aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/Tooling/Syntax/BuildTree.cpp
blob: 1f192180ec4516bec68a5ae13f407ab0513d4e42 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
//===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Tooling/Syntax/BuildTree.h"
#include "clang/AST/ASTFwd.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Tooling/Syntax/Nodes.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "clang/Tooling/Syntax/Tree.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <cstddef>
#include <map>

using namespace clang;

LLVM_ATTRIBUTE_UNUSED
static bool isImplicitExpr(clang::Expr *E) { return E->IgnoreImplicit() != E; }

namespace {
/// Get start location of the Declarator from the TypeLoc.
/// E.g.:
///   loc of `(` in `int (a)`
///   loc of `*` in `int *(a)`
///   loc of the first `(` in `int (*a)(int)`
///   loc of the `*` in `int *(a)(int)`
///   loc of the first `*` in `const int *const *volatile a;`
///
/// It is non-trivial to get the start location because TypeLocs are stored
/// inside out. In the example above `*volatile` is the TypeLoc returned
/// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
/// returns.
struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
  SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
    auto L = Visit(T.getInnerLoc());
    if (L.isValid())
      return L;
    return T.getLParenLoc();
  }

  // Types spelled in the prefix part of the declarator.
  SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
    return HandlePointer(T);
  }

  SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
    return HandlePointer(T);
  }

  SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
    return HandlePointer(T);
  }

  SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
    return HandlePointer(T);
  }

  SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
    return HandlePointer(T);
  }

  // All other cases are not important, as they are either part of declaration
  // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
  // existing declarators (e.g. QualifiedTypeLoc). They cannot start the
  // declarator themselves, but their underlying type can.
  SourceLocation VisitTypeLoc(TypeLoc T) {
    auto N = T.getNextTypeLoc();
    if (!N)
      return SourceLocation();
    return Visit(N);
  }

  SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
    if (T.getTypePtr()->hasTrailingReturn())
      return SourceLocation(); // avoid recursing into the suffix of declarator.
    return VisitTypeLoc(T);
  }

private:
  template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
    auto L = Visit(T.getPointeeLoc());
    if (L.isValid())
      return L;
    return T.getLocalSourceRange().getBegin();
  }
};
} // namespace

static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) {
  switch (E.getOperator()) {
  // Comparison
  case OO_EqualEqual:
  case OO_ExclaimEqual:
  case OO_Greater:
  case OO_GreaterEqual:
  case OO_Less:
  case OO_LessEqual:
  case OO_Spaceship:
  // Assignment
  case OO_Equal:
  case OO_SlashEqual:
  case OO_PercentEqual:
  case OO_CaretEqual:
  case OO_PipeEqual:
  case OO_LessLessEqual:
  case OO_GreaterGreaterEqual:
  case OO_PlusEqual:
  case OO_MinusEqual:
  case OO_StarEqual:
  case OO_AmpEqual:
  // Binary computation
  case OO_Slash:
  case OO_Percent:
  case OO_Caret:
  case OO_Pipe:
  case OO_LessLess:
  case OO_GreaterGreater:
  case OO_AmpAmp:
  case OO_PipePipe:
  case OO_ArrowStar:
  case OO_Comma:
    return syntax::NodeKind::BinaryOperatorExpression;
  case OO_Tilde:
  case OO_Exclaim:
    return syntax::NodeKind::PrefixUnaryOperatorExpression;
  // Prefix/Postfix increment/decrement
  case OO_PlusPlus:
  case OO_MinusMinus:
    switch (E.getNumArgs()) {
    case 1:
      return syntax::NodeKind::PrefixUnaryOperatorExpression;
    case 2:
      return syntax::NodeKind::PostfixUnaryOperatorExpression;
    default:
      llvm_unreachable("Invalid number of arguments for operator");
    }
  // Operators that can be unary or binary
  case OO_Plus:
  case OO_Minus:
  case OO_Star:
  case OO_Amp:
    switch (E.getNumArgs()) {
    case 1:
      return syntax::NodeKind::PrefixUnaryOperatorExpression;
    case 2:
      return syntax::NodeKind::BinaryOperatorExpression;
    default:
      llvm_unreachable("Invalid number of arguments for operator");
    }
    return syntax::NodeKind::BinaryOperatorExpression;
  // Not yet supported by SyntaxTree
  case OO_New:
  case OO_Delete:
  case OO_Array_New:
  case OO_Array_Delete:
  case OO_Coawait:
  case OO_Call:
  case OO_Subscript:
  case OO_Arrow:
    return syntax::NodeKind::UnknownExpression;
  case OO_Conditional: // not overloadable
  case NUM_OVERLOADED_OPERATORS:
  case OO_None:
    llvm_unreachable("Not an overloadable operator");
  }
  llvm_unreachable("Unknown OverloadedOperatorKind enum");
}

