work with both numbers and strings, and registers (see the
\f[B]REGISTERS\f[R] section) can hold both strings and numbers.
dc(1) always knows whether the contents of a register are a string or a
number.
.PP
While arithmetic operations have to have numbers, and will print an
error if given a string, other commands accept strings.
.PP
Strings can also be executed as macros.
For example, if the string \f[B][1pR]\f[R] is executed as a macro, then
the code \f[B]1pR\f[R] is executed, meaning that the \f[B]1\f[R] will be
printed with a newline after and then popped from the stack.
.TP
\f[B][\f[R]_characters_\f[B]]\f[R]
Makes a string containing \f[I]characters\f[R] and pushes it onto the
stack.
.RS
.PP
If there are brackets (\f[B][\f[R] and \f[B]]\f[R]) in the string, then
they must be balanced.
Unbalanced brackets can be escaped using a backslash (\f[B]\[rs]\f[R])
character.
.PP
If there is a backslash character in the string, the character after it
(even another backslash) is put into the string verbatim, but the
(first) backslash is not.
.RE
.TP
\f[B]a\f[R]
The value on top of the stack is popped.
.RS
.PP
If it is a number, it is truncated and its absolute value is taken.
The result mod \f[B]UCHAR_MAX+1\f[R] is calculated.
If that result is \f[B]0\f[R], push an empty string; otherwise, push a
onecharacter string where the character is the result of the mod
interpreted as an ASCII character.
.PP
If it is a string, then a new string is made.
If the original string is empty, the new string is empty.
If it is not, then the first character of the original string is used to
create the new string as a onecharacter string.
The new string is then pushed onto the stack.
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]x\f[R]
Pops a value off of the top of the stack.
.RS
.PP
If it is a number, it is pushed back onto the stack.
.PP
If it is a string, it is executed as a macro.
.PP
This behavior is the norm whenever a macro is executed, whether by this
command or by the conditional execution commands below.
.RE
.TP
\f[B]>\f[R]\f[I]r\f[R]
Pops two values off of the stack that must be numbers and compares them.
If the first value is greater than the second, then the contents of
register \f[I]r\f[R] are executed.
.RS
.PP
For example, \f[B]0 1>a\f[R] will execute the contents of register
\f[B]a\f[R], and \f[B]1 0>a\f[R] will not.
.PP
If either or both of the values are not numbers, dc(1) will raise an
error and reset (see the \f[B]RESET\f[R] section).
.RE
.TP
\f[B]>\f[R]\f[I]r\f[R]\f[B]e\f[R]\f[I]s\f[R]
Like the above, but will execute register \f[I]s\f[R] if the comparison
fails.
.RS
.PP
If either or both of the values are not numbers, dc(1) will raise an
error and reset (see the \f[B]RESET\f[R] section).
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]!>\f[R]\f[I]r\f[R]
Pops two values off of the stack that must be numbers and compares them.
If the first value is not greater than the second (less than or equal
to), then the contents of register \f[I]r\f[R] are executed.
.RS
.PP
If either or both of the values are not numbers, dc(1) will raise an
error and reset (see the \f[B]RESET\f[R] section).
.RE
.TP
\f[B]!>\f[R]\f[I]r\f[R]\f[B]e\f[R]\f[I]s\f[R]
Like the above, but will execute register \f[I]s\f[R] if the comparison
fails.
.RS
.PP
If either or both of the values are not numbers, dc(1) will raise an
error and reset (see the \f[B]RESET\f[R] section).
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]<\f[R]\f[I]r\f[R]
Pops two values off of the stack that must be numbers and compares them.
If the first value is less than the second, then the contents of
register \f[I]r\f[R] are executed.
.RS
.PP
If either or both of the values are not numbers, dc(1) will raise an
error and reset (see the \f[B]RESET\f[R] section).
.RE
.TP
\f[B]<\f[R]\f[I]r\f[R]\f[B]e\f[R]\f[I]s\f[R]
Like the above, but will execute register \f[I]s\f[R] if the comparison
fails.
.RS
.PP
If either or both of the values are not numbers, dc(1) will raise an
error and reset (see the \f[B]RESET\f[R] section).
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]!<\f[R]\f[I]r\f[R]
Pops two values off of the stack that must be numbers and compares them.
If the first value is not less than the second (greater than or equal
to), then the contents of register \f[I]r\f[R] are executed.
