aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/MC/XCOFFObjectWriter.cpp
blob: 353c21068735ba4f5dc66f9f4bb8f8a2676d0575 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
//===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements XCOFF object file writer information.
//
//===----------------------------------------------------------------------===//

#include "llvm/BinaryFormat/XCOFF.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSectionXCOFF.h"
#include "llvm/MC/MCSymbolXCOFF.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/MCXCOFFObjectWriter.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MathExtras.h"

#include <deque>

using namespace llvm;

// An XCOFF object file has a limited set of predefined sections. The most
// important ones for us (right now) are:
// .text --> contains program code and read-only data.
// .data --> contains initialized data, function descriptors, and the TOC.
// .bss  --> contains uninitialized data.
// Each of these sections is composed of 'Control Sections'. A Control Section
// is more commonly referred to as a csect. A csect is an indivisible unit of
// code or data, and acts as a container for symbols. A csect is mapped
// into a section based on its storage-mapping class, with the exception of
// XMC_RW which gets mapped to either .data or .bss based on whether it's
// explicitly initialized or not.
//
// We don't represent the sections in the MC layer as there is nothing
// interesting about them at at that level: they carry information that is
// only relevant to the ObjectWriter, so we materialize them in this class.
namespace {

constexpr unsigned DefaultSectionAlign = 4;

// Packs the csect's alignment and type into a byte.
uint8_t getEncodedType(const MCSectionXCOFF *);

// Wrapper around an MCSymbolXCOFF.
struct Symbol {
  const MCSymbolXCOFF *const MCSym;
  uint32_t SymbolTableIndex;

  XCOFF::StorageClass getStorageClass() const {
    return MCSym->getStorageClass();
  }
  StringRef getName() const { return MCSym->getName(); }
  Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {}
};

// Wrapper for an MCSectionXCOFF.
struct ControlSection {
  const MCSectionXCOFF *const MCCsect;
  uint32_t SymbolTableIndex;
  uint32_t Address;
  uint32_t Size;

  SmallVector<Symbol, 1> Syms;
  StringRef getName() const { return MCCsect->getSectionName(); }
  ControlSection(const MCSectionXCOFF *MCSec)
      : MCCsect(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {}
};

// Represents the data related to a section excluding the csects that make up
// the raw data of the section. The csects are stored separately as not all
// sections contain csects, and some sections contain csects which are better
// stored separately, e.g. the .data section containing read-write, descriptor,
// TOCBase and TOC-entry csects.
struct Section {
  char Name[XCOFF::NameSize];
  // The physical/virtual address of the section. For an object file
  // these values are equivalent.
  uint32_t Address;
  uint32_t Size;
  uint32_t FileOffsetToData;
  uint32_t FileOffsetToRelocations;
  uint32_t RelocationCount;
  int32_t Flags;

  int16_t Index;

  // Virtual sections do not need storage allocated in the object file.
  const bool IsVirtual;

  void reset() {
    Address = 0;
    Size = 0;
    FileOffsetToData = 0;
    FileOffsetToRelocations = 0;
    RelocationCount = 0;
    Index = -1;
  }

  Section(const char *N, XCOFF::SectionTypeFlags Flags, bool IsVirtual)
      : Address(0), Size(0), FileOffsetToData(0), FileOffsetToRelocations(0),
        RelocationCount(0), Flags(Flags), Index(-1), IsVirtual(IsVirtual) {
    strncpy(Name, N, XCOFF::NameSize);
  }
};

class XCOFFObjectWriter : public MCObjectWriter {
  // Type to be used for a container representing a set of csects with
  // (approximately) the same storage mapping class. For example all the csects
  // with a storage mapping class of `xmc_pr` will get placed into the same
  // container.
  using CsectGroup = std::deque<ControlSection>;

  support::endian::Writer W;
  std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter;
  StringTableBuilder Strings;

  // The non-empty sections, in the order they will appear in the section header
  // table.
  std::vector<Section *> Sections;

  // The Predefined sections.
  Section Text;
  Section BSS;

