aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/include/llvm/Passes/PassBuilder.h
blob: 0357e4a2fc0588314eb62ddf4a2af22f97c74769 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
//===- Parsing, selection, and construction of pass pipelines --*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Interfaces for registering analysis passes, producing common pass manager
/// configurations, and parsing of pass pipelines.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_PASSES_PASSBUILDER_H
#define LLVM_PASSES_PASSBUILDER_H

#include "llvm/ADT/Optional.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/Error.h"
#include "llvm/Transforms/IPO/Inliner.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include <vector>

namespace llvm {
class StringRef;
class AAManager;
class TargetMachine;
class ModuleSummaryIndex;

/// A struct capturing PGO tunables.
struct PGOOptions {
  enum PGOAction { NoAction, IRInstr, IRUse, SampleUse };
  enum CSPGOAction { NoCSAction, CSIRInstr, CSIRUse };
  PGOOptions(std::string ProfileFile = "", std::string CSProfileGenFile = "",
             std::string ProfileRemappingFile = "", PGOAction Action = NoAction,
             CSPGOAction CSAction = NoCSAction, bool SamplePGOSupport = false)
      : ProfileFile(ProfileFile), CSProfileGenFile(CSProfileGenFile),
        ProfileRemappingFile(ProfileRemappingFile), Action(Action),
        CSAction(CSAction),
        SamplePGOSupport(SamplePGOSupport || Action == SampleUse) {
    // Note, we do allow ProfileFile.empty() for Action=IRUse LTO can
    // callback with IRUse action without ProfileFile.

    // If there is a CSAction, PGOAction cannot be IRInstr or SampleUse.
    assert(this->CSAction == NoCSAction ||
           (this->Action != IRInstr && this->Action != SampleUse));

    // For CSIRInstr, CSProfileGenFile also needs to be nonempty.
    assert(this->CSAction != CSIRInstr || !this->CSProfileGenFile.empty());

    // If CSAction is CSIRUse, PGOAction needs to be IRUse as they share
    // a profile.
    assert(this->CSAction != CSIRUse || this->Action == IRUse);

    // If neither Action nor CSAction, SamplePGOSupport needs to be true.
    assert(this->Action != NoAction || this->CSAction != NoCSAction ||
           this->SamplePGOSupport);
  }
  std::string ProfileFile;
  std::string CSProfileGenFile;
  std::string ProfileRemappingFile;
  PGOAction Action;
  CSPGOAction CSAction;
  bool SamplePGOSupport;
};

/// Tunable parameters for passes in the default pipelines.
class PipelineTuningOptions {
public:
  /// Constructor sets pipeline tuning defaults based on cl::opts. Each option
  /// can be set in the PassBuilder when using a LLVM as a library.
  PipelineTuningOptions();

  /// Tuning option to set loop interleaving on/off, set based on opt level.
  bool LoopInterleaving;

  /// Tuning option to enable/disable loop vectorization, set based on opt
  /// level.
  bool LoopVectorization;

  /// Tuning option to enable/disable slp loop vectorization, set based on opt
  /// level.
  bool SLPVectorization;

  /// Tuning option to enable/disable loop unrolling. Its default value is true.
  bool LoopUnrolling;

  /// Tuning option to forget all SCEV loops in LoopUnroll. Its default value
  /// is that of the flag: `-forget-scev-loop-unroll`.
  bool ForgetAllSCEVInLoopUnroll;

  /// Tuning option to enable/disable coroutine intrinsic lowering. Its default
  /// value is false. Frontends such as Clang may enable this conditionally. For
  /// example, Clang enables this option if the flags `-std=c++2a` or above, or
  /// `-fcoroutines-ts`, have been specified.
  bool Coroutines;

  /// Tuning option to cap the number of calls to retrive clobbering accesses in
  /// MemorySSA, in LICM.
  unsigned LicmMssaOptCap;

  /// Tuning option to disable promotion to scalars in LICM with MemorySSA, if
  /// the number of access is too large.
  unsigned LicmMssaNoAccForPromotionCap;

  /// Tuning option to enable/disable call graph profile. Its default value is
  /// that of the flag: `-enable-npm-call-graph-profile`.
  bool CallGraphProfile;
};