/// Gets the range of declarator as defined by the C++ grammar. E.g.
///     `int a;` -> range of `a`,
///     `int *a;` -> range of `*a`,
///     `int a[10];` -> range of `a[10]`,
///     `int a[1][2][3];` -> range of `a[1][2][3]`,
///     `int *a = nullptr` -> range of `*a = nullptr`.
/// FIMXE: \p Name must be a source range, e.g. for `operator+`.
static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
                                      SourceLocation Name,
                                      SourceRange Initializer) {
  SourceLocation Start = GetStartLoc().Visit(T);
  SourceLocation End = T.getSourceRange().getEnd();
  assert(End.isValid());
  if (Name.isValid()) {
    if (Start.isInvalid())
      Start = Name;
    if (SM.isBeforeInTranslationUnit(End, Name))
      End = Name;
  }
  if (Initializer.isValid()) {
    auto InitializerEnd = Initializer.getEnd();
    assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) ||
           End == InitializerEnd);
    End = InitializerEnd;
  }
  return SourceRange(Start, End);
}

namespace {
/// All AST hierarchy roots that can be represented as pointers.
using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
/// Maintains a mapping from AST to syntax tree nodes. This class will get more
/// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
/// FIXME: expose this as public API.
class ASTToSyntaxMapping {
public:
  void add(ASTPtr From, syntax::Tree *To) {
    assert(To != nullptr);
    assert(!From.isNull());

    bool Added = Nodes.insert({From, To}).second;
    (void)Added;
    assert(Added && "mapping added twice");
  }

  syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }

private:
  llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
};
} // namespace

/// A helper class for constructing the syntax tree while traversing a clang
/// AST.
///
/// At each point of the traversal we maintain a list of pending nodes.
/// Initially all tokens are added as pending nodes. When processing a clang AST
/// node, the clients need to:
///   - create a corresponding syntax node,
///   - assign roles to all pending child nodes with 'markChild' and
///     'markChildToken',
///   - replace the child nodes with the new syntax node in the pending list
///     with 'foldNode'.
///
/// Note that all children are expected to be processed when building a node.
///
/// Call finalize() to finish building the tree and consume the root node.
class syntax::TreeBuilder {
public:
  TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
    for (const auto &T : Arena.tokenBuffer().expandedTokens())
      LocationToToken.insert({T.location().getRawEncoding(), &T});
  }

  llvm::BumpPtrAllocator &allocator() { return Arena.allocator(); }
  const SourceManager &sourceManager() const { return Arena.sourceManager(); }

  /// Populate children for \p New node, assuming it covers tokens from \p
  /// Range.
  void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
                ASTPtr From) {
    assert(New);
    Pending.foldChildren(Arena, Range, New);
    if (From)
      Mapping.add(From, New);
  }
  void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
                TypeLoc L) {
    // FIXME: add mapping for TypeLocs
    foldNode(Range, New, nullptr);
  }

  /// Notifies that we should not consume trailing semicolon when computing
  /// token range of \p D.
  void noticeDeclWithoutSemicolon(Decl *D);

  /// Mark the \p Child node with a corresponding \p Role. All marked children
  /// should be consumed by foldNode.
  /// When called on expressions (clang::Expr is derived from clang::Stmt),
  /// wraps expressions into expression statement.
  void markStmtChild(Stmt *Child, NodeRole Role);
  /// Should be called for expressions in non-statement position to avoid
  /// wrapping into expression statement.
  void markExprChild(Expr *Child, NodeRole Role);
  /// Set role for a token starting at \p Loc.
  void markChildToken(SourceLocation Loc, NodeRole R);
  /// Set role for \p T.
  void markChildToken(const syntax::Token *T, NodeRole R);

  /// Set role for \p N.
  void markChild(syntax::Node *N, NodeRole R);
  /// Set role for the syntax node matching \p N.
  void markChild(ASTPtr N, NodeRole R);

  /// Finish building the tree and consume the root node.
  syntax::TranslationUnit *finalize() && {
    auto Tokens = Arena.tokenBuffer().expandedTokens();
    assert(!Tokens.empty());
    assert(Tokens.back().kind() == tok::eof);

    // Build the root of the tree, consuming all the children.
    Pending.foldChildren(Arena, Tokens.drop_back(),
                         new (Arena.allocator()) syntax::TranslationUnit);

    auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
    TU->assertInvariantsRecursive();
    return TU;
  }

  /// Finds a token starting at \p L. The token must exist if \p L is valid.
  const syntax::Token *findToken(SourceLocation L) const;

  /// Finds the syntax tokens corresponding to the \p SourceRange.
  llvm::ArrayRef<syntax::Token> getRange(SourceRange Range) const {
    assert(Range.isValid());
    return getRange(Range.getBegin(), Range.getEnd());
  }

  /// Finds the syntax tokens corresponding to the passed source locations.
  /// \p First is the start position of the first token and \p Last is the start
  /// position of the last token.
  llvm::ArrayRef<syntax::Token> getRange(SourceLocation First,
                                         SourceLocation Last) const {
    assert(First.isValid());
    assert(Last.isValid());
    assert(First == Last ||
           Arena.sourceManager().isBeforeInTranslationUnit(First, Last));
    return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
  }

  llvm::ArrayRef<syntax::Token>
  getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
    auto Tokens = getRange(D->getSourceRange());
    return maybeAppendSemicolon(Tokens, D);
  }

