aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/compiler-rt/lib/scudo/standalone/combined.h
blob: 3bb41eca88f72c00e40f83e24944cf6441c0baba (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
//===-- combined.h ----------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef SCUDO_COMBINED_H_
#define SCUDO_COMBINED_H_

#include "chunk.h"
#include "common.h"
#include "flags.h"
#include "flags_parser.h"
#include "local_cache.h"
#include "memtag.h"
#include "quarantine.h"
#include "report.h"
#include "secondary.h"
#include "stack_depot.h"
#include "string_utils.h"
#include "tsd.h"

#include "scudo/interface.h"

#ifdef GWP_ASAN_HOOKS
#include "gwp_asan/guarded_pool_allocator.h"
#include "gwp_asan/optional/backtrace.h"
#include "gwp_asan/optional/segv_handler.h"
#endif // GWP_ASAN_HOOKS

extern "C" inline void EmptyCallback() {}

#ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
// This function is not part of the NDK so it does not appear in any public
// header files. We only declare/use it when targeting the platform.
extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf,
                                                     size_t num_entries);
#endif

namespace scudo {

enum class Option { ReleaseInterval };

template <class Params, void (*PostInitCallback)(void) = EmptyCallback>
class Allocator {
public:
  using PrimaryT = typename Params::Primary;
  using CacheT = typename PrimaryT::CacheT;
  typedef Allocator<Params, PostInitCallback> ThisT;
  typedef typename Params::template TSDRegistryT<ThisT> TSDRegistryT;

  void callPostInitCallback() {
    static pthread_once_t OnceControl = PTHREAD_ONCE_INIT;
    pthread_once(&OnceControl, PostInitCallback);
  }

  struct QuarantineCallback {
    explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache)
        : Allocator(Instance), Cache(LocalCache) {}

    // Chunk recycling function, returns a quarantined chunk to the backend,
    // first making sure it hasn't been tampered with.
    void recycle(void *Ptr) {
      Chunk::UnpackedHeader Header;
      Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
      if (UNLIKELY(Header.State != Chunk::State::Quarantined))
        reportInvalidChunkState(AllocatorAction::Recycling, Ptr);

      Chunk::UnpackedHeader NewHeader = Header;
      NewHeader.State = Chunk::State::Available;
      Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);

      void *BlockBegin = Allocator::getBlockBegin(Ptr, &NewHeader);
      const uptr ClassId = NewHeader.ClassId;
      if (LIKELY(ClassId))
        Cache.deallocate(ClassId, BlockBegin);
      else
        Allocator.Secondary.deallocate(BlockBegin);
    }

    // We take a shortcut when allocating a quarantine batch by working with the
    // appropriate class ID instead of using Size. The compiler should optimize
    // the class ID computation and work with the associated cache directly.
    void *allocate(UNUSED uptr Size) {
      const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
          sizeof(QuarantineBatch) + Chunk::getHeaderSize());
      void *Ptr = Cache.allocate(QuarantineClassId);
      // Quarantine batch allocation failure is fatal.
      if (UNLIKELY(!Ptr))
        reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId));

      Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) +
                                     Chunk::getHeaderSize());
      Chunk::UnpackedHeader Header = {};
      Header.ClassId = QuarantineClassId & Chunk::ClassIdMask;
      Header.SizeOrUnusedBytes = sizeof(QuarantineBatch);
      Header.State = Chunk::State::Allocated;
      Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);

      return Ptr;
    }

    void deallocate(void *Ptr) {
      const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
          sizeof(QuarantineBatch) + Chunk::getHeaderSize());
      Chunk::UnpackedHeader Header;
      Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);

      if (UNLIKELY(Header.State != Chunk::State::Allocated))
        reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
      DCHECK_EQ(Header.ClassId, QuarantineClassId);
      DCHECK_EQ(Header.Offset, 0);
      DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch));

      Chunk::UnpackedHeader NewHeader = Header;
      NewHeader.State = Chunk::State::Available;
      Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);
      Cache.deallocate(QuarantineClassId,
                       reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
                                                Chunk::getHeaderSize()));
    }

  private:
    ThisT &Allocator;
    CacheT &Cache;
  };

  typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT;
  typedef typename QuarantineT::CacheT QuarantineCacheT;

  void initLinkerInitialized() {
    performSanityChecks();

    // Check if hardware CRC32 is supported in the binary and by the platform,
    // if so, opt for the CRC32 hardware version of the checksum.
    if (&computeHardwareCRC32 && hasHardwareCRC32())
      HashAlgorithm = Checksum::HardwareCRC32;

    if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie))))
      Cookie = static_cast<u32>(getMonotonicTime() ^
                                (reinterpret_cast<uptr>(this) >> 4));

    initFlags();
    reportUnrecognizedFlags();