.RS
.PP
If either or both of the values are not numbers, dc(1) will raise an
error and reset (see the \f[B]RESET\f[R] section).
.RE
.TP
\f[B]!<\f[R]\f[I]r\f[R]\f[B]e\f[R]\f[I]s\f[R]
Like the above, but will execute register \f[I]s\f[R] if the comparison
fails.
.RS
.PP
If either or both of the values are not numbers, dc(1) will raise an
error and reset (see the \f[B]RESET\f[R] section).
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]=\f[R]\f[I]r\f[R]
Pops two values off of the stack that must be numbers and compares them.
If the first value is equal to the second, then the contents of register
\f[I]r\f[R] are executed.
.RS
.PP
If either or both of the values are not numbers, dc(1) will raise an
error and reset (see the \f[B]RESET\f[R] section).
.RE
.TP
\f[B]=\f[R]\f[I]r\f[R]\f[B]e\f[R]\f[I]s\f[R]
Like the above, but will execute register \f[I]s\f[R] if the comparison
fails.
.RS
.PP
If either or both of the values are not numbers, dc(1) will raise an
error and reset (see the \f[B]RESET\f[R] section).
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]!=\f[R]\f[I]r\f[R]
Pops two values off of the stack that must be numbers and compares them.
If the first value is not equal to the second, then the contents of
register \f[I]r\f[R] are executed.
.RS
.PP
If either or both of the values are not numbers, dc(1) will raise an
error and reset (see the \f[B]RESET\f[R] section).
.RE
.TP
\f[B]!=\f[R]\f[I]r\f[R]\f[B]e\f[R]\f[I]s\f[R]
Like the above, but will execute register \f[I]s\f[R] if the comparison
fails.
.RS
.PP
If either or both of the values are not numbers, dc(1) will raise an
error and reset (see the \f[B]RESET\f[R] section).
.PP
This is a \f[B]nonportable extension\f[R].
.RE
.TP
\f[B]?\f[R]
Reads a line from the \f[B]stdin\f[R] and executes it.
This is to allow macros to request input from users.
.TP
\f[B]q\f[R]
During execution of a macro, this exits the execution of that macro and
the execution of the macro that executed it.
If there are no macros, or only one macro executing, dc(1) exits.
.TP
\f[B]Q\f[R]
Pops a value from the stack which must be nonnegative and is used the
number of macro executions to pop off of the execution stack.
If the number of levels to pop is greater than the number of executing
macros, dc(1) exits.
.SS Status
.PP
These commands query status of the stack or its top value.
.TP
\f[B]Z\f[R]
Pops a value off of the stack.
.RS
.PP
If it is a number, calculates the number of significant decimal digits
it has and pushes the result.
.PP
If it is a string, pushes the number of characters the string has.
.RE
.TP
\f[B]X\f[R]
Pops a value off of the stack.
.RS
.PP
If it is a number, pushes the \f[I]scale\f[R] of the value onto the
stack.
.PP
If it is a string, pushes \f[B]0\f[R].
.RE
.TP
\f[B]z\f[R]
Pushes the current stack depth (before execution of this command).
.SS Arrays
.PP
These commands manipulate arrays.
.TP
\f[B]:\f[R]\f[I]r\f[R]
Pops the top two values off of the stack.
The second value will be stored in the array \f[I]r\f[R] (see the
\f[B]REGISTERS\f[R] section), indexed by the first value.
.TP
\f[B];\f[R]\f[I]r\f[R]
Pops the value on top of the stack and uses it as an index into the
array \f[I]r\f[R].
The selected value is then pushed onto the stack.
.SH REGISTERS
.PP
Registers are names that can store strings, numbers, and arrays.
(Number/string registers do not interfere with array registers.)
.PP
Each register is also its own stack, so the current register value is
the top of the stack for the register.
All registers, when first referenced, have one value (\f[B]0\f[R]) in
their stack.
.PP
In nonextended register mode, a register name is just the single
character that follows any command that needs a register name.
The only exception is a newline (\f[B]`\[rs]n'\f[R]); it is a parse
error for a newline to be used as a register name.
.SS Extended Register Mode
.PP
Unlike most other dc(1) implentations, this dc(1) provides nearly
unlimited amounts of registers, if extended register mode is enabled.