  /// Returns true if \p D is the last declarator in a chain and is thus
  /// reponsible for creating SimpleDeclaration for the whole chain.
  template <class T>
  bool isResponsibleForCreatingDeclaration(const T *D) const {
    static_assert((std::is_base_of<DeclaratorDecl, T>::value ||
                   std::is_base_of<TypedefNameDecl, T>::value),
                  "only DeclaratorDecl and TypedefNameDecl are supported.");

    const Decl *Next = D->getNextDeclInContext();

    // There's no next sibling, this one is responsible.
    if (Next == nullptr) {
      return true;
    }
    const auto *NextT = llvm::dyn_cast<T>(Next);

    // Next sibling is not the same type, this one is responsible.
    if (NextT == nullptr) {
      return true;
    }
    // Next sibling doesn't begin at the same loc, it must be a different
    // declaration, so this declarator is responsible.
    if (NextT->getBeginLoc() != D->getBeginLoc()) {
      return true;
    }

    // NextT is a member of the same declaration, and we need the last member to
    // create declaration. This one is not responsible.
    return false;
  }

  llvm::ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
    llvm::ArrayRef<clang::syntax::Token> Tokens;
    // We want to drop the template parameters for specializations.
    if (const auto *S = llvm::dyn_cast<TagDecl>(D))
      Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
    else
      Tokens = getRange(D->getSourceRange());
    return maybeAppendSemicolon(Tokens, D);
  }

  llvm::ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
    return getRange(E->getSourceRange());
  }

  /// Find the adjusted range for the statement, consuming the trailing
  /// semicolon when needed.
  llvm::ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
    auto Tokens = getRange(S->getSourceRange());
    if (isa<CompoundStmt>(S))
      return Tokens;

    // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
    // all statements that end with those. Consume this semicolon here.
    if (Tokens.back().kind() == tok::semi)
      return Tokens;
    return withTrailingSemicolon(Tokens);
  }

private:
  llvm::ArrayRef<syntax::Token>
  maybeAppendSemicolon(llvm::ArrayRef<syntax::Token> Tokens,
                       const Decl *D) const {
    if (llvm::isa<NamespaceDecl>(D))
      return Tokens;
    if (DeclsWithoutSemicolons.count(D))
      return Tokens;
    // FIXME: do not consume trailing semicolon on function definitions.
    // Most declarations own a semicolon in syntax trees, but not in clang AST.
    return withTrailingSemicolon(Tokens);
  }

  llvm::ArrayRef<syntax::Token>
  withTrailingSemicolon(llvm::ArrayRef<syntax::Token> Tokens) const {
    assert(!Tokens.empty());
    assert(Tokens.back().kind() != tok::eof);
    // We never consume 'eof', so looking at the next token is ok.
    if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
      return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
    return Tokens;
  }

  void setRole(syntax::Node *N, NodeRole R) {
    assert(N->role() == NodeRole::Detached);
    N->setRole(R);
  }

  /// A collection of trees covering the input tokens.
  /// When created, each tree corresponds to a single token in the file.
  /// Clients call 'foldChildren' to attach one or more subtrees to a parent
  /// node and update the list of trees accordingly.
  ///
  /// Ensures that added nodes properly nest and cover the whole token stream.
  struct Forest {
    Forest(syntax::Arena &A) {
      assert(!A.tokenBuffer().expandedTokens().empty());
      assert(A.tokenBuffer().expandedTokens().back().kind() == tok::eof);
      // Create all leaf nodes.
      // Note that we do not have 'eof' in the tree.
      for (auto &T : A.tokenBuffer().expandedTokens().drop_back()) {
        auto *L = new (A.allocator()) syntax::Leaf(&T);
        L->Original = true;
        L->CanModify = A.tokenBuffer().spelledForExpanded(T).hasValue();
        Trees.insert(Trees.end(), {&T, L});
      }
    }

    void assignRole(llvm::ArrayRef<syntax::Token> Range,
                    syntax::NodeRole Role) {
      assert(!Range.empty());
      auto It = Trees.lower_bound(Range.begin());
      assert(It != Trees.end() && "no node found");
      assert(It->first == Range.begin() && "no child with the specified range");
      assert((std::next(It) == Trees.end() ||
              std::next(It)->first == Range.end()) &&
             "no child with the specified range");
      assert(It->second->role() == NodeRole::Detached &&
             "re-assigning role for a child");
      It->second->setRole(Role);
    }

    /// Add \p Node to the forest and attach child nodes based on \p Tokens.
    void foldChildren(const syntax::Arena &A,
                      llvm::ArrayRef<syntax::Token> Tokens,
                      syntax::Tree *Node) {
      // Attach children to `Node`.
      assert(Node->firstChild() == nullptr && "node already has children");

      auto *FirstToken = Tokens.begin();
      auto BeginChildren = Trees.lower_bound(FirstToken);

      assert((BeginChildren == Trees.end() ||
              BeginChildren->first == FirstToken) &&
             "fold crosses boundaries of existing subtrees");
      auto EndChildren = Trees.lower_bound(Tokens.end());
      assert(
          (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
          "fold crosses boundaries of existing subtrees");

