aboutsummaryrefslogtreecommitdiff
path: root/contrib/libstdc++/include/bits/stl_multimap.h
blob: 85feba78c5566c936ed6c9c322d7765f35c240a1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
// Multimap implementation -*- C++ -*-

// Copyright (C) 2001, 2002, 2004, 2005, 2006 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996,1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file stl_multimap.h
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

#ifndef _MULTIMAP_H
#define _MULTIMAP_H 1

#include <bits/concept_check.h>

_GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD)

  /**
   *  @brief A standard container made up of (key,value) pairs, which can be
   *  retrieved based on a key, in logarithmic time.
   *
   *  @ingroup Containers
   *  @ingroup Assoc_containers
   *
   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
   *  <a href="tables.html#66">reversible container</a>, and an
   *  <a href="tables.html#69">associative container</a> (using equivalent
   *  keys).  For a @c multimap<Key,T> the key_type is Key, the mapped_type
   *  is T, and the value_type is std::pair<const Key,T>.
   *
   *  Multimaps support bidirectional iterators.
   *
   *  @if maint
   *  The private tree data is declared exactly the same way for map and
   *  multimap; the distinction is made entirely in how the tree functions are
   *  called (*_unique versus *_equal, same as the standard).
   *  @endif
  */
  template <typename _Key, typename _Tp,
	    typename _Compare = std::less<_Key>,
	    typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
    class multimap
    {
    public:
      typedef _Key                                          key_type;
      typedef _Tp                                           mapped_type;
      typedef std::pair<const _Key, _Tp>                    value_type;
      typedef _Compare                                      key_compare;
      typedef _Alloc                                        allocator_type;

    private:
      // concept requirements
      typedef typename _Alloc::value_type                   _Alloc_value_type;
      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
				_BinaryFunctionConcept)
      __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)	

    public:
      class value_compare
      : public std::binary_function<value_type, value_type, bool>
      {
	friend class multimap<_Key, _Tp, _Compare, _Alloc>;
      protected:
	_Compare comp;

	value_compare(_Compare __c)
	: comp(__c) { }

      public:
	bool operator()(const value_type& __x, const value_type& __y) const
	{ return comp(__x.first, __y.first); }
      };

    private:
      /// @if maint  This turns a red-black tree into a [multi]map.  @endif
      typedef typename _Alloc::template rebind<value_type>::other 
        _Pair_alloc_type;

      typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
		       key_compare, _Pair_alloc_type> _Rep_type;
      /// @if maint  The actual tree structure.  @endif
      _Rep_type _M_t;

    public:
      // many of these are specified differently in ISO, but the following are
      // "functionally equivalent"
      typedef typename _Pair_alloc_type::pointer         pointer;
      typedef typename _Pair_alloc_type::const_pointer   const_pointer;
      typedef typename _Pair_alloc_type::reference       reference;
      typedef typename _Pair_alloc_type::const_reference const_reference;
      typedef typename _Rep_type::iterator               iterator;
      typedef typename _Rep_type::const_iterator         const_iterator;
      typedef typename _Rep_type::size_type              size_type;
      typedef typename _Rep_type::difference_type        difference_type;
      typedef typename _Rep_type::reverse_iterator       reverse_iterator;
      typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;

      // [23.3.2] construct/copy/destroy
      // (get_allocator() is also listed in this section)
      /**
       *  @brief  Default constructor creates no elements.
       */
      multimap()
      : _M_t() { }

      // for some reason this was made a separate function
      /**
       *  @brief  Default constructor creates no elements.
       */
      explicit
      multimap(const _Compare& __comp,
	       const allocator_type& __a = allocator_type())
      : _M_t(__comp, __a) { }

      /**
       *  @brief  %Multimap copy constructor.
       *  @param  x  A %multimap of identical element and allocator types.
       *
       *  The newly-created %multimap uses a copy of the allocation object used
       *  by @a x.
       */
      multimap(const multimap& __x)
      : _M_t(__x._M_t) { }

      /**
       *  @brief  Builds a %multimap from a range.
       *  @param  first  An input iterator.
       *  @param  last  An input iterator.
       *
       *  Create a %multimap consisting of copies of the elements from
       *  [first,last).  This is linear in N if the range is already sorted,
       *  and NlogN otherwise (where N is distance(first,last)).
       */
      template <typename _InputIterator>
        multimap(_InputIterator __first, _InputIterator __last)
	: _M_t()
        { _M_t._M_insert_equal(__first, __last); }

