aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUInstCombineIntrinsic.cpp
blob: 06aa0055e4bb50e2abf570188f3f6033709df421 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
//===- AMDGPInstCombineIntrinsic.cpp - AMDGPU specific InstCombine pass ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file
// This file implements a TargetTransformInfo analysis pass specific to the
// AMDGPU target machine. It uses the target's detailed information to provide
// more precise answers to certain TTI queries, while letting the target
// independent and default TTI implementations handle the rest.
//
//===----------------------------------------------------------------------===//

#include "AMDGPUInstrInfo.h"
#include "AMDGPUTargetTransformInfo.h"
#include "GCNSubtarget.h"
#include "R600Subtarget.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"

using namespace llvm;

#define DEBUG_TYPE "AMDGPUtti"

namespace {

struct AMDGPUImageDMaskIntrinsic {
  unsigned Intr;
};

#define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
#include "InstCombineTables.inc"

} // end anonymous namespace

// Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
//
// A single NaN input is folded to minnum, so we rely on that folding for
// handling NaNs.
static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1,
                           const APFloat &Src2) {
  APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2);

  APFloat::cmpResult Cmp0 = Max3.compare(Src0);
  assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately");
  if (Cmp0 == APFloat::cmpEqual)
    return maxnum(Src1, Src2);

  APFloat::cmpResult Cmp1 = Max3.compare(Src1);
  assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately");
  if (Cmp1 == APFloat::cmpEqual)
    return maxnum(Src0, Src2);

  return maxnum(Src0, Src1);
}

// Check if a value can be converted to a 16-bit value without losing
// precision.
static bool canSafelyConvertTo16Bit(Value &V) {
  Type *VTy = V.getType();
  if (VTy->isHalfTy() || VTy->isIntegerTy(16)) {
    // The value is already 16-bit, so we don't want to convert to 16-bit again!
    return false;
  }
  if (ConstantFP *ConstFloat = dyn_cast<ConstantFP>(&V)) {
    // We need to check that if we cast the index down to a half, we do not lose
    // precision.
    APFloat FloatValue(ConstFloat->getValueAPF());
    bool LosesInfo = true;
    FloatValue.convert(APFloat::IEEEhalf(), APFloat::rmTowardZero, &LosesInfo);
    return !LosesInfo;
  }
  Value *CastSrc;
  if (match(&V, m_FPExt(PatternMatch::m_Value(CastSrc))) ||
      match(&V, m_SExt(PatternMatch::m_Value(CastSrc))) ||
      match(&V, m_ZExt(PatternMatch::m_Value(CastSrc)))) {
    Type *CastSrcTy = CastSrc->getType();
    if (CastSrcTy->isHalfTy() || CastSrcTy->isIntegerTy(16))
      return true;
  }

  return false;
}

// Convert a value to 16-bit.
static Value *convertTo16Bit(Value &V, InstCombiner::BuilderTy &Builder) {
  Type *VTy = V.getType();
  if (isa<FPExtInst>(&V) || isa<SExtInst>(&V) || isa<ZExtInst>(&V))
    return cast<Instruction>(&V)->getOperand(0);
  if (VTy->isIntegerTy())
    return Builder.CreateIntCast(&V, Type::getInt16Ty(V.getContext()), false);
  if (VTy->isFloatingPointTy())
    return Builder.CreateFPCast(&V, Type::getHalfTy(V.getContext()));

  llvm_unreachable("Should never be called!");
}

static Optional<Instruction *>
simplifyAMDGCNImageIntrinsic(const GCNSubtarget *ST,
                             const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr,
                             IntrinsicInst &II, InstCombiner &IC) {
  if (!ST->hasA16() && !ST->hasG16())
    return None;

  bool FloatCoord = false;
  // true means derivatives can be converted to 16 bit, coordinates not
  bool OnlyDerivatives = false;

  for (unsigned OperandIndex = ImageDimIntr->GradientStart;
       OperandIndex < ImageDimIntr->VAddrEnd; OperandIndex++) {
    Value *Coord = II.getOperand(OperandIndex);
    // If the values are not derived from 16-bit values, we cannot optimize.
    if (!canSafelyConvertTo16Bit(*Coord)) {
      if (OperandIndex < ImageDimIntr->CoordStart ||
          ImageDimIntr->GradientStart == ImageDimIntr->CoordStart) {
        return None;
      }
      // All gradients can be converted, so convert only them
      OnlyDerivatives = true;
      break;
    }

    assert(OperandIndex == ImageDimIntr->GradientStart ||
           FloatCoord == Coord->getType()->isFloatingPointTy());
    FloatCoord = Coord->getType()->isFloatingPointTy();
  }

  if (OnlyDerivatives) {
    if (!ST->hasG16())
      return None;
  } else {
    if (!ST->hasA16())
      OnlyDerivatives = true; // Only supports G16
  }

  Type *CoordType = FloatCoord ? Type::getHalfTy(II.getContext())
                               : Type::getInt16Ty(II.getContext());