      // We need to go in reverse order, because we can only prepend.
      for (auto It = EndChildren; It != BeginChildren; --It) {
        auto *C = std::prev(It)->second;
        if (C->role() == NodeRole::Detached)
          C->setRole(NodeRole::Unknown);
        Node->prependChildLowLevel(C);
      }

      // Mark that this node came from the AST and is backed by the source code.
      Node->Original = true;
      Node->CanModify = A.tokenBuffer().spelledForExpanded(Tokens).hasValue();

      Trees.erase(BeginChildren, EndChildren);
      Trees.insert({FirstToken, Node});
    }

    // EXPECTS: all tokens were consumed and are owned by a single root node.
    syntax::Node *finalize() && {
      assert(Trees.size() == 1);
      auto *Root = Trees.begin()->second;
      Trees = {};
      return Root;
    }

    std::string str(const syntax::Arena &A) const {
      std::string R;
      for (auto It = Trees.begin(); It != Trees.end(); ++It) {
        unsigned CoveredTokens =
            It != Trees.end()
                ? (std::next(It)->first - It->first)
                : A.tokenBuffer().expandedTokens().end() - It->first;

        R += std::string(llvm::formatv(
            "- '{0}' covers '{1}'+{2} tokens\n", It->second->kind(),
            It->first->text(A.sourceManager()), CoveredTokens));
        R += It->second->dump(A);
      }
      return R;
    }

  private:
    /// Maps from the start token to a subtree starting at that token.
    /// Keys in the map are pointers into the array of expanded tokens, so
    /// pointer order corresponds to the order of preprocessor tokens.
    std::map<const syntax::Token *, syntax::Node *> Trees;
  };

  /// For debugging purposes.
  std::string str() { return Pending.str(Arena); }

  syntax::Arena &Arena;
  /// To quickly find tokens by their start location.
  llvm::DenseMap</*SourceLocation*/ unsigned, const syntax::Token *>
      LocationToToken;
  Forest Pending;
  llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
  ASTToSyntaxMapping Mapping;
};

namespace {
class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
public:
  explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder)
      : Builder(Builder), Context(Context) {}

  bool shouldTraversePostOrder() const { return true; }

  bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
    return processDeclaratorAndDeclaration(DD);
  }

  bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
    return processDeclaratorAndDeclaration(TD);
  }

  bool VisitDecl(Decl *D) {
    assert(!D->isImplicit());
    Builder.foldNode(Builder.getDeclarationRange(D),
                     new (allocator()) syntax::UnknownDeclaration(), D);
    return true;
  }

  // RAV does not call WalkUpFrom* on explicit instantiations, so we have to
  // override Traverse.
  // FIXME: make RAV call WalkUpFrom* instead.
  bool
  TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
    if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
      return false;
    if (C->isExplicitSpecialization())
      return true; // we are only interested in explicit instantiations.
    auto *Declaration =
        cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
    foldExplicitTemplateInstantiation(
        Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()),
        Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
    return true;
  }

  bool WalkUpFromTemplateDecl(TemplateDecl *S) {
    foldTemplateDeclaration(
        Builder.getDeclarationRange(S),
        Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
        Builder.getDeclarationRange(S->getTemplatedDecl()), S);
    return true;
  }

  bool WalkUpFromTagDecl(TagDecl *C) {
    // FIXME: build the ClassSpecifier node.
    if (!C->isFreeStanding()) {
      assert(C->getNumTemplateParameterLists() == 0);
      return true;
    }
    handleFreeStandingTagDecl(C);
    return true;
  }

  syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
    assert(C->isFreeStanding());
    // Class is a declaration specifier and needs a spanning declaration node.
    auto DeclarationRange = Builder.getDeclarationRange(C);
    syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
    Builder.foldNode(DeclarationRange, Result, nullptr);

    // Build TemplateDeclaration nodes if we had template parameters.
    auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
      const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
      auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end());
      Result =
          foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
      DeclarationRange = R;
    };
    if (auto *S = llvm::dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
      ConsumeTemplateParameters(*S->getTemplateParameters());
    for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
      ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
    return Result;
  }

  bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
    // We do not want to call VisitDecl(), the declaration for translation
    // unit is built by finalize().
    return true;
  }

  bool WalkUpFromCompoundStmt(CompoundStmt *S) {
    using NodeRole = syntax::NodeRole;

    Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
    for (auto *Child : S->body())
      Builder.markStmtChild(Child, NodeRole::CompoundStatement_statement);
    Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);

    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::CompoundStatement, S);
    return true;
  }