/// This class provides access to building LLVM's passes.
///
/// Its members provide the baseline state available to passes during their
/// construction. The \c PassRegistry.def file specifies how to construct all
/// of the built-in passes, and those may reference these members during
/// construction.
class PassBuilder {
  TargetMachine *TM;
  PipelineTuningOptions PTO;
  Optional<PGOOptions> PGOOpt;
  PassInstrumentationCallbacks *PIC;

public:
  /// A struct to capture parsed pass pipeline names.
  ///
  /// A pipeline is defined as a series of names, each of which may in itself
  /// recursively contain a nested pipeline. A name is either the name of a pass
  /// (e.g. "instcombine") or the name of a pipeline type (e.g. "cgscc"). If the
  /// name is the name of a pass, the InnerPipeline is empty, since passes
  /// cannot contain inner pipelines. See parsePassPipeline() for a more
  /// detailed description of the textual pipeline format.
  struct PipelineElement {
    StringRef Name;
    std::vector<PipelineElement> InnerPipeline;
  };

  /// ThinLTO phase.
  ///
  /// This enumerates the LLVM ThinLTO optimization phases.
  enum class ThinLTOPhase {
    /// No ThinLTO behavior needed.
    None,
    /// ThinLTO prelink (summary) phase.
    PreLink,
    /// ThinLTO postlink (backend compile) phase.
    PostLink
  };

  /// LLVM-provided high-level optimization levels.
  ///
  /// This enumerates the LLVM-provided high-level optimization levels. Each
  /// level has a specific goal and rationale.
  class OptimizationLevel final {
    unsigned SpeedLevel = 2;
    unsigned SizeLevel = 0;
    OptimizationLevel(unsigned SpeedLevel, unsigned SizeLevel)
        : SpeedLevel(SpeedLevel), SizeLevel(SizeLevel) {
      // Check that only valid combinations are passed.
      assert(SpeedLevel <= 3 &&
             "Optimization level for speed should be 0, 1, 2, or 3");
      assert(SizeLevel <= 2 &&
             "Optimization level for size should be 0, 1, or 2");
      assert((SizeLevel == 0 || SpeedLevel == 2) &&
             "Optimize for size should be encoded with speedup level == 2");
    }

  public:
    OptimizationLevel() = default;
    /// Disable as many optimizations as possible. This doesn't completely
    /// disable the optimizer in all cases, for example always_inline functions
    /// can be required to be inlined for correctness.
    static const OptimizationLevel O0;

    /// Optimize quickly without destroying debuggability.
    ///
    /// This level is tuned to produce a result from the optimizer as quickly
    /// as possible and to avoid destroying debuggability. This tends to result
    /// in a very good development mode where the compiled code will be
    /// immediately executed as part of testing. As a consequence, where
    /// possible, we would like to produce efficient-to-execute code, but not
    /// if it significantly slows down compilation or would prevent even basic
    /// debugging of the resulting binary.
    ///
    /// As an example, complex loop transformations such as versioning,
    /// vectorization, or fusion don't make sense here due to the degree to
    /// which the executed code differs from the source code, and the compile
    /// time cost.
    static const OptimizationLevel O1;
    /// Optimize for fast execution as much as possible without triggering
    /// significant incremental compile time or code size growth.
    ///
    /// The key idea is that optimizations at this level should "pay for
    /// themselves". So if an optimization increases compile time by 5% or
    /// increases code size by 5% for a particular benchmark, that benchmark
    /// should also be one which sees a 5% runtime improvement. If the compile
    /// time or code size penalties happen on average across a diverse range of
    /// LLVM users' benchmarks, then the improvements should as well.
    ///
    /// And no matter what, the compile time needs to not grow superlinearly
    /// with the size of input to LLVM so that users can control the runtime of
    /// the optimizer in this mode.
    ///
    /// This is expected to be a good default optimization level for the vast
    /// majority of users.
    static const OptimizationLevel O2;
    /// Optimize for fast execution as much as possible.
    ///
    /// This mode is significantly more aggressive in trading off compile time
    /// and code size to get execution time improvements. The core idea is that
    /// this mode should include any optimization that helps execution time on
    /// balance across a diverse collection of benchmarks, even if it increases
    /// code size or compile time for some benchmarks without corresponding
    /// improvements to execution time.
    ///
    /// Despite being willing to trade more compile time off to get improved
    /// execution time, this mode still tries to avoid superlinear growth in
    /// order to make even significantly slower compile times at least scale
    /// reasonably. This does not preclude very substantial constant factor
    /// costs though.
    static const OptimizationLevel O3;
    /// Similar to \c O2 but tries to optimize for small code size instead of
    /// fast execution without triggering significant incremental execution
    /// time slowdowns.
    ///
    /// The logic here is exactly the same as \c O2, but with code size and
    /// execution time metrics swapped.
    ///
    /// A consequence of the different core goal is that this should in general
    /// produce substantially smaller executables that still run in
    /// a reasonable amount of time.
    static const OptimizationLevel Os;
    /// A very specialized mode that will optimize for code size at any and all
    /// costs.
    ///
    /// This is useful primarily when there are absolute size limitations and
    /// any effort taken to reduce the size is worth it regardless of the
    /// execution time impact. You should expect this level to produce rather
    /// slow, but very small, code.
    static const OptimizationLevel Oz;