    // Store some flags locally.
    Options.MayReturnNull = getFlags()->may_return_null;
    Options.FillContents =
        getFlags()->zero_contents
            ? ZeroFill
            : (getFlags()->pattern_fill_contents ? PatternOrZeroFill : NoFill);
    Options.DeallocTypeMismatch = getFlags()->dealloc_type_mismatch;
    Options.DeleteSizeMismatch = getFlags()->delete_size_mismatch;
    Options.TrackAllocationStacks = false;
    Options.QuarantineMaxChunkSize =
        static_cast<u32>(getFlags()->quarantine_max_chunk_size);

    Stats.initLinkerInitialized();
    const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms;
    Primary.initLinkerInitialized(ReleaseToOsIntervalMs);
    Secondary.initLinkerInitialized(&Stats, ReleaseToOsIntervalMs);

    Quarantine.init(
        static_cast<uptr>(getFlags()->quarantine_size_kb << 10),
        static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10));
  }

  // Initialize the embedded GWP-ASan instance. Requires the main allocator to
  // be functional, best called from PostInitCallback.
  void initGwpAsan() {
#ifdef GWP_ASAN_HOOKS
    gwp_asan::options::Options Opt;
    Opt.Enabled = getFlags()->GWP_ASAN_Enabled;
    // Bear in mind - Scudo has its own alignment guarantees that are strictly
    // enforced. Scudo exposes the same allocation function for everything from
    // malloc() to posix_memalign, so in general this flag goes unused, as Scudo
    // will always ask GWP-ASan for an aligned amount of bytes.
    Opt.PerfectlyRightAlign = getFlags()->GWP_ASAN_PerfectlyRightAlign;
    Opt.MaxSimultaneousAllocations =
        getFlags()->GWP_ASAN_MaxSimultaneousAllocations;
    Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate;
    Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers;
    // Embedded GWP-ASan is locked through the Scudo atfork handler (via
    // Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork
    // handler.
    Opt.InstallForkHandlers = false;
    Opt.Backtrace = gwp_asan::options::getBacktraceFunction();
    GuardedAlloc.init(Opt);

    if (Opt.InstallSignalHandlers)
      gwp_asan::crash_handler::installSignalHandlers(
          &GuardedAlloc, Printf, gwp_asan::options::getPrintBacktraceFunction(),
          Opt.Backtrace);
#endif // GWP_ASAN_HOOKS
  }

  void reset() { memset(this, 0, sizeof(*this)); }

  void unmapTestOnly() {
    TSDRegistry.unmapTestOnly();
    Primary.unmapTestOnly();
#ifdef GWP_ASAN_HOOKS
    if (getFlags()->GWP_ASAN_InstallSignalHandlers)
      gwp_asan::crash_handler::uninstallSignalHandlers();
    GuardedAlloc.uninitTestOnly();
#endif // GWP_ASAN_HOOKS
  }

  TSDRegistryT *getTSDRegistry() { return &TSDRegistry; }

  // The Cache must be provided zero-initialized.
  void initCache(CacheT *Cache) {
    Cache->initLinkerInitialized(&Stats, &Primary);
  }

  // Release the resources used by a TSD, which involves:
  // - draining the local quarantine cache to the global quarantine;
  // - releasing the cached pointers back to the Primary;
  // - unlinking the local stats from the global ones (destroying the cache does
  //   the last two items).
  void commitBack(TSD<ThisT> *TSD) {
    Quarantine.drain(&TSD->QuarantineCache,
                     QuarantineCallback(*this, TSD->Cache));
    TSD->Cache.destroy(&Stats);
  }

  ALWAYS_INLINE void *untagPointerMaybe(void *Ptr) {
    if (Primary.SupportsMemoryTagging)
      return reinterpret_cast<void *>(
          untagPointer(reinterpret_cast<uptr>(Ptr)));
    return Ptr;
  }

  NOINLINE u32 collectStackTrace() {
#ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
    // Discard collectStackTrace() frame and allocator function frame.
    constexpr uptr DiscardFrames = 2;
    uptr Stack[MaxTraceSize + DiscardFrames];
    uptr Size =
        android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames);
    Size = Min<uptr>(Size, MaxTraceSize + DiscardFrames);
    return Depot.insert(Stack + Min<uptr>(DiscardFrames, Size), Stack + Size);
#else
    return 0;
#endif
  }

  NOINLINE void *allocate(uptr Size, Chunk::Origin Origin,
                          uptr Alignment = MinAlignment,
                          bool ZeroContents = false) {
    initThreadMaybe();

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.shouldSample())) {
      if (void *Ptr = GuardedAlloc.allocate(roundUpTo(Size, Alignment)))
        return Ptr;
    }
#endif // GWP_ASAN_HOOKS

    FillContentsMode FillContents =
        ZeroContents ? ZeroFill : Options.FillContents;

    if (UNLIKELY(Alignment > MaxAlignment)) {
      if (Options.MayReturnNull)
        return nullptr;
      reportAlignmentTooBig(Alignment, MaxAlignment);
    }
    if (Alignment < MinAlignment)
      Alignment = MinAlignment;

    // If the requested size happens to be 0 (more common than you might think),
    // allocate MinAlignment bytes on top of the header. Then add the extra
    // bytes required to fulfill the alignment requirements: we allocate enough
    // to be sure that there will be an address in the block that will satisfy
    // the alignment.
    const uptr NeededSize =
        roundUpTo(Size, MinAlignment) +
        ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize());