  // Some statements are not yet handled by syntax trees.
  bool WalkUpFromStmt(Stmt *S) {
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::UnknownStatement, S);
    return true;
  }

  bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
    // We override to traverse range initializer as VarDecl.
    // RAV traverses it as a statement, we produce invalid node kinds in that
    // case.
    // FIXME: should do this in RAV instead?
    bool Result = [&, this]() {
      if (S->getInit() && !TraverseStmt(S->getInit()))
        return false;
      if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
        return false;
      if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
        return false;
      if (S->getBody() && !TraverseStmt(S->getBody()))
        return false;
      return true;
    }();
    WalkUpFromCXXForRangeStmt(S);
    return Result;
  }

  bool TraverseStmt(Stmt *S) {
    if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S)) {
      // We want to consume the semicolon, make sure SimpleDeclaration does not.
      for (auto *D : DS->decls())
        Builder.noticeDeclWithoutSemicolon(D);
    } else if (auto *E = llvm::dyn_cast_or_null<Expr>(S)) {
      return RecursiveASTVisitor::TraverseStmt(E->IgnoreImplicit());
    }
    return RecursiveASTVisitor::TraverseStmt(S);
  }

  // Some expressions are not yet handled by syntax trees.
  bool WalkUpFromExpr(Expr *E) {
    assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
    Builder.foldNode(Builder.getExprRange(E),
                     new (allocator()) syntax::UnknownExpression, E);
    return true;
  }

  syntax::NestedNameSpecifier *
  BuildNestedNameSpecifier(NestedNameSpecifierLoc QualifierLoc) {
    if (!QualifierLoc)
      return nullptr;
    for (auto it = QualifierLoc; it; it = it.getPrefix()) {
      auto *NS = new (allocator()) syntax::NameSpecifier;
      Builder.foldNode(Builder.getRange(it.getLocalSourceRange()), NS, nullptr);
      Builder.markChild(NS, syntax::NodeRole::NestedNameSpecifier_specifier);
    }
    auto *NNS = new (allocator()) syntax::NestedNameSpecifier;
    Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()), NNS,
                     nullptr);
    return NNS;
  }

  bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) {
    // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node
    // referencing the location of the UDL suffix (`_w` in `1.2_w`). The
    // UDL suffix location does not point to the beginning of a token, so we
    // can't represent the UDL suffix as a separate syntax tree node.

    return WalkUpFromUserDefinedLiteral(S);
  }

  syntax::UserDefinedLiteralExpression *
  buildUserDefinedLiteral(UserDefinedLiteral *S) {
    switch (S->getLiteralOperatorKind()) {
    case clang::UserDefinedLiteral::LOK_Integer:
      return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
    case clang::UserDefinedLiteral::LOK_Floating:
      return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
    case clang::UserDefinedLiteral::LOK_Character:
      return new (allocator()) syntax::CharUserDefinedLiteralExpression;
    case clang::UserDefinedLiteral::LOK_String:
      return new (allocator()) syntax::StringUserDefinedLiteralExpression;
    case clang::UserDefinedLiteral::LOK_Raw:
    case clang::UserDefinedLiteral::LOK_Template:
      // For raw literal operator and numeric literal operator template we
      // cannot get the type of the operand in the semantic AST. We get this
      // information from the token. As integer and floating point have the same
      // token kind, we run `NumericLiteralParser` again to distinguish them.
      auto TokLoc = S->getBeginLoc();
      auto TokSpelling =
          Builder.findToken(TokLoc)->text(Context.getSourceManager());
      auto Literal =
          NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(),
                               Context.getLangOpts(), Context.getTargetInfo(),
                               Context.getDiagnostics());
      if (Literal.isIntegerLiteral())
        return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
      else {
        assert(Literal.isFloatingLiteral());
        return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
      }
    }
    llvm_unreachable("Unknown literal operator kind.");
  }

  bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) {
    Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S);
    return true;
  }

  bool WalkUpFromDeclRefExpr(DeclRefExpr *S) {
    if (auto *NNS = BuildNestedNameSpecifier(S->getQualifierLoc()))
      Builder.markChild(NNS, syntax::NodeRole::IdExpression_qualifier);

    auto *unqualifiedId = new (allocator()) syntax::UnqualifiedId;
    // Get `UnqualifiedId` from `DeclRefExpr`.
    // FIXME: Extract this logic so that it can be used by `MemberExpr`,
    // and other semantic constructs, now it is tied to `DeclRefExpr`.
    if (!S->hasExplicitTemplateArgs()) {
      Builder.foldNode(Builder.getRange(S->getNameInfo().getSourceRange()),
                       unqualifiedId, nullptr);
    } else {
      auto templateIdSourceRange =
          SourceRange(S->getNameInfo().getBeginLoc(), S->getRAngleLoc());
      Builder.foldNode(Builder.getRange(templateIdSourceRange), unqualifiedId,
                       nullptr);
    }
    Builder.markChild(unqualifiedId, syntax::NodeRole::IdExpression_id);