  SmallVector<Type *, 4> ArgTys;
  if (!Intrinsic::getIntrinsicSignature(II.getCalledFunction(), ArgTys))
    return None;

  ArgTys[ImageDimIntr->GradientTyArg] = CoordType;
  if (!OnlyDerivatives)
    ArgTys[ImageDimIntr->CoordTyArg] = CoordType;
  Function *I =
      Intrinsic::getDeclaration(II.getModule(), II.getIntrinsicID(), ArgTys);

  SmallVector<Value *, 8> Args(II.arg_operands());

  unsigned EndIndex =
      OnlyDerivatives ? ImageDimIntr->CoordStart : ImageDimIntr->VAddrEnd;
  for (unsigned OperandIndex = ImageDimIntr->GradientStart;
       OperandIndex < EndIndex; OperandIndex++) {
    Args[OperandIndex] =
        convertTo16Bit(*II.getOperand(OperandIndex), IC.Builder);
  }

  CallInst *NewCall = IC.Builder.CreateCall(I, Args);
  NewCall->takeName(&II);
  NewCall->copyMetadata(II);
  if (isa<FPMathOperator>(NewCall))
    NewCall->copyFastMathFlags(&II);
  return IC.replaceInstUsesWith(II, NewCall);
}

bool GCNTTIImpl::canSimplifyLegacyMulToMul(const Value *Op0, const Value *Op1,
                                           InstCombiner &IC) const {
  // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or
  // infinity, gives +0.0. If we can prove we don't have one of the special
  // cases then we can use a normal multiply instead.
  // TODO: Create and use isKnownFiniteNonZero instead of just matching
  // constants here.
  if (match(Op0, PatternMatch::m_FiniteNonZero()) ||
      match(Op1, PatternMatch::m_FiniteNonZero())) {
    // One operand is not zero or infinity or NaN.
    return true;
  }
  auto *TLI = &IC.getTargetLibraryInfo();
  if (isKnownNeverInfinity(Op0, TLI) && isKnownNeverNaN(Op0, TLI) &&
      isKnownNeverInfinity(Op1, TLI) && isKnownNeverNaN(Op1, TLI)) {
    // Neither operand is infinity or NaN.
    return true;
  }
  return false;
}

Optional<Instruction *>
GCNTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
  Intrinsic::ID IID = II.getIntrinsicID();
  switch (IID) {
  case Intrinsic::amdgcn_rcp: {
    Value *Src = II.getArgOperand(0);

    // TODO: Move to ConstantFolding/InstSimplify?
    if (isa<UndefValue>(Src)) {
      Type *Ty = II.getType();
      auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics()));
      return IC.replaceInstUsesWith(II, QNaN);
    }

    if (II.isStrictFP())
      break;

    if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
      const APFloat &ArgVal = C->getValueAPF();
      APFloat Val(ArgVal.getSemantics(), 1);
      Val.divide(ArgVal, APFloat::rmNearestTiesToEven);

      // This is more precise than the instruction may give.
      //
      // TODO: The instruction always flushes denormal results (except for f16),
      // should this also?
      return IC.replaceInstUsesWith(II, ConstantFP::get(II.getContext(), Val));
    }

    break;
  }
  case Intrinsic::amdgcn_rsq: {
    Value *Src = II.getArgOperand(0);

    // TODO: Move to ConstantFolding/InstSimplify?
    if (isa<UndefValue>(Src)) {
      Type *Ty = II.getType();
      auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics()));
      return IC.replaceInstUsesWith(II, QNaN);
    }

    break;
  }
  case Intrinsic::amdgcn_frexp_mant:
  case Intrinsic::amdgcn_frexp_exp: {
    Value *Src = II.getArgOperand(0);
    if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
      int Exp;
      APFloat Significand =
          frexp(C->getValueAPF(), Exp, APFloat::rmNearestTiesToEven);

      if (IID == Intrinsic::amdgcn_frexp_mant) {
        return IC.replaceInstUsesWith(
            II, ConstantFP::get(II.getContext(), Significand));
      }

      // Match instruction special case behavior.
      if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
        Exp = 0;

      return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), Exp));
    }

    if (isa<UndefValue>(Src)) {
      return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
    }

    break;
  }
  case Intrinsic::amdgcn_class: {
    enum {
      S_NAN = 1 << 0,       // Signaling NaN
      Q_NAN = 1 << 1,       // Quiet NaN
      N_INFINITY = 1 << 2,  // Negative infinity
      N_NORMAL = 1 << 3,    // Negative normal
      N_SUBNORMAL = 1 << 4, // Negative subnormal
      N_ZERO = 1 << 5,      // Negative zero
      P_ZERO = 1 << 6,      // Positive zero
      P_SUBNORMAL = 1 << 7, // Positive subnormal
      P_NORMAL = 1 << 8,    // Positive normal
      P_INFINITY = 1 << 9   // Positive infinity
    };

    const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL |
                              N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL |
                              P_NORMAL | P_INFINITY;