    // Takes care of extravagantly large sizes as well as integer overflows.
    static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, "");
    if (UNLIKELY(Size >= MaxAllowedMallocSize)) {
      if (Options.MayReturnNull)
        return nullptr;
      reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize);
    }
    DCHECK_LE(Size, NeededSize);

    void *Block = nullptr;
    uptr ClassId = 0;
    uptr SecondaryBlockEnd;
    if (LIKELY(PrimaryT::canAllocate(NeededSize))) {
      ClassId = SizeClassMap::getClassIdBySize(NeededSize);
      DCHECK_NE(ClassId, 0U);
      bool UnlockRequired;
      auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
      Block = TSD->Cache.allocate(ClassId);
      // If the allocation failed, the most likely reason with a 32-bit primary
      // is the region being full. In that event, retry in each successively
      // larger class until it fits. If it fails to fit in the largest class,
      // fallback to the Secondary.
      if (UNLIKELY(!Block)) {
        while (ClassId < SizeClassMap::LargestClassId) {
          Block = TSD->Cache.allocate(++ClassId);
          if (LIKELY(Block)) {
            break;
          }
        }
        if (UNLIKELY(!Block)) {
          ClassId = 0;
        }
      }
      if (UnlockRequired)
        TSD->unlock();
    }
    if (UNLIKELY(ClassId == 0))
      Block = Secondary.allocate(NeededSize, Alignment, &SecondaryBlockEnd,
                                 FillContents);

    if (UNLIKELY(!Block)) {
      if (Options.MayReturnNull)
        return nullptr;
      reportOutOfMemory(NeededSize);
    }

    const uptr BlockUptr = reinterpret_cast<uptr>(Block);
    const uptr UnalignedUserPtr = BlockUptr + Chunk::getHeaderSize();
    const uptr UserPtr = roundUpTo(UnalignedUserPtr, Alignment);

    void *Ptr = reinterpret_cast<void *>(UserPtr);
    void *TaggedPtr = Ptr;
    if (ClassId) {
      // We only need to zero or tag the contents for Primary backed
      // allocations. We only set tags for primary allocations in order to avoid
      // faulting potentially large numbers of pages for large secondary
      // allocations. We assume that guard pages are enough to protect these
      // allocations.
      //
      // FIXME: When the kernel provides a way to set the background tag of a
      // mapping, we should be able to tag secondary allocations as well.
      //
      // When memory tagging is enabled, zeroing the contents is done as part of
      // setting the tag.
      if (UNLIKELY(useMemoryTagging())) {
        uptr PrevUserPtr;
        Chunk::UnpackedHeader Header;
        const uptr BlockEnd = BlockUptr + PrimaryT::getSizeByClassId(ClassId);
        // If possible, try to reuse the UAF tag that was set by deallocate().
        // For simplicity, only reuse tags if we have the same start address as
        // the previous allocation. This handles the majority of cases since
        // most allocations will not be more aligned than the minimum alignment.
        //
        // We need to handle situations involving reclaimed chunks, and retag
        // the reclaimed portions if necessary. In the case where the chunk is
        // fully reclaimed, the chunk's header will be zero, which will trigger
        // the code path for new mappings and invalid chunks that prepares the
        // chunk from scratch. There are three possibilities for partial
        // reclaiming:
        //
        // (1) Header was reclaimed, data was partially reclaimed.
        // (2) Header was not reclaimed, all data was reclaimed (e.g. because
        //     data started on a page boundary).
        // (3) Header was not reclaimed, data was partially reclaimed.
        //
        // Case (1) will be handled in the same way as for full reclaiming,
        // since the header will be zero.
        //
        // We can detect case (2) by loading the tag from the start
        // of the chunk. If it is zero, it means that either all data was
        // reclaimed (since we never use zero as the chunk tag), or that the
        // previous allocation was of size zero. Either way, we need to prepare
        // a new chunk from scratch.
        //
        // We can detect case (3) by moving to the next page (if covered by the
        // chunk) and loading the tag of its first granule. If it is zero, it
        // means that all following pages may need to be retagged. On the other
        // hand, if it is nonzero, we can assume that all following pages are
        // still tagged, according to the logic that if any of the pages
        // following the next page were reclaimed, the next page would have been
        // reclaimed as well.
        uptr TaggedUserPtr;
        if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) &&
            PrevUserPtr == UserPtr &&
            (TaggedUserPtr = loadTag(UserPtr)) != UserPtr) {
          uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes;
          const uptr NextPage = roundUpTo(TaggedUserPtr, getPageSizeCached());
          if (NextPage < PrevEnd && loadTag(NextPage) != NextPage)
            PrevEnd = NextPage;
          TaggedPtr = reinterpret_cast<void *>(TaggedUserPtr);
          resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, BlockEnd);
          if (Size) {
            // Clear any stack metadata that may have previously been stored in
            // the chunk data.
            memset(TaggedPtr, 0, archMemoryTagGranuleSize());
          }
        } else {
          TaggedPtr = prepareTaggedChunk(Ptr, Size, BlockEnd);
        }
        storeAllocationStackMaybe(Ptr);
      } else if (UNLIKELY(FillContents != NoFill)) {
        // This condition is not necessarily unlikely, but since memset is
        // costly, we might as well mark it as such.
        memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte,
               PrimaryT::getSizeByClassId(ClassId));
      }
    }