    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::IdExpression, S);
    return true;
  }

  bool WalkUpFromParenExpr(ParenExpr *S) {
    Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen);
    Builder.markExprChild(S->getSubExpr(),
                          syntax::NodeRole::ParenExpression_subExpression);
    Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::ParenExpression, S);
    return true;
  }

  bool WalkUpFromIntegerLiteral(IntegerLiteral *S) {
    Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::IntegerLiteralExpression, S);
    return true;
  }

  bool WalkUpFromCharacterLiteral(CharacterLiteral *S) {
    Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::CharacterLiteralExpression, S);
    return true;
  }

  bool WalkUpFromFloatingLiteral(FloatingLiteral *S) {
    Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::FloatingLiteralExpression, S);
    return true;
  }

  bool WalkUpFromStringLiteral(StringLiteral *S) {
    Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::StringLiteralExpression, S);
    return true;
  }

  bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) {
    Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::BoolLiteralExpression, S);
    return true;
  }

  bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) {
    Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::CxxNullPtrExpression, S);
    return true;
  }

  bool WalkUpFromUnaryOperator(UnaryOperator *S) {
    Builder.markChildToken(S->getOperatorLoc(),
                           syntax::NodeRole::OperatorExpression_operatorToken);
    Builder.markExprChild(S->getSubExpr(),
                          syntax::NodeRole::UnaryOperatorExpression_operand);

    if (S->isPostfix())
      Builder.foldNode(Builder.getExprRange(S),
                       new (allocator()) syntax::PostfixUnaryOperatorExpression,
                       S);
    else
      Builder.foldNode(Builder.getExprRange(S),
                       new (allocator()) syntax::PrefixUnaryOperatorExpression,
                       S);

    return true;
  }

  bool WalkUpFromBinaryOperator(BinaryOperator *S) {
    Builder.markExprChild(
        S->getLHS(), syntax::NodeRole::BinaryOperatorExpression_leftHandSide);
    Builder.markChildToken(S->getOperatorLoc(),
                           syntax::NodeRole::OperatorExpression_operatorToken);
    Builder.markExprChild(
        S->getRHS(), syntax::NodeRole::BinaryOperatorExpression_rightHandSide);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::BinaryOperatorExpression, S);
    return true;
  }

  bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
    if (getOperatorNodeKind(*S) ==
        syntax::NodeKind::PostfixUnaryOperatorExpression) {
      // A postfix unary operator is declared as taking two operands. The
      // second operand is used to distinguish from its prefix counterpart. In
      // the semantic AST this "phantom" operand is represented as a
      // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this
      // operand because it does not correspond to anything written in source
      // code
      for (auto *child : S->children()) {
        if (child->getSourceRange().isInvalid())
          continue;
        if (!TraverseStmt(child))
          return false;
      }
      return WalkUpFromCXXOperatorCallExpr(S);
    } else
      return RecursiveASTVisitor::TraverseCXXOperatorCallExpr(S);
  }

  bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
    switch (getOperatorNodeKind(*S)) {
    case syntax::NodeKind::BinaryOperatorExpression:
      Builder.markExprChild(
          S->getArg(0),
          syntax::NodeRole::BinaryOperatorExpression_leftHandSide);
      Builder.markChildToken(
          S->getOperatorLoc(),
          syntax::NodeRole::OperatorExpression_operatorToken);
      Builder.markExprChild(
          S->getArg(1),
          syntax::NodeRole::BinaryOperatorExpression_rightHandSide);
      Builder.foldNode(Builder.getExprRange(S),
                       new (allocator()) syntax::BinaryOperatorExpression, S);
      return true;
    case syntax::NodeKind::PrefixUnaryOperatorExpression:
      Builder.markChildToken(
          S->getOperatorLoc(),
          syntax::NodeRole::OperatorExpression_operatorToken);
      Builder.markExprChild(S->getArg(0),
                            syntax::NodeRole::UnaryOperatorExpression_operand);
      Builder.foldNode(Builder.getExprRange(S),
                       new (allocator()) syntax::PrefixUnaryOperatorExpression,
                       S);
      return true;
    case syntax::NodeKind::PostfixUnaryOperatorExpression:
      Builder.markChildToken(
          S->getOperatorLoc(),
          syntax::NodeRole::OperatorExpression_operatorToken);
      Builder.markExprChild(S->getArg(0),
                            syntax::NodeRole::UnaryOperatorExpression_operand);
      Builder.foldNode(Builder.getExprRange(S),
                       new (allocator()) syntax::PostfixUnaryOperatorExpression,
                       S);
      return true;
    case syntax::NodeKind::UnknownExpression:
      return RecursiveASTVisitor::WalkUpFromCXXOperatorCallExpr(S);
    default:
      llvm_unreachable("getOperatorNodeKind() does not return this value");
    }
  }

  bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
    auto Tokens = Builder.getDeclarationRange(S);
    if (Tokens.front().kind() == tok::coloncolon) {
      // Handle nested namespace definitions. Those start at '::' token, e.g.
      // namespace a^::b {}
      // FIXME: build corresponding nodes for the name of this namespace.
      return true;
    }
    Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
    return true;
  }

  bool TraverseParenTypeLoc(ParenTypeLoc L) {
    // We reverse order of traversal to get the proper syntax structure.
    if (!WalkUpFromParenTypeLoc(L))
      return false;
    return TraverseTypeLoc(L.getInnerLoc());
  }

  bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
    Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
    Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
    Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
                     new (allocator()) syntax::ParenDeclarator, L);
    return true;
  }