    Value *Src0 = II.getArgOperand(0);
    Value *Src1 = II.getArgOperand(1);
    const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1);
    if (!CMask) {
      if (isa<UndefValue>(Src0)) {
        return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
      }

      if (isa<UndefValue>(Src1)) {
        return IC.replaceInstUsesWith(II,
                                      ConstantInt::get(II.getType(), false));
      }
      break;
    }

    uint32_t Mask = CMask->getZExtValue();

    // If all tests are made, it doesn't matter what the value is.
    if ((Mask & FullMask) == FullMask) {
      return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), true));
    }

    if ((Mask & FullMask) == 0) {
      return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), false));
    }

    if (Mask == (S_NAN | Q_NAN)) {
      // Equivalent of isnan. Replace with standard fcmp.
      Value *FCmp = IC.Builder.CreateFCmpUNO(Src0, Src0);
      FCmp->takeName(&II);
      return IC.replaceInstUsesWith(II, FCmp);
    }

    if (Mask == (N_ZERO | P_ZERO)) {
      // Equivalent of == 0.
      Value *FCmp =
          IC.Builder.CreateFCmpOEQ(Src0, ConstantFP::get(Src0->getType(), 0.0));

      FCmp->takeName(&II);
      return IC.replaceInstUsesWith(II, FCmp);
    }

    // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
    if (((Mask & S_NAN) || (Mask & Q_NAN)) &&
        isKnownNeverNaN(Src0, &IC.getTargetLibraryInfo())) {
      return IC.replaceOperand(
          II, 1, ConstantInt::get(Src1->getType(), Mask & ~(S_NAN | Q_NAN)));
    }

    const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0);
    if (!CVal) {
      if (isa<UndefValue>(Src0)) {
        return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
      }

      // Clamp mask to used bits
      if ((Mask & FullMask) != Mask) {
        CallInst *NewCall = IC.Builder.CreateCall(
            II.getCalledFunction(),
            {Src0, ConstantInt::get(Src1->getType(), Mask & FullMask)});

        NewCall->takeName(&II);
        return IC.replaceInstUsesWith(II, NewCall);
      }

      break;
    }

    const APFloat &Val = CVal->getValueAPF();

    bool Result =
        ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) ||
        ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) ||
        ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) ||
        ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) ||
        ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) ||
        ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) ||
        ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) ||
        ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) ||
        ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) ||
        ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative());

    return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), Result));
  }
  case Intrinsic::amdgcn_cvt_pkrtz: {
    Value *Src0 = II.getArgOperand(0);
    Value *Src1 = II.getArgOperand(1);
    if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
      if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
        const fltSemantics &HalfSem =
            II.getType()->getScalarType()->getFltSemantics();
        bool LosesInfo;
        APFloat Val0 = C0->getValueAPF();
        APFloat Val1 = C1->getValueAPF();
        Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
        Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);

        Constant *Folded =
            ConstantVector::get({ConstantFP::get(II.getContext(), Val0),
                                 ConstantFP::get(II.getContext(), Val1)});
        return IC.replaceInstUsesWith(II, Folded);
      }
    }

    if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) {
      return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
    }

    break;
  }
  case Intrinsic::amdgcn_cvt_pknorm_i16:
  case Intrinsic::amdgcn_cvt_pknorm_u16:
  case Intrinsic::amdgcn_cvt_pk_i16:
  case Intrinsic::amdgcn_cvt_pk_u16: {
    Value *Src0 = II.getArgOperand(0);
    Value *Src1 = II.getArgOperand(1);

    if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) {
      return IC.replaceInstUsesWith(II, UndefValue::get(II.getType()));
    }

    break;
  }
  case Intrinsic::amdgcn_ubfe:
  case Intrinsic::amdgcn_sbfe: {
    // Decompose simple cases into standard shifts.
    Value *Src = II.getArgOperand(0);
    if (isa<UndefValue>(Src)) {
      return IC.replaceInstUsesWith(II, Src);
    }

    unsigned Width;
    Type *Ty = II.getType();
    unsigned IntSize = Ty->getIntegerBitWidth();

    ConstantInt *CWidth = dyn_cast<ConstantInt>(II.getArgOperand(2));
    if (CWidth) {
      Width = CWidth->getZExtValue();
      if ((Width & (IntSize - 1)) == 0) {
        return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(Ty));
      }

      // Hardware ignores high bits, so remove those.
      if (Width >= IntSize) {
        return IC.replaceOperand(
            II, 2, ConstantInt::get(CWidth->getType(), Width & (IntSize - 1)));
      }
    }

    unsigned Offset;
    ConstantInt *COffset = dyn_cast<ConstantInt>(II.getArgOperand(1));
    if (COffset) {
      Offset = COffset->getZExtValue();
      if (Offset >= IntSize) {
        return IC.replaceOperand(
            II, 1,
            ConstantInt::get(COffset->getType(), Offset & (IntSize - 1)));
      }
    }

    bool Signed = IID == Intrinsic::amdgcn_sbfe;

    if (!CWidth || !COffset)
      break;