.PP
If extended register mode is enabled (\f[B]x\f[R] or
\f[B]\[en]extendedregister\f[R] commandline arguments are given), then
normal single character registers are used \f[I]unless\f[R] the
character immediately following a command that needs a register name is
a space (according to \f[B]isspace()\f[R]) and not a newline
(\f[B]`\[rs]n'\f[R]).
.PP
In that case, the register name is found according to the regex
\f[B][az][az09_]*\f[R] (like bc(1) identifiers), and it is a parse
error if the next nonspace characters do not match that regex.
.SH RESET
.PP
When dc(1) encounters an error or a signal that it has a nondefault
handler for, it resets.
This means that several things happen.
.PP
First, any macros that are executing are stopped and popped off the
stack.
The behavior is not unlike that of exceptions in programming languages.
Then the execution point is set so that any code waiting to execute
(after all macros returned) is skipped.
.PP
Thus, when dc(1) resets, it skips any remaining code waiting to be
executed.
Then, if it is interactive mode, and the error was not a fatal error
(see the \f[B]EXIT STATUS\f[R] section), it asks for more input;
otherwise, it exits with the appropriate return code.
.SH PERFORMANCE
.PP
Most dc(1) implementations use \f[B]char\f[R] types to calculate the
value of \f[B]1\f[R] decimal digit at a time, but that can be slow.
This dc(1) does something different.
.PP
It uses large integers to calculate more than \f[B]1\f[R] decimal digit
at a time.
If built in a environment where \f[B]DC_LONG_BIT\f[R] (see the
\f[B]LIMITS\f[R] section) is \f[B]64\f[R], then each integer has
\f[B]9\f[R] decimal digits.
If built in an environment where \f[B]DC_LONG_BIT\f[R] is \f[B]32\f[R]
then each integer has \f[B]4\f[R] decimal digits.
This value (the number of decimal digits per large integer) is called
\f[B]DC_BASE_DIGS\f[R].
.PP
In addition, this dc(1) uses an even larger integer for overflow
checking.
This integer type depends on the value of \f[B]DC_LONG_BIT\f[R], but is
always at least twice as large as the integer type used to store digits.
.SH LIMITS
.PP
The following are the limits on dc(1):
.TP
\f[B]DC_LONG_BIT\f[R]
The number of bits in the \f[B]long\f[R] type in the environment where
dc(1) was built.
This determines how many decimal digits can be stored in a single large
integer (see the \f[B]PERFORMANCE\f[R] section).
.TP
\f[B]DC_BASE_DIGS\f[R]
The number of decimal digits per large integer (see the
\f[B]PERFORMANCE\f[R] section).
Depends on \f[B]DC_LONG_BIT\f[R].
.TP
\f[B]DC_BASE_POW\f[R]
The max decimal number that each large integer can store (see
\f[B]DC_BASE_DIGS\f[R]) plus \f[B]1\f[R].
Depends on \f[B]DC_BASE_DIGS\f[R].
.TP
\f[B]DC_OVERFLOW_MAX\f[R]
The max number that the overflow type (see the \f[B]PERFORMANCE\f[R]
section) can hold.
Depends on \f[B]DC_LONG_BIT\f[R].
.TP
\f[B]DC_BASE_MAX\f[R]
The maximum output base.
Set at \f[B]DC_BASE_POW\f[R].
.TP
\f[B]DC_DIM_MAX\f[R]
The maximum size of arrays.
Set at \f[B]SIZE_MAX1\f[R].
.TP
\f[B]DC_SCALE_MAX\f[R]
The maximum \f[B]scale\f[R].
Set at \f[B]DC_OVERFLOW_MAX1\f[R].
.TP
\f[B]DC_STRING_MAX\f[R]
The maximum length of strings.
Set at \f[B]DC_OVERFLOW_MAX1\f[R].
.TP
\f[B]DC_NAME_MAX\f[R]
The maximum length of identifiers.
Set at \f[B]DC_OVERFLOW_MAX1\f[R].
.TP
\f[B]DC_NUM_MAX\f[R]
The maximum length of a number (in decimal digits), which includes
digits after the decimal point.
Set at \f[B]DC_OVERFLOW_MAX1\f[R].
.TP
\f[B]DC_RAND_MAX\f[R]
The maximum integer (inclusive) returned by the \f[B]\[cq]\f[R] command,
if dc(1).
Set at \f[B]2\[ha]DC_LONG_BIT1\f[R].
.TP
Exponent
The maximum allowable exponent (positive or negative).
Set at \f[B]DC_OVERFLOW_MAX\f[R].