    bool isOptimizingForSpeed() const {
      return SizeLevel == 0 && SpeedLevel > 0;
    }

    bool isOptimizingForSize() const { return SizeLevel > 0; }

    bool operator==(const OptimizationLevel &Other) const {
      return SizeLevel == Other.SizeLevel && SpeedLevel == Other.SpeedLevel;
    }
    bool operator!=(const OptimizationLevel &Other) const {
      return SizeLevel != Other.SizeLevel || SpeedLevel != Other.SpeedLevel;
    }

    unsigned getSpeedupLevel() const { return SpeedLevel; }

    unsigned getSizeLevel() const { return SizeLevel; }
  };

  explicit PassBuilder(TargetMachine *TM = nullptr,
                       PipelineTuningOptions PTO = PipelineTuningOptions(),
                       Optional<PGOOptions> PGOOpt = None,
                       PassInstrumentationCallbacks *PIC = nullptr)
      : TM(TM), PTO(PTO), PGOOpt(PGOOpt), PIC(PIC) {}

  /// Cross register the analysis managers through their proxies.
  ///
  /// This is an interface that can be used to cross register each
  /// AnalysisManager with all the others analysis managers.
  void crossRegisterProxies(LoopAnalysisManager &LAM,
                            FunctionAnalysisManager &FAM,
                            CGSCCAnalysisManager &CGAM,
                            ModuleAnalysisManager &MAM);

  /// Registers all available module analysis passes.
  ///
  /// This is an interface that can be used to populate a \c
  /// ModuleAnalysisManager with all registered module analyses. Callers can
  /// still manually register any additional analyses. Callers can also
  /// pre-register analyses and this will not override those.
  void registerModuleAnalyses(ModuleAnalysisManager &MAM);

  /// Registers all available CGSCC analysis passes.
  ///
  /// This is an interface that can be used to populate a \c CGSCCAnalysisManager
  /// with all registered CGSCC analyses. Callers can still manually register any
  /// additional analyses. Callers can also pre-register analyses and this will
  /// not override those.
  void registerCGSCCAnalyses(CGSCCAnalysisManager &CGAM);

  /// Registers all available function analysis passes.
  ///
  /// This is an interface that can be used to populate a \c
  /// FunctionAnalysisManager with all registered function analyses. Callers can
  /// still manually register any additional analyses. Callers can also
  /// pre-register analyses and this will not override those.
  void registerFunctionAnalyses(FunctionAnalysisManager &FAM);

  /// Registers all available loop analysis passes.
  ///
  /// This is an interface that can be used to populate a \c LoopAnalysisManager
  /// with all registered loop analyses. Callers can still manually register any
  /// additional analyses.
  void registerLoopAnalyses(LoopAnalysisManager &LAM);

  /// Construct the core LLVM function canonicalization and simplification
  /// pipeline.
  ///
  /// This is a long pipeline and uses most of the per-function optimization
  /// passes in LLVM to canonicalize and simplify the IR. It is suitable to run
  /// repeatedly over the IR and is not expected to destroy important
  /// information about the semantics of the IR.
  ///
  /// Note that \p Level cannot be `O0` here. The pipelines produced are
  /// only intended for use when attempting to optimize code. If frontends
  /// require some transformations for semantic reasons, they should explicitly
  /// build them.
  ///
  /// \p Phase indicates the current ThinLTO phase.
  FunctionPassManager
  buildFunctionSimplificationPipeline(OptimizationLevel Level,
                                      ThinLTOPhase Phase,
                                      bool DebugLogging = false);