    // The case of Width == 0 is handled above, which makes this tranformation
    // safe.  If Width == 0, then the ashr and lshr instructions become poison
    // value since the shift amount would be equal to the bit size.
    assert(Width != 0);

    // TODO: This allows folding to undef when the hardware has specific
    // behavior?
    if (Offset + Width < IntSize) {
      Value *Shl = IC.Builder.CreateShl(Src, IntSize - Offset - Width);
      Value *RightShift = Signed ? IC.Builder.CreateAShr(Shl, IntSize - Width)
                                 : IC.Builder.CreateLShr(Shl, IntSize - Width);
      RightShift->takeName(&II);
      return IC.replaceInstUsesWith(II, RightShift);
    }

    Value *RightShift = Signed ? IC.Builder.CreateAShr(Src, Offset)
                               : IC.Builder.CreateLShr(Src, Offset);

    RightShift->takeName(&II);
    return IC.replaceInstUsesWith(II, RightShift);
  }
  case Intrinsic::amdgcn_exp:
  case Intrinsic::amdgcn_exp_compr: {
    ConstantInt *En = cast<ConstantInt>(II.getArgOperand(1));
    unsigned EnBits = En->getZExtValue();
    if (EnBits == 0xf)
      break; // All inputs enabled.

    bool IsCompr = IID == Intrinsic::amdgcn_exp_compr;
    bool Changed = false;
    for (int I = 0; I < (IsCompr ? 2 : 4); ++I) {
      if ((!IsCompr && (EnBits & (1 << I)) == 0) ||
          (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) {
        Value *Src = II.getArgOperand(I + 2);
        if (!isa<UndefValue>(Src)) {
          IC.replaceOperand(II, I + 2, UndefValue::get(Src->getType()));
          Changed = true;
        }
      }
    }

    if (Changed) {
      return &II;
    }

    break;
  }
  case Intrinsic::amdgcn_fmed3: {
    // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
    // for the shader.

    Value *Src0 = II.getArgOperand(0);
    Value *Src1 = II.getArgOperand(1);
    Value *Src2 = II.getArgOperand(2);

    // Checking for NaN before canonicalization provides better fidelity when
    // mapping other operations onto fmed3 since the order of operands is
    // unchanged.
    CallInst *NewCall = nullptr;
    if (match(Src0, PatternMatch::m_NaN()) || isa<UndefValue>(Src0)) {
      NewCall = IC.Builder.CreateMinNum(Src1, Src2);
    } else if (match(Src1, PatternMatch::m_NaN()) || isa<UndefValue>(Src1)) {
      NewCall = IC.Builder.CreateMinNum(Src0, Src2);
    } else if (match(Src2, PatternMatch::m_NaN()) || isa<UndefValue>(Src2)) {
      NewCall = IC.Builder.CreateMaxNum(Src0, Src1);
    }

    if (NewCall) {
      NewCall->copyFastMathFlags(&II);
      NewCall->takeName(&II);
      return IC.replaceInstUsesWith(II, NewCall);
    }

    bool Swap = false;
    // Canonicalize constants to RHS operands.
    //
    // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
    if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
      std::swap(Src0, Src1);
      Swap = true;
    }

    if (isa<Constant>(Src1) && !isa<Constant>(Src2)) {
      std::swap(Src1, Src2);
      Swap = true;
    }

    if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
      std::swap(Src0, Src1);
      Swap = true;
    }

    if (Swap) {
      II.setArgOperand(0, Src0);
      II.setArgOperand(1, Src1);
      II.setArgOperand(2, Src2);
      return &II;
    }

    if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
      if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
        if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) {
          APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(),
                                       C2->getValueAPF());
          return IC.replaceInstUsesWith(
              II, ConstantFP::get(IC.Builder.getContext(), Result));
        }
      }
    }

    break;
  }
  case Intrinsic::amdgcn_icmp:
  case Intrinsic::amdgcn_fcmp: {
    const ConstantInt *CC = cast<ConstantInt>(II.getArgOperand(2));
    // Guard against invalid arguments.
    int64_t CCVal = CC->getZExtValue();
    bool IsInteger = IID == Intrinsic::amdgcn_icmp;
    if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE ||
                       CCVal > CmpInst::LAST_ICMP_PREDICATE)) ||
        (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE ||
                        CCVal > CmpInst::LAST_FCMP_PREDICATE)))
      break;

    Value *Src0 = II.getArgOperand(0);
    Value *Src1 = II.getArgOperand(1);

    if (auto *CSrc0 = dyn_cast<Constant>(Src0)) {
      if (auto *CSrc1 = dyn_cast<Constant>(Src1)) {
        Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1);
        if (CCmp->isNullValue()) {
          return IC.replaceInstUsesWith(
              II, ConstantExpr::getSExt(CCmp, II.getType()));
        }