    Chunk::UnpackedHeader Header = {};
    if (UNLIKELY(UnalignedUserPtr != UserPtr)) {
      const uptr Offset = UserPtr - UnalignedUserPtr;
      DCHECK_GE(Offset, 2 * sizeof(u32));
      // The BlockMarker has no security purpose, but is specifically meant for
      // the chunk iteration function that can be used in debugging situations.
      // It is the only situation where we have to locate the start of a chunk
      // based on its block address.
      reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
      reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
      Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask;
    }
    Header.ClassId = ClassId & Chunk::ClassIdMask;
    Header.State = Chunk::State::Allocated;
    Header.Origin = Origin & Chunk::OriginMask;
    Header.SizeOrUnusedBytes =
        (ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size)) &
        Chunk::SizeOrUnusedBytesMask;
    Chunk::storeHeader(Cookie, Ptr, &Header);

    if (&__scudo_allocate_hook)
      __scudo_allocate_hook(TaggedPtr, Size);

    return TaggedPtr;
  }

  NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0,
                           UNUSED uptr Alignment = MinAlignment) {
    // For a deallocation, we only ensure minimal initialization, meaning thread
    // local data will be left uninitialized for now (when using ELF TLS). The
    // fallback cache will be used instead. This is a workaround for a situation
    // where the only heap operation performed in a thread would be a free past
    // the TLS destructors, ending up in initialized thread specific data never
    // being destroyed properly. Any other heap operation will do a full init.
    initThreadMaybe(/*MinimalInit=*/true);

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
      GuardedAlloc.deallocate(Ptr);
      return;
    }
#endif // GWP_ASAN_HOOKS

    if (&__scudo_deallocate_hook)
      __scudo_deallocate_hook(Ptr);

    if (UNLIKELY(!Ptr))
      return;
    if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)))
      reportMisalignedPointer(AllocatorAction::Deallocating, Ptr);

    Ptr = untagPointerMaybe(Ptr);

    Chunk::UnpackedHeader Header;
    Chunk::loadHeader(Cookie, Ptr, &Header);

    if (UNLIKELY(Header.State != Chunk::State::Allocated))
      reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
    if (Options.DeallocTypeMismatch) {
      if (Header.Origin != Origin) {
        // With the exception of memalign'd chunks, that can be still be free'd.
        if (UNLIKELY(Header.Origin != Chunk::Origin::Memalign ||
                     Origin != Chunk::Origin::Malloc))
          reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr,
                                    Header.Origin, Origin);
      }
    }

    const uptr Size = getSize(Ptr, &Header);
    if (DeleteSize && Options.DeleteSizeMismatch) {
      if (UNLIKELY(DeleteSize != Size))
        reportDeleteSizeMismatch(Ptr, DeleteSize, Size);
    }

    quarantineOrDeallocateChunk(Ptr, &Header, Size);
  }

  void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) {
    initThreadMaybe();

    if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) {
      if (Options.MayReturnNull)
        return nullptr;
      reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize);
    }

    void *OldTaggedPtr = OldPtr;
    OldPtr = untagPointerMaybe(OldPtr);

    // The following cases are handled by the C wrappers.
    DCHECK_NE(OldPtr, nullptr);
    DCHECK_NE(NewSize, 0);

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
      uptr OldSize = GuardedAlloc.getSize(OldPtr);
      void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
      if (NewPtr)
        memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
      GuardedAlloc.deallocate(OldPtr);
      return NewPtr;
    }
#endif // GWP_ASAN_HOOKS

    if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment)))
      reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr);

    Chunk::UnpackedHeader OldHeader;
    Chunk::loadHeader(Cookie, OldPtr, &OldHeader);

    if (UNLIKELY(OldHeader.State != Chunk::State::Allocated))
      reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr);

    // Pointer has to be allocated with a malloc-type function. Some
    // applications think that it is OK to realloc a memalign'ed pointer, which
    // will trigger this check. It really isn't.
    if (Options.DeallocTypeMismatch) {
      if (UNLIKELY(OldHeader.Origin != Chunk::Origin::Malloc))
        reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr,
                                  OldHeader.Origin, Chunk::Origin::Malloc);
    }