  // CsectGroups. These store the csects which make up different parts of
  // the sections. Should have one for each set of csects that get mapped into
  // the same section and get handled in a 'similar' way.
  CsectGroup ProgramCodeCsects;
  CsectGroup BSSCsects;

  uint32_t SymbolTableEntryCount = 0;
  uint32_t SymbolTableOffset = 0;

  virtual void reset() override;

  void executePostLayoutBinding(MCAssembler &, const MCAsmLayout &) override;

  void recordRelocation(MCAssembler &, const MCAsmLayout &, const MCFragment *,
                        const MCFixup &, MCValue, uint64_t &) override;

  uint64_t writeObject(MCAssembler &, const MCAsmLayout &) override;

  static bool nameShouldBeInStringTable(const StringRef &);
  void writeSymbolName(const StringRef &);
  void writeSymbolTableEntryForCsectMemberLabel(const Symbol &,
                                                const ControlSection &, int16_t,
                                                uint64_t);
  void writeSymbolTableEntryForControlSection(const ControlSection &, int16_t,
                                              XCOFF::StorageClass);
  void writeFileHeader();
  void writeSectionHeaderTable();
  void writeSections(const MCAssembler &Asm, const MCAsmLayout &Layout);
  void writeSymbolTable(const MCAsmLayout &Layout);

  // Called after all the csects and symbols have been processed by
  // `executePostLayoutBinding`, this function handles building up the majority
  // of the structures in the object file representation. Namely:
  // *) Calculates physical/virtual addresses, raw-pointer offsets, and section
  //    sizes.
  // *) Assigns symbol table indices.
  // *) Builds up the section header table by adding any non-empty sections to
  //    `Sections`.
  void assignAddressesAndIndices(const MCAsmLayout &);

  bool
  needsAuxiliaryHeader() const { /* TODO aux header support not implemented. */
    return false;
  }

  // Returns the size of the auxiliary header to be written to the object file.
  size_t auxiliaryHeaderSize() const {
    assert(!needsAuxiliaryHeader() &&
           "Auxiliary header support not implemented.");
    return 0;
  }

public:
  XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
                    raw_pwrite_stream &OS);
};

XCOFFObjectWriter::XCOFFObjectWriter(
    std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS)
    : W(OS, support::big), TargetObjectWriter(std::move(MOTW)),
      Strings(StringTableBuilder::XCOFF),
      Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false),
      BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true) {}

void XCOFFObjectWriter::reset() {
  // Reset any sections we have written to, and empty the section header table.
  for (auto *Sec : Sections)
    Sec->reset();
  Sections.clear();

  // Clear any csects we have stored.
  ProgramCodeCsects.clear();
  BSSCsects.clear();

  // Reset the symbol table and string table.
  SymbolTableEntryCount = 0;
  SymbolTableOffset = 0;
  Strings.clear();

  MCObjectWriter::reset();
}

void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
                                                 const MCAsmLayout &Layout) {
  if (TargetObjectWriter->is64Bit())
    report_fatal_error("64-bit XCOFF object files are not supported yet.");

  // Maps the MC Section representation to its corresponding ControlSection
  // wrapper. Needed for finding the ControlSection to insert an MCSymbol into
  // from its containing MCSectionXCOFF.
  DenseMap<const MCSectionXCOFF *, ControlSection *> WrapperMap;

  for (const auto &S : Asm) {
    const auto *MCSec = cast<const MCSectionXCOFF>(&S);
    assert(WrapperMap.find(MCSec) == WrapperMap.end() &&
           "Cannot add a csect twice.");

    // If the name does not fit in the storage provided in the symbol table
    // entry, add it to the string table.
    if (nameShouldBeInStringTable(MCSec->getSectionName()))
      Strings.add(MCSec->getSectionName());

    switch (MCSec->getMappingClass()) {
    case XCOFF::XMC_PR:
      assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
             "Only an initialized csect can contain program code.");
      ProgramCodeCsects.emplace_back(MCSec);
      WrapperMap[MCSec] = &ProgramCodeCsects.back();
      break;
    case XCOFF::XMC_RW:
      if (XCOFF::XTY_CM == MCSec->getCSectType()) {
        BSSCsects.emplace_back(MCSec);
        WrapperMap[MCSec] = &BSSCsects.back();
        break;
      }
      report_fatal_error("Unhandled mapping of read-write csect to section.");
    case XCOFF::XMC_TC0:
      // TODO FIXME Handle emiting the TOC base.
      break;
    case XCOFF::XMC_BS:
      assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
             "Mapping invalid csect. CSECT with bss storage class must be "
             "common type.");
      BSSCsects.emplace_back(MCSec);
      WrapperMap[MCSec] = &BSSCsects.back();
      break;
    default:
      report_fatal_error("Unhandled mapping of csect to section.");
    }
  }

  for (const MCSymbol &S : Asm.symbols()) {
    // Nothing to do for temporary symbols.
    if (S.isTemporary())
      continue;
    const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S);