        // The result of V_ICMP/V_FCMP assembly instructions (which this
        // intrinsic exposes) is one bit per thread, masked with the EXEC
        // register (which contains the bitmask of live threads). So a
        // comparison that always returns true is the same as a read of the
        // EXEC register.
        Function *NewF = Intrinsic::getDeclaration(
            II.getModule(), Intrinsic::read_register, II.getType());
        Metadata *MDArgs[] = {MDString::get(II.getContext(), "exec")};
        MDNode *MD = MDNode::get(II.getContext(), MDArgs);
        Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)};
        CallInst *NewCall = IC.Builder.CreateCall(NewF, Args);
        NewCall->addAttribute(AttributeList::FunctionIndex,
                              Attribute::Convergent);
        NewCall->takeName(&II);
        return IC.replaceInstUsesWith(II, NewCall);
      }

      // Canonicalize constants to RHS.
      CmpInst::Predicate SwapPred =
          CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal));
      II.setArgOperand(0, Src1);
      II.setArgOperand(1, Src0);
      II.setArgOperand(
          2, ConstantInt::get(CC->getType(), static_cast<int>(SwapPred)));
      return &II;
    }

    if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE)
      break;

    // Canonicalize compare eq with true value to compare != 0
    // llvm.amdgcn.icmp(zext (i1 x), 1, eq)
    //   -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
    // llvm.amdgcn.icmp(sext (i1 x), -1, eq)
    //   -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
    Value *ExtSrc;
    if (CCVal == CmpInst::ICMP_EQ &&
        ((match(Src1, PatternMatch::m_One()) &&
          match(Src0, m_ZExt(PatternMatch::m_Value(ExtSrc)))) ||
         (match(Src1, PatternMatch::m_AllOnes()) &&
          match(Src0, m_SExt(PatternMatch::m_Value(ExtSrc))))) &&
        ExtSrc->getType()->isIntegerTy(1)) {
      IC.replaceOperand(II, 1, ConstantInt::getNullValue(Src1->getType()));
      IC.replaceOperand(II, 2,
                        ConstantInt::get(CC->getType(), CmpInst::ICMP_NE));
      return &II;
    }

    CmpInst::Predicate SrcPred;
    Value *SrcLHS;
    Value *SrcRHS;

    // Fold compare eq/ne with 0 from a compare result as the predicate to the
    // intrinsic. The typical use is a wave vote function in the library, which
    // will be fed from a user code condition compared with 0. Fold in the
    // redundant compare.

    // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
    //   -> llvm.amdgcn.[if]cmp(a, b, pred)
    //
    // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
    //   -> llvm.amdgcn.[if]cmp(a, b, inv pred)
    if (match(Src1, PatternMatch::m_Zero()) &&
        match(Src0, PatternMatch::m_ZExtOrSExt(
                        m_Cmp(SrcPred, PatternMatch::m_Value(SrcLHS),
                              PatternMatch::m_Value(SrcRHS))))) {
      if (CCVal == CmpInst::ICMP_EQ)
        SrcPred = CmpInst::getInversePredicate(SrcPred);

      Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred)
                                 ? Intrinsic::amdgcn_fcmp
                                 : Intrinsic::amdgcn_icmp;

      Type *Ty = SrcLHS->getType();
      if (auto *CmpType = dyn_cast<IntegerType>(Ty)) {
        // Promote to next legal integer type.
        unsigned Width = CmpType->getBitWidth();
        unsigned NewWidth = Width;

        // Don't do anything for i1 comparisons.
        if (Width == 1)
          break;

        if (Width <= 16)
          NewWidth = 16;
        else if (Width <= 32)
          NewWidth = 32;
        else if (Width <= 64)
          NewWidth = 64;
        else if (Width > 64)
          break; // Can't handle this.

        if (Width != NewWidth) {
          IntegerType *CmpTy = IC.Builder.getIntNTy(NewWidth);
          if (CmpInst::isSigned(SrcPred)) {
            SrcLHS = IC.Builder.CreateSExt(SrcLHS, CmpTy);
            SrcRHS = IC.Builder.CreateSExt(SrcRHS, CmpTy);
          } else {
            SrcLHS = IC.Builder.CreateZExt(SrcLHS, CmpTy);
            SrcRHS = IC.Builder.CreateZExt(SrcRHS, CmpTy);
          }
        }
      } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy())
        break;