    void *BlockBegin = getBlockBegin(OldPtr, &OldHeader);
    uptr BlockEnd;
    uptr OldSize;
    const uptr ClassId = OldHeader.ClassId;
    if (LIKELY(ClassId)) {
      BlockEnd = reinterpret_cast<uptr>(BlockBegin) +
                 SizeClassMap::getSizeByClassId(ClassId);
      OldSize = OldHeader.SizeOrUnusedBytes;
    } else {
      BlockEnd = SecondaryT::getBlockEnd(BlockBegin);
      OldSize = BlockEnd -
                (reinterpret_cast<uptr>(OldPtr) + OldHeader.SizeOrUnusedBytes);
    }
    // If the new chunk still fits in the previously allocated block (with a
    // reasonable delta), we just keep the old block, and update the chunk
    // header to reflect the size change.
    if (reinterpret_cast<uptr>(OldPtr) + NewSize <= BlockEnd) {
      if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) {
        Chunk::UnpackedHeader NewHeader = OldHeader;
        NewHeader.SizeOrUnusedBytes =
            (ClassId ? NewSize
                     : BlockEnd - (reinterpret_cast<uptr>(OldPtr) + NewSize)) &
            Chunk::SizeOrUnusedBytesMask;
        Chunk::compareExchangeHeader(Cookie, OldPtr, &NewHeader, &OldHeader);
        if (UNLIKELY(ClassId && useMemoryTagging())) {
          resizeTaggedChunk(reinterpret_cast<uptr>(OldTaggedPtr) + OldSize,
                            reinterpret_cast<uptr>(OldTaggedPtr) + NewSize,
                            BlockEnd);
          storeAllocationStackMaybe(OldPtr);
        }
        return OldTaggedPtr;
      }
    }

    // Otherwise we allocate a new one, and deallocate the old one. Some
    // allocators will allocate an even larger chunk (by a fixed factor) to
    // allow for potential further in-place realloc. The gains of such a trick
    // are currently unclear.
    void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
    if (NewPtr) {
      const uptr OldSize = getSize(OldPtr, &OldHeader);
      memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize));
      quarantineOrDeallocateChunk(OldPtr, &OldHeader, OldSize);
    }
    return NewPtr;
  }

  // TODO(kostyak): disable() is currently best-effort. There are some small
  //                windows of time when an allocation could still succeed after
  //                this function finishes. We will revisit that later.
  void disable() {
    initThreadMaybe();
#ifdef GWP_ASAN_HOOKS
    GuardedAlloc.disable();
#endif
    TSDRegistry.disable();
    Stats.disable();
    Quarantine.disable();
    Primary.disable();
    Secondary.disable();
  }

  void enable() {
    initThreadMaybe();
    Secondary.enable();
    Primary.enable();
    Quarantine.enable();
    Stats.enable();
    TSDRegistry.enable();
#ifdef GWP_ASAN_HOOKS
    GuardedAlloc.enable();
#endif
  }

  // The function returns the amount of bytes required to store the statistics,
  // which might be larger than the amount of bytes provided. Note that the
  // statistics buffer is not necessarily constant between calls to this
  // function. This can be called with a null buffer or zero size for buffer
  // sizing purposes.
  uptr getStats(char *Buffer, uptr Size) {
    ScopedString Str(1024);
    disable();
    const uptr Length = getStats(&Str) + 1;
    enable();
    if (Length < Size)
      Size = Length;
    if (Buffer && Size) {
      memcpy(Buffer, Str.data(), Size);
      Buffer[Size - 1] = '\0';
    }
    return Length;
  }

  void printStats() {
    ScopedString Str(1024);
    disable();
    getStats(&Str);
    enable();
    Str.output();
  }

  void releaseToOS() {
    initThreadMaybe();
    Primary.releaseToOS();
    Secondary.releaseToOS();
  }

  // Iterate over all chunks and call a callback for all busy chunks located
  // within the provided memory range. Said callback must not use this allocator
  // or a deadlock can ensue. This fits Android's malloc_iterate() needs.
  void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback,
                         void *Arg) {
    initThreadMaybe();
    const uptr From = Base;
    const uptr To = Base + Size;
    auto Lambda = [this, From, To, Callback, Arg](uptr Block) {
      if (Block < From || Block >= To)
        return;
      uptr Chunk;
      Chunk::UnpackedHeader Header;
      if (getChunkFromBlock(Block, &Chunk, &Header) &&
          Header.State == Chunk::State::Allocated) {
        uptr TaggedChunk = Chunk;
        if (useMemoryTagging())
          TaggedChunk = loadTag(Chunk);
        Callback(TaggedChunk, getSize(reinterpret_cast<void *>(Chunk), &Header),
                 Arg);
      }
    };
    Primary.iterateOverBlocks(Lambda);
    Secondary.iterateOverBlocks(Lambda);
#ifdef GWP_ASAN_HOOKS
    GuardedAlloc.iterate(reinterpret_cast<void *>(Base), Size, Callback, Arg);
#endif
  }

  bool canReturnNull() {
    initThreadMaybe();
    return Options.MayReturnNull;
  }

  bool setOption(Option O, sptr Value) {
    if (O == Option::ReleaseInterval) {
      Primary.setReleaseToOsIntervalMs(static_cast<s32>(Value));
      Secondary.setReleaseToOsIntervalMs(static_cast<s32>(Value));
      return true;
    }
    return false;
  }