    // Map the symbol into its containing csect.
    const MCSectionXCOFF *ContainingCsect = XSym->getContainingCsect();
    assert(WrapperMap.find(ContainingCsect) != WrapperMap.end() &&
           "Expected containing csect to exist in map");

    // Lookup the containing csect and add the symbol to it.
    WrapperMap[ContainingCsect]->Syms.emplace_back(XSym);

    // If the name does not fit in the storage provided in the symbol table
    // entry, add it to the string table.
    if (nameShouldBeInStringTable(XSym->getName()))
      Strings.add(XSym->getName());
    }

  Strings.finalize();
  assignAddressesAndIndices(Layout);
}

void XCOFFObjectWriter::recordRelocation(MCAssembler &, const MCAsmLayout &,
                                         const MCFragment *, const MCFixup &,
                                         MCValue, uint64_t &) {
  report_fatal_error("XCOFF relocations not supported.");
}

void XCOFFObjectWriter::writeSections(const MCAssembler &Asm,
                                      const MCAsmLayout &Layout) {
  // Write the program code control sections one at a time.
  uint32_t CurrentAddressLocation = Text.Address;
  for (const auto &Csect : ProgramCodeCsects) {
    if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation)
      W.OS.write_zeros(PaddingSize);
    Asm.writeSectionData(W.OS, Csect.MCCsect, Layout);
    CurrentAddressLocation = Csect.Address + Csect.Size;
  }

  if (Text.Index != -1) {
    // The size of the tail padding in a section is the end virtual address of
    // the current section minus the the end virtual address of the last csect
    // in that section.
    if (uint32_t PaddingSize =
            Text.Address + Text.Size - CurrentAddressLocation)
      W.OS.write_zeros(PaddingSize);
  }
}

uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm,
                                        const MCAsmLayout &Layout) {
  // We always emit a timestamp of 0 for reproducibility, so ensure incremental
  // linking is not enabled, in case, like with Windows COFF, such a timestamp
  // is incompatible with incremental linking of XCOFF.
  if (Asm.isIncrementalLinkerCompatible())
    report_fatal_error("Incremental linking not supported for XCOFF.");

  if (TargetObjectWriter->is64Bit())
    report_fatal_error("64-bit XCOFF object files are not supported yet.");

  uint64_t StartOffset = W.OS.tell();

  writeFileHeader();
  writeSectionHeaderTable();
  writeSections(Asm, Layout);
  // TODO writeRelocations();

  writeSymbolTable(Layout);
  // Write the string table.
  Strings.write(W.OS);

  return W.OS.tell() - StartOffset;
}

bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef &SymbolName) {
  return SymbolName.size() > XCOFF::NameSize;
}

void XCOFFObjectWriter::writeSymbolName(const StringRef &SymbolName) {
  if (nameShouldBeInStringTable(SymbolName)) {
    W.write<int32_t>(0);
    W.write<uint32_t>(Strings.getOffset(SymbolName));
  } else {
    char Name[XCOFF::NameSize];
    std::strncpy(Name, SymbolName.data(), XCOFF::NameSize);
    ArrayRef<char> NameRef(Name, XCOFF::NameSize);
    W.write(NameRef);
  }
}

void XCOFFObjectWriter::writeSymbolTableEntryForCsectMemberLabel(
    const Symbol &SymbolRef, const ControlSection &CSectionRef,
    int16_t SectionIndex, uint64_t SymbolOffset) {
  // Name or Zeros and string table offset
  writeSymbolName(SymbolRef.getName());
  assert(SymbolOffset <= UINT32_MAX - CSectionRef.Address &&
         "Symbol address overflows.");
  W.write<uint32_t>(CSectionRef.Address + SymbolOffset);
  W.write<int16_t>(SectionIndex);
  // Basic/Derived type. See the description of the n_type field for symbol
  // table entries for a detailed description. Since we don't yet support
  // visibility, and all other bits are either optionally set or reserved, this
  // is always zero.
  // TODO FIXME How to assert a symbol's visibilty is default?
  // TODO Set the function indicator (bit 10, 0x0020) for functions
  // when debugging is enabled.
  W.write<uint16_t>(0);
  W.write<uint8_t>(SymbolRef.getStorageClass());
  // Always 1 aux entry for now.
  W.write<uint8_t>(1);