  /// Construct the core LLVM module canonicalization and simplification
  /// pipeline.
  ///
  /// This pipeline focuses on canonicalizing and simplifying the entire module
  /// of IR. Much like the function simplification pipeline above, it is
  /// suitable to run repeatedly over the IR and is not expected to destroy
  /// important information. It does, however, perform inlining and other
  /// heuristic based simplifications that are not strictly reversible.
  ///
  /// Note that \p Level cannot be `O0` here. The pipelines produced are
  /// only intended for use when attempting to optimize code. If frontends
  /// require some transformations for semantic reasons, they should explicitly
  /// build them.
  ///
  /// \p Phase indicates the current ThinLTO phase.
  ModulePassManager
  buildModuleSimplificationPipeline(OptimizationLevel Level,
                                    ThinLTOPhase Phase,
                                    bool DebugLogging = false);

  /// Construct the module pipeline that performs inlining as well as
  /// the inlining-driven cleanups.
  ModuleInlinerWrapperPass buildInlinerPipeline(OptimizationLevel Level,
                                                ThinLTOPhase Phase,
                                                bool DebugLogging = false);

  /// Construct the core LLVM module optimization pipeline.
  ///
  /// This pipeline focuses on optimizing the execution speed of the IR. It
  /// uses cost modeling and thresholds to balance code growth against runtime
  /// improvements. It includes vectorization and other information destroying
  /// transformations. It also cannot generally be run repeatedly on a module
  /// without potentially seriously regressing either runtime performance of
  /// the code or serious code size growth.
  ///
  /// Note that \p Level cannot be `O0` here. The pipelines produced are
  /// only intended for use when attempting to optimize code. If frontends
  /// require some transformations for semantic reasons, they should explicitly
  /// build them.
  ModulePassManager buildModuleOptimizationPipeline(OptimizationLevel Level,
                                                    bool DebugLogging = false,
                                                    bool LTOPreLink = false);

  /// Build a per-module default optimization pipeline.
  ///
  /// This provides a good default optimization pipeline for per-module
  /// optimization and code generation without any link-time optimization. It
  /// typically correspond to frontend "-O[123]" options for optimization
  /// levels \c O1, \c O2 and \c O3 resp.
  ///
  /// Note that \p Level cannot be `O0` here. The pipelines produced are
  /// only intended for use when attempting to optimize code. If frontends
  /// require some transformations for semantic reasons, they should explicitly
  /// build them.
  ModulePassManager buildPerModuleDefaultPipeline(OptimizationLevel Level,
                                                  bool DebugLogging = false,
                                                  bool LTOPreLink = false);

  /// Build a pre-link, ThinLTO-targeting default optimization pipeline to
  /// a pass manager.
  ///
  /// This adds the pre-link optimizations tuned to prepare a module for
  /// a ThinLTO run. It works to minimize the IR which needs to be analyzed
  /// without making irreversible decisions which could be made better during
  /// the LTO run.
  ///
  /// Note that \p Level cannot be `O0` here. The pipelines produced are
  /// only intended for use when attempting to optimize code. If frontends
  /// require some transformations for semantic reasons, they should explicitly
  /// build them.
  ModulePassManager
  buildThinLTOPreLinkDefaultPipeline(OptimizationLevel Level,
                                     bool DebugLogging = false);

  /// Build an ThinLTO default optimization pipeline to a pass manager.
  ///
  /// This provides a good default optimization pipeline for link-time
  /// optimization and code generation. It is particularly tuned to fit well
  /// when IR coming into the LTO phase was first run through \c
  /// addPreLinkLTODefaultPipeline, and the two coordinate closely.
  ///
  /// Note that \p Level cannot be `O0` here. The pipelines produced are
  /// only intended for use when attempting to optimize code. If frontends
  /// require some transformations for semantic reasons, they should explicitly
  /// build them.
  ModulePassManager
  buildThinLTODefaultPipeline(OptimizationLevel Level, bool DebugLogging,
                              const ModuleSummaryIndex *ImportSummary);

  /// Build a pre-link, LTO-targeting default optimization pipeline to a pass
  /// manager.
  ///
  /// This adds the pre-link optimizations tuned to work well with a later LTO
  /// run. It works to minimize the IR which needs to be analyzed without
  /// making irreversible decisions which could be made better during the LTO
  /// run.
  ///
  /// Note that \p Level cannot be `O0` here. The pipelines produced are
  /// only intended for use when attempting to optimize code. If frontends
  /// require some transformations for semantic reasons, they should explicitly
  /// build them.
  ModulePassManager buildLTOPreLinkDefaultPipeline(OptimizationLevel Level,
                                                   bool DebugLogging = false);