      /**
       *  @brief  Builds a %multimap from a range.
       *  @param  first  An input iterator.
       *  @param  last  An input iterator.
       *  @param  comp  A comparison functor.
       *  @param  a  An allocator object.
       *
       *  Create a %multimap consisting of copies of the elements from
       *  [first,last).  This is linear in N if the range is already sorted,
       *  and NlogN otherwise (where N is distance(first,last)).
       */
      template <typename _InputIterator>
        multimap(_InputIterator __first, _InputIterator __last,
		 const _Compare& __comp,
		 const allocator_type& __a = allocator_type())
        : _M_t(__comp, __a)
        { _M_t._M_insert_equal(__first, __last); }

      // FIXME There is no dtor declared, but we should have something generated
      // by Doxygen.  I don't know what tags to add to this paragraph to make
      // that happen:
      /**
       *  The dtor only erases the elements, and note that if the elements
       *  themselves are pointers, the pointed-to memory is not touched in any
       *  way.  Managing the pointer is the user's responsibilty.
       */

      /**
       *  @brief  %Multimap assignment operator.
       *  @param  x  A %multimap of identical element and allocator types.
       *
       *  All the elements of @a x are copied, but unlike the copy constructor,
       *  the allocator object is not copied.
       */
      multimap&
      operator=(const multimap& __x)
      {
	_M_t = __x._M_t;
	return *this;
      }

      /// Get a copy of the memory allocation object.
      allocator_type
      get_allocator() const
      { return _M_t.get_allocator(); }

      // iterators
      /**
       *  Returns a read/write iterator that points to the first pair in the
       *  %multimap.  Iteration is done in ascending order according to the
       *  keys.
       */
      iterator
      begin()
      { return _M_t.begin(); }

      /**
       *  Returns a read-only (constant) iterator that points to the first pair
       *  in the %multimap.  Iteration is done in ascending order according to
       *  the keys.
       */
      const_iterator
      begin() const
      { return _M_t.begin(); }

      /**
       *  Returns a read/write iterator that points one past the last pair in
       *  the %multimap.  Iteration is done in ascending order according to the
       *  keys.
       */
      iterator
      end()
      { return _M_t.end(); }

      /**
       *  Returns a read-only (constant) iterator that points one past the last
       *  pair in the %multimap.  Iteration is done in ascending order according
       *  to the keys.
       */
      const_iterator
      end() const
      { return _M_t.end(); }

      /**
       *  Returns a read/write reverse iterator that points to the last pair in
       *  the %multimap.  Iteration is done in descending order according to the
       *  keys.
       */
      reverse_iterator
      rbegin()
      { return _M_t.rbegin(); }

      /**
       *  Returns a read-only (constant) reverse iterator that points to the
       *  last pair in the %multimap.  Iteration is done in descending order
       *  according to the keys.
       */
      const_reverse_iterator
      rbegin() const
      { return _M_t.rbegin(); }

      /**
       *  Returns a read/write reverse iterator that points to one before the
       *  first pair in the %multimap.  Iteration is done in descending order
       *  according to the keys.
       */
      reverse_iterator
      rend()
      { return _M_t.rend(); }

      /**
       *  Returns a read-only (constant) reverse iterator that points to one
       *  before the first pair in the %multimap.  Iteration is done in
       *  descending order according to the keys.
       */
      const_reverse_iterator
      rend() const
      { return _M_t.rend(); }

      // capacity
      /** Returns true if the %multimap is empty.  */
      bool
      empty() const
      { return _M_t.empty(); }

      /** Returns the size of the %multimap.  */
      size_type
      size() const
      { return _M_t.size(); }

      /** Returns the maximum size of the %multimap.  */
      size_type
      max_size() const
      { return _M_t.max_size(); }

      // modifiers
      /**
       *  @brief Inserts a std::pair into the %multimap.
       *  @param  x  Pair to be inserted (see std::make_pair for easy creation
       *             of pairs).
       *  @return An iterator that points to the inserted (key,value) pair.
       *
       *  This function inserts a (key, value) pair into the %multimap.
       *  Contrary to a std::map the %multimap does not rely on unique keys and
       *  thus multiple pairs with the same key can be inserted.
       *
       *  Insertion requires logarithmic time.
       */
      iterator
      insert(const value_type& __x)
      { return _M_t._M_insert_equal(__x); }

      /**
       *  @brief Inserts a std::pair into the %multimap.
       *  @param  position  An iterator that serves as a hint as to where the
       *                    pair should be inserted.
       *  @param  x  Pair to be inserted (see std::make_pair for easy creation
       *             of pairs).
       *  @return An iterator that points to the inserted (key,value) pair.
       *
       *  This function inserts a (key, value) pair into the %multimap.
       *  Contrary to a std::map the %multimap does not rely on unique keys and
       *  thus multiple pairs with the same key can be inserted.
       *  Note that the first parameter is only a hint and can potentially
       *  improve the performance of the insertion process.  A bad hint would
       *  cause no gains in efficiency.
       *
       *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
       *  for more on "hinting".
       *
       *  Insertion requires logarithmic time (if the hint is not taken).
       */
      iterator
      insert(iterator __position, const value_type& __x)
      { return _M_t._M_insert_equal(__position, __x); }