  // Now output the auxiliary entry.
  W.write<uint32_t>(CSectionRef.SymbolTableIndex);
  // Parameter typecheck hash. Not supported.
  W.write<uint32_t>(0);
  // Typecheck section number. Not supported.
  W.write<uint16_t>(0);
  // Symbol type: Label
  W.write<uint8_t>(XCOFF::XTY_LD);
  // Storage mapping class.
  W.write<uint8_t>(CSectionRef.MCCsect->getMappingClass());
  // Reserved (x_stab).
  W.write<uint32_t>(0);
  // Reserved (x_snstab).
  W.write<uint16_t>(0);
}

void XCOFFObjectWriter::writeSymbolTableEntryForControlSection(
    const ControlSection &CSectionRef, int16_t SectionIndex,
    XCOFF::StorageClass StorageClass) {
  // n_name, n_zeros, n_offset
  writeSymbolName(CSectionRef.getName());
  // n_value
  W.write<uint32_t>(CSectionRef.Address);
  // n_scnum
  W.write<int16_t>(SectionIndex);
  // Basic/Derived type. See the description of the n_type field for symbol
  // table entries for a detailed description. Since we don't yet support
  // visibility, and all other bits are either optionally set or reserved, this
  // is always zero.
  // TODO FIXME How to assert a symbol's visibilty is default?
  // TODO Set the function indicator (bit 10, 0x0020) for functions
  // when debugging is enabled.
  W.write<uint16_t>(0);
  // n_sclass
  W.write<uint8_t>(StorageClass);
  // Always 1 aux entry for now.
  W.write<uint8_t>(1);

  // Now output the auxiliary entry.
  W.write<uint32_t>(CSectionRef.Size);
  // Parameter typecheck hash. Not supported.
  W.write<uint32_t>(0);
  // Typecheck section number. Not supported.
  W.write<uint16_t>(0);
  // Symbol type.
  W.write<uint8_t>(getEncodedType(CSectionRef.MCCsect));
  // Storage mapping class.
  W.write<uint8_t>(CSectionRef.MCCsect->getMappingClass());
  // Reserved (x_stab).
  W.write<uint32_t>(0);
  // Reserved (x_snstab).
  W.write<uint16_t>(0);
}

void XCOFFObjectWriter::writeFileHeader() {
  // Magic.
  W.write<uint16_t>(0x01df);
  // Number of sections.
  W.write<uint16_t>(Sections.size());
  // Timestamp field. For reproducible output we write a 0, which represents no
  // timestamp.
  W.write<int32_t>(0);
  // Byte Offset to the start of the symbol table.
  W.write<uint32_t>(SymbolTableOffset);
  // Number of entries in the symbol table.
  W.write<int32_t>(SymbolTableEntryCount);
  // Size of the optional header.
  W.write<uint16_t>(0);
  // Flags.
  W.write<uint16_t>(0);
}

void XCOFFObjectWriter::writeSectionHeaderTable() {
  for (const auto *Sec : Sections) {
    // Write Name.
    ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize);
    W.write(NameRef);

    // Write the Physical Address and Virtual Address. In an object file these
    // are the same.
    W.write<uint32_t>(Sec->Address);
    W.write<uint32_t>(Sec->Address);

    W.write<uint32_t>(Sec->Size);
    W.write<uint32_t>(Sec->FileOffsetToData);

    // Relocation pointer and Lineno pointer. Not supported yet.
    W.write<uint32_t>(0);
    W.write<uint32_t>(0);

    // Relocation and line-number counts. Not supported yet.
    W.write<uint16_t>(0);
    W.write<uint16_t>(0);

    W.write<int32_t>(Sec->Flags);
  }
}

void XCOFFObjectWriter::writeSymbolTable(const MCAsmLayout &Layout) {
  // Print out symbol table for the program code.
  for (const auto &Csect : ProgramCodeCsects) {
    // Write out the control section first and then each symbol in it.
    writeSymbolTableEntryForControlSection(Csect, Text.Index,
                                           Csect.MCCsect->getStorageClass());
    for (const auto &Sym : Csect.Syms)
      writeSymbolTableEntryForCsectMemberLabel(
          Sym, Csect, Text.Index, Layout.getSymbolOffset(*Sym.MCSym));
  }