      Function *NewF = Intrinsic::getDeclaration(
          II.getModule(), NewIID, {II.getType(), SrcLHS->getType()});
      Value *Args[] = {SrcLHS, SrcRHS,
                       ConstantInt::get(CC->getType(), SrcPred)};
      CallInst *NewCall = IC.Builder.CreateCall(NewF, Args);
      NewCall->takeName(&II);
      return IC.replaceInstUsesWith(II, NewCall);
    }

    break;
  }
  case Intrinsic::amdgcn_ballot: {
    if (auto *Src = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
      if (Src->isZero()) {
        // amdgcn.ballot(i1 0) is zero.
        return IC.replaceInstUsesWith(II, Constant::getNullValue(II.getType()));
      }

      if (Src->isOne()) {
        // amdgcn.ballot(i1 1) is exec.
        const char *RegName = "exec";
        if (II.getType()->isIntegerTy(32))
          RegName = "exec_lo";
        else if (!II.getType()->isIntegerTy(64))
          break;

        Function *NewF = Intrinsic::getDeclaration(
            II.getModule(), Intrinsic::read_register, II.getType());
        Metadata *MDArgs[] = {MDString::get(II.getContext(), RegName)};
        MDNode *MD = MDNode::get(II.getContext(), MDArgs);
        Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)};
        CallInst *NewCall = IC.Builder.CreateCall(NewF, Args);
        NewCall->addAttribute(AttributeList::FunctionIndex,
                              Attribute::Convergent);
        NewCall->takeName(&II);
        return IC.replaceInstUsesWith(II, NewCall);
      }
    }
    break;
  }
  case Intrinsic::amdgcn_wqm_vote: {
    // wqm_vote is identity when the argument is constant.
    if (!isa<Constant>(II.getArgOperand(0)))
      break;

    return IC.replaceInstUsesWith(II, II.getArgOperand(0));
  }
  case Intrinsic::amdgcn_kill: {
    const ConstantInt *C = dyn_cast<ConstantInt>(II.getArgOperand(0));
    if (!C || !C->getZExtValue())
      break;

    // amdgcn.kill(i1 1) is a no-op
    return IC.eraseInstFromFunction(II);
  }
  case Intrinsic::amdgcn_update_dpp: {
    Value *Old = II.getArgOperand(0);

    auto *BC = cast<ConstantInt>(II.getArgOperand(5));
    auto *RM = cast<ConstantInt>(II.getArgOperand(3));
    auto *BM = cast<ConstantInt>(II.getArgOperand(4));
    if (BC->isZeroValue() || RM->getZExtValue() != 0xF ||
        BM->getZExtValue() != 0xF || isa<UndefValue>(Old))
      break;

    // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value.
    return IC.replaceOperand(II, 0, UndefValue::get(Old->getType()));
  }
  case Intrinsic::amdgcn_permlane16:
  case Intrinsic::amdgcn_permlanex16: {
    // Discard vdst_in if it's not going to be read.
    Value *VDstIn = II.getArgOperand(0);
    if (isa<UndefValue>(VDstIn))
      break;

    ConstantInt *FetchInvalid = cast<ConstantInt>(II.getArgOperand(4));
    ConstantInt *BoundCtrl = cast<ConstantInt>(II.getArgOperand(5));
    if (!FetchInvalid->getZExtValue() && !BoundCtrl->getZExtValue())
      break;

    return IC.replaceOperand(II, 0, UndefValue::get(VDstIn->getType()));
  }
  case Intrinsic::amdgcn_readfirstlane:
  case Intrinsic::amdgcn_readlane: {
    // A constant value is trivially uniform.
    if (Constant *C = dyn_cast<Constant>(II.getArgOperand(0))) {
      return IC.replaceInstUsesWith(II, C);
    }

    // The rest of these may not be safe if the exec may not be the same between
    // the def and use.
    Value *Src = II.getArgOperand(0);
    Instruction *SrcInst = dyn_cast<Instruction>(Src);
    if (SrcInst && SrcInst->getParent() != II.getParent())
      break;

    // readfirstlane (readfirstlane x) -> readfirstlane x
    // readlane (readfirstlane x), y -> readfirstlane x
    if (match(Src,
              PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readfirstlane>())) {
      return IC.replaceInstUsesWith(II, Src);
    }

    if (IID == Intrinsic::amdgcn_readfirstlane) {
      // readfirstlane (readlane x, y) -> readlane x, y
      if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>())) {
        return IC.replaceInstUsesWith(II, Src);
      }
    } else {
      // readlane (readlane x, y), y -> readlane x, y
      if (match(Src, PatternMatch::m_Intrinsic<Intrinsic::amdgcn_readlane>(
                         PatternMatch::m_Value(),
                         PatternMatch::m_Specific(II.getArgOperand(1))))) {
        return IC.replaceInstUsesWith(II, Src);
      }
    }

    break;
  }
  case Intrinsic::amdgcn_ldexp: {
    // FIXME: This doesn't introduce new instructions and belongs in
    // InstructionSimplify.
    Type *Ty = II.getType();
    Value *Op0 = II.getArgOperand(0);
    Value *Op1 = II.getArgOperand(1);

    // Folding undef to qnan is safe regardless of the FP mode.
    if (isa<UndefValue>(Op0)) {
      auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics()));
      return IC.replaceInstUsesWith(II, QNaN);
    }

    const APFloat *C = nullptr;
    match(Op0, PatternMatch::m_APFloat(C));