      /**
       *  @brief A template function that attemps to insert a range of elements.
       *  @param  first  Iterator pointing to the start of the range to be
       *                 inserted.
       *  @param  last  Iterator pointing to the end of the range.
       *
       *  Complexity similar to that of the range constructor.
       */
      template <typename _InputIterator>
        void
        insert(_InputIterator __first, _InputIterator __last)
        { _M_t._M_insert_equal(__first, __last); }

      /**
       *  @brief Erases an element from a %multimap.
       *  @param  position  An iterator pointing to the element to be erased.
       *
       *  This function erases an element, pointed to by the given iterator,
       *  from a %multimap.  Note that this function only erases the element,
       *  and that if the element is itself a pointer, the pointed-to memory is
       *  not touched in any way.  Managing the pointer is the user's
       *  responsibilty.
       */
      void
      erase(iterator __position)
      { _M_t.erase(__position); }

      /**
       *  @brief Erases elements according to the provided key.
       *  @param  x  Key of element to be erased.
       *  @return  The number of elements erased.
       *
       *  This function erases all elements located by the given key from a
       *  %multimap.
       *  Note that this function only erases the element, and that if
       *  the element is itself a pointer, the pointed-to memory is not touched
       *  in any way.  Managing the pointer is the user's responsibilty.
       */
      size_type
      erase(const key_type& __x)
      { return _M_t.erase(__x); }

      /**
       *  @brief Erases a [first,last) range of elements from a %multimap.
       *  @param  first  Iterator pointing to the start of the range to be
       *                 erased.
       *  @param  last  Iterator pointing to the end of the range to be erased.
       *
       *  This function erases a sequence of elements from a %multimap.
       *  Note that this function only erases the elements, and that if
       *  the elements themselves are pointers, the pointed-to memory is not
       *  touched in any way.  Managing the pointer is the user's responsibilty.
       */
      void
      erase(iterator __first, iterator __last)
      { _M_t.erase(__first, __last); }

      /**
       *  @brief  Swaps data with another %multimap.
       *  @param  x  A %multimap of the same element and allocator types.
       *
       *  This exchanges the elements between two multimaps in constant time.
       *  (It is only swapping a pointer, an integer, and an instance of
       *  the @c Compare type (which itself is often stateless and empty), so it
       *  should be quite fast.)
       *  Note that the global std::swap() function is specialized such that
       *  std::swap(m1,m2) will feed to this function.
       */
      void
      swap(multimap& __x)
      { _M_t.swap(__x._M_t); }

      /**
       *  Erases all elements in a %multimap.  Note that this function only
       *  erases the elements, and that if the elements themselves are pointers,
       *  the pointed-to memory is not touched in any way.  Managing the pointer
       *  is the user's responsibilty.
       */
      void
      clear()
      { _M_t.clear(); }

      // observers
      /**
       *  Returns the key comparison object out of which the %multimap
       *  was constructed.
       */
      key_compare
      key_comp() const
      { return _M_t.key_comp(); }

      /**
       *  Returns a value comparison object, built from the key comparison
       *  object out of which the %multimap was constructed.
       */
      value_compare
      value_comp() const
      { return value_compare(_M_t.key_comp()); }

      // multimap operations
      /**
       *  @brief Tries to locate an element in a %multimap.
       *  @param  x  Key of (key, value) pair to be located.
       *  @return  Iterator pointing to sought-after element,
       *           or end() if not found.
       *
       *  This function takes a key and tries to locate the element with which
       *  the key matches.  If successful the function returns an iterator
       *  pointing to the sought after %pair.  If unsuccessful it returns the
       *  past-the-end ( @c end() ) iterator.
       */
      iterator
      find(const key_type& __x)
      { return _M_t.find(__x); }

      /**
       *  @brief Tries to locate an element in a %multimap.
       *  @param  x  Key of (key, value) pair to be located.
       *  @return  Read-only (constant) iterator pointing to sought-after
       *           element, or end() if not found.
       *
       *  This function takes a key and tries to locate the element with which
       *  the key matches.  If successful the function returns a constant
       *  iterator pointing to the sought after %pair.  If unsuccessful it
       *  returns the past-the-end ( @c end() ) iterator.
       */
      const_iterator
      find(const key_type& __x) const
      { return _M_t.find(__x); }

      /**
       *  @brief Finds the number of elements with given key.
       *  @param  x  Key of (key, value) pairs to be located.
       *  @return Number of elements with specified key.
       */
      size_type
      count(const key_type& __x) const
      { return _M_t.count(__x); }