  // The BSS Section is special in that the csects must contain a single symbol,
  // and the contained symbol cannot be represented in the symbol table as a
  // label definition.
  for (auto &Csect : BSSCsects) {
    assert(Csect.Syms.size() == 1 &&
           "Uninitialized csect cannot contain more then 1 symbol.");
    Symbol &Sym = Csect.Syms.back();
    writeSymbolTableEntryForControlSection(Csect, BSS.Index,
                                           Sym.getStorageClass());
  }
}

void XCOFFObjectWriter::assignAddressesAndIndices(const MCAsmLayout &Layout) {
  // The address corrresponds to the address of sections and symbols in the
  // object file. We place the shared address 0 immediately after the
  // section header table.
  uint32_t Address = 0;
  // Section indices are 1-based in XCOFF.
  int16_t SectionIndex = 1;
  // The first symbol table entry is for the file name. We are not emitting it
  // yet, so start at index 0.
  uint32_t SymbolTableIndex = 0;

  // Text section comes first.
  if (!ProgramCodeCsects.empty()) {
    Sections.push_back(&Text);
    Text.Index = SectionIndex++;
    for (auto &Csect : ProgramCodeCsects) {
      const MCSectionXCOFF *MCSec = Csect.MCCsect;
      Csect.Address = alignTo(Address, MCSec->getAlignment());
      Csect.Size = Layout.getSectionAddressSize(MCSec);
      Address = Csect.Address + Csect.Size;
      Csect.SymbolTableIndex = SymbolTableIndex;
      // 1 main and 1 auxiliary symbol table entry for the csect.
      SymbolTableIndex += 2;
      for (auto &Sym : Csect.Syms) {
        Sym.SymbolTableIndex = SymbolTableIndex;
        // 1 main and 1 auxiliary symbol table entry for each contained symbol
        SymbolTableIndex += 2;
      }
    }
    Address = alignTo(Address, DefaultSectionAlign);

    // The first csect of a section can be aligned by adjusting the virtual
    // address of its containing section instead of writing zeroes into the
    // object file.
    Text.Address = ProgramCodeCsects.front().Address;

    Text.Size = Address - Text.Address;
  }

  // Data section Second. TODO

  // BSS Section third.
  if (!BSSCsects.empty()) {
    Sections.push_back(&BSS);
    BSS.Index = SectionIndex++;
    for (auto &Csect : BSSCsects) {
      const MCSectionXCOFF *MCSec = Csect.MCCsect;
      Csect.Address = alignTo(Address, MCSec->getAlignment());
      Csect.Size = Layout.getSectionAddressSize(MCSec);
      Address = Csect.Address + Csect.Size;
      Csect.SymbolTableIndex = SymbolTableIndex;
      // 1 main and 1 auxiliary symbol table entry for the csect.
      SymbolTableIndex += 2;

      assert(Csect.Syms.size() == 1 &&
             "csect in the BSS can only contain a single symbol.");
      Csect.Syms[0].SymbolTableIndex = Csect.SymbolTableIndex;
    }
    // Pad out Address to the default alignment. This is to match how the system
    // assembler handles the .bss section. Its size is always a multiple of 4.
    Address = alignTo(Address, DefaultSectionAlign);

    BSS.Address = BSSCsects.front().Address;
    BSS.Size = Address - BSS.Address;
  }

  SymbolTableEntryCount = SymbolTableIndex;

  // Calculate the RawPointer value for each section.
  uint64_t RawPointer = sizeof(XCOFF::FileHeader32) + auxiliaryHeaderSize() +
                        Sections.size() * sizeof(XCOFF::SectionHeader32);
  for (auto *Sec : Sections) {
    if (!Sec->IsVirtual) {
      Sec->FileOffsetToData = RawPointer;
      RawPointer += Sec->Size;
    }
  }

  // TODO Add in Relocation storage to the RawPointer Calculation.
  // TODO What to align the SymbolTable to?
  // TODO Error check that the number of symbol table entries fits in 32-bits
  // signed ...
  if (SymbolTableEntryCount)
    SymbolTableOffset = RawPointer;
}

// Takes the log base 2 of the alignment and shifts the result into the 5 most
// significant bits of a byte, then or's in the csect type into the least
// significant 3 bits.
uint8_t getEncodedType(const MCSectionXCOFF *Sec) {
  unsigned Align = Sec->getAlignment();
  assert(isPowerOf2_32(Align) && "Alignment must be a power of 2.");
  unsigned Log2Align = Log2_32(Align);
  // Result is a number in the range [0, 31] which fits in the 5 least
  // significant bits. Shift this value into the 5 most significant bits, and
  // bitwise-or in the csect type.
  uint8_t EncodedAlign = Log2Align << 3;
  return EncodedAlign | Sec->getCSectType();
}

} // end anonymous namespace

std::unique_ptr<MCObjectWriter>
llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
                              raw_pwrite_stream &OS) {
  return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS);
}