  /// Build an LTO default optimization pipeline to a pass manager.
  ///
  /// This provides a good default optimization pipeline for link-time
  /// optimization and code generation. It is particularly tuned to fit well
  /// when IR coming into the LTO phase was first run through \c
  /// addPreLinkLTODefaultPipeline, and the two coordinate closely.
  ///
  /// Note that \p Level cannot be `O0` here. The pipelines produced are
  /// only intended for use when attempting to optimize code. If frontends
  /// require some transformations for semantic reasons, they should explicitly
  /// build them.
  ModulePassManager buildLTODefaultPipeline(OptimizationLevel Level,
                                            bool DebugLogging,
                                            ModuleSummaryIndex *ExportSummary);

  /// Build the default `AAManager` with the default alias analysis pipeline
  /// registered.
  AAManager buildDefaultAAPipeline();

  /// Parse a textual pass pipeline description into a \c
  /// ModulePassManager.
  ///
  /// The format of the textual pass pipeline description looks something like:
  ///
  ///   module(function(instcombine,sroa),dce,cgscc(inliner,function(...)),...)
  ///
  /// Pass managers have ()s describing the nest structure of passes. All passes
  /// are comma separated. As a special shortcut, if the very first pass is not
  /// a module pass (as a module pass manager is), this will automatically form
  /// the shortest stack of pass managers that allow inserting that first pass.
  /// So, assuming function passes 'fpassN', CGSCC passes 'cgpassN', and loop
  /// passes 'lpassN', all of these are valid:
  ///
  ///   fpass1,fpass2,fpass3
  ///   cgpass1,cgpass2,cgpass3
  ///   lpass1,lpass2,lpass3
  ///
  /// And they are equivalent to the following (resp.):
  ///
  ///   module(function(fpass1,fpass2,fpass3))
  ///   module(cgscc(cgpass1,cgpass2,cgpass3))
  ///   module(function(loop(lpass1,lpass2,lpass3)))
  ///
  /// This shortcut is especially useful for debugging and testing small pass
  /// combinations. Note that these shortcuts don't introduce any other magic.
  /// If the sequence of passes aren't all the exact same kind of pass, it will
  /// be an error. You cannot mix different levels implicitly, you must
  /// explicitly form a pass manager in which to nest passes.
  Error parsePassPipeline(ModulePassManager &MPM, StringRef PipelineText,
                          bool VerifyEachPass = true,
                          bool DebugLogging = false);

  /// {{@ Parse a textual pass pipeline description into a specific PassManager
  ///
  /// Automatic deduction of an appropriate pass manager stack is not supported.
  /// For example, to insert a loop pass 'lpass' into a FunctionPassManager,
  /// this is the valid pipeline text:
  ///
  ///   function(lpass)
  Error parsePassPipeline(CGSCCPassManager &CGPM, StringRef PipelineText,
                          bool VerifyEachPass = true,
                          bool DebugLogging = false);
  Error parsePassPipeline(FunctionPassManager &FPM, StringRef PipelineText,
                          bool VerifyEachPass = true,
                          bool DebugLogging = false);
  Error parsePassPipeline(LoopPassManager &LPM, StringRef PipelineText,
                          bool VerifyEachPass = true,
                          bool DebugLogging = false);
  /// @}}

  /// Parse a textual alias analysis pipeline into the provided AA manager.
  ///
  /// The format of the textual AA pipeline is a comma separated list of AA
  /// pass names:
  ///
  ///   basic-aa,globals-aa,...
  ///
  /// The AA manager is set up such that the provided alias analyses are tried
  /// in the order specified. See the \c AAManaager documentation for details
  /// about the logic used. This routine just provides the textual mapping
  /// between AA names and the analyses to register with the manager.
  ///
  /// Returns false if the text cannot be parsed cleanly. The specific state of
  /// the \p AA manager is unspecified if such an error is encountered and this
  /// returns false.
  Error parseAAPipeline(AAManager &AA, StringRef PipelineText);

  /// Returns true if the pass name is the name of an alias analysis pass.
  bool isAAPassName(StringRef PassName);

  /// Returns true if the pass name is the name of a (non-alias) analysis pass.
  bool isAnalysisPassName(StringRef PassName);

  /// Register a callback for a default optimizer pipeline extension
  /// point
  ///
  /// This extension point allows adding passes that perform peephole
  /// optimizations similar to the instruction combiner. These passes will be
  /// inserted after each instance of the instruction combiner pass.
  void registerPeepholeEPCallback(
      const std::function<void(FunctionPassManager &, OptimizationLevel)> &C) {
    PeepholeEPCallbacks.push_back(C);
  }