  // Declarator chunks, they are produced by type locs and some clang::Decls.
  bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
    Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
    Builder.markExprChild(L.getSizeExpr(),
                          syntax::NodeRole::ArraySubscript_sizeExpression);
    Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
    Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
                     new (allocator()) syntax::ArraySubscript, L);
    return true;
  }

  bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
    Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
    for (auto *P : L.getParams()) {
      Builder.markChild(P, syntax::NodeRole::ParametersAndQualifiers_parameter);
    }
    Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
    Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
                     new (allocator()) syntax::ParametersAndQualifiers, L);
    return true;
  }

  bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
    if (!L.getTypePtr()->hasTrailingReturn())
      return WalkUpFromFunctionTypeLoc(L);

    auto *TrailingReturnTokens = BuildTrailingReturn(L);
    // Finish building the node for parameters.
    Builder.markChild(TrailingReturnTokens,
                      syntax::NodeRole::ParametersAndQualifiers_trailingReturn);
    return WalkUpFromFunctionTypeLoc(L);
  }

  bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
    auto SR = L.getLocalSourceRange();
    Builder.foldNode(Builder.getRange(SR),
                     new (allocator()) syntax::MemberPointer, L);
    return true;
  }

  // The code below is very regular, it could even be generated with some
  // preprocessor magic. We merely assign roles to the corresponding children
  // and fold resulting nodes.
  bool WalkUpFromDeclStmt(DeclStmt *S) {
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::DeclarationStatement, S);
    return true;
  }

  bool WalkUpFromNullStmt(NullStmt *S) {
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::EmptyStatement, S);
    return true;
  }

  bool WalkUpFromSwitchStmt(SwitchStmt *S) {
    Builder.markChildToken(S->getSwitchLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::SwitchStatement, S);
    return true;
  }

  bool WalkUpFromCaseStmt(CaseStmt *S) {
    Builder.markChildToken(S->getKeywordLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseStatement_value);
    Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::CaseStatement, S);
    return true;
  }

  bool WalkUpFromDefaultStmt(DefaultStmt *S) {
    Builder.markChildToken(S->getKeywordLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::DefaultStatement, S);
    return true;
  }

  bool WalkUpFromIfStmt(IfStmt *S) {
    Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getThen(),
                          syntax::NodeRole::IfStatement_thenStatement);
    Builder.markChildToken(S->getElseLoc(),
                           syntax::NodeRole::IfStatement_elseKeyword);
    Builder.markStmtChild(S->getElse(),
                          syntax::NodeRole::IfStatement_elseStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::IfStatement, S);
    return true;
  }

  bool WalkUpFromForStmt(ForStmt *S) {
    Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::ForStatement, S);
    return true;
  }

  bool WalkUpFromWhileStmt(WhileStmt *S) {
    Builder.markChildToken(S->getWhileLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::WhileStatement, S);
    return true;
  }

  bool WalkUpFromContinueStmt(ContinueStmt *S) {
    Builder.markChildToken(S->getContinueLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::ContinueStatement, S);
    return true;
  }

  bool WalkUpFromBreakStmt(BreakStmt *S) {
    Builder.markChildToken(S->getBreakLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::BreakStatement, S);
    return true;
  }

  bool WalkUpFromReturnStmt(ReturnStmt *S) {
    Builder.markChildToken(S->getReturnLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markExprChild(S->getRetValue(),
                          syntax::NodeRole::ReturnStatement_value);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::ReturnStatement, S);
    return true;
  }

  bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
    Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::RangeBasedForStatement, S);
    return true;
  }

  bool WalkUpFromEmptyDecl(EmptyDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::EmptyDeclaration, S);
    return true;
  }

  bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
    Builder.markExprChild(S->getAssertExpr(),
                          syntax::NodeRole::StaticAssertDeclaration_condition);
    Builder.markExprChild(S->getMessage(),
                          syntax::NodeRole::StaticAssertDeclaration_message);
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::StaticAssertDeclaration, S);
    return true;
  }

  bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::LinkageSpecificationDeclaration,
                     S);
    return true;
  }

  bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::NamespaceAliasDefinition, S);
    return true;
  }

  bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::UsingNamespaceDirective, S);
    return true;
  }

  bool WalkUpFromUsingDecl(UsingDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::UsingDeclaration, S);
    return true;
  }

  bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::UsingDeclaration, S);
    return true;
  }

  bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::UsingDeclaration, S);
    return true;
  }

  bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::TypeAliasDeclaration, S);
    return true;
  }

private:
  template <class T> SourceLocation getQualifiedNameStart(T *D) {
    static_assert((std::is_base_of<DeclaratorDecl, T>::value ||
                   std::is_base_of<TypedefNameDecl, T>::value),
                  "only DeclaratorDecl and TypedefNameDecl are supported.");

    auto DN = D->getDeclName();
    bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
    if (IsAnonymous)
      return SourceLocation();

    if (const auto *DD = llvm::dyn_cast<DeclaratorDecl>(D)) {
      if (DD->getQualifierLoc()) {
        return DD->getQualifierLoc().getBeginLoc();
      }
    }

    return D->getLocation();
  }

  SourceRange getInitializerRange(Decl *D) {
    if (auto *V = llvm::dyn_cast<VarDecl>(D)) {
      auto *I = V->getInit();
      // Initializers in range-based-for are not part of the declarator
      if (I && !V->isCXXForRangeDecl())
        return I->getSourceRange();
    }

    return SourceRange();
  }

  /// Folds SimpleDeclarator node (if present) and in case this is the last
  /// declarator in the chain it also folds SimpleDeclaration node.
  template <class T> bool processDeclaratorAndDeclaration(T *D) {
    SourceRange Initializer = getInitializerRange(D);
    auto Range = getDeclaratorRange(Builder.sourceManager(),
                                    D->getTypeSourceInfo()->getTypeLoc(),
                                    getQualifiedNameStart(D), Initializer);