    // FIXME: Should flush denorms depending on FP mode, but that's ignored
    // everywhere else.
    //
    // These cases should be safe, even with strictfp.
    // ldexp(0.0, x) -> 0.0
    // ldexp(-0.0, x) -> -0.0
    // ldexp(inf, x) -> inf
    // ldexp(-inf, x) -> -inf
    if (C && (C->isZero() || C->isInfinity())) {
      return IC.replaceInstUsesWith(II, Op0);
    }

    // With strictfp, be more careful about possibly needing to flush denormals
    // or not, and snan behavior depends on ieee_mode.
    if (II.isStrictFP())
      break;

    if (C && C->isNaN()) {
      // FIXME: We just need to make the nan quiet here, but that's unavailable
      // on APFloat, only IEEEfloat
      auto *Quieted =
          ConstantFP::get(Ty, scalbn(*C, 0, APFloat::rmNearestTiesToEven));
      return IC.replaceInstUsesWith(II, Quieted);
    }

    // ldexp(x, 0) -> x
    // ldexp(x, undef) -> x
    if (isa<UndefValue>(Op1) || match(Op1, PatternMatch::m_ZeroInt())) {
      return IC.replaceInstUsesWith(II, Op0);
    }

    break;
  }
  case Intrinsic::amdgcn_fmul_legacy: {
    Value *Op0 = II.getArgOperand(0);
    Value *Op1 = II.getArgOperand(1);

    // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or
    // infinity, gives +0.0.
    // TODO: Move to InstSimplify?
    if (match(Op0, PatternMatch::m_AnyZeroFP()) ||
        match(Op1, PatternMatch::m_AnyZeroFP()))
      return IC.replaceInstUsesWith(II, ConstantFP::getNullValue(II.getType()));

    // If we can prove we don't have one of the special cases then we can use a
    // normal fmul instruction instead.
    if (canSimplifyLegacyMulToMul(Op0, Op1, IC)) {
      auto *FMul = IC.Builder.CreateFMulFMF(Op0, Op1, &II);
      FMul->takeName(&II);
      return IC.replaceInstUsesWith(II, FMul);
    }
    break;
  }
  case Intrinsic::amdgcn_fma_legacy: {
    Value *Op0 = II.getArgOperand(0);
    Value *Op1 = II.getArgOperand(1);
    Value *Op2 = II.getArgOperand(2);

    // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or
    // infinity, gives +0.0.
    // TODO: Move to InstSimplify?
    if (match(Op0, PatternMatch::m_AnyZeroFP()) ||
        match(Op1, PatternMatch::m_AnyZeroFP())) {
      // It's tempting to just return Op2 here, but that would give the wrong
      // result if Op2 was -0.0.
      auto *Zero = ConstantFP::getNullValue(II.getType());
      auto *FAdd = IC.Builder.CreateFAddFMF(Zero, Op2, &II);
      FAdd->takeName(&II);
      return IC.replaceInstUsesWith(II, FAdd);
    }

    // If we can prove we don't have one of the special cases then we can use a
    // normal fma instead.
    if (canSimplifyLegacyMulToMul(Op0, Op1, IC)) {
      II.setCalledOperand(Intrinsic::getDeclaration(
          II.getModule(), Intrinsic::fma, II.getType()));
      return &II;
    }
    break;
  }
  default: {
    if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
            AMDGPU::getImageDimIntrinsicInfo(II.getIntrinsicID())) {
      return simplifyAMDGCNImageIntrinsic(ST, ImageDimIntr, II, IC);
    }
  }
  }
  return None;
}

/// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
///
/// Note: This only supports non-TFE/LWE image intrinsic calls; those have
///       struct returns.
static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC,
                                                    IntrinsicInst &II,
                                                    APInt DemandedElts,
                                                    int DMaskIdx = -1) {

  auto *IIVTy = cast<FixedVectorType>(II.getType());
  unsigned VWidth = IIVTy->getNumElements();
  if (VWidth == 1)
    return nullptr;

  IRBuilderBase::InsertPointGuard Guard(IC.Builder);
  IC.Builder.SetInsertPoint(&II);

  // Assume the arguments are unchanged and later override them, if needed.
  SmallVector<Value *, 16> Args(II.args());

  if (DMaskIdx < 0) {
    // Buffer case.

    const unsigned ActiveBits = DemandedElts.getActiveBits();
    const unsigned UnusedComponentsAtFront = DemandedElts.countTrailingZeros();