  // Return the usable size for a given chunk. Technically we lie, as we just
  // report the actual size of a chunk. This is done to counteract code actively
  // writing past the end of a chunk (like sqlite3) when the usable size allows
  // for it, which then forces realloc to copy the usable size of a chunk as
  // opposed to its actual size.
  uptr getUsableSize(const void *Ptr) {
    initThreadMaybe();
    if (UNLIKELY(!Ptr))
      return 0;

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
      return GuardedAlloc.getSize(Ptr);
#endif // GWP_ASAN_HOOKS

    Ptr = untagPointerMaybe(const_cast<void *>(Ptr));
    Chunk::UnpackedHeader Header;
    Chunk::loadHeader(Cookie, Ptr, &Header);
    // Getting the usable size of a chunk only makes sense if it's allocated.
    if (UNLIKELY(Header.State != Chunk::State::Allocated))
      reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr));
    return getSize(Ptr, &Header);
  }

  void getStats(StatCounters S) {
    initThreadMaybe();
    Stats.get(S);
  }

  // Returns true if the pointer provided was allocated by the current
  // allocator instance, which is compliant with tcmalloc's ownership concept.
  // A corrupted chunk will not be reported as owned, which is WAI.
  bool isOwned(const void *Ptr) {
    initThreadMaybe();
#ifdef GWP_ASAN_HOOKS
    if (GuardedAlloc.pointerIsMine(Ptr))
      return true;
#endif // GWP_ASAN_HOOKS
    if (!Ptr || !isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment))
      return false;
    Ptr = untagPointerMaybe(const_cast<void *>(Ptr));
    Chunk::UnpackedHeader Header;
    return Chunk::isValid(Cookie, Ptr, &Header) &&
           Header.State == Chunk::State::Allocated;
  }

  bool useMemoryTagging() { return Primary.useMemoryTagging(); }

  void disableMemoryTagging() { Primary.disableMemoryTagging(); }

  void setTrackAllocationStacks(bool Track) {
    initThreadMaybe();
    Options.TrackAllocationStacks = Track;
  }

  void setFillContents(FillContentsMode FillContents) {
    initThreadMaybe();
    Options.FillContents = FillContents;
  }

  const char *getStackDepotAddress() const {
    return reinterpret_cast<const char *>(&Depot);
  }

  const char *getRegionInfoArrayAddress() const {
    return Primary.getRegionInfoArrayAddress();
  }

  static uptr getRegionInfoArraySize() {
    return PrimaryT::getRegionInfoArraySize();
  }

  static void getErrorInfo(struct scudo_error_info *ErrorInfo,
                           uintptr_t FaultAddr, const char *DepotPtr,
                           const char *RegionInfoPtr, const char *Memory,
                           const char *MemoryTags, uintptr_t MemoryAddr,
                           size_t MemorySize) {
    *ErrorInfo = {};
    if (!PrimaryT::SupportsMemoryTagging ||
        MemoryAddr + MemorySize < MemoryAddr)
      return;

    uptr UntaggedFaultAddr = untagPointer(FaultAddr);
    u8 FaultAddrTag = extractTag(FaultAddr);
    BlockInfo Info =
        PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr);

    auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool {
      if (Addr < MemoryAddr ||
          Addr + archMemoryTagGranuleSize() < Addr ||
          Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize)
        return false;
      *Data = &Memory[Addr - MemoryAddr];
      *Tag = static_cast<u8>(
          MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]);
      return true;
    };

    auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr,
                         Chunk::UnpackedHeader *Header, const u32 **Data,
                         u8 *Tag) {
      const char *BlockBegin;
      u8 BlockBeginTag;
      if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag))
        return false;
      uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin);
      *ChunkAddr = Addr + ChunkOffset;

      const char *ChunkBegin;
      if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag))
        return false;
      *Header = *reinterpret_cast<const Chunk::UnpackedHeader *>(
          ChunkBegin - Chunk::getHeaderSize());
      *Data = reinterpret_cast<const u32 *>(ChunkBegin);
      return true;
    };

    auto *Depot = reinterpret_cast<const StackDepot *>(DepotPtr);

    auto MaybeCollectTrace = [&](uintptr_t(&Trace)[MaxTraceSize], u32 Hash) {
      uptr RingPos, Size;
      if (!Depot->find(Hash, &RingPos, &Size))
        return;
      for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I)
        Trace[I] = (*Depot)[RingPos + I];
    };

    size_t NextErrorReport = 0;