    // There doesn't have to be a declarator (e.g. `void foo(int)` only has
    // declaration, but no declarator).
    if (Range.getBegin().isValid()) {
      auto *N = new (allocator()) syntax::SimpleDeclarator;
      Builder.foldNode(Builder.getRange(Range), N, nullptr);
      Builder.markChild(N, syntax::NodeRole::SimpleDeclaration_declarator);
    }

    if (Builder.isResponsibleForCreatingDeclaration(D)) {
      Builder.foldNode(Builder.getDeclarationRange(D),
                       new (allocator()) syntax::SimpleDeclaration, D);
    }
    return true;
  }

  /// Returns the range of the built node.
  syntax::TrailingReturnType *BuildTrailingReturn(FunctionProtoTypeLoc L) {
    assert(L.getTypePtr()->hasTrailingReturn());

    auto ReturnedType = L.getReturnLoc();
    // Build node for the declarator, if any.
    auto ReturnDeclaratorRange =
        getDeclaratorRange(this->Builder.sourceManager(), ReturnedType,
                           /*Name=*/SourceLocation(),
                           /*Initializer=*/SourceLocation());
    syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
    if (ReturnDeclaratorRange.isValid()) {
      ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
      Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
                       ReturnDeclarator, nullptr);
    }

    // Build node for trailing return type.
    auto Return = Builder.getRange(ReturnedType.getSourceRange());
    const auto *Arrow = Return.begin() - 1;
    assert(Arrow->kind() == tok::arrow);
    auto Tokens = llvm::makeArrayRef(Arrow, Return.end());
    Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken);
    if (ReturnDeclarator)
      Builder.markChild(ReturnDeclarator,
                        syntax::NodeRole::TrailingReturnType_declarator);
    auto *R = new (allocator()) syntax::TrailingReturnType;
    Builder.foldNode(Tokens, R, L);
    return R;
  }

  void foldExplicitTemplateInstantiation(
      ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
      const syntax::Token *TemplateKW,
      syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
    assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
    assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
    Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword);
    Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
    Builder.markChild(
        InnerDeclaration,
        syntax::NodeRole::ExplicitTemplateInstantiation_declaration);
    Builder.foldNode(
        Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
  }

  syntax::TemplateDeclaration *foldTemplateDeclaration(
      ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
      ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
    assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
    Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);

    auto *N = new (allocator()) syntax::TemplateDeclaration;
    Builder.foldNode(Range, N, From);
    Builder.markChild(N, syntax::NodeRole::TemplateDeclaration_declaration);
    return N;
  }

  /// A small helper to save some typing.
  llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }

  syntax::TreeBuilder &Builder;
  const ASTContext &Context;
};
} // namespace

void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
  DeclsWithoutSemicolons.insert(D);
}

void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
  if (Loc.isInvalid())
    return;
  Pending.assignRole(*findToken(Loc), Role);
}

void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
  if (!T)
    return;
  Pending.assignRole(*T, R);
}

void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
  assert(N);
  setRole(N, R);
}

void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
  auto *SN = Mapping.find(N);
  assert(SN != nullptr);
  setRole(SN, R);
}

void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
  if (!Child)
    return;

  syntax::Tree *ChildNode;
  if (Expr *ChildExpr = dyn_cast<Expr>(Child)) {
    // This is an expression in a statement position, consume the trailing
    // semicolon and form an 'ExpressionStatement' node.
    markExprChild(ChildExpr, NodeRole::ExpressionStatement_expression);
    ChildNode = new (allocator()) syntax::ExpressionStatement;
    // (!) 'getStmtRange()' ensures this covers a trailing semicolon.
    Pending.foldChildren(Arena, getStmtRange(Child), ChildNode);
  } else {
    ChildNode = Mapping.find(Child);
  }
  assert(ChildNode != nullptr);
  setRole(ChildNode, Role);
}

void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
  if (!Child)
    return;
  Child = Child->IgnoreImplicit();

  syntax::Tree *ChildNode = Mapping.find(Child);
  assert(ChildNode != nullptr);
  setRole(ChildNode, Role);
}

const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
  if (L.isInvalid())
    return nullptr;
  auto It = LocationToToken.find(L.getRawEncoding());
  assert(It != LocationToToken.end());
  return It->second;
}

syntax::TranslationUnit *
syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) {
  TreeBuilder Builder(A);
  BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext());
  return std::move(Builder).finalize();
}