    // Start assuming the prefix of elements is demanded, but possibly clear
    // some other bits if there are trailing zeros (unused components at front)
    // and update offset.
    DemandedElts = (1 << ActiveBits) - 1;

    if (UnusedComponentsAtFront > 0) {
      static const unsigned InvalidOffsetIdx = 0xf;

      unsigned OffsetIdx;
      switch (II.getIntrinsicID()) {
      case Intrinsic::amdgcn_raw_buffer_load:
        OffsetIdx = 1;
        break;
      case Intrinsic::amdgcn_s_buffer_load:
        // If resulting type is vec3, there is no point in trimming the
        // load with updated offset, as the vec3 would most likely be widened to
        // vec4 anyway during lowering.
        if (ActiveBits == 4 && UnusedComponentsAtFront == 1)
          OffsetIdx = InvalidOffsetIdx;
        else
          OffsetIdx = 1;
        break;
      case Intrinsic::amdgcn_struct_buffer_load:
        OffsetIdx = 2;
        break;
      default:
        // TODO: handle tbuffer* intrinsics.
        OffsetIdx = InvalidOffsetIdx;
        break;
      }

      if (OffsetIdx != InvalidOffsetIdx) {
        // Clear demanded bits and update the offset.
        DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1);
        auto *Offset = II.getArgOperand(OffsetIdx);
        unsigned SingleComponentSizeInBits =
            IC.getDataLayout().getTypeSizeInBits(II.getType()->getScalarType());
        unsigned OffsetAdd =
            UnusedComponentsAtFront * SingleComponentSizeInBits / 8;
        auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd);
        Args[OffsetIdx] = IC.Builder.CreateAdd(Offset, OffsetAddVal);
      }
    }
  } else {
    // Image case.

    ConstantInt *DMask = cast<ConstantInt>(II.getArgOperand(DMaskIdx));
    unsigned DMaskVal = DMask->getZExtValue() & 0xf;

    // Mask off values that are undefined because the dmask doesn't cover them
    DemandedElts &= (1 << countPopulation(DMaskVal)) - 1;

    unsigned NewDMaskVal = 0;
    unsigned OrigLoadIdx = 0;
    for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
      const unsigned Bit = 1 << SrcIdx;
      if (!!(DMaskVal & Bit)) {
        if (!!DemandedElts[OrigLoadIdx])
          NewDMaskVal |= Bit;
        OrigLoadIdx++;
      }
    }

    if (DMaskVal != NewDMaskVal)
      Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal);
  }

  unsigned NewNumElts = DemandedElts.countPopulation();
  if (!NewNumElts)
    return UndefValue::get(II.getType());

  if (NewNumElts >= VWidth && DemandedElts.isMask()) {
    if (DMaskIdx >= 0)
      II.setArgOperand(DMaskIdx, Args[DMaskIdx]);
    return nullptr;
  }

  // Validate function argument and return types, extracting overloaded types
  // along the way.
  SmallVector<Type *, 6> OverloadTys;
  if (!Intrinsic::getIntrinsicSignature(II.getCalledFunction(), OverloadTys))
    return nullptr;

  Module *M = II.getParent()->getParent()->getParent();
  Type *EltTy = IIVTy->getElementType();
  Type *NewTy =
      (NewNumElts == 1) ? EltTy : FixedVectorType::get(EltTy, NewNumElts);

  OverloadTys[0] = NewTy;
  Function *NewIntrin =
      Intrinsic::getDeclaration(M, II.getIntrinsicID(), OverloadTys);

  CallInst *NewCall = IC.Builder.CreateCall(NewIntrin, Args);
  NewCall->takeName(&II);
  NewCall->copyMetadata(II);

  if (NewNumElts == 1) {
    return IC.Builder.CreateInsertElement(UndefValue::get(II.getType()),
                                          NewCall,
                                          DemandedElts.countTrailingZeros());
  }

  SmallVector<int, 8> EltMask;
  unsigned NewLoadIdx = 0;
  for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
    if (!!DemandedElts[OrigLoadIdx])
      EltMask.push_back(NewLoadIdx++);
    else
      EltMask.push_back(NewNumElts);
  }

  Value *Shuffle = IC.Builder.CreateShuffleVector(NewCall, EltMask);

  return Shuffle;
}

Optional<Value *> GCNTTIImpl::simplifyDemandedVectorEltsIntrinsic(
    InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
    APInt &UndefElts2, APInt &UndefElts3,
    std::function<void(Instruction *, unsigned, APInt, APInt &)>
        SimplifyAndSetOp) const {
  switch (II.getIntrinsicID()) {
  case Intrinsic::amdgcn_buffer_load:
  case Intrinsic::amdgcn_buffer_load_format:
  case Intrinsic::amdgcn_raw_buffer_load:
  case Intrinsic::amdgcn_raw_buffer_load_format:
  case Intrinsic::amdgcn_raw_tbuffer_load:
  case Intrinsic::amdgcn_s_buffer_load:
  case Intrinsic::amdgcn_struct_buffer_load:
  case Intrinsic::amdgcn_struct_buffer_load_format:
  case Intrinsic::amdgcn_struct_tbuffer_load:
  case Intrinsic::amdgcn_tbuffer_load:
    return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts);
  default: {
    if (getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID())) {
      return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, 0);
    }
    break;
  }
  }
  return None;
}