.TP
Number of vars
The maximum number of vars/arrays.
Set at \f[B]SIZE_MAX1\f[R].
.PP
These limits are meant to be effectively nonexistent; the limits are so
large (at least on 64bit machines) that there should not be any point
at which they become a problem.
In fact, memory should be exhausted before these limits should be hit.
.SH ENVIRONMENT VARIABLES
.PP
dc(1) recognizes the following environment variables:
.TP
\f[B]DC_ENV_ARGS\f[R]
This is another way to give commandline arguments to dc(1).
They should be in the same format as all other commandline arguments.
These are always processed first, so any files given in
\f[B]DC_ENV_ARGS\f[R] will be processed before arguments and files given
on the commandline.
This gives the user the ability to set up \[lq]standard\[rq] options and
files to be used at every invocation.
The most useful thing for such files to contain would be useful
functions that the user might want every time dc(1) runs.
Another use would be to use the \f[B]e\f[R] option to set
\f[B]scale\f[R] to a value other than \f[B]0\f[R].
.RS
.PP
The code that parses \f[B]DC_ENV_ARGS\f[R] will correctly handle quoted
arguments, but it does not understand escape sequences.
For example, the string \f[B]\[lq]/home/gavin/some dc file.dc\[rq]\f[R]
will be correctly parsed, but the string \f[B]\[lq]/home/gavin/some
\[dq]dc\[dq] file.dc\[rq]\f[R] will include the backslashes.
.PP
The quote parsing will handle either kind of quotes, \f[B]\[cq]\f[R] or
\f[B]\[lq]\f[R]. Thus, if you have a file with any number of single
quotes in the name, you can use double quotes as the outside quotes, as
in \f[B]\[rq]some `bc' file.bc\[dq]\f[R], and vice versa if you have a
file with double quotes.
However, handling a file with both kinds of quotes in
\f[B]DC_ENV_ARGS\f[R] is not supported due to the complexity of the
parsing, though such files are still supported on the commandline where
the parsing is done by the shell.
.RE
.TP
\f[B]DC_LINE_LENGTH\f[R]
If this environment variable exists and contains an integer that is
greater than \f[B]1\f[R] and is less than \f[B]UINT16_MAX\f[R]
(\f[B]2\[ha]161\f[R]), dc(1) will output lines to that length,
including the backslash newline combo.
The default line length is \f[B]70\f[R].
.TP
\f[B]DC_EXPR_EXIT\f[R]
If this variable exists (no matter the contents), dc(1) will exit
immediately after executing expressions and files given by the
\f[B]e\f[R] and/or \f[B]f\f[R] commandline options (and any
equivalents).
.SH EXIT STATUS
.PP
dc(1) returns the following exit statuses:
.TP
\f[B]0\f[R]
No error.
.TP
\f[B]1\f[R]
A math error occurred.
This follows standard practice of using \f[B]1\f[R] for expected errors,
since math errors will happen in the process of normal execution.
.RS
.PP
Math errors include divide by \f[B]0\f[R], taking the square root of a
negative number, using a negative number as a bound for the
pseudorandom number generator, attempting to convert a negative number
to a hardware integer, overflow when converting a number to a hardware
integer, and attempting to use a noninteger where an integer is
required.
.PP
Converting to a hardware integer happens for the second operand of the
power (\f[B]\[ha]\f[R]), places (\f[B]\[at]\f[R]), left shift
(\f[B]H\f[R]), and right shift (\f[B]h\f[R]) operators.
.RE
.TP
\f[B]2\f[R]
A parse error occurred.
.RS
.PP
Parse errors include unexpected \f[B]EOF\f[R], using an invalid
character, failing to find the end of a string or comment, and using a
token where it is invalid.
.RE
.TP
\f[B]3\f[R]
A runtime error occurred.
.RS
.PP
Runtime errors include assigning an invalid number to \f[B]ibase\f[R],
\f[B]obase\f[R], or \f[B]scale\f[R]; give a bad expression to a
\f[B]read()\f[R] call, calling \f[B]read()\f[R] inside of a
\f[B]read()\f[R] call, type errors, and attempting an operation when the
stack has too few elements.
.RE
.TP
\f[B]4\f[R]
A fatal error occurred.
.RS
.PP
Fatal errors include memory allocation errors, I/O errors, failing to
open files, attempting to use files that do not have only ASCII
characters (dc(1) only accepts ASCII characters), attempting to open a
directory as a file, and giving invalid commandline options.