      /**
       *  @brief Finds the beginning of a subsequence matching given key.
       *  @param  x  Key of (key, value) pair to be located.
       *  @return  Iterator pointing to first element equal to or greater
       *           than key, or end().
       *
       *  This function returns the first element of a subsequence of elements
       *  that matches the given key.  If unsuccessful it returns an iterator
       *  pointing to the first element that has a greater value than given key
       *  or end() if no such element exists.
       */
      iterator
      lower_bound(const key_type& __x)
      { return _M_t.lower_bound(__x); }

      /**
       *  @brief Finds the beginning of a subsequence matching given key.
       *  @param  x  Key of (key, value) pair to be located.
       *  @return  Read-only (constant) iterator pointing to first element
       *           equal to or greater than key, or end().
       *
       *  This function returns the first element of a subsequence of elements
       *  that matches the given key.  If unsuccessful the iterator will point
       *  to the next greatest element or, if no such greater element exists, to
       *  end().
       */
      const_iterator
      lower_bound(const key_type& __x) const
      { return _M_t.lower_bound(__x); }

      /**
       *  @brief Finds the end of a subsequence matching given key.
       *  @param  x  Key of (key, value) pair to be located.
       *  @return Iterator pointing to the first element
       *          greater than key, or end().
       */
      iterator
      upper_bound(const key_type& __x)
      { return _M_t.upper_bound(__x); }

      /**
       *  @brief Finds the end of a subsequence matching given key.
       *  @param  x  Key of (key, value) pair to be located.
       *  @return  Read-only (constant) iterator pointing to first iterator
       *           greater than key, or end().
       */
      const_iterator
      upper_bound(const key_type& __x) const
      { return _M_t.upper_bound(__x); }

      /**
       *  @brief Finds a subsequence matching given key.
       *  @param  x  Key of (key, value) pairs to be located.
       *  @return  Pair of iterators that possibly points to the subsequence
       *           matching given key.
       *
       *  This function is equivalent to
       *  @code
       *    std::make_pair(c.lower_bound(val),
       *                   c.upper_bound(val))
       *  @endcode
       *  (but is faster than making the calls separately).
       */
      std::pair<iterator, iterator>
      equal_range(const key_type& __x)
      { return _M_t.equal_range(__x); }

      /**
       *  @brief Finds a subsequence matching given key.
       *  @param  x  Key of (key, value) pairs to be located.
       *  @return  Pair of read-only (constant) iterators that possibly points
       *           to the subsequence matching given key.
       *
       *  This function is equivalent to
       *  @code
       *    std::make_pair(c.lower_bound(val),
       *                   c.upper_bound(val))
       *  @endcode
       *  (but is faster than making the calls separately).
       */
      std::pair<const_iterator, const_iterator>
      equal_range(const key_type& __x) const
      { return _M_t.equal_range(__x); }

      template <typename _K1, typename _T1, typename _C1, typename _A1>
        friend bool
        operator== (const multimap<_K1, _T1, _C1, _A1>&,
		    const multimap<_K1, _T1, _C1, _A1>&);

      template <typename _K1, typename _T1, typename _C1, typename _A1>
        friend bool
        operator< (const multimap<_K1, _T1, _C1, _A1>&,
		   const multimap<_K1, _T1, _C1, _A1>&);
  };

  /**
   *  @brief  Multimap equality comparison.
   *  @param  x  A %multimap.
   *  @param  y  A %multimap of the same type as @a x.
   *  @return  True iff the size and elements of the maps are equal.
   *
   *  This is an equivalence relation.  It is linear in the size of the
   *  multimaps.  Multimaps are considered equivalent if their sizes are equal,
   *  and if corresponding elements compare equal.
  */
  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
    { return __x._M_t == __y._M_t; }

  /**
   *  @brief  Multimap ordering relation.
   *  @param  x  A %multimap.
   *  @param  y  A %multimap of the same type as @a x.
   *  @return  True iff @a x is lexicographically less than @a y.
   *
   *  This is a total ordering relation.  It is linear in the size of the
   *  multimaps.  The elements must be comparable with @c <.
   *
   *  See std::lexicographical_compare() for how the determination is made.
  */
  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
              const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
    { return __x._M_t < __y._M_t; }

  /// Based on operator==
  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
    { return !(__x == __y); }

  /// Based on operator<
  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
              const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
    { return __y < __x; }

  /// Based on operator<
  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
    { return !(__y < __x); }

  /// Based on operator<
  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline bool
    operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
    { return !(__x < __y); }

  /// See std::multimap::swap().
  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    inline void
    swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
         multimap<_Key, _Tp, _Compare, _Alloc>& __y)
    { __x.swap(__y); }

_GLIBCXX_END_NESTED_NAMESPACE

#endif /* _MULTIMAP_H */