  /// Register a callback for a default optimizer pipeline extension
  /// point
  ///
  /// This extension point allows adding late loop canonicalization and
  /// simplification passes. This is the last point in the loop optimization
  /// pipeline before loop deletion. Each pass added
  /// here must be an instance of LoopPass.
  /// This is the place to add passes that can remove loops, such as target-
  /// specific loop idiom recognition.
  void registerLateLoopOptimizationsEPCallback(
      const std::function<void(LoopPassManager &, OptimizationLevel)> &C) {
    LateLoopOptimizationsEPCallbacks.push_back(C);
  }

  /// Register a callback for a default optimizer pipeline extension
  /// point
  ///
  /// This extension point allows adding loop passes to the end of the loop
  /// optimizer.
  void registerLoopOptimizerEndEPCallback(
      const std::function<void(LoopPassManager &, OptimizationLevel)> &C) {
    LoopOptimizerEndEPCallbacks.push_back(C);
  }

  /// Register a callback for a default optimizer pipeline extension
  /// point
  ///
  /// This extension point allows adding optimization passes after most of the
  /// main optimizations, but before the last cleanup-ish optimizations.
  void registerScalarOptimizerLateEPCallback(
      const std::function<void(FunctionPassManager &, OptimizationLevel)> &C) {
    ScalarOptimizerLateEPCallbacks.push_back(C);
  }

  /// Register a callback for a default optimizer pipeline extension
  /// point
  ///
  /// This extension point allows adding CallGraphSCC passes at the end of the
  /// main CallGraphSCC passes and before any function simplification passes run
  /// by CGPassManager.
  void registerCGSCCOptimizerLateEPCallback(
      const std::function<void(CGSCCPassManager &, OptimizationLevel)> &C) {
    CGSCCOptimizerLateEPCallbacks.push_back(C);
  }

  /// Register a callback for a default optimizer pipeline extension
  /// point
  ///
  /// This extension point allows adding optimization passes before the
  /// vectorizer and other highly target specific optimization passes are
  /// executed.
  void registerVectorizerStartEPCallback(
      const std::function<void(FunctionPassManager &, OptimizationLevel)> &C) {
    VectorizerStartEPCallbacks.push_back(C);
  }

  /// Register a callback for a default optimizer pipeline extension point.
  ///
  /// This extension point allows adding optimization once at the start of the
  /// pipeline. This does not apply to 'backend' compiles (LTO and ThinLTO
  /// link-time pipelines).
  void registerPipelineStartEPCallback(
      const std::function<void(ModulePassManager &)> &C) {
    PipelineStartEPCallbacks.push_back(C);
  }

  /// Register a callback for a default optimizer pipeline extension point
  ///
  /// This extension point allows adding optimizations at the very end of the
  /// function optimization pipeline. A key difference between this and the
  /// legacy PassManager's OptimizerLast callback is that this extension point
  /// is not triggered at O0. Extensions to the O0 pipeline should append their
  /// passes to the end of the overall pipeline.
  void registerOptimizerLastEPCallback(
      const std::function<void(ModulePassManager &, OptimizationLevel)> &C) {
    OptimizerLastEPCallbacks.push_back(C);
  }

  /// Register a callback for parsing an AliasAnalysis Name to populate
  /// the given AAManager \p AA
  void registerParseAACallback(
      const std::function<bool(StringRef Name, AAManager &AA)> &C) {
    AAParsingCallbacks.push_back(C);
  }

  /// {{@ Register callbacks for analysis registration with this PassBuilder
  /// instance.
  /// Callees register their analyses with the given AnalysisManager objects.
  void registerAnalysisRegistrationCallback(
      const std::function<void(CGSCCAnalysisManager &)> &C) {
    CGSCCAnalysisRegistrationCallbacks.push_back(C);
  }
  void registerAnalysisRegistrationCallback(
      const std::function<void(FunctionAnalysisManager &)> &C) {
    FunctionAnalysisRegistrationCallbacks.push_back(C);
  }
  void registerAnalysisRegistrationCallback(
      const std::function<void(LoopAnalysisManager &)> &C) {
    LoopAnalysisRegistrationCallbacks.push_back(C);
  }
  void registerAnalysisRegistrationCallback(
      const std::function<void(ModuleAnalysisManager &)> &C) {
    ModuleAnalysisRegistrationCallbacks.push_back(C);
  }
  /// @}}