.RE
.PP
The exit status \f[B]4\f[R] is special; when a fatal error occurs, dc(1)
always exits and returns \f[B]4\f[R], no matter what mode dc(1) is in.
.PP
The other statuses will only be returned when dc(1) is not in
interactive mode (see the \f[B]INTERACTIVE MODE\f[R] section), since
dc(1) resets its state (see the \f[B]RESET\f[R] section) and accepts
more input when one of those errors occurs in interactive mode.
This is also the case when interactive mode is forced by the
\f[B]i\f[R] flag or \f[B]\[en]interactive\f[R] option.
.PP
These exit statuses allow dc(1) to be used in shell scripting with error
checking, and its normal behavior can be forced by using the
\f[B]i\f[R] flag or \f[B]\[en]interactive\f[R] option.
.SH INTERACTIVE MODE
.PP
Like bc(1), dc(1) has an interactive mode and a noninteractive mode.
Interactive mode is turned on automatically when both \f[B]stdin\f[R]
and \f[B]stdout\f[R] are hooked to a terminal, but the \f[B]i\f[R] flag
and \f[B]\[en]interactive\f[R] option can turn it on in other cases.
.PP
In interactive mode, dc(1) attempts to recover from errors (see the
\f[B]RESET\f[R] section), and in normal execution, flushes
\f[B]stdout\f[R] as soon as execution is done for the current input.
.SH TTY MODE
.PP
If \f[B]stdin\f[R], \f[B]stdout\f[R], and \f[B]stderr\f[R] are all
connected to a TTY, dc(1) turns on \[lq]TTY mode.\[rq]
.PP
TTY mode is required for history to be enabled (see the \f[B]COMMAND
LINE HISTORY\f[R] section).
It is also required to enable special handling for \f[B]SIGINT\f[R]
signals.
.PP
The prompt is enabled in TTY mode.
.PP
TTY mode is different from interactive mode because interactive mode is
required in the bc(1)
specification (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html),
and interactive mode requires only \f[B]stdin\f[R] and \f[B]stdout\f[R]
to be connected to a terminal.
.SH SIGNAL HANDLING
.PP
Sending a \f[B]SIGINT\f[R] will cause dc(1) to stop execution of the
current input.
If dc(1) is in TTY mode (see the \f[B]TTY MODE\f[R] section), it will
reset (see the \f[B]RESET\f[R] section).
Otherwise, it will clean up and exit.
.PP
Note that \[lq]current input\[rq] can mean one of two things.
If dc(1) is processing input from \f[B]stdin\f[R] in TTY mode, it will
ask for more input.
If dc(1) is processing input from a file in TTY mode, it will stop
processing the file and start processing the next file, if one exists,
or ask for input from \f[B]stdin\f[R] if no other file exists.
.PP
This means that if a \f[B]SIGINT\f[R] is sent to dc(1) as it is
executing a file, it can seem as though dc(1) did not respond to the
signal since it will immediately start executing the next file.
This is by design; most files that users execute when interacting with
dc(1) have function definitions, which are quick to parse.
If a file takes a long time to execute, there may be a bug in that file.
The rest of the files could still be executed without problem, allowing
the user to continue.
.PP
\f[B]SIGTERM\f[R] and \f[B]SIGQUIT\f[R] cause dc(1) to clean up and
exit, and it uses the default handler for all other signals.
The one exception is \f[B]SIGHUP\f[R]; in that case, when dc(1) is in
TTY mode, a \f[B]SIGHUP\f[R] will cause dc(1) to clean up and exit.
.SH COMMAND LINE HISTORY
.PP
dc(1) supports interactive commandline editing.
If dc(1) is in TTY mode (see the \f[B]TTY MODE\f[R] section), history is
enabled.
Previous lines can be recalled and edited with the arrow keys.
.PP
\f[B]Note\f[R]: tabs are converted to 8 spaces.
.SH SEE ALSO
.PP
bc(1)
.SH STANDARDS
.PP
The dc(1) utility operators are compliant with the operators in the
bc(1) IEEE Std 1003.12017
(\[lq]POSIX.12017\[rq]) (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html)
specification.
.SH BUGS
.PP
None are known.
Report bugs at https://git.yzena.com/gavin/bc.
.SH AUTHOR
.PP
Gavin D.
Howard <gavin@yzena.com> and contributors.