    // First, check for UAF.
    {
      uptr ChunkAddr;
      Chunk::UnpackedHeader Header;
      const u32 *Data;
      uint8_t Tag;
      if (ReadBlock(Info.BlockBegin, &ChunkAddr, &Header, &Data, &Tag) &&
          Header.State != Chunk::State::Allocated &&
          Data[MemTagPrevTagIndex] == FaultAddrTag) {
        auto *R = &ErrorInfo->reports[NextErrorReport++];
        R->error_type = USE_AFTER_FREE;
        R->allocation_address = ChunkAddr;
        R->allocation_size = Header.SizeOrUnusedBytes;
        MaybeCollectTrace(R->allocation_trace,
                          Data[MemTagAllocationTraceIndex]);
        R->allocation_tid = Data[MemTagAllocationTidIndex];
        MaybeCollectTrace(R->deallocation_trace,
                          Data[MemTagDeallocationTraceIndex]);
        R->deallocation_tid = Data[MemTagDeallocationTidIndex];
      }
    }

    auto CheckOOB = [&](uptr BlockAddr) {
      if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd)
        return false;

      uptr ChunkAddr;
      Chunk::UnpackedHeader Header;
      const u32 *Data;
      uint8_t Tag;
      if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) ||
          Header.State != Chunk::State::Allocated || Tag != FaultAddrTag)
        return false;

      auto *R = &ErrorInfo->reports[NextErrorReport++];
      R->error_type =
          UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW;
      R->allocation_address = ChunkAddr;
      R->allocation_size = Header.SizeOrUnusedBytes;
      MaybeCollectTrace(R->allocation_trace, Data[MemTagAllocationTraceIndex]);
      R->allocation_tid = Data[MemTagAllocationTidIndex];
      return NextErrorReport ==
             sizeof(ErrorInfo->reports) / sizeof(ErrorInfo->reports[0]);
    };

    if (CheckOOB(Info.BlockBegin))
      return;

    // Check for OOB in the 30 surrounding blocks. Beyond that we are likely to
    // hit false positives.
    for (int I = 1; I != 16; ++I)
      if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) ||
          CheckOOB(Info.BlockBegin - I * Info.BlockSize))
        return;
  }

private:
  using SecondaryT = typename Params::Secondary;
  typedef typename PrimaryT::SizeClassMap SizeClassMap;

  static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG;
  static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable.
  static const uptr MinAlignment = 1UL << MinAlignmentLog;
  static const uptr MaxAlignment = 1UL << MaxAlignmentLog;
  static const uptr MaxAllowedMallocSize =
      FIRST_32_SECOND_64(1UL << 31, 1ULL << 40);

  static_assert(MinAlignment >= sizeof(Chunk::PackedHeader),
                "Minimal alignment must at least cover a chunk header.");
  static_assert(!PrimaryT::SupportsMemoryTagging ||
                    MinAlignment >= archMemoryTagGranuleSize(),
                "");

  static const u32 BlockMarker = 0x44554353U;

  // These are indexes into an "array" of 32-bit values that store information
  // inline with a chunk that is relevant to diagnosing memory tag faults, where
  // 0 corresponds to the address of the user memory. This means that negative
  // indexes may be used to store information about allocations, while positive
  // indexes may only be used to store information about deallocations, because
  // the user memory is in use until it has been deallocated. The smallest index
  // that may be used is -2, which corresponds to 8 bytes before the user
  // memory, because the chunk header size is 8 bytes and in allocators that
  // support memory tagging the minimum alignment is at least the tag granule
  // size (16 on aarch64), and the largest index that may be used is 3 because
  // we are only guaranteed to have at least a granule's worth of space in the
  // user memory.
  static const sptr MemTagAllocationTraceIndex = -2;
  static const sptr MemTagAllocationTidIndex = -1;
  static const sptr MemTagDeallocationTraceIndex = 0;
  static const sptr MemTagDeallocationTidIndex = 1;
  static const sptr MemTagPrevTagIndex = 2;

  static const uptr MaxTraceSize = 64;

  GlobalStats Stats;
  TSDRegistryT TSDRegistry;
  PrimaryT Primary;
  SecondaryT Secondary;
  QuarantineT Quarantine;

  u32 Cookie;

  struct {
    u8 MayReturnNull : 1;       // may_return_null
    FillContentsMode FillContents : 2; // zero_contents, pattern_fill_contents
    u8 DeallocTypeMismatch : 1; // dealloc_type_mismatch
    u8 DeleteSizeMismatch : 1;  // delete_size_mismatch
    u8 TrackAllocationStacks : 1;
    u32 QuarantineMaxChunkSize; // quarantine_max_chunk_size
  } Options;

#ifdef GWP_ASAN_HOOKS
  gwp_asan::GuardedPoolAllocator GuardedAlloc;
#endif // GWP_ASAN_HOOKS

  StackDepot Depot;

  // The following might get optimized out by the compiler.
  NOINLINE void performSanityChecks() {
    // Verify that the header offset field can hold the maximum offset. In the
    // case of the Secondary allocator, it takes care of alignment and the
    // offset will always be small. In the case of the Primary, the worst case
    // scenario happens in the last size class, when the backend allocation
    // would already be aligned on the requested alignment, which would happen
    // to be the maximum alignment that would fit in that size class. As a
    // result, the maximum offset will be at most the maximum alignment for the
    // last size class minus the header size, in multiples of MinAlignment.
    Chunk::UnpackedHeader Header = {};
    const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex(
                                         SizeClassMap::MaxSize - MinAlignment);
    const uptr MaxOffset =
        (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
    Header.Offset = MaxOffset & Chunk::OffsetMask;
    if (UNLIKELY(Header.Offset != MaxOffset))
      reportSanityCheckError("offset");

    // Verify that we can fit the maximum size or amount of unused bytes in the
    // header. Given that the Secondary fits the allocation to a page, the worst
    // case scenario happens in the Primary. It will depend on the second to
    // last and last class sizes, as well as the dynamic base for the Primary.
    // The following is an over-approximation that works for our needs.
    const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1;
    Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
    if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes))
      reportSanityCheckError("size (or unused bytes)");

    const uptr LargestClassId = SizeClassMap::LargestClassId;
    Header.ClassId = LargestClassId;
    if (UNLIKELY(Header.ClassId != LargestClassId))
      reportSanityCheckError("class ID");
  }

  static inline void *getBlockBegin(const void *Ptr,
                                    Chunk::UnpackedHeader *Header) {
    return reinterpret_cast<void *>(
        reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() -
        (static_cast<uptr>(Header->Offset) << MinAlignmentLog));
  }

  // Return the size of a chunk as requested during its allocation.
  inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) {
    const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
    if (LIKELY(Header->ClassId))
      return SizeOrUnusedBytes;
    return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) -
           reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes;
  }

  ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) {
    TSDRegistry.initThreadMaybe(this, MinimalInit);
  }

  void quarantineOrDeallocateChunk(void *Ptr, Chunk::UnpackedHeader *Header,
                                   uptr Size) {
    Chunk::UnpackedHeader NewHeader = *Header;
    if (UNLIKELY(NewHeader.ClassId && useMemoryTagging())) {
      u8 PrevTag = extractTag(loadTag(reinterpret_cast<uptr>(Ptr)));
      uptr TaggedBegin, TaggedEnd;
      // Exclude the previous tag so that immediate use after free is detected
      // 100% of the time.
      setRandomTag(Ptr, Size, 1UL << PrevTag, &TaggedBegin, &TaggedEnd);
      storeDeallocationStackMaybe(Ptr, PrevTag);
    }
    // If the quarantine is disabled, the actual size of a chunk is 0 or larger
    // than the maximum allowed, we return a chunk directly to the backend.
    // Logical Or can be short-circuited, which introduces unnecessary
    // conditional jumps, so use bitwise Or and let the compiler be clever.
    const bool BypassQuarantine = !Quarantine.getCacheSize() | !Size |
                                  (Size > Options.QuarantineMaxChunkSize);
    if (BypassQuarantine) {
      NewHeader.State = Chunk::State::Available;
      Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header);
      void *BlockBegin = getBlockBegin(Ptr, &NewHeader);
      const uptr ClassId = NewHeader.ClassId;
      if (LIKELY(ClassId)) {
        bool UnlockRequired;
        auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
        TSD->Cache.deallocate(ClassId, BlockBegin);
        if (UnlockRequired)
          TSD->unlock();
      } else {
        Secondary.deallocate(BlockBegin);
      }
    } else {
      NewHeader.State = Chunk::State::Quarantined;
      Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header);
      bool UnlockRequired;
      auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
      Quarantine.put(&TSD->QuarantineCache,
                     QuarantineCallback(*this, TSD->Cache), Ptr, Size);
      if (UnlockRequired)
        TSD->unlock();
    }
  }

  bool getChunkFromBlock(uptr Block, uptr *Chunk,
                         Chunk::UnpackedHeader *Header) {
    *Chunk =
        Block + getChunkOffsetFromBlock(reinterpret_cast<const char *>(Block));
    return Chunk::isValid(Cookie, reinterpret_cast<void *>(*Chunk), Header);
  }

  static uptr getChunkOffsetFromBlock(const char *Block) {
    u32 Offset = 0;
    if (reinterpret_cast<const u32 *>(Block)[0] == BlockMarker)
      Offset = reinterpret_cast<const u32 *>(Block)[1];
    return Offset + Chunk::getHeaderSize();
  }

  void storeAllocationStackMaybe(void *Ptr) {
    if (!UNLIKELY(Options.TrackAllocationStacks))
      return;
    auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
    Ptr32[MemTagAllocationTraceIndex] = collectStackTrace();
    Ptr32[MemTagAllocationTidIndex] = getThreadID();
  }

  void storeDeallocationStackMaybe(void *Ptr, uint8_t PrevTag) {
    if (!UNLIKELY(Options.TrackAllocationStacks))
      return;

    // Disable tag checks here so that we don't need to worry about zero sized
    // allocations.
    ScopedDisableMemoryTagChecks x;
    auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
    Ptr32[MemTagDeallocationTraceIndex] = collectStackTrace();
    Ptr32[MemTagDeallocationTidIndex] = getThreadID();
    Ptr32[MemTagPrevTagIndex] = PrevTag;
  }

  uptr getStats(ScopedString *Str) {
    Primary.getStats(Str);
    Secondary.getStats(Str);
    Quarantine.getStats(Str);
    return Str->length();
  }
};

} // namespace scudo

#endif // SCUDO_COMBINED_H_