  /// {{@ Register pipeline parsing callbacks with this pass builder instance.
  /// Using these callbacks, callers can parse both a single pass name, as well
  /// as entire sub-pipelines, and populate the PassManager instance
  /// accordingly.
  void registerPipelineParsingCallback(
      const std::function<bool(StringRef Name, CGSCCPassManager &,
                               ArrayRef<PipelineElement>)> &C) {
    CGSCCPipelineParsingCallbacks.push_back(C);
  }
  void registerPipelineParsingCallback(
      const std::function<bool(StringRef Name, FunctionPassManager &,
                               ArrayRef<PipelineElement>)> &C) {
    FunctionPipelineParsingCallbacks.push_back(C);
  }
  void registerPipelineParsingCallback(
      const std::function<bool(StringRef Name, LoopPassManager &,
                               ArrayRef<PipelineElement>)> &C) {
    LoopPipelineParsingCallbacks.push_back(C);
  }
  void registerPipelineParsingCallback(
      const std::function<bool(StringRef Name, ModulePassManager &,
                               ArrayRef<PipelineElement>)> &C) {
    ModulePipelineParsingCallbacks.push_back(C);
  }
  /// @}}

  /// Register a callback for a top-level pipeline entry.
  ///
  /// If the PassManager type is not given at the top level of the pipeline
  /// text, this Callback should be used to determine the appropriate stack of
  /// PassManagers and populate the passed ModulePassManager.
  void registerParseTopLevelPipelineCallback(
      const std::function<bool(ModulePassManager &, ArrayRef<PipelineElement>,
                               bool VerifyEachPass, bool DebugLogging)> &C) {
    TopLevelPipelineParsingCallbacks.push_back(C);
  }

  /// Add PGOInstrumenation passes for O0 only.
  void addPGOInstrPassesForO0(ModulePassManager &MPM, bool DebugLogging,
                              bool RunProfileGen, bool IsCS,
                              std::string ProfileFile,
                              std::string ProfileRemappingFile);


  /// Returns PIC. External libraries can use this to register pass
  /// instrumentation callbacks.
  PassInstrumentationCallbacks *getPassInstrumentationCallbacks() const {
    return PIC;
  }

private:
  // O1 pass pipeline
  FunctionPassManager buildO1FunctionSimplificationPipeline(
      OptimizationLevel Level, ThinLTOPhase Phase, bool DebugLogging = false);

  static Optional<std::vector<PipelineElement>>
  parsePipelineText(StringRef Text);

  Error parseModulePass(ModulePassManager &MPM, const PipelineElement &E,
                        bool VerifyEachPass, bool DebugLogging);
  Error parseCGSCCPass(CGSCCPassManager &CGPM, const PipelineElement &E,
                       bool VerifyEachPass, bool DebugLogging);
  Error parseFunctionPass(FunctionPassManager &FPM, const PipelineElement &E,
                          bool VerifyEachPass, bool DebugLogging);
  Error parseLoopPass(LoopPassManager &LPM, const PipelineElement &E,
                      bool VerifyEachPass, bool DebugLogging);
  bool parseAAPassName(AAManager &AA, StringRef Name);

  Error parseLoopPassPipeline(LoopPassManager &LPM,
                              ArrayRef<PipelineElement> Pipeline,
                              bool VerifyEachPass, bool DebugLogging);
  Error parseFunctionPassPipeline(FunctionPassManager &FPM,
                                  ArrayRef<PipelineElement> Pipeline,
                                  bool VerifyEachPass, bool DebugLogging);
  Error parseCGSCCPassPipeline(CGSCCPassManager &CGPM,
                               ArrayRef<PipelineElement> Pipeline,
                               bool VerifyEachPass, bool DebugLogging);
  Error parseModulePassPipeline(ModulePassManager &MPM,
                                ArrayRef<PipelineElement> Pipeline,
                                bool VerifyEachPass, bool DebugLogging);

  void addPGOInstrPasses(ModulePassManager &MPM, bool DebugLogging,
                         OptimizationLevel Level, bool RunProfileGen, bool IsCS,
                         std::string ProfileFile,
                         std::string ProfileRemappingFile);
  void invokePeepholeEPCallbacks(FunctionPassManager &, OptimizationLevel);

  // Extension Point callbacks
  SmallVector<std::function<void(FunctionPassManager &, OptimizationLevel)>, 2>
      PeepholeEPCallbacks;
  SmallVector<std::function<void(LoopPassManager &, OptimizationLevel)>, 2>
      LateLoopOptimizationsEPCallbacks;
  SmallVector<std::function<void(LoopPassManager &, OptimizationLevel)>, 2>
      LoopOptimizerEndEPCallbacks;
  SmallVector<std::function<void(FunctionPassManager &, OptimizationLevel)>, 2>
      ScalarOptimizerLateEPCallbacks;
  SmallVector<std::function<void(CGSCCPassManager &, OptimizationLevel)>, 2>
      CGSCCOptimizerLateEPCallbacks;
  SmallVector<std::function<void(FunctionPassManager &, OptimizationLevel)>, 2>
      VectorizerStartEPCallbacks;
  SmallVector<std::function<void(ModulePassManager &, OptimizationLevel)>, 2>
      OptimizerLastEPCallbacks;
  // Module callbacks
  SmallVector<std::function<void(ModulePassManager &)>, 2>
      PipelineStartEPCallbacks;
  SmallVector<std::function<void(ModuleAnalysisManager &)>, 2>
      ModuleAnalysisRegistrationCallbacks;
  SmallVector<std::function<bool(StringRef, ModulePassManager &,
                                 ArrayRef<PipelineElement>)>,
              2>
      ModulePipelineParsingCallbacks;
  SmallVector<std::function<bool(ModulePassManager &, ArrayRef<PipelineElement>,
                                 bool VerifyEachPass, bool DebugLogging)>,
              2>
      TopLevelPipelineParsingCallbacks;
  // CGSCC callbacks
  SmallVector<std::function<void(CGSCCAnalysisManager &)>, 2>
      CGSCCAnalysisRegistrationCallbacks;
  SmallVector<std::function<bool(StringRef, CGSCCPassManager &,
                                 ArrayRef<PipelineElement>)>,
              2>
      CGSCCPipelineParsingCallbacks;
  // Function callbacks
  SmallVector<std::function<void(FunctionAnalysisManager &)>, 2>
      FunctionAnalysisRegistrationCallbacks;
  SmallVector<std::function<bool(StringRef, FunctionPassManager &,
                                 ArrayRef<PipelineElement>)>,
              2>
      FunctionPipelineParsingCallbacks;
  // Loop callbacks
  SmallVector<std::function<void(LoopAnalysisManager &)>, 2>
      LoopAnalysisRegistrationCallbacks;
  SmallVector<std::function<bool(StringRef, LoopPassManager &,
                                 ArrayRef<PipelineElement>)>,
              2>
      LoopPipelineParsingCallbacks;
  // AA callbacks
  SmallVector<std::function<bool(StringRef Name, AAManager &AA)>, 2>
      AAParsingCallbacks;
};

/// This utility template takes care of adding require<> and invalidate<>
/// passes for an analysis to a given \c PassManager. It is intended to be used
/// during parsing of a pass pipeline when parsing a single PipelineName.
/// When registering a new function analysis FancyAnalysis with the pass
/// pipeline name "fancy-analysis", a matching ParsePipelineCallback could look
/// like this:
///
/// static bool parseFunctionPipeline(StringRef Name, FunctionPassManager &FPM,
///                                   ArrayRef<PipelineElement> P) {
///   if (parseAnalysisUtilityPasses<FancyAnalysis>("fancy-analysis", Name,
///                                                 FPM))
///     return true;
///   return false;
/// }
template <typename AnalysisT, typename IRUnitT, typename AnalysisManagerT,
          typename... ExtraArgTs>
bool parseAnalysisUtilityPasses(
    StringRef AnalysisName, StringRef PipelineName,
    PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...> &PM) {
  if (!PipelineName.endswith(">"))
    return false;
  // See if this is an invalidate<> pass name
  if (PipelineName.startswith("invalidate<")) {
    PipelineName = PipelineName.substr(11, PipelineName.size() - 12);
    if (PipelineName != AnalysisName)
      return false;
    PM.addPass(InvalidateAnalysisPass<AnalysisT>());
    return true;
  }

  // See if this is a require<> pass name
  if (PipelineName.startswith("require<")) {
    PipelineName = PipelineName.substr(8, PipelineName.size() - 9);
    if (PipelineName != AnalysisName)
      return false;
    PM.addPass(RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
                                   ExtraArgTs...>());
    return true;
  }

  return false;
}
